V4L/DVB (8197): gspca: pac207 frames no more decoded in the subdriver.
[linux-2.6/kvm.git] / kernel / time / tick-broadcast.c
blobf48d0f09d32f9c8763190a766f2f23a9fef9e923
1 /*
2 * linux/kernel/time/tick-broadcast.c
4 * This file contains functions which emulate a local clock-event
5 * device via a broadcast event source.
7 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
8 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
9 * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
11 * This code is licenced under the GPL version 2. For details see
12 * kernel-base/COPYING.
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/percpu.h>
19 #include <linux/profile.h>
20 #include <linux/sched.h>
21 #include <linux/tick.h>
23 #include "tick-internal.h"
26 * Broadcast support for broken x86 hardware, where the local apic
27 * timer stops in C3 state.
30 struct tick_device tick_broadcast_device;
31 static cpumask_t tick_broadcast_mask;
32 static DEFINE_SPINLOCK(tick_broadcast_lock);
33 static int tick_broadcast_force;
35 #ifdef CONFIG_TICK_ONESHOT
36 static void tick_broadcast_clear_oneshot(int cpu);
37 #else
38 static inline void tick_broadcast_clear_oneshot(int cpu) { }
39 #endif
42 * Debugging: see timer_list.c
44 struct tick_device *tick_get_broadcast_device(void)
46 return &tick_broadcast_device;
49 cpumask_t *tick_get_broadcast_mask(void)
51 return &tick_broadcast_mask;
55 * Start the device in periodic mode
57 static void tick_broadcast_start_periodic(struct clock_event_device *bc)
59 if (bc)
60 tick_setup_periodic(bc, 1);
64 * Check, if the device can be utilized as broadcast device:
66 int tick_check_broadcast_device(struct clock_event_device *dev)
68 if ((tick_broadcast_device.evtdev &&
69 tick_broadcast_device.evtdev->rating >= dev->rating) ||
70 (dev->features & CLOCK_EVT_FEAT_C3STOP))
71 return 0;
73 clockevents_exchange_device(NULL, dev);
74 tick_broadcast_device.evtdev = dev;
75 if (!cpus_empty(tick_broadcast_mask))
76 tick_broadcast_start_periodic(dev);
77 return 1;
81 * Check, if the device is the broadcast device
83 int tick_is_broadcast_device(struct clock_event_device *dev)
85 return (dev && tick_broadcast_device.evtdev == dev);
89 * Check, if the device is disfunctional and a place holder, which
90 * needs to be handled by the broadcast device.
92 int tick_device_uses_broadcast(struct clock_event_device *dev, int cpu)
94 unsigned long flags;
95 int ret = 0;
97 spin_lock_irqsave(&tick_broadcast_lock, flags);
100 * Devices might be registered with both periodic and oneshot
101 * mode disabled. This signals, that the device needs to be
102 * operated from the broadcast device and is a placeholder for
103 * the cpu local device.
105 if (!tick_device_is_functional(dev)) {
106 dev->event_handler = tick_handle_periodic;
107 cpu_set(cpu, tick_broadcast_mask);
108 tick_broadcast_start_periodic(tick_broadcast_device.evtdev);
109 ret = 1;
110 } else {
112 * When the new device is not affected by the stop
113 * feature and the cpu is marked in the broadcast mask
114 * then clear the broadcast bit.
116 if (!(dev->features & CLOCK_EVT_FEAT_C3STOP)) {
117 int cpu = smp_processor_id();
119 cpu_clear(cpu, tick_broadcast_mask);
120 tick_broadcast_clear_oneshot(cpu);
123 spin_unlock_irqrestore(&tick_broadcast_lock, flags);
124 return ret;
128 * Broadcast the event to the cpus, which are set in the mask
130 static void tick_do_broadcast(cpumask_t mask)
132 int cpu = smp_processor_id();
133 struct tick_device *td;
136 * Check, if the current cpu is in the mask
138 if (cpu_isset(cpu, mask)) {
139 cpu_clear(cpu, mask);
140 td = &per_cpu(tick_cpu_device, cpu);
141 td->evtdev->event_handler(td->evtdev);
144 if (!cpus_empty(mask)) {
146 * It might be necessary to actually check whether the devices
147 * have different broadcast functions. For now, just use the
148 * one of the first device. This works as long as we have this
149 * misfeature only on x86 (lapic)
151 cpu = first_cpu(mask);
152 td = &per_cpu(tick_cpu_device, cpu);
153 td->evtdev->broadcast(mask);
158 * Periodic broadcast:
159 * - invoke the broadcast handlers
161 static void tick_do_periodic_broadcast(void)
163 cpumask_t mask;
165 spin_lock(&tick_broadcast_lock);
167 cpus_and(mask, cpu_online_map, tick_broadcast_mask);
168 tick_do_broadcast(mask);
170 spin_unlock(&tick_broadcast_lock);
174 * Event handler for periodic broadcast ticks
176 static void tick_handle_periodic_broadcast(struct clock_event_device *dev)
178 tick_do_periodic_broadcast();
181 * The device is in periodic mode. No reprogramming necessary:
183 if (dev->mode == CLOCK_EVT_MODE_PERIODIC)
184 return;
187 * Setup the next period for devices, which do not have
188 * periodic mode:
190 for (;;) {
191 ktime_t next = ktime_add(dev->next_event, tick_period);
193 if (!clockevents_program_event(dev, next, ktime_get()))
194 return;
195 tick_do_periodic_broadcast();
200 * Powerstate information: The system enters/leaves a state, where
201 * affected devices might stop
203 static void tick_do_broadcast_on_off(void *why)
205 struct clock_event_device *bc, *dev;
206 struct tick_device *td;
207 unsigned long flags, *reason = why;
208 int cpu;
210 spin_lock_irqsave(&tick_broadcast_lock, flags);
212 cpu = smp_processor_id();
213 td = &per_cpu(tick_cpu_device, cpu);
214 dev = td->evtdev;
215 bc = tick_broadcast_device.evtdev;
218 * Is the device not affected by the powerstate ?
220 if (!dev || !(dev->features & CLOCK_EVT_FEAT_C3STOP))
221 goto out;
223 if (!tick_device_is_functional(dev))
224 goto out;
226 switch (*reason) {
227 case CLOCK_EVT_NOTIFY_BROADCAST_ON:
228 case CLOCK_EVT_NOTIFY_BROADCAST_FORCE:
229 if (!cpu_isset(cpu, tick_broadcast_mask)) {
230 cpu_set(cpu, tick_broadcast_mask);
231 if (td->mode == TICKDEV_MODE_PERIODIC)
232 clockevents_set_mode(dev,
233 CLOCK_EVT_MODE_SHUTDOWN);
235 if (*reason == CLOCK_EVT_NOTIFY_BROADCAST_FORCE)
236 tick_broadcast_force = 1;
237 break;
238 case CLOCK_EVT_NOTIFY_BROADCAST_OFF:
239 if (!tick_broadcast_force &&
240 cpu_isset(cpu, tick_broadcast_mask)) {
241 cpu_clear(cpu, tick_broadcast_mask);
242 if (td->mode == TICKDEV_MODE_PERIODIC)
243 tick_setup_periodic(dev, 0);
245 break;
248 if (cpus_empty(tick_broadcast_mask))
249 clockevents_set_mode(bc, CLOCK_EVT_MODE_SHUTDOWN);
250 else {
251 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
252 tick_broadcast_start_periodic(bc);
253 else
254 tick_broadcast_setup_oneshot(bc);
256 out:
257 spin_unlock_irqrestore(&tick_broadcast_lock, flags);
261 * Powerstate information: The system enters/leaves a state, where
262 * affected devices might stop.
264 void tick_broadcast_on_off(unsigned long reason, int *oncpu)
266 if (!cpu_isset(*oncpu, cpu_online_map))
267 printk(KERN_ERR "tick-broadcast: ignoring broadcast for "
268 "offline CPU #%d\n", *oncpu);
269 else
270 smp_call_function_single(*oncpu, tick_do_broadcast_on_off,
271 &reason, 1);
275 * Set the periodic handler depending on broadcast on/off
277 void tick_set_periodic_handler(struct clock_event_device *dev, int broadcast)
279 if (!broadcast)
280 dev->event_handler = tick_handle_periodic;
281 else
282 dev->event_handler = tick_handle_periodic_broadcast;
286 * Remove a CPU from broadcasting
288 void tick_shutdown_broadcast(unsigned int *cpup)
290 struct clock_event_device *bc;
291 unsigned long flags;
292 unsigned int cpu = *cpup;
294 spin_lock_irqsave(&tick_broadcast_lock, flags);
296 bc = tick_broadcast_device.evtdev;
297 cpu_clear(cpu, tick_broadcast_mask);
299 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
300 if (bc && cpus_empty(tick_broadcast_mask))
301 clockevents_set_mode(bc, CLOCK_EVT_MODE_SHUTDOWN);
304 spin_unlock_irqrestore(&tick_broadcast_lock, flags);
307 void tick_suspend_broadcast(void)
309 struct clock_event_device *bc;
310 unsigned long flags;
312 spin_lock_irqsave(&tick_broadcast_lock, flags);
314 bc = tick_broadcast_device.evtdev;
315 if (bc)
316 clockevents_set_mode(bc, CLOCK_EVT_MODE_SHUTDOWN);
318 spin_unlock_irqrestore(&tick_broadcast_lock, flags);
321 int tick_resume_broadcast(void)
323 struct clock_event_device *bc;
324 unsigned long flags;
325 int broadcast = 0;
327 spin_lock_irqsave(&tick_broadcast_lock, flags);
329 bc = tick_broadcast_device.evtdev;
331 if (bc) {
332 clockevents_set_mode(bc, CLOCK_EVT_MODE_RESUME);
334 switch (tick_broadcast_device.mode) {
335 case TICKDEV_MODE_PERIODIC:
336 if(!cpus_empty(tick_broadcast_mask))
337 tick_broadcast_start_periodic(bc);
338 broadcast = cpu_isset(smp_processor_id(),
339 tick_broadcast_mask);
340 break;
341 case TICKDEV_MODE_ONESHOT:
342 broadcast = tick_resume_broadcast_oneshot(bc);
343 break;
346 spin_unlock_irqrestore(&tick_broadcast_lock, flags);
348 return broadcast;
352 #ifdef CONFIG_TICK_ONESHOT
354 static cpumask_t tick_broadcast_oneshot_mask;
357 * Debugging: see timer_list.c
359 cpumask_t *tick_get_broadcast_oneshot_mask(void)
361 return &tick_broadcast_oneshot_mask;
364 static int tick_broadcast_set_event(ktime_t expires, int force)
366 struct clock_event_device *bc = tick_broadcast_device.evtdev;
367 ktime_t now = ktime_get();
368 int res;
370 for(;;) {
371 res = clockevents_program_event(bc, expires, now);
372 if (!res || !force)
373 return res;
374 now = ktime_get();
375 expires = ktime_add(now, ktime_set(0, bc->min_delta_ns));
379 int tick_resume_broadcast_oneshot(struct clock_event_device *bc)
381 clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT);
382 return 0;
386 * Handle oneshot mode broadcasting
388 static void tick_handle_oneshot_broadcast(struct clock_event_device *dev)
390 struct tick_device *td;
391 cpumask_t mask;
392 ktime_t now, next_event;
393 int cpu;
395 spin_lock(&tick_broadcast_lock);
396 again:
397 dev->next_event.tv64 = KTIME_MAX;
398 next_event.tv64 = KTIME_MAX;
399 mask = CPU_MASK_NONE;
400 now = ktime_get();
401 /* Find all expired events */
402 for (cpu = first_cpu(tick_broadcast_oneshot_mask); cpu != NR_CPUS;
403 cpu = next_cpu(cpu, tick_broadcast_oneshot_mask)) {
404 td = &per_cpu(tick_cpu_device, cpu);
405 if (td->evtdev->next_event.tv64 <= now.tv64)
406 cpu_set(cpu, mask);
407 else if (td->evtdev->next_event.tv64 < next_event.tv64)
408 next_event.tv64 = td->evtdev->next_event.tv64;
412 * Wakeup the cpus which have an expired event.
414 tick_do_broadcast(mask);
417 * Two reasons for reprogram:
419 * - The global event did not expire any CPU local
420 * events. This happens in dyntick mode, as the maximum PIT
421 * delta is quite small.
423 * - There are pending events on sleeping CPUs which were not
424 * in the event mask
426 if (next_event.tv64 != KTIME_MAX) {
428 * Rearm the broadcast device. If event expired,
429 * repeat the above
431 if (tick_broadcast_set_event(next_event, 0))
432 goto again;
434 spin_unlock(&tick_broadcast_lock);
438 * Powerstate information: The system enters/leaves a state, where
439 * affected devices might stop
441 void tick_broadcast_oneshot_control(unsigned long reason)
443 struct clock_event_device *bc, *dev;
444 struct tick_device *td;
445 unsigned long flags;
446 int cpu;
448 spin_lock_irqsave(&tick_broadcast_lock, flags);
451 * Periodic mode does not care about the enter/exit of power
452 * states
454 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
455 goto out;
457 bc = tick_broadcast_device.evtdev;
458 cpu = smp_processor_id();
459 td = &per_cpu(tick_cpu_device, cpu);
460 dev = td->evtdev;
462 if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
463 goto out;
465 if (reason == CLOCK_EVT_NOTIFY_BROADCAST_ENTER) {
466 if (!cpu_isset(cpu, tick_broadcast_oneshot_mask)) {
467 cpu_set(cpu, tick_broadcast_oneshot_mask);
468 clockevents_set_mode(dev, CLOCK_EVT_MODE_SHUTDOWN);
469 if (dev->next_event.tv64 < bc->next_event.tv64)
470 tick_broadcast_set_event(dev->next_event, 1);
472 } else {
473 if (cpu_isset(cpu, tick_broadcast_oneshot_mask)) {
474 cpu_clear(cpu, tick_broadcast_oneshot_mask);
475 clockevents_set_mode(dev, CLOCK_EVT_MODE_ONESHOT);
476 if (dev->next_event.tv64 != KTIME_MAX)
477 tick_program_event(dev->next_event, 1);
481 out:
482 spin_unlock_irqrestore(&tick_broadcast_lock, flags);
486 * Reset the one shot broadcast for a cpu
488 * Called with tick_broadcast_lock held
490 static void tick_broadcast_clear_oneshot(int cpu)
492 cpu_clear(cpu, tick_broadcast_oneshot_mask);
496 * tick_broadcast_setup_oneshot - setup the broadcast device
498 void tick_broadcast_setup_oneshot(struct clock_event_device *bc)
500 bc->event_handler = tick_handle_oneshot_broadcast;
501 clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT);
502 bc->next_event.tv64 = KTIME_MAX;
506 * Select oneshot operating mode for the broadcast device
508 void tick_broadcast_switch_to_oneshot(void)
510 struct clock_event_device *bc;
511 unsigned long flags;
513 spin_lock_irqsave(&tick_broadcast_lock, flags);
515 tick_broadcast_device.mode = TICKDEV_MODE_ONESHOT;
516 bc = tick_broadcast_device.evtdev;
517 if (bc)
518 tick_broadcast_setup_oneshot(bc);
519 spin_unlock_irqrestore(&tick_broadcast_lock, flags);
524 * Remove a dead CPU from broadcasting
526 void tick_shutdown_broadcast_oneshot(unsigned int *cpup)
528 unsigned long flags;
529 unsigned int cpu = *cpup;
531 spin_lock_irqsave(&tick_broadcast_lock, flags);
534 * Clear the broadcast mask flag for the dead cpu, but do not
535 * stop the broadcast device!
537 cpu_clear(cpu, tick_broadcast_oneshot_mask);
539 spin_unlock_irqrestore(&tick_broadcast_lock, flags);
542 #endif