[IPV4/6]: Netfilter IPsec input hooks
[linux-2.6/kvm.git] / arch / parisc / kernel / time.c
blobcded2568078741c3177f56b23ef64a3e4a9d2488
1 /*
2 * linux/arch/parisc/kernel/time.c
4 * Copyright (C) 1991, 1992, 1995 Linus Torvalds
5 * Modifications for ARM (C) 1994, 1995, 1996,1997 Russell King
6 * Copyright (C) 1999 SuSE GmbH, (Philipp Rumpf, prumpf@tux.org)
8 * 1994-07-02 Alan Modra
9 * fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime
10 * 1998-12-20 Updated NTP code according to technical memorandum Jan '96
11 * "A Kernel Model for Precision Timekeeping" by Dave Mills
13 #include <linux/config.h>
14 #include <linux/errno.h>
15 #include <linux/module.h>
16 #include <linux/sched.h>
17 #include <linux/kernel.h>
18 #include <linux/param.h>
19 #include <linux/string.h>
20 #include <linux/mm.h>
21 #include <linux/interrupt.h>
22 #include <linux/time.h>
23 #include <linux/init.h>
24 #include <linux/smp.h>
25 #include <linux/profile.h>
27 #include <asm/uaccess.h>
28 #include <asm/io.h>
29 #include <asm/irq.h>
30 #include <asm/param.h>
31 #include <asm/pdc.h>
32 #include <asm/led.h>
34 #include <linux/timex.h>
36 /* xtime and wall_jiffies keep wall-clock time */
37 extern unsigned long wall_jiffies;
39 static long clocktick; /* timer cycles per tick */
40 static long halftick;
42 #ifdef CONFIG_SMP
43 extern void smp_do_timer(struct pt_regs *regs);
44 #endif
46 irqreturn_t timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
48 long now;
49 long next_tick;
50 int nticks;
51 int cpu = smp_processor_id();
53 profile_tick(CPU_PROFILING, regs);
55 now = mfctl(16);
56 /* initialize next_tick to time at last clocktick */
57 next_tick = cpu_data[cpu].it_value;
59 /* since time passes between the interrupt and the mfctl()
60 * above, it is never true that last_tick + clocktick == now. If we
61 * never miss a clocktick, we could set next_tick = last_tick + clocktick
62 * but maybe we'll miss ticks, hence the loop.
64 * Variables are *signed*.
67 nticks = 0;
68 while((next_tick - now) < halftick) {
69 next_tick += clocktick;
70 nticks++;
72 mtctl(next_tick, 16);
73 cpu_data[cpu].it_value = next_tick;
75 while (nticks--) {
76 #ifdef CONFIG_SMP
77 smp_do_timer(regs);
78 #else
79 update_process_times(user_mode(regs));
80 #endif
81 if (cpu == 0) {
82 write_seqlock(&xtime_lock);
83 do_timer(regs);
84 write_sequnlock(&xtime_lock);
88 /* check soft power switch status */
89 if (cpu == 0 && !atomic_read(&power_tasklet.count))
90 tasklet_schedule(&power_tasklet);
92 return IRQ_HANDLED;
96 unsigned long profile_pc(struct pt_regs *regs)
98 unsigned long pc = instruction_pointer(regs);
100 if (regs->gr[0] & PSW_N)
101 pc -= 4;
103 #ifdef CONFIG_SMP
104 if (in_lock_functions(pc))
105 pc = regs->gr[2];
106 #endif
108 return pc;
110 EXPORT_SYMBOL(profile_pc);
113 /*** converted from ia64 ***/
115 * Return the number of micro-seconds that elapsed since the last
116 * update to wall time (aka xtime aka wall_jiffies). The xtime_lock
117 * must be at least read-locked when calling this routine.
119 static inline unsigned long
120 gettimeoffset (void)
122 #ifndef CONFIG_SMP
124 * FIXME: This won't work on smp because jiffies are updated by cpu 0.
125 * Once parisc-linux learns the cr16 difference between processors,
126 * this could be made to work.
128 long last_tick;
129 long elapsed_cycles;
131 /* it_value is the intended time of the next tick */
132 last_tick = cpu_data[smp_processor_id()].it_value;
134 /* Subtract one tick and account for possible difference between
135 * when we expected the tick and when it actually arrived.
136 * (aka wall vs real)
138 last_tick -= clocktick * (jiffies - wall_jiffies + 1);
139 elapsed_cycles = mfctl(16) - last_tick;
141 /* the precision of this math could be improved */
142 return elapsed_cycles / (PAGE0->mem_10msec / 10000);
143 #else
144 return 0;
145 #endif
148 void
149 do_gettimeofday (struct timeval *tv)
151 unsigned long flags, seq, usec, sec;
153 do {
154 seq = read_seqbegin_irqsave(&xtime_lock, flags);
155 usec = gettimeoffset();
156 sec = xtime.tv_sec;
157 usec += (xtime.tv_nsec / 1000);
158 } while (read_seqretry_irqrestore(&xtime_lock, seq, flags));
160 while (usec >= 1000000) {
161 usec -= 1000000;
162 ++sec;
165 tv->tv_sec = sec;
166 tv->tv_usec = usec;
169 EXPORT_SYMBOL(do_gettimeofday);
172 do_settimeofday (struct timespec *tv)
174 time_t wtm_sec, sec = tv->tv_sec;
175 long wtm_nsec, nsec = tv->tv_nsec;
177 if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
178 return -EINVAL;
180 write_seqlock_irq(&xtime_lock);
183 * This is revolting. We need to set "xtime"
184 * correctly. However, the value in this location is
185 * the value at the most recent update of wall time.
186 * Discover what correction gettimeofday would have
187 * done, and then undo it!
189 nsec -= gettimeoffset() * 1000;
191 wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec);
192 wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec);
194 set_normalized_timespec(&xtime, sec, nsec);
195 set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
197 ntp_clear();
199 write_sequnlock_irq(&xtime_lock);
200 clock_was_set();
201 return 0;
203 EXPORT_SYMBOL(do_settimeofday);
206 * XXX: We can do better than this.
207 * Returns nanoseconds
210 unsigned long long sched_clock(void)
212 return (unsigned long long)jiffies * (1000000000 / HZ);
216 void __init time_init(void)
218 unsigned long next_tick;
219 static struct pdc_tod tod_data;
221 clocktick = (100 * PAGE0->mem_10msec) / HZ;
222 halftick = clocktick / 2;
224 /* Setup clock interrupt timing */
226 next_tick = mfctl(16);
227 next_tick += clocktick;
228 cpu_data[smp_processor_id()].it_value = next_tick;
230 /* kick off Itimer (CR16) */
231 mtctl(next_tick, 16);
233 if(pdc_tod_read(&tod_data) == 0) {
234 write_seqlock_irq(&xtime_lock);
235 xtime.tv_sec = tod_data.tod_sec;
236 xtime.tv_nsec = tod_data.tod_usec * 1000;
237 set_normalized_timespec(&wall_to_monotonic,
238 -xtime.tv_sec, -xtime.tv_nsec);
239 write_sequnlock_irq(&xtime_lock);
240 } else {
241 printk(KERN_ERR "Error reading tod clock\n");
242 xtime.tv_sec = 0;
243 xtime.tv_nsec = 0;