V4L/DVB: media/radio: fix copy_to_user to user handling
[linux-2.6/kvm.git] / include / net / sock.h
blob0a691ea7654aefb403e25039f08641691d3de74c
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Definitions for the AF_INET socket handler.
8 * Version: @(#)sock.h 1.0.4 05/13/93
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche <flla@stud.uni-sb.de>
15 * Fixes:
16 * Alan Cox : Volatiles in skbuff pointers. See
17 * skbuff comments. May be overdone,
18 * better to prove they can be removed
19 * than the reverse.
20 * Alan Cox : Added a zapped field for tcp to note
21 * a socket is reset and must stay shut up
22 * Alan Cox : New fields for options
23 * Pauline Middelink : identd support
24 * Alan Cox : Eliminate low level recv/recvfrom
25 * David S. Miller : New socket lookup architecture.
26 * Steve Whitehouse: Default routines for sock_ops
27 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made
28 * protinfo be just a void pointer, as the
29 * protocol specific parts were moved to
30 * respective headers and ipv4/v6, etc now
31 * use private slabcaches for its socks
32 * Pedro Hortas : New flags field for socket options
35 * This program is free software; you can redistribute it and/or
36 * modify it under the terms of the GNU General Public License
37 * as published by the Free Software Foundation; either version
38 * 2 of the License, or (at your option) any later version.
40 #ifndef _SOCK_H
41 #define _SOCK_H
43 #include <linux/kernel.h>
44 #include <linux/list.h>
45 #include <linux/list_nulls.h>
46 #include <linux/timer.h>
47 #include <linux/cache.h>
48 #include <linux/module.h>
49 #include <linux/lockdep.h>
50 #include <linux/netdevice.h>
51 #include <linux/skbuff.h> /* struct sk_buff */
52 #include <linux/mm.h>
53 #include <linux/security.h>
54 #include <linux/slab.h>
56 #include <linux/filter.h>
57 #include <linux/rculist_nulls.h>
58 #include <linux/poll.h>
60 #include <asm/atomic.h>
61 #include <net/dst.h>
62 #include <net/checksum.h>
65 * This structure really needs to be cleaned up.
66 * Most of it is for TCP, and not used by any of
67 * the other protocols.
70 /* Define this to get the SOCK_DBG debugging facility. */
71 #define SOCK_DEBUGGING
72 #ifdef SOCK_DEBUGGING
73 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
74 printk(KERN_DEBUG msg); } while (0)
75 #else
76 /* Validate arguments and do nothing */
77 static inline void __attribute__ ((format (printf, 2, 3)))
78 SOCK_DEBUG(struct sock *sk, const char *msg, ...)
81 #endif
83 /* This is the per-socket lock. The spinlock provides a synchronization
84 * between user contexts and software interrupt processing, whereas the
85 * mini-semaphore synchronizes multiple users amongst themselves.
87 typedef struct {
88 spinlock_t slock;
89 int owned;
90 wait_queue_head_t wq;
92 * We express the mutex-alike socket_lock semantics
93 * to the lock validator by explicitly managing
94 * the slock as a lock variant (in addition to
95 * the slock itself):
97 #ifdef CONFIG_DEBUG_LOCK_ALLOC
98 struct lockdep_map dep_map;
99 #endif
100 } socket_lock_t;
102 struct sock;
103 struct proto;
104 struct net;
107 * struct sock_common - minimal network layer representation of sockets
108 * @skc_node: main hash linkage for various protocol lookup tables
109 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
110 * @skc_refcnt: reference count
111 * @skc_tx_queue_mapping: tx queue number for this connection
112 * @skc_hash: hash value used with various protocol lookup tables
113 * @skc_u16hashes: two u16 hash values used by UDP lookup tables
114 * @skc_family: network address family
115 * @skc_state: Connection state
116 * @skc_reuse: %SO_REUSEADDR setting
117 * @skc_bound_dev_if: bound device index if != 0
118 * @skc_bind_node: bind hash linkage for various protocol lookup tables
119 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
120 * @skc_prot: protocol handlers inside a network family
121 * @skc_net: reference to the network namespace of this socket
123 * This is the minimal network layer representation of sockets, the header
124 * for struct sock and struct inet_timewait_sock.
126 struct sock_common {
128 * first fields are not copied in sock_copy()
130 union {
131 struct hlist_node skc_node;
132 struct hlist_nulls_node skc_nulls_node;
134 atomic_t skc_refcnt;
135 int skc_tx_queue_mapping;
137 union {
138 unsigned int skc_hash;
139 __u16 skc_u16hashes[2];
141 unsigned short skc_family;
142 volatile unsigned char skc_state;
143 unsigned char skc_reuse;
144 int skc_bound_dev_if;
145 union {
146 struct hlist_node skc_bind_node;
147 struct hlist_nulls_node skc_portaddr_node;
149 struct proto *skc_prot;
150 #ifdef CONFIG_NET_NS
151 struct net *skc_net;
152 #endif
156 * struct sock - network layer representation of sockets
157 * @__sk_common: shared layout with inet_timewait_sock
158 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
159 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
160 * @sk_lock: synchronizer
161 * @sk_rcvbuf: size of receive buffer in bytes
162 * @sk_wq: sock wait queue and async head
163 * @sk_dst_cache: destination cache
164 * @sk_dst_lock: destination cache lock
165 * @sk_policy: flow policy
166 * @sk_rmem_alloc: receive queue bytes committed
167 * @sk_receive_queue: incoming packets
168 * @sk_wmem_alloc: transmit queue bytes committed
169 * @sk_write_queue: Packet sending queue
170 * @sk_async_wait_queue: DMA copied packets
171 * @sk_omem_alloc: "o" is "option" or "other"
172 * @sk_wmem_queued: persistent queue size
173 * @sk_forward_alloc: space allocated forward
174 * @sk_allocation: allocation mode
175 * @sk_sndbuf: size of send buffer in bytes
176 * @sk_flags: %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
177 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
178 * @sk_no_check: %SO_NO_CHECK setting, wether or not checkup packets
179 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
180 * @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
181 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
182 * @sk_gso_max_size: Maximum GSO segment size to build
183 * @sk_lingertime: %SO_LINGER l_linger setting
184 * @sk_backlog: always used with the per-socket spinlock held
185 * @sk_callback_lock: used with the callbacks in the end of this struct
186 * @sk_error_queue: rarely used
187 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
188 * IPV6_ADDRFORM for instance)
189 * @sk_err: last error
190 * @sk_err_soft: errors that don't cause failure but are the cause of a
191 * persistent failure not just 'timed out'
192 * @sk_drops: raw/udp drops counter
193 * @sk_ack_backlog: current listen backlog
194 * @sk_max_ack_backlog: listen backlog set in listen()
195 * @sk_priority: %SO_PRIORITY setting
196 * @sk_type: socket type (%SOCK_STREAM, etc)
197 * @sk_protocol: which protocol this socket belongs in this network family
198 * @sk_peercred: %SO_PEERCRED setting
199 * @sk_rcvlowat: %SO_RCVLOWAT setting
200 * @sk_rcvtimeo: %SO_RCVTIMEO setting
201 * @sk_sndtimeo: %SO_SNDTIMEO setting
202 * @sk_rxhash: flow hash received from netif layer
203 * @sk_filter: socket filtering instructions
204 * @sk_protinfo: private area, net family specific, when not using slab
205 * @sk_timer: sock cleanup timer
206 * @sk_stamp: time stamp of last packet received
207 * @sk_socket: Identd and reporting IO signals
208 * @sk_user_data: RPC layer private data
209 * @sk_sndmsg_page: cached page for sendmsg
210 * @sk_sndmsg_off: cached offset for sendmsg
211 * @sk_send_head: front of stuff to transmit
212 * @sk_security: used by security modules
213 * @sk_mark: generic packet mark
214 * @sk_write_pending: a write to stream socket waits to start
215 * @sk_state_change: callback to indicate change in the state of the sock
216 * @sk_data_ready: callback to indicate there is data to be processed
217 * @sk_write_space: callback to indicate there is bf sending space available
218 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
219 * @sk_backlog_rcv: callback to process the backlog
220 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
222 struct sock {
224 * Now struct inet_timewait_sock also uses sock_common, so please just
225 * don't add nothing before this first member (__sk_common) --acme
227 struct sock_common __sk_common;
228 #define sk_node __sk_common.skc_node
229 #define sk_nulls_node __sk_common.skc_nulls_node
230 #define sk_refcnt __sk_common.skc_refcnt
231 #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping
233 #define sk_copy_start __sk_common.skc_hash
234 #define sk_hash __sk_common.skc_hash
235 #define sk_family __sk_common.skc_family
236 #define sk_state __sk_common.skc_state
237 #define sk_reuse __sk_common.skc_reuse
238 #define sk_bound_dev_if __sk_common.skc_bound_dev_if
239 #define sk_bind_node __sk_common.skc_bind_node
240 #define sk_prot __sk_common.skc_prot
241 #define sk_net __sk_common.skc_net
242 kmemcheck_bitfield_begin(flags);
243 unsigned int sk_shutdown : 2,
244 sk_no_check : 2,
245 sk_userlocks : 4,
246 sk_protocol : 8,
247 sk_type : 16;
248 kmemcheck_bitfield_end(flags);
249 int sk_rcvbuf;
250 socket_lock_t sk_lock;
252 * The backlog queue is special, it is always used with
253 * the per-socket spinlock held and requires low latency
254 * access. Therefore we special case it's implementation.
256 struct {
257 struct sk_buff *head;
258 struct sk_buff *tail;
259 int len;
260 } sk_backlog;
261 struct socket_wq *sk_wq;
262 struct dst_entry *sk_dst_cache;
263 #ifdef CONFIG_XFRM
264 struct xfrm_policy *sk_policy[2];
265 #endif
266 spinlock_t sk_dst_lock;
267 atomic_t sk_rmem_alloc;
268 atomic_t sk_wmem_alloc;
269 atomic_t sk_omem_alloc;
270 int sk_sndbuf;
271 struct sk_buff_head sk_receive_queue;
272 struct sk_buff_head sk_write_queue;
273 #ifdef CONFIG_NET_DMA
274 struct sk_buff_head sk_async_wait_queue;
275 #endif
276 int sk_wmem_queued;
277 int sk_forward_alloc;
278 gfp_t sk_allocation;
279 int sk_route_caps;
280 int sk_route_nocaps;
281 int sk_gso_type;
282 unsigned int sk_gso_max_size;
283 int sk_rcvlowat;
284 #ifdef CONFIG_RPS
285 __u32 sk_rxhash;
286 #endif
287 unsigned long sk_flags;
288 unsigned long sk_lingertime;
289 struct sk_buff_head sk_error_queue;
290 struct proto *sk_prot_creator;
291 rwlock_t sk_callback_lock;
292 int sk_err,
293 sk_err_soft;
294 atomic_t sk_drops;
295 unsigned short sk_ack_backlog;
296 unsigned short sk_max_ack_backlog;
297 __u32 sk_priority;
298 struct ucred sk_peercred;
299 long sk_rcvtimeo;
300 long sk_sndtimeo;
301 struct sk_filter *sk_filter;
302 void *sk_protinfo;
303 struct timer_list sk_timer;
304 ktime_t sk_stamp;
305 struct socket *sk_socket;
306 void *sk_user_data;
307 struct page *sk_sndmsg_page;
308 struct sk_buff *sk_send_head;
309 __u32 sk_sndmsg_off;
310 int sk_write_pending;
311 #ifdef CONFIG_SECURITY
312 void *sk_security;
313 #endif
314 __u32 sk_mark;
315 u32 sk_classid;
316 void (*sk_state_change)(struct sock *sk);
317 void (*sk_data_ready)(struct sock *sk, int bytes);
318 void (*sk_write_space)(struct sock *sk);
319 void (*sk_error_report)(struct sock *sk);
320 int (*sk_backlog_rcv)(struct sock *sk,
321 struct sk_buff *skb);
322 void (*sk_destruct)(struct sock *sk);
326 * Hashed lists helper routines
328 static inline struct sock *sk_entry(const struct hlist_node *node)
330 return hlist_entry(node, struct sock, sk_node);
333 static inline struct sock *__sk_head(const struct hlist_head *head)
335 return hlist_entry(head->first, struct sock, sk_node);
338 static inline struct sock *sk_head(const struct hlist_head *head)
340 return hlist_empty(head) ? NULL : __sk_head(head);
343 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
345 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
348 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
350 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
353 static inline struct sock *sk_next(const struct sock *sk)
355 return sk->sk_node.next ?
356 hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL;
359 static inline struct sock *sk_nulls_next(const struct sock *sk)
361 return (!is_a_nulls(sk->sk_nulls_node.next)) ?
362 hlist_nulls_entry(sk->sk_nulls_node.next,
363 struct sock, sk_nulls_node) :
364 NULL;
367 static inline int sk_unhashed(const struct sock *sk)
369 return hlist_unhashed(&sk->sk_node);
372 static inline int sk_hashed(const struct sock *sk)
374 return !sk_unhashed(sk);
377 static __inline__ void sk_node_init(struct hlist_node *node)
379 node->pprev = NULL;
382 static __inline__ void sk_nulls_node_init(struct hlist_nulls_node *node)
384 node->pprev = NULL;
387 static __inline__ void __sk_del_node(struct sock *sk)
389 __hlist_del(&sk->sk_node);
392 /* NB: equivalent to hlist_del_init_rcu */
393 static __inline__ int __sk_del_node_init(struct sock *sk)
395 if (sk_hashed(sk)) {
396 __sk_del_node(sk);
397 sk_node_init(&sk->sk_node);
398 return 1;
400 return 0;
403 /* Grab socket reference count. This operation is valid only
404 when sk is ALREADY grabbed f.e. it is found in hash table
405 or a list and the lookup is made under lock preventing hash table
406 modifications.
409 static inline void sock_hold(struct sock *sk)
411 atomic_inc(&sk->sk_refcnt);
414 /* Ungrab socket in the context, which assumes that socket refcnt
415 cannot hit zero, f.e. it is true in context of any socketcall.
417 static inline void __sock_put(struct sock *sk)
419 atomic_dec(&sk->sk_refcnt);
422 static __inline__ int sk_del_node_init(struct sock *sk)
424 int rc = __sk_del_node_init(sk);
426 if (rc) {
427 /* paranoid for a while -acme */
428 WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
429 __sock_put(sk);
431 return rc;
433 #define sk_del_node_init_rcu(sk) sk_del_node_init(sk)
435 static __inline__ int __sk_nulls_del_node_init_rcu(struct sock *sk)
437 if (sk_hashed(sk)) {
438 hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
439 return 1;
441 return 0;
444 static __inline__ int sk_nulls_del_node_init_rcu(struct sock *sk)
446 int rc = __sk_nulls_del_node_init_rcu(sk);
448 if (rc) {
449 /* paranoid for a while -acme */
450 WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
451 __sock_put(sk);
453 return rc;
456 static __inline__ void __sk_add_node(struct sock *sk, struct hlist_head *list)
458 hlist_add_head(&sk->sk_node, list);
461 static __inline__ void sk_add_node(struct sock *sk, struct hlist_head *list)
463 sock_hold(sk);
464 __sk_add_node(sk, list);
467 static __inline__ void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
469 sock_hold(sk);
470 hlist_add_head_rcu(&sk->sk_node, list);
473 static __inline__ void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
475 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
478 static __inline__ void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
480 sock_hold(sk);
481 __sk_nulls_add_node_rcu(sk, list);
484 static __inline__ void __sk_del_bind_node(struct sock *sk)
486 __hlist_del(&sk->sk_bind_node);
489 static __inline__ void sk_add_bind_node(struct sock *sk,
490 struct hlist_head *list)
492 hlist_add_head(&sk->sk_bind_node, list);
495 #define sk_for_each(__sk, node, list) \
496 hlist_for_each_entry(__sk, node, list, sk_node)
497 #define sk_for_each_rcu(__sk, node, list) \
498 hlist_for_each_entry_rcu(__sk, node, list, sk_node)
499 #define sk_nulls_for_each(__sk, node, list) \
500 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
501 #define sk_nulls_for_each_rcu(__sk, node, list) \
502 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
503 #define sk_for_each_from(__sk, node) \
504 if (__sk && ({ node = &(__sk)->sk_node; 1; })) \
505 hlist_for_each_entry_from(__sk, node, sk_node)
506 #define sk_nulls_for_each_from(__sk, node) \
507 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
508 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
509 #define sk_for_each_continue(__sk, node) \
510 if (__sk && ({ node = &(__sk)->sk_node; 1; })) \
511 hlist_for_each_entry_continue(__sk, node, sk_node)
512 #define sk_for_each_safe(__sk, node, tmp, list) \
513 hlist_for_each_entry_safe(__sk, node, tmp, list, sk_node)
514 #define sk_for_each_bound(__sk, node, list) \
515 hlist_for_each_entry(__sk, node, list, sk_bind_node)
517 /* Sock flags */
518 enum sock_flags {
519 SOCK_DEAD,
520 SOCK_DONE,
521 SOCK_URGINLINE,
522 SOCK_KEEPOPEN,
523 SOCK_LINGER,
524 SOCK_DESTROY,
525 SOCK_BROADCAST,
526 SOCK_TIMESTAMP,
527 SOCK_ZAPPED,
528 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
529 SOCK_DBG, /* %SO_DEBUG setting */
530 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
531 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
532 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
533 SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
534 SOCK_TIMESTAMPING_TX_HARDWARE, /* %SOF_TIMESTAMPING_TX_HARDWARE */
535 SOCK_TIMESTAMPING_TX_SOFTWARE, /* %SOF_TIMESTAMPING_TX_SOFTWARE */
536 SOCK_TIMESTAMPING_RX_HARDWARE, /* %SOF_TIMESTAMPING_RX_HARDWARE */
537 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */
538 SOCK_TIMESTAMPING_SOFTWARE, /* %SOF_TIMESTAMPING_SOFTWARE */
539 SOCK_TIMESTAMPING_RAW_HARDWARE, /* %SOF_TIMESTAMPING_RAW_HARDWARE */
540 SOCK_TIMESTAMPING_SYS_HARDWARE, /* %SOF_TIMESTAMPING_SYS_HARDWARE */
541 SOCK_FASYNC, /* fasync() active */
542 SOCK_RXQ_OVFL,
545 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
547 nsk->sk_flags = osk->sk_flags;
550 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
552 __set_bit(flag, &sk->sk_flags);
555 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
557 __clear_bit(flag, &sk->sk_flags);
560 static inline int sock_flag(struct sock *sk, enum sock_flags flag)
562 return test_bit(flag, &sk->sk_flags);
565 static inline void sk_acceptq_removed(struct sock *sk)
567 sk->sk_ack_backlog--;
570 static inline void sk_acceptq_added(struct sock *sk)
572 sk->sk_ack_backlog++;
575 static inline int sk_acceptq_is_full(struct sock *sk)
577 return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
581 * Compute minimal free write space needed to queue new packets.
583 static inline int sk_stream_min_wspace(struct sock *sk)
585 return sk->sk_wmem_queued >> 1;
588 static inline int sk_stream_wspace(struct sock *sk)
590 return sk->sk_sndbuf - sk->sk_wmem_queued;
593 extern void sk_stream_write_space(struct sock *sk);
595 static inline int sk_stream_memory_free(struct sock *sk)
597 return sk->sk_wmem_queued < sk->sk_sndbuf;
600 /* OOB backlog add */
601 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
603 /* dont let skb dst not refcounted, we are going to leave rcu lock */
604 skb_dst_force(skb);
606 if (!sk->sk_backlog.tail)
607 sk->sk_backlog.head = skb;
608 else
609 sk->sk_backlog.tail->next = skb;
611 sk->sk_backlog.tail = skb;
612 skb->next = NULL;
616 * Take into account size of receive queue and backlog queue
618 static inline bool sk_rcvqueues_full(const struct sock *sk, const struct sk_buff *skb)
620 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
622 return qsize + skb->truesize > sk->sk_rcvbuf;
625 /* The per-socket spinlock must be held here. */
626 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb)
628 if (sk_rcvqueues_full(sk, skb))
629 return -ENOBUFS;
631 __sk_add_backlog(sk, skb);
632 sk->sk_backlog.len += skb->truesize;
633 return 0;
636 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
638 return sk->sk_backlog_rcv(sk, skb);
641 static inline void sock_rps_record_flow(const struct sock *sk)
643 #ifdef CONFIG_RPS
644 struct rps_sock_flow_table *sock_flow_table;
646 rcu_read_lock();
647 sock_flow_table = rcu_dereference(rps_sock_flow_table);
648 rps_record_sock_flow(sock_flow_table, sk->sk_rxhash);
649 rcu_read_unlock();
650 #endif
653 static inline void sock_rps_reset_flow(const struct sock *sk)
655 #ifdef CONFIG_RPS
656 struct rps_sock_flow_table *sock_flow_table;
658 rcu_read_lock();
659 sock_flow_table = rcu_dereference(rps_sock_flow_table);
660 rps_reset_sock_flow(sock_flow_table, sk->sk_rxhash);
661 rcu_read_unlock();
662 #endif
665 static inline void sock_rps_save_rxhash(struct sock *sk, u32 rxhash)
667 #ifdef CONFIG_RPS
668 if (unlikely(sk->sk_rxhash != rxhash)) {
669 sock_rps_reset_flow(sk);
670 sk->sk_rxhash = rxhash;
672 #endif
675 #define sk_wait_event(__sk, __timeo, __condition) \
676 ({ int __rc; \
677 release_sock(__sk); \
678 __rc = __condition; \
679 if (!__rc) { \
680 *(__timeo) = schedule_timeout(*(__timeo)); \
682 lock_sock(__sk); \
683 __rc = __condition; \
684 __rc; \
687 extern int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
688 extern int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
689 extern void sk_stream_wait_close(struct sock *sk, long timeo_p);
690 extern int sk_stream_error(struct sock *sk, int flags, int err);
691 extern void sk_stream_kill_queues(struct sock *sk);
693 extern int sk_wait_data(struct sock *sk, long *timeo);
695 struct request_sock_ops;
696 struct timewait_sock_ops;
697 struct inet_hashinfo;
698 struct raw_hashinfo;
700 /* Networking protocol blocks we attach to sockets.
701 * socket layer -> transport layer interface
702 * transport -> network interface is defined by struct inet_proto
704 struct proto {
705 void (*close)(struct sock *sk,
706 long timeout);
707 int (*connect)(struct sock *sk,
708 struct sockaddr *uaddr,
709 int addr_len);
710 int (*disconnect)(struct sock *sk, int flags);
712 struct sock * (*accept) (struct sock *sk, int flags, int *err);
714 int (*ioctl)(struct sock *sk, int cmd,
715 unsigned long arg);
716 int (*init)(struct sock *sk);
717 void (*destroy)(struct sock *sk);
718 void (*shutdown)(struct sock *sk, int how);
719 int (*setsockopt)(struct sock *sk, int level,
720 int optname, char __user *optval,
721 unsigned int optlen);
722 int (*getsockopt)(struct sock *sk, int level,
723 int optname, char __user *optval,
724 int __user *option);
725 #ifdef CONFIG_COMPAT
726 int (*compat_setsockopt)(struct sock *sk,
727 int level,
728 int optname, char __user *optval,
729 unsigned int optlen);
730 int (*compat_getsockopt)(struct sock *sk,
731 int level,
732 int optname, char __user *optval,
733 int __user *option);
734 #endif
735 int (*sendmsg)(struct kiocb *iocb, struct sock *sk,
736 struct msghdr *msg, size_t len);
737 int (*recvmsg)(struct kiocb *iocb, struct sock *sk,
738 struct msghdr *msg,
739 size_t len, int noblock, int flags,
740 int *addr_len);
741 int (*sendpage)(struct sock *sk, struct page *page,
742 int offset, size_t size, int flags);
743 int (*bind)(struct sock *sk,
744 struct sockaddr *uaddr, int addr_len);
746 int (*backlog_rcv) (struct sock *sk,
747 struct sk_buff *skb);
749 /* Keeping track of sk's, looking them up, and port selection methods. */
750 void (*hash)(struct sock *sk);
751 void (*unhash)(struct sock *sk);
752 int (*get_port)(struct sock *sk, unsigned short snum);
754 /* Keeping track of sockets in use */
755 #ifdef CONFIG_PROC_FS
756 unsigned int inuse_idx;
757 #endif
759 /* Memory pressure */
760 void (*enter_memory_pressure)(struct sock *sk);
761 atomic_t *memory_allocated; /* Current allocated memory. */
762 struct percpu_counter *sockets_allocated; /* Current number of sockets. */
764 * Pressure flag: try to collapse.
765 * Technical note: it is used by multiple contexts non atomically.
766 * All the __sk_mem_schedule() is of this nature: accounting
767 * is strict, actions are advisory and have some latency.
769 int *memory_pressure;
770 int *sysctl_mem;
771 int *sysctl_wmem;
772 int *sysctl_rmem;
773 int max_header;
775 struct kmem_cache *slab;
776 unsigned int obj_size;
777 int slab_flags;
779 struct percpu_counter *orphan_count;
781 struct request_sock_ops *rsk_prot;
782 struct timewait_sock_ops *twsk_prot;
784 union {
785 struct inet_hashinfo *hashinfo;
786 struct udp_table *udp_table;
787 struct raw_hashinfo *raw_hash;
788 } h;
790 struct module *owner;
792 char name[32];
794 struct list_head node;
795 #ifdef SOCK_REFCNT_DEBUG
796 atomic_t socks;
797 #endif
800 extern int proto_register(struct proto *prot, int alloc_slab);
801 extern void proto_unregister(struct proto *prot);
803 #ifdef SOCK_REFCNT_DEBUG
804 static inline void sk_refcnt_debug_inc(struct sock *sk)
806 atomic_inc(&sk->sk_prot->socks);
809 static inline void sk_refcnt_debug_dec(struct sock *sk)
811 atomic_dec(&sk->sk_prot->socks);
812 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
813 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
816 static inline void sk_refcnt_debug_release(const struct sock *sk)
818 if (atomic_read(&sk->sk_refcnt) != 1)
819 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
820 sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt));
822 #else /* SOCK_REFCNT_DEBUG */
823 #define sk_refcnt_debug_inc(sk) do { } while (0)
824 #define sk_refcnt_debug_dec(sk) do { } while (0)
825 #define sk_refcnt_debug_release(sk) do { } while (0)
826 #endif /* SOCK_REFCNT_DEBUG */
829 #ifdef CONFIG_PROC_FS
830 /* Called with local bh disabled */
831 extern void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
832 extern int sock_prot_inuse_get(struct net *net, struct proto *proto);
833 #else
834 static void inline sock_prot_inuse_add(struct net *net, struct proto *prot,
835 int inc)
838 #endif
841 /* With per-bucket locks this operation is not-atomic, so that
842 * this version is not worse.
844 static inline void __sk_prot_rehash(struct sock *sk)
846 sk->sk_prot->unhash(sk);
847 sk->sk_prot->hash(sk);
850 /* About 10 seconds */
851 #define SOCK_DESTROY_TIME (10*HZ)
853 /* Sockets 0-1023 can't be bound to unless you are superuser */
854 #define PROT_SOCK 1024
856 #define SHUTDOWN_MASK 3
857 #define RCV_SHUTDOWN 1
858 #define SEND_SHUTDOWN 2
860 #define SOCK_SNDBUF_LOCK 1
861 #define SOCK_RCVBUF_LOCK 2
862 #define SOCK_BINDADDR_LOCK 4
863 #define SOCK_BINDPORT_LOCK 8
865 /* sock_iocb: used to kick off async processing of socket ios */
866 struct sock_iocb {
867 struct list_head list;
869 int flags;
870 int size;
871 struct socket *sock;
872 struct sock *sk;
873 struct scm_cookie *scm;
874 struct msghdr *msg, async_msg;
875 struct kiocb *kiocb;
878 static inline struct sock_iocb *kiocb_to_siocb(struct kiocb *iocb)
880 return (struct sock_iocb *)iocb->private;
883 static inline struct kiocb *siocb_to_kiocb(struct sock_iocb *si)
885 return si->kiocb;
888 struct socket_alloc {
889 struct socket socket;
890 struct inode vfs_inode;
893 static inline struct socket *SOCKET_I(struct inode *inode)
895 return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
898 static inline struct inode *SOCK_INODE(struct socket *socket)
900 return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
904 * Functions for memory accounting
906 extern int __sk_mem_schedule(struct sock *sk, int size, int kind);
907 extern void __sk_mem_reclaim(struct sock *sk);
909 #define SK_MEM_QUANTUM ((int)PAGE_SIZE)
910 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
911 #define SK_MEM_SEND 0
912 #define SK_MEM_RECV 1
914 static inline int sk_mem_pages(int amt)
916 return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
919 static inline int sk_has_account(struct sock *sk)
921 /* return true if protocol supports memory accounting */
922 return !!sk->sk_prot->memory_allocated;
925 static inline int sk_wmem_schedule(struct sock *sk, int size)
927 if (!sk_has_account(sk))
928 return 1;
929 return size <= sk->sk_forward_alloc ||
930 __sk_mem_schedule(sk, size, SK_MEM_SEND);
933 static inline int sk_rmem_schedule(struct sock *sk, int size)
935 if (!sk_has_account(sk))
936 return 1;
937 return size <= sk->sk_forward_alloc ||
938 __sk_mem_schedule(sk, size, SK_MEM_RECV);
941 static inline void sk_mem_reclaim(struct sock *sk)
943 if (!sk_has_account(sk))
944 return;
945 if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
946 __sk_mem_reclaim(sk);
949 static inline void sk_mem_reclaim_partial(struct sock *sk)
951 if (!sk_has_account(sk))
952 return;
953 if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
954 __sk_mem_reclaim(sk);
957 static inline void sk_mem_charge(struct sock *sk, int size)
959 if (!sk_has_account(sk))
960 return;
961 sk->sk_forward_alloc -= size;
964 static inline void sk_mem_uncharge(struct sock *sk, int size)
966 if (!sk_has_account(sk))
967 return;
968 sk->sk_forward_alloc += size;
971 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
973 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
974 sk->sk_wmem_queued -= skb->truesize;
975 sk_mem_uncharge(sk, skb->truesize);
976 __kfree_skb(skb);
979 /* Used by processes to "lock" a socket state, so that
980 * interrupts and bottom half handlers won't change it
981 * from under us. It essentially blocks any incoming
982 * packets, so that we won't get any new data or any
983 * packets that change the state of the socket.
985 * While locked, BH processing will add new packets to
986 * the backlog queue. This queue is processed by the
987 * owner of the socket lock right before it is released.
989 * Since ~2.3.5 it is also exclusive sleep lock serializing
990 * accesses from user process context.
992 #define sock_owned_by_user(sk) ((sk)->sk_lock.owned)
995 * Macro so as to not evaluate some arguments when
996 * lockdep is not enabled.
998 * Mark both the sk_lock and the sk_lock.slock as a
999 * per-address-family lock class.
1001 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \
1002 do { \
1003 sk->sk_lock.owned = 0; \
1004 init_waitqueue_head(&sk->sk_lock.wq); \
1005 spin_lock_init(&(sk)->sk_lock.slock); \
1006 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \
1007 sizeof((sk)->sk_lock)); \
1008 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \
1009 (skey), (sname)); \
1010 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \
1011 } while (0)
1013 extern void lock_sock_nested(struct sock *sk, int subclass);
1015 static inline void lock_sock(struct sock *sk)
1017 lock_sock_nested(sk, 0);
1020 extern void release_sock(struct sock *sk);
1022 /* BH context may only use the following locking interface. */
1023 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock))
1024 #define bh_lock_sock_nested(__sk) \
1025 spin_lock_nested(&((__sk)->sk_lock.slock), \
1026 SINGLE_DEPTH_NESTING)
1027 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock))
1029 extern bool lock_sock_fast(struct sock *sk);
1031 * unlock_sock_fast - complement of lock_sock_fast
1032 * @sk: socket
1033 * @slow: slow mode
1035 * fast unlock socket for user context.
1036 * If slow mode is on, we call regular release_sock()
1038 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1040 if (slow)
1041 release_sock(sk);
1042 else
1043 spin_unlock_bh(&sk->sk_lock.slock);
1047 extern struct sock *sk_alloc(struct net *net, int family,
1048 gfp_t priority,
1049 struct proto *prot);
1050 extern void sk_free(struct sock *sk);
1051 extern void sk_release_kernel(struct sock *sk);
1052 extern struct sock *sk_clone(const struct sock *sk,
1053 const gfp_t priority);
1055 extern struct sk_buff *sock_wmalloc(struct sock *sk,
1056 unsigned long size, int force,
1057 gfp_t priority);
1058 extern struct sk_buff *sock_rmalloc(struct sock *sk,
1059 unsigned long size, int force,
1060 gfp_t priority);
1061 extern void sock_wfree(struct sk_buff *skb);
1062 extern void sock_rfree(struct sk_buff *skb);
1064 extern int sock_setsockopt(struct socket *sock, int level,
1065 int op, char __user *optval,
1066 unsigned int optlen);
1068 extern int sock_getsockopt(struct socket *sock, int level,
1069 int op, char __user *optval,
1070 int __user *optlen);
1071 extern struct sk_buff *sock_alloc_send_skb(struct sock *sk,
1072 unsigned long size,
1073 int noblock,
1074 int *errcode);
1075 extern struct sk_buff *sock_alloc_send_pskb(struct sock *sk,
1076 unsigned long header_len,
1077 unsigned long data_len,
1078 int noblock,
1079 int *errcode);
1080 extern void *sock_kmalloc(struct sock *sk, int size,
1081 gfp_t priority);
1082 extern void sock_kfree_s(struct sock *sk, void *mem, int size);
1083 extern void sk_send_sigurg(struct sock *sk);
1085 #ifdef CONFIG_CGROUPS
1086 extern void sock_update_classid(struct sock *sk);
1087 #else
1088 static inline void sock_update_classid(struct sock *sk)
1091 #endif
1094 * Functions to fill in entries in struct proto_ops when a protocol
1095 * does not implement a particular function.
1097 extern int sock_no_bind(struct socket *,
1098 struct sockaddr *, int);
1099 extern int sock_no_connect(struct socket *,
1100 struct sockaddr *, int, int);
1101 extern int sock_no_socketpair(struct socket *,
1102 struct socket *);
1103 extern int sock_no_accept(struct socket *,
1104 struct socket *, int);
1105 extern int sock_no_getname(struct socket *,
1106 struct sockaddr *, int *, int);
1107 extern unsigned int sock_no_poll(struct file *, struct socket *,
1108 struct poll_table_struct *);
1109 extern int sock_no_ioctl(struct socket *, unsigned int,
1110 unsigned long);
1111 extern int sock_no_listen(struct socket *, int);
1112 extern int sock_no_shutdown(struct socket *, int);
1113 extern int sock_no_getsockopt(struct socket *, int , int,
1114 char __user *, int __user *);
1115 extern int sock_no_setsockopt(struct socket *, int, int,
1116 char __user *, unsigned int);
1117 extern int sock_no_sendmsg(struct kiocb *, struct socket *,
1118 struct msghdr *, size_t);
1119 extern int sock_no_recvmsg(struct kiocb *, struct socket *,
1120 struct msghdr *, size_t, int);
1121 extern int sock_no_mmap(struct file *file,
1122 struct socket *sock,
1123 struct vm_area_struct *vma);
1124 extern ssize_t sock_no_sendpage(struct socket *sock,
1125 struct page *page,
1126 int offset, size_t size,
1127 int flags);
1130 * Functions to fill in entries in struct proto_ops when a protocol
1131 * uses the inet style.
1133 extern int sock_common_getsockopt(struct socket *sock, int level, int optname,
1134 char __user *optval, int __user *optlen);
1135 extern int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
1136 struct msghdr *msg, size_t size, int flags);
1137 extern int sock_common_setsockopt(struct socket *sock, int level, int optname,
1138 char __user *optval, unsigned int optlen);
1139 extern int compat_sock_common_getsockopt(struct socket *sock, int level,
1140 int optname, char __user *optval, int __user *optlen);
1141 extern int compat_sock_common_setsockopt(struct socket *sock, int level,
1142 int optname, char __user *optval, unsigned int optlen);
1144 extern void sk_common_release(struct sock *sk);
1147 * Default socket callbacks and setup code
1150 /* Initialise core socket variables */
1151 extern void sock_init_data(struct socket *sock, struct sock *sk);
1154 * sk_filter_release - release a socket filter
1155 * @fp: filter to remove
1157 * Remove a filter from a socket and release its resources.
1160 static inline void sk_filter_release(struct sk_filter *fp)
1162 if (atomic_dec_and_test(&fp->refcnt))
1163 kfree(fp);
1166 static inline void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1168 unsigned int size = sk_filter_len(fp);
1170 atomic_sub(size, &sk->sk_omem_alloc);
1171 sk_filter_release(fp);
1174 static inline void sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1176 atomic_inc(&fp->refcnt);
1177 atomic_add(sk_filter_len(fp), &sk->sk_omem_alloc);
1181 * Socket reference counting postulates.
1183 * * Each user of socket SHOULD hold a reference count.
1184 * * Each access point to socket (an hash table bucket, reference from a list,
1185 * running timer, skb in flight MUST hold a reference count.
1186 * * When reference count hits 0, it means it will never increase back.
1187 * * When reference count hits 0, it means that no references from
1188 * outside exist to this socket and current process on current CPU
1189 * is last user and may/should destroy this socket.
1190 * * sk_free is called from any context: process, BH, IRQ. When
1191 * it is called, socket has no references from outside -> sk_free
1192 * may release descendant resources allocated by the socket, but
1193 * to the time when it is called, socket is NOT referenced by any
1194 * hash tables, lists etc.
1195 * * Packets, delivered from outside (from network or from another process)
1196 * and enqueued on receive/error queues SHOULD NOT grab reference count,
1197 * when they sit in queue. Otherwise, packets will leak to hole, when
1198 * socket is looked up by one cpu and unhasing is made by another CPU.
1199 * It is true for udp/raw, netlink (leak to receive and error queues), tcp
1200 * (leak to backlog). Packet socket does all the processing inside
1201 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1202 * use separate SMP lock, so that they are prone too.
1205 /* Ungrab socket and destroy it, if it was the last reference. */
1206 static inline void sock_put(struct sock *sk)
1208 if (atomic_dec_and_test(&sk->sk_refcnt))
1209 sk_free(sk);
1212 extern int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1213 const int nested);
1215 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1217 sk->sk_tx_queue_mapping = tx_queue;
1220 static inline void sk_tx_queue_clear(struct sock *sk)
1222 sk->sk_tx_queue_mapping = -1;
1225 static inline int sk_tx_queue_get(const struct sock *sk)
1227 return sk ? sk->sk_tx_queue_mapping : -1;
1230 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1232 sk_tx_queue_clear(sk);
1233 sk->sk_socket = sock;
1236 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1238 return &sk->sk_wq->wait;
1240 /* Detach socket from process context.
1241 * Announce socket dead, detach it from wait queue and inode.
1242 * Note that parent inode held reference count on this struct sock,
1243 * we do not release it in this function, because protocol
1244 * probably wants some additional cleanups or even continuing
1245 * to work with this socket (TCP).
1247 static inline void sock_orphan(struct sock *sk)
1249 write_lock_bh(&sk->sk_callback_lock);
1250 sock_set_flag(sk, SOCK_DEAD);
1251 sk_set_socket(sk, NULL);
1252 sk->sk_wq = NULL;
1253 write_unlock_bh(&sk->sk_callback_lock);
1256 static inline void sock_graft(struct sock *sk, struct socket *parent)
1258 write_lock_bh(&sk->sk_callback_lock);
1259 rcu_assign_pointer(sk->sk_wq, parent->wq);
1260 parent->sk = sk;
1261 sk_set_socket(sk, parent);
1262 security_sock_graft(sk, parent);
1263 write_unlock_bh(&sk->sk_callback_lock);
1266 extern int sock_i_uid(struct sock *sk);
1267 extern unsigned long sock_i_ino(struct sock *sk);
1269 static inline struct dst_entry *
1270 __sk_dst_get(struct sock *sk)
1272 return rcu_dereference_check(sk->sk_dst_cache, rcu_read_lock_held() ||
1273 sock_owned_by_user(sk) ||
1274 lockdep_is_held(&sk->sk_lock.slock));
1277 static inline struct dst_entry *
1278 sk_dst_get(struct sock *sk)
1280 struct dst_entry *dst;
1282 rcu_read_lock();
1283 dst = rcu_dereference(sk->sk_dst_cache);
1284 if (dst)
1285 dst_hold(dst);
1286 rcu_read_unlock();
1287 return dst;
1290 extern void sk_reset_txq(struct sock *sk);
1292 static inline void dst_negative_advice(struct sock *sk)
1294 struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1296 if (dst && dst->ops->negative_advice) {
1297 ndst = dst->ops->negative_advice(dst);
1299 if (ndst != dst) {
1300 rcu_assign_pointer(sk->sk_dst_cache, ndst);
1301 sk_reset_txq(sk);
1306 static inline void
1307 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
1309 struct dst_entry *old_dst;
1311 sk_tx_queue_clear(sk);
1313 * This can be called while sk is owned by the caller only,
1314 * with no state that can be checked in a rcu_dereference_check() cond
1316 old_dst = rcu_dereference_raw(sk->sk_dst_cache);
1317 rcu_assign_pointer(sk->sk_dst_cache, dst);
1318 dst_release(old_dst);
1321 static inline void
1322 sk_dst_set(struct sock *sk, struct dst_entry *dst)
1324 spin_lock(&sk->sk_dst_lock);
1325 __sk_dst_set(sk, dst);
1326 spin_unlock(&sk->sk_dst_lock);
1329 static inline void
1330 __sk_dst_reset(struct sock *sk)
1332 __sk_dst_set(sk, NULL);
1335 static inline void
1336 sk_dst_reset(struct sock *sk)
1338 spin_lock(&sk->sk_dst_lock);
1339 __sk_dst_reset(sk);
1340 spin_unlock(&sk->sk_dst_lock);
1343 extern struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1345 extern struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1347 static inline int sk_can_gso(const struct sock *sk)
1349 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1352 extern void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1354 static inline void sk_nocaps_add(struct sock *sk, int flags)
1356 sk->sk_route_nocaps |= flags;
1357 sk->sk_route_caps &= ~flags;
1360 static inline int skb_copy_to_page(struct sock *sk, char __user *from,
1361 struct sk_buff *skb, struct page *page,
1362 int off, int copy)
1364 if (skb->ip_summed == CHECKSUM_NONE) {
1365 int err = 0;
1366 __wsum csum = csum_and_copy_from_user(from,
1367 page_address(page) + off,
1368 copy, 0, &err);
1369 if (err)
1370 return err;
1371 skb->csum = csum_block_add(skb->csum, csum, skb->len);
1372 } else if (copy_from_user(page_address(page) + off, from, copy))
1373 return -EFAULT;
1375 skb->len += copy;
1376 skb->data_len += copy;
1377 skb->truesize += copy;
1378 sk->sk_wmem_queued += copy;
1379 sk_mem_charge(sk, copy);
1380 return 0;
1384 * sk_wmem_alloc_get - returns write allocations
1385 * @sk: socket
1387 * Returns sk_wmem_alloc minus initial offset of one
1389 static inline int sk_wmem_alloc_get(const struct sock *sk)
1391 return atomic_read(&sk->sk_wmem_alloc) - 1;
1395 * sk_rmem_alloc_get - returns read allocations
1396 * @sk: socket
1398 * Returns sk_rmem_alloc
1400 static inline int sk_rmem_alloc_get(const struct sock *sk)
1402 return atomic_read(&sk->sk_rmem_alloc);
1406 * sk_has_allocations - check if allocations are outstanding
1407 * @sk: socket
1409 * Returns true if socket has write or read allocations
1411 static inline int sk_has_allocations(const struct sock *sk)
1413 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
1417 * wq_has_sleeper - check if there are any waiting processes
1418 * @wq: struct socket_wq
1420 * Returns true if socket_wq has waiting processes
1422 * The purpose of the wq_has_sleeper and sock_poll_wait is to wrap the memory
1423 * barrier call. They were added due to the race found within the tcp code.
1425 * Consider following tcp code paths:
1427 * CPU1 CPU2
1429 * sys_select receive packet
1430 * ... ...
1431 * __add_wait_queue update tp->rcv_nxt
1432 * ... ...
1433 * tp->rcv_nxt check sock_def_readable
1434 * ... {
1435 * schedule rcu_read_lock();
1436 * wq = rcu_dereference(sk->sk_wq);
1437 * if (wq && waitqueue_active(&wq->wait))
1438 * wake_up_interruptible(&wq->wait)
1439 * ...
1442 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
1443 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1
1444 * could then endup calling schedule and sleep forever if there are no more
1445 * data on the socket.
1448 static inline bool wq_has_sleeper(struct socket_wq *wq)
1452 * We need to be sure we are in sync with the
1453 * add_wait_queue modifications to the wait queue.
1455 * This memory barrier is paired in the sock_poll_wait.
1457 smp_mb();
1458 return wq && waitqueue_active(&wq->wait);
1462 * sock_poll_wait - place memory barrier behind the poll_wait call.
1463 * @filp: file
1464 * @wait_address: socket wait queue
1465 * @p: poll_table
1467 * See the comments in the wq_has_sleeper function.
1469 static inline void sock_poll_wait(struct file *filp,
1470 wait_queue_head_t *wait_address, poll_table *p)
1472 if (p && wait_address) {
1473 poll_wait(filp, wait_address, p);
1475 * We need to be sure we are in sync with the
1476 * socket flags modification.
1478 * This memory barrier is paired in the wq_has_sleeper.
1480 smp_mb();
1485 * Queue a received datagram if it will fit. Stream and sequenced
1486 * protocols can't normally use this as they need to fit buffers in
1487 * and play with them.
1489 * Inlined as it's very short and called for pretty much every
1490 * packet ever received.
1493 static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
1495 skb_orphan(skb);
1496 skb->sk = sk;
1497 skb->destructor = sock_wfree;
1499 * We used to take a refcount on sk, but following operation
1500 * is enough to guarantee sk_free() wont free this sock until
1501 * all in-flight packets are completed
1503 atomic_add(skb->truesize, &sk->sk_wmem_alloc);
1506 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
1508 skb_orphan(skb);
1509 skb->sk = sk;
1510 skb->destructor = sock_rfree;
1511 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
1512 sk_mem_charge(sk, skb->truesize);
1515 extern void sk_reset_timer(struct sock *sk, struct timer_list* timer,
1516 unsigned long expires);
1518 extern void sk_stop_timer(struct sock *sk, struct timer_list* timer);
1520 extern int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
1522 extern int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
1525 * Recover an error report and clear atomically
1528 static inline int sock_error(struct sock *sk)
1530 int err;
1531 if (likely(!sk->sk_err))
1532 return 0;
1533 err = xchg(&sk->sk_err, 0);
1534 return -err;
1537 static inline unsigned long sock_wspace(struct sock *sk)
1539 int amt = 0;
1541 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
1542 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
1543 if (amt < 0)
1544 amt = 0;
1546 return amt;
1549 static inline void sk_wake_async(struct sock *sk, int how, int band)
1551 if (sock_flag(sk, SOCK_FASYNC))
1552 sock_wake_async(sk->sk_socket, how, band);
1555 #define SOCK_MIN_SNDBUF 2048
1556 #define SOCK_MIN_RCVBUF 256
1558 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
1560 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
1561 sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
1562 sk->sk_sndbuf = max(sk->sk_sndbuf, SOCK_MIN_SNDBUF);
1566 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp);
1568 static inline struct page *sk_stream_alloc_page(struct sock *sk)
1570 struct page *page = NULL;
1572 page = alloc_pages(sk->sk_allocation, 0);
1573 if (!page) {
1574 sk->sk_prot->enter_memory_pressure(sk);
1575 sk_stream_moderate_sndbuf(sk);
1577 return page;
1581 * Default write policy as shown to user space via poll/select/SIGIO
1583 static inline int sock_writeable(const struct sock *sk)
1585 return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
1588 static inline gfp_t gfp_any(void)
1590 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
1593 static inline long sock_rcvtimeo(const struct sock *sk, int noblock)
1595 return noblock ? 0 : sk->sk_rcvtimeo;
1598 static inline long sock_sndtimeo(const struct sock *sk, int noblock)
1600 return noblock ? 0 : sk->sk_sndtimeo;
1603 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
1605 return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
1608 /* Alas, with timeout socket operations are not restartable.
1609 * Compare this to poll().
1611 static inline int sock_intr_errno(long timeo)
1613 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
1616 extern void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
1617 struct sk_buff *skb);
1619 static __inline__ void
1620 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
1622 ktime_t kt = skb->tstamp;
1623 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
1626 * generate control messages if
1627 * - receive time stamping in software requested (SOCK_RCVTSTAMP
1628 * or SOCK_TIMESTAMPING_RX_SOFTWARE)
1629 * - software time stamp available and wanted
1630 * (SOCK_TIMESTAMPING_SOFTWARE)
1631 * - hardware time stamps available and wanted
1632 * (SOCK_TIMESTAMPING_SYS_HARDWARE or
1633 * SOCK_TIMESTAMPING_RAW_HARDWARE)
1635 if (sock_flag(sk, SOCK_RCVTSTAMP) ||
1636 sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE) ||
1637 (kt.tv64 && sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) ||
1638 (hwtstamps->hwtstamp.tv64 &&
1639 sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE)) ||
1640 (hwtstamps->syststamp.tv64 &&
1641 sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE)))
1642 __sock_recv_timestamp(msg, sk, skb);
1643 else
1644 sk->sk_stamp = kt;
1647 extern void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
1648 struct sk_buff *skb);
1650 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
1651 struct sk_buff *skb)
1653 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL) | \
1654 (1UL << SOCK_RCVTSTAMP) | \
1655 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE) | \
1656 (1UL << SOCK_TIMESTAMPING_SOFTWARE) | \
1657 (1UL << SOCK_TIMESTAMPING_RAW_HARDWARE) | \
1658 (1UL << SOCK_TIMESTAMPING_SYS_HARDWARE))
1660 if (sk->sk_flags & FLAGS_TS_OR_DROPS)
1661 __sock_recv_ts_and_drops(msg, sk, skb);
1662 else
1663 sk->sk_stamp = skb->tstamp;
1667 * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
1668 * @msg: outgoing packet
1669 * @sk: socket sending this packet
1670 * @shtx: filled with instructions for time stamping
1672 * Currently only depends on SOCK_TIMESTAMPING* flags. Returns error code if
1673 * parameters are invalid.
1675 extern int sock_tx_timestamp(struct msghdr *msg,
1676 struct sock *sk,
1677 union skb_shared_tx *shtx);
1681 * sk_eat_skb - Release a skb if it is no longer needed
1682 * @sk: socket to eat this skb from
1683 * @skb: socket buffer to eat
1684 * @copied_early: flag indicating whether DMA operations copied this data early
1686 * This routine must be called with interrupts disabled or with the socket
1687 * locked so that the sk_buff queue operation is ok.
1689 #ifdef CONFIG_NET_DMA
1690 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, int copied_early)
1692 __skb_unlink(skb, &sk->sk_receive_queue);
1693 if (!copied_early)
1694 __kfree_skb(skb);
1695 else
1696 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
1698 #else
1699 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, int copied_early)
1701 __skb_unlink(skb, &sk->sk_receive_queue);
1702 __kfree_skb(skb);
1704 #endif
1706 static inline
1707 struct net *sock_net(const struct sock *sk)
1709 #ifdef CONFIG_NET_NS
1710 return sk->sk_net;
1711 #else
1712 return &init_net;
1713 #endif
1716 static inline
1717 void sock_net_set(struct sock *sk, struct net *net)
1719 #ifdef CONFIG_NET_NS
1720 sk->sk_net = net;
1721 #endif
1725 * Kernel sockets, f.e. rtnl or icmp_socket, are a part of a namespace.
1726 * They should not hold a referrence to a namespace in order to allow
1727 * to stop it.
1728 * Sockets after sk_change_net should be released using sk_release_kernel
1730 static inline void sk_change_net(struct sock *sk, struct net *net)
1732 put_net(sock_net(sk));
1733 sock_net_set(sk, hold_net(net));
1736 static inline struct sock *skb_steal_sock(struct sk_buff *skb)
1738 if (unlikely(skb->sk)) {
1739 struct sock *sk = skb->sk;
1741 skb->destructor = NULL;
1742 skb->sk = NULL;
1743 return sk;
1745 return NULL;
1748 extern void sock_enable_timestamp(struct sock *sk, int flag);
1749 extern int sock_get_timestamp(struct sock *, struct timeval __user *);
1750 extern int sock_get_timestampns(struct sock *, struct timespec __user *);
1753 * Enable debug/info messages
1755 extern int net_msg_warn;
1756 #define NETDEBUG(fmt, args...) \
1757 do { if (net_msg_warn) printk(fmt,##args); } while (0)
1759 #define LIMIT_NETDEBUG(fmt, args...) \
1760 do { if (net_msg_warn && net_ratelimit()) printk(fmt,##args); } while(0)
1762 extern __u32 sysctl_wmem_max;
1763 extern __u32 sysctl_rmem_max;
1765 extern void sk_init(void);
1767 extern int sysctl_optmem_max;
1769 extern __u32 sysctl_wmem_default;
1770 extern __u32 sysctl_rmem_default;
1772 #endif /* _SOCK_H */