2 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
6 #ifdef CONFIG_RT_GROUP_SCHED
8 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
10 static inline struct task_struct
*rt_task_of(struct sched_rt_entity
*rt_se
)
12 #ifdef CONFIG_SCHED_DEBUG
13 WARN_ON_ONCE(!rt_entity_is_task(rt_se
));
15 return container_of(rt_se
, struct task_struct
, rt
);
18 static inline struct rq
*rq_of_rt_rq(struct rt_rq
*rt_rq
)
23 static inline struct rt_rq
*rt_rq_of_se(struct sched_rt_entity
*rt_se
)
28 #else /* CONFIG_RT_GROUP_SCHED */
30 #define rt_entity_is_task(rt_se) (1)
32 static inline struct task_struct
*rt_task_of(struct sched_rt_entity
*rt_se
)
34 return container_of(rt_se
, struct task_struct
, rt
);
37 static inline struct rq
*rq_of_rt_rq(struct rt_rq
*rt_rq
)
39 return container_of(rt_rq
, struct rq
, rt
);
42 static inline struct rt_rq
*rt_rq_of_se(struct sched_rt_entity
*rt_se
)
44 struct task_struct
*p
= rt_task_of(rt_se
);
45 struct rq
*rq
= task_rq(p
);
50 #endif /* CONFIG_RT_GROUP_SCHED */
54 static inline int rt_overloaded(struct rq
*rq
)
56 return atomic_read(&rq
->rd
->rto_count
);
59 static inline void rt_set_overload(struct rq
*rq
)
64 cpumask_set_cpu(rq
->cpu
, rq
->rd
->rto_mask
);
66 * Make sure the mask is visible before we set
67 * the overload count. That is checked to determine
68 * if we should look at the mask. It would be a shame
69 * if we looked at the mask, but the mask was not
73 atomic_inc(&rq
->rd
->rto_count
);
76 static inline void rt_clear_overload(struct rq
*rq
)
81 /* the order here really doesn't matter */
82 atomic_dec(&rq
->rd
->rto_count
);
83 cpumask_clear_cpu(rq
->cpu
, rq
->rd
->rto_mask
);
86 static void update_rt_migration(struct rt_rq
*rt_rq
)
88 if (rt_rq
->rt_nr_migratory
&& rt_rq
->rt_nr_total
> 1) {
89 if (!rt_rq
->overloaded
) {
90 rt_set_overload(rq_of_rt_rq(rt_rq
));
91 rt_rq
->overloaded
= 1;
93 } else if (rt_rq
->overloaded
) {
94 rt_clear_overload(rq_of_rt_rq(rt_rq
));
95 rt_rq
->overloaded
= 0;
99 static void inc_rt_migration(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
101 if (!rt_entity_is_task(rt_se
))
104 rt_rq
= &rq_of_rt_rq(rt_rq
)->rt
;
106 rt_rq
->rt_nr_total
++;
107 if (rt_se
->nr_cpus_allowed
> 1)
108 rt_rq
->rt_nr_migratory
++;
110 update_rt_migration(rt_rq
);
113 static void dec_rt_migration(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
115 if (!rt_entity_is_task(rt_se
))
118 rt_rq
= &rq_of_rt_rq(rt_rq
)->rt
;
120 rt_rq
->rt_nr_total
--;
121 if (rt_se
->nr_cpus_allowed
> 1)
122 rt_rq
->rt_nr_migratory
--;
124 update_rt_migration(rt_rq
);
127 static void enqueue_pushable_task(struct rq
*rq
, struct task_struct
*p
)
129 plist_del(&p
->pushable_tasks
, &rq
->rt
.pushable_tasks
);
130 plist_node_init(&p
->pushable_tasks
, p
->prio
);
131 plist_add(&p
->pushable_tasks
, &rq
->rt
.pushable_tasks
);
134 static void dequeue_pushable_task(struct rq
*rq
, struct task_struct
*p
)
136 plist_del(&p
->pushable_tasks
, &rq
->rt
.pushable_tasks
);
139 static inline int has_pushable_tasks(struct rq
*rq
)
141 return !plist_head_empty(&rq
->rt
.pushable_tasks
);
146 static inline void enqueue_pushable_task(struct rq
*rq
, struct task_struct
*p
)
150 static inline void dequeue_pushable_task(struct rq
*rq
, struct task_struct
*p
)
155 void inc_rt_migration(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
160 void dec_rt_migration(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
164 #endif /* CONFIG_SMP */
166 static inline int on_rt_rq(struct sched_rt_entity
*rt_se
)
168 return !list_empty(&rt_se
->run_list
);
171 #ifdef CONFIG_RT_GROUP_SCHED
173 static inline u64
sched_rt_runtime(struct rt_rq
*rt_rq
)
178 return rt_rq
->rt_runtime
;
181 static inline u64
sched_rt_period(struct rt_rq
*rt_rq
)
183 return ktime_to_ns(rt_rq
->tg
->rt_bandwidth
.rt_period
);
186 typedef struct task_group
*rt_rq_iter_t
;
188 static inline struct task_group
*next_task_group(struct task_group
*tg
)
191 tg
= list_entry_rcu(tg
->list
.next
,
192 typeof(struct task_group
), list
);
193 } while (&tg
->list
!= &task_groups
&& task_group_is_autogroup(tg
));
195 if (&tg
->list
== &task_groups
)
201 #define for_each_rt_rq(rt_rq, iter, rq) \
202 for (iter = container_of(&task_groups, typeof(*iter), list); \
203 (iter = next_task_group(iter)) && \
204 (rt_rq = iter->rt_rq[cpu_of(rq)]);)
206 static inline void list_add_leaf_rt_rq(struct rt_rq
*rt_rq
)
208 list_add_rcu(&rt_rq
->leaf_rt_rq_list
,
209 &rq_of_rt_rq(rt_rq
)->leaf_rt_rq_list
);
212 static inline void list_del_leaf_rt_rq(struct rt_rq
*rt_rq
)
214 list_del_rcu(&rt_rq
->leaf_rt_rq_list
);
217 #define for_each_leaf_rt_rq(rt_rq, rq) \
218 list_for_each_entry_rcu(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
220 #define for_each_sched_rt_entity(rt_se) \
221 for (; rt_se; rt_se = rt_se->parent)
223 static inline struct rt_rq
*group_rt_rq(struct sched_rt_entity
*rt_se
)
228 static void enqueue_rt_entity(struct sched_rt_entity
*rt_se
, bool head
);
229 static void dequeue_rt_entity(struct sched_rt_entity
*rt_se
);
231 static void sched_rt_rq_enqueue(struct rt_rq
*rt_rq
)
233 struct task_struct
*curr
= rq_of_rt_rq(rt_rq
)->curr
;
234 struct sched_rt_entity
*rt_se
;
236 int cpu
= cpu_of(rq_of_rt_rq(rt_rq
));
238 rt_se
= rt_rq
->tg
->rt_se
[cpu
];
240 if (rt_rq
->rt_nr_running
) {
241 if (rt_se
&& !on_rt_rq(rt_se
))
242 enqueue_rt_entity(rt_se
, false);
243 if (rt_rq
->highest_prio
.curr
< curr
->prio
)
248 static void sched_rt_rq_dequeue(struct rt_rq
*rt_rq
)
250 struct sched_rt_entity
*rt_se
;
251 int cpu
= cpu_of(rq_of_rt_rq(rt_rq
));
253 rt_se
= rt_rq
->tg
->rt_se
[cpu
];
255 if (rt_se
&& on_rt_rq(rt_se
))
256 dequeue_rt_entity(rt_se
);
259 static inline int rt_rq_throttled(struct rt_rq
*rt_rq
)
261 return rt_rq
->rt_throttled
&& !rt_rq
->rt_nr_boosted
;
264 static int rt_se_boosted(struct sched_rt_entity
*rt_se
)
266 struct rt_rq
*rt_rq
= group_rt_rq(rt_se
);
267 struct task_struct
*p
;
270 return !!rt_rq
->rt_nr_boosted
;
272 p
= rt_task_of(rt_se
);
273 return p
->prio
!= p
->normal_prio
;
277 static inline const struct cpumask
*sched_rt_period_mask(void)
279 return cpu_rq(smp_processor_id())->rd
->span
;
282 static inline const struct cpumask
*sched_rt_period_mask(void)
284 return cpu_online_mask
;
289 struct rt_rq
*sched_rt_period_rt_rq(struct rt_bandwidth
*rt_b
, int cpu
)
291 return container_of(rt_b
, struct task_group
, rt_bandwidth
)->rt_rq
[cpu
];
294 static inline struct rt_bandwidth
*sched_rt_bandwidth(struct rt_rq
*rt_rq
)
296 return &rt_rq
->tg
->rt_bandwidth
;
299 #else /* !CONFIG_RT_GROUP_SCHED */
301 static inline u64
sched_rt_runtime(struct rt_rq
*rt_rq
)
303 return rt_rq
->rt_runtime
;
306 static inline u64
sched_rt_period(struct rt_rq
*rt_rq
)
308 return ktime_to_ns(def_rt_bandwidth
.rt_period
);
311 typedef struct rt_rq
*rt_rq_iter_t
;
313 #define for_each_rt_rq(rt_rq, iter, rq) \
314 for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
316 static inline void list_add_leaf_rt_rq(struct rt_rq
*rt_rq
)
320 static inline void list_del_leaf_rt_rq(struct rt_rq
*rt_rq
)
324 #define for_each_leaf_rt_rq(rt_rq, rq) \
325 for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
327 #define for_each_sched_rt_entity(rt_se) \
328 for (; rt_se; rt_se = NULL)
330 static inline struct rt_rq
*group_rt_rq(struct sched_rt_entity
*rt_se
)
335 static inline void sched_rt_rq_enqueue(struct rt_rq
*rt_rq
)
337 if (rt_rq
->rt_nr_running
)
338 resched_task(rq_of_rt_rq(rt_rq
)->curr
);
341 static inline void sched_rt_rq_dequeue(struct rt_rq
*rt_rq
)
345 static inline int rt_rq_throttled(struct rt_rq
*rt_rq
)
347 return rt_rq
->rt_throttled
;
350 static inline const struct cpumask
*sched_rt_period_mask(void)
352 return cpu_online_mask
;
356 struct rt_rq
*sched_rt_period_rt_rq(struct rt_bandwidth
*rt_b
, int cpu
)
358 return &cpu_rq(cpu
)->rt
;
361 static inline struct rt_bandwidth
*sched_rt_bandwidth(struct rt_rq
*rt_rq
)
363 return &def_rt_bandwidth
;
366 #endif /* CONFIG_RT_GROUP_SCHED */
370 * We ran out of runtime, see if we can borrow some from our neighbours.
372 static int do_balance_runtime(struct rt_rq
*rt_rq
)
374 struct rt_bandwidth
*rt_b
= sched_rt_bandwidth(rt_rq
);
375 struct root_domain
*rd
= cpu_rq(smp_processor_id())->rd
;
376 int i
, weight
, more
= 0;
379 weight
= cpumask_weight(rd
->span
);
381 raw_spin_lock(&rt_b
->rt_runtime_lock
);
382 rt_period
= ktime_to_ns(rt_b
->rt_period
);
383 for_each_cpu(i
, rd
->span
) {
384 struct rt_rq
*iter
= sched_rt_period_rt_rq(rt_b
, i
);
390 raw_spin_lock(&iter
->rt_runtime_lock
);
392 * Either all rqs have inf runtime and there's nothing to steal
393 * or __disable_runtime() below sets a specific rq to inf to
394 * indicate its been disabled and disalow stealing.
396 if (iter
->rt_runtime
== RUNTIME_INF
)
400 * From runqueues with spare time, take 1/n part of their
401 * spare time, but no more than our period.
403 diff
= iter
->rt_runtime
- iter
->rt_time
;
405 diff
= div_u64((u64
)diff
, weight
);
406 if (rt_rq
->rt_runtime
+ diff
> rt_period
)
407 diff
= rt_period
- rt_rq
->rt_runtime
;
408 iter
->rt_runtime
-= diff
;
409 rt_rq
->rt_runtime
+= diff
;
411 if (rt_rq
->rt_runtime
== rt_period
) {
412 raw_spin_unlock(&iter
->rt_runtime_lock
);
417 raw_spin_unlock(&iter
->rt_runtime_lock
);
419 raw_spin_unlock(&rt_b
->rt_runtime_lock
);
425 * Ensure this RQ takes back all the runtime it lend to its neighbours.
427 static void __disable_runtime(struct rq
*rq
)
429 struct root_domain
*rd
= rq
->rd
;
433 if (unlikely(!scheduler_running
))
436 for_each_rt_rq(rt_rq
, iter
, rq
) {
437 struct rt_bandwidth
*rt_b
= sched_rt_bandwidth(rt_rq
);
441 raw_spin_lock(&rt_b
->rt_runtime_lock
);
442 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
444 * Either we're all inf and nobody needs to borrow, or we're
445 * already disabled and thus have nothing to do, or we have
446 * exactly the right amount of runtime to take out.
448 if (rt_rq
->rt_runtime
== RUNTIME_INF
||
449 rt_rq
->rt_runtime
== rt_b
->rt_runtime
)
451 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
454 * Calculate the difference between what we started out with
455 * and what we current have, that's the amount of runtime
456 * we lend and now have to reclaim.
458 want
= rt_b
->rt_runtime
- rt_rq
->rt_runtime
;
461 * Greedy reclaim, take back as much as we can.
463 for_each_cpu(i
, rd
->span
) {
464 struct rt_rq
*iter
= sched_rt_period_rt_rq(rt_b
, i
);
468 * Can't reclaim from ourselves or disabled runqueues.
470 if (iter
== rt_rq
|| iter
->rt_runtime
== RUNTIME_INF
)
473 raw_spin_lock(&iter
->rt_runtime_lock
);
475 diff
= min_t(s64
, iter
->rt_runtime
, want
);
476 iter
->rt_runtime
-= diff
;
479 iter
->rt_runtime
-= want
;
482 raw_spin_unlock(&iter
->rt_runtime_lock
);
488 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
490 * We cannot be left wanting - that would mean some runtime
491 * leaked out of the system.
496 * Disable all the borrow logic by pretending we have inf
497 * runtime - in which case borrowing doesn't make sense.
499 rt_rq
->rt_runtime
= RUNTIME_INF
;
500 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
501 raw_spin_unlock(&rt_b
->rt_runtime_lock
);
505 static void disable_runtime(struct rq
*rq
)
509 raw_spin_lock_irqsave(&rq
->lock
, flags
);
510 __disable_runtime(rq
);
511 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
514 static void __enable_runtime(struct rq
*rq
)
519 if (unlikely(!scheduler_running
))
523 * Reset each runqueue's bandwidth settings
525 for_each_rt_rq(rt_rq
, iter
, rq
) {
526 struct rt_bandwidth
*rt_b
= sched_rt_bandwidth(rt_rq
);
528 raw_spin_lock(&rt_b
->rt_runtime_lock
);
529 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
530 rt_rq
->rt_runtime
= rt_b
->rt_runtime
;
532 rt_rq
->rt_throttled
= 0;
533 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
534 raw_spin_unlock(&rt_b
->rt_runtime_lock
);
538 static void enable_runtime(struct rq
*rq
)
542 raw_spin_lock_irqsave(&rq
->lock
, flags
);
543 __enable_runtime(rq
);
544 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
547 static int balance_runtime(struct rt_rq
*rt_rq
)
551 if (rt_rq
->rt_time
> rt_rq
->rt_runtime
) {
552 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
553 more
= do_balance_runtime(rt_rq
);
554 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
559 #else /* !CONFIG_SMP */
560 static inline int balance_runtime(struct rt_rq
*rt_rq
)
564 #endif /* CONFIG_SMP */
566 static int do_sched_rt_period_timer(struct rt_bandwidth
*rt_b
, int overrun
)
569 const struct cpumask
*span
;
571 if (!rt_bandwidth_enabled() || rt_b
->rt_runtime
== RUNTIME_INF
)
574 span
= sched_rt_period_mask();
575 for_each_cpu(i
, span
) {
577 struct rt_rq
*rt_rq
= sched_rt_period_rt_rq(rt_b
, i
);
578 struct rq
*rq
= rq_of_rt_rq(rt_rq
);
580 raw_spin_lock(&rq
->lock
);
581 if (rt_rq
->rt_time
) {
584 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
585 if (rt_rq
->rt_throttled
)
586 balance_runtime(rt_rq
);
587 runtime
= rt_rq
->rt_runtime
;
588 rt_rq
->rt_time
-= min(rt_rq
->rt_time
, overrun
*runtime
);
589 if (rt_rq
->rt_throttled
&& rt_rq
->rt_time
< runtime
) {
590 rt_rq
->rt_throttled
= 0;
594 * Force a clock update if the CPU was idle,
595 * lest wakeup -> unthrottle time accumulate.
597 if (rt_rq
->rt_nr_running
&& rq
->curr
== rq
->idle
)
598 rq
->skip_clock_update
= -1;
600 if (rt_rq
->rt_time
|| rt_rq
->rt_nr_running
)
602 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
603 } else if (rt_rq
->rt_nr_running
) {
605 if (!rt_rq_throttled(rt_rq
))
610 sched_rt_rq_enqueue(rt_rq
);
611 raw_spin_unlock(&rq
->lock
);
617 static inline int rt_se_prio(struct sched_rt_entity
*rt_se
)
619 #ifdef CONFIG_RT_GROUP_SCHED
620 struct rt_rq
*rt_rq
= group_rt_rq(rt_se
);
623 return rt_rq
->highest_prio
.curr
;
626 return rt_task_of(rt_se
)->prio
;
629 static int sched_rt_runtime_exceeded(struct rt_rq
*rt_rq
)
631 u64 runtime
= sched_rt_runtime(rt_rq
);
633 if (rt_rq
->rt_throttled
)
634 return rt_rq_throttled(rt_rq
);
636 if (sched_rt_runtime(rt_rq
) >= sched_rt_period(rt_rq
))
639 balance_runtime(rt_rq
);
640 runtime
= sched_rt_runtime(rt_rq
);
641 if (runtime
== RUNTIME_INF
)
644 if (rt_rq
->rt_time
> runtime
) {
645 rt_rq
->rt_throttled
= 1;
646 if (rt_rq_throttled(rt_rq
)) {
647 sched_rt_rq_dequeue(rt_rq
);
656 * Update the current task's runtime statistics. Skip current tasks that
657 * are not in our scheduling class.
659 static void update_curr_rt(struct rq
*rq
)
661 struct task_struct
*curr
= rq
->curr
;
662 struct sched_rt_entity
*rt_se
= &curr
->rt
;
663 struct rt_rq
*rt_rq
= rt_rq_of_se(rt_se
);
666 if (curr
->sched_class
!= &rt_sched_class
)
669 delta_exec
= rq
->clock_task
- curr
->se
.exec_start
;
670 if (unlikely((s64
)delta_exec
< 0))
673 schedstat_set(curr
->se
.statistics
.exec_max
, max(curr
->se
.statistics
.exec_max
, delta_exec
));
675 curr
->se
.sum_exec_runtime
+= delta_exec
;
676 account_group_exec_runtime(curr
, delta_exec
);
678 curr
->se
.exec_start
= rq
->clock_task
;
679 cpuacct_charge(curr
, delta_exec
);
681 sched_rt_avg_update(rq
, delta_exec
);
683 if (!rt_bandwidth_enabled())
686 for_each_sched_rt_entity(rt_se
) {
687 rt_rq
= rt_rq_of_se(rt_se
);
689 if (sched_rt_runtime(rt_rq
) != RUNTIME_INF
) {
690 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
691 rt_rq
->rt_time
+= delta_exec
;
692 if (sched_rt_runtime_exceeded(rt_rq
))
694 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
699 #if defined CONFIG_SMP
701 static struct task_struct
*pick_next_highest_task_rt(struct rq
*rq
, int cpu
);
703 static inline int next_prio(struct rq
*rq
)
705 struct task_struct
*next
= pick_next_highest_task_rt(rq
, rq
->cpu
);
707 if (next
&& rt_prio(next
->prio
))
714 inc_rt_prio_smp(struct rt_rq
*rt_rq
, int prio
, int prev_prio
)
716 struct rq
*rq
= rq_of_rt_rq(rt_rq
);
718 if (prio
< prev_prio
) {
721 * If the new task is higher in priority than anything on the
722 * run-queue, we know that the previous high becomes our
725 rt_rq
->highest_prio
.next
= prev_prio
;
728 cpupri_set(&rq
->rd
->cpupri
, rq
->cpu
, prio
);
730 } else if (prio
== rt_rq
->highest_prio
.curr
)
732 * If the next task is equal in priority to the highest on
733 * the run-queue, then we implicitly know that the next highest
734 * task cannot be any lower than current
736 rt_rq
->highest_prio
.next
= prio
;
737 else if (prio
< rt_rq
->highest_prio
.next
)
739 * Otherwise, we need to recompute next-highest
741 rt_rq
->highest_prio
.next
= next_prio(rq
);
745 dec_rt_prio_smp(struct rt_rq
*rt_rq
, int prio
, int prev_prio
)
747 struct rq
*rq
= rq_of_rt_rq(rt_rq
);
749 if (rt_rq
->rt_nr_running
&& (prio
<= rt_rq
->highest_prio
.next
))
750 rt_rq
->highest_prio
.next
= next_prio(rq
);
752 if (rq
->online
&& rt_rq
->highest_prio
.curr
!= prev_prio
)
753 cpupri_set(&rq
->rd
->cpupri
, rq
->cpu
, rt_rq
->highest_prio
.curr
);
756 #else /* CONFIG_SMP */
759 void inc_rt_prio_smp(struct rt_rq
*rt_rq
, int prio
, int prev_prio
) {}
761 void dec_rt_prio_smp(struct rt_rq
*rt_rq
, int prio
, int prev_prio
) {}
763 #endif /* CONFIG_SMP */
765 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
767 inc_rt_prio(struct rt_rq
*rt_rq
, int prio
)
769 int prev_prio
= rt_rq
->highest_prio
.curr
;
771 if (prio
< prev_prio
)
772 rt_rq
->highest_prio
.curr
= prio
;
774 inc_rt_prio_smp(rt_rq
, prio
, prev_prio
);
778 dec_rt_prio(struct rt_rq
*rt_rq
, int prio
)
780 int prev_prio
= rt_rq
->highest_prio
.curr
;
782 if (rt_rq
->rt_nr_running
) {
784 WARN_ON(prio
< prev_prio
);
787 * This may have been our highest task, and therefore
788 * we may have some recomputation to do
790 if (prio
== prev_prio
) {
791 struct rt_prio_array
*array
= &rt_rq
->active
;
793 rt_rq
->highest_prio
.curr
=
794 sched_find_first_bit(array
->bitmap
);
798 rt_rq
->highest_prio
.curr
= MAX_RT_PRIO
;
800 dec_rt_prio_smp(rt_rq
, prio
, prev_prio
);
805 static inline void inc_rt_prio(struct rt_rq
*rt_rq
, int prio
) {}
806 static inline void dec_rt_prio(struct rt_rq
*rt_rq
, int prio
) {}
808 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
810 #ifdef CONFIG_RT_GROUP_SCHED
813 inc_rt_group(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
815 if (rt_se_boosted(rt_se
))
816 rt_rq
->rt_nr_boosted
++;
819 start_rt_bandwidth(&rt_rq
->tg
->rt_bandwidth
);
823 dec_rt_group(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
825 if (rt_se_boosted(rt_se
))
826 rt_rq
->rt_nr_boosted
--;
828 WARN_ON(!rt_rq
->rt_nr_running
&& rt_rq
->rt_nr_boosted
);
831 #else /* CONFIG_RT_GROUP_SCHED */
834 inc_rt_group(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
836 start_rt_bandwidth(&def_rt_bandwidth
);
840 void dec_rt_group(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
) {}
842 #endif /* CONFIG_RT_GROUP_SCHED */
845 void inc_rt_tasks(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
847 int prio
= rt_se_prio(rt_se
);
849 WARN_ON(!rt_prio(prio
));
850 rt_rq
->rt_nr_running
++;
852 inc_rt_prio(rt_rq
, prio
);
853 inc_rt_migration(rt_se
, rt_rq
);
854 inc_rt_group(rt_se
, rt_rq
);
858 void dec_rt_tasks(struct sched_rt_entity
*rt_se
, struct rt_rq
*rt_rq
)
860 WARN_ON(!rt_prio(rt_se_prio(rt_se
)));
861 WARN_ON(!rt_rq
->rt_nr_running
);
862 rt_rq
->rt_nr_running
--;
864 dec_rt_prio(rt_rq
, rt_se_prio(rt_se
));
865 dec_rt_migration(rt_se
, rt_rq
);
866 dec_rt_group(rt_se
, rt_rq
);
869 static void __enqueue_rt_entity(struct sched_rt_entity
*rt_se
, bool head
)
871 struct rt_rq
*rt_rq
= rt_rq_of_se(rt_se
);
872 struct rt_prio_array
*array
= &rt_rq
->active
;
873 struct rt_rq
*group_rq
= group_rt_rq(rt_se
);
874 struct list_head
*queue
= array
->queue
+ rt_se_prio(rt_se
);
877 * Don't enqueue the group if its throttled, or when empty.
878 * The latter is a consequence of the former when a child group
879 * get throttled and the current group doesn't have any other
882 if (group_rq
&& (rt_rq_throttled(group_rq
) || !group_rq
->rt_nr_running
))
885 if (!rt_rq
->rt_nr_running
)
886 list_add_leaf_rt_rq(rt_rq
);
889 list_add(&rt_se
->run_list
, queue
);
891 list_add_tail(&rt_se
->run_list
, queue
);
892 __set_bit(rt_se_prio(rt_se
), array
->bitmap
);
894 inc_rt_tasks(rt_se
, rt_rq
);
897 static void __dequeue_rt_entity(struct sched_rt_entity
*rt_se
)
899 struct rt_rq
*rt_rq
= rt_rq_of_se(rt_se
);
900 struct rt_prio_array
*array
= &rt_rq
->active
;
902 list_del_init(&rt_se
->run_list
);
903 if (list_empty(array
->queue
+ rt_se_prio(rt_se
)))
904 __clear_bit(rt_se_prio(rt_se
), array
->bitmap
);
906 dec_rt_tasks(rt_se
, rt_rq
);
907 if (!rt_rq
->rt_nr_running
)
908 list_del_leaf_rt_rq(rt_rq
);
912 * Because the prio of an upper entry depends on the lower
913 * entries, we must remove entries top - down.
915 static void dequeue_rt_stack(struct sched_rt_entity
*rt_se
)
917 struct sched_rt_entity
*back
= NULL
;
919 for_each_sched_rt_entity(rt_se
) {
924 for (rt_se
= back
; rt_se
; rt_se
= rt_se
->back
) {
926 __dequeue_rt_entity(rt_se
);
930 static void enqueue_rt_entity(struct sched_rt_entity
*rt_se
, bool head
)
932 dequeue_rt_stack(rt_se
);
933 for_each_sched_rt_entity(rt_se
)
934 __enqueue_rt_entity(rt_se
, head
);
937 static void dequeue_rt_entity(struct sched_rt_entity
*rt_se
)
939 dequeue_rt_stack(rt_se
);
941 for_each_sched_rt_entity(rt_se
) {
942 struct rt_rq
*rt_rq
= group_rt_rq(rt_se
);
944 if (rt_rq
&& rt_rq
->rt_nr_running
)
945 __enqueue_rt_entity(rt_se
, false);
950 * Adding/removing a task to/from a priority array:
953 enqueue_task_rt(struct rq
*rq
, struct task_struct
*p
, int flags
)
955 struct sched_rt_entity
*rt_se
= &p
->rt
;
957 if (flags
& ENQUEUE_WAKEUP
)
960 enqueue_rt_entity(rt_se
, flags
& ENQUEUE_HEAD
);
962 if (!task_current(rq
, p
) && p
->rt
.nr_cpus_allowed
> 1)
963 enqueue_pushable_task(rq
, p
);
966 static void dequeue_task_rt(struct rq
*rq
, struct task_struct
*p
, int flags
)
968 struct sched_rt_entity
*rt_se
= &p
->rt
;
971 dequeue_rt_entity(rt_se
);
973 dequeue_pushable_task(rq
, p
);
977 * Put task to the end of the run list without the overhead of dequeue
978 * followed by enqueue.
981 requeue_rt_entity(struct rt_rq
*rt_rq
, struct sched_rt_entity
*rt_se
, int head
)
983 if (on_rt_rq(rt_se
)) {
984 struct rt_prio_array
*array
= &rt_rq
->active
;
985 struct list_head
*queue
= array
->queue
+ rt_se_prio(rt_se
);
988 list_move(&rt_se
->run_list
, queue
);
990 list_move_tail(&rt_se
->run_list
, queue
);
994 static void requeue_task_rt(struct rq
*rq
, struct task_struct
*p
, int head
)
996 struct sched_rt_entity
*rt_se
= &p
->rt
;
999 for_each_sched_rt_entity(rt_se
) {
1000 rt_rq
= rt_rq_of_se(rt_se
);
1001 requeue_rt_entity(rt_rq
, rt_se
, head
);
1005 static void yield_task_rt(struct rq
*rq
)
1007 requeue_task_rt(rq
, rq
->curr
, 0);
1011 static int find_lowest_rq(struct task_struct
*task
);
1014 select_task_rq_rt(struct task_struct
*p
, int sd_flag
, int flags
)
1016 struct task_struct
*curr
;
1020 if (sd_flag
!= SD_BALANCE_WAKE
)
1021 return smp_processor_id();
1027 curr
= ACCESS_ONCE(rq
->curr
); /* unlocked access */
1030 * If the current task on @p's runqueue is an RT task, then
1031 * try to see if we can wake this RT task up on another
1032 * runqueue. Otherwise simply start this RT task
1033 * on its current runqueue.
1035 * We want to avoid overloading runqueues. If the woken
1036 * task is a higher priority, then it will stay on this CPU
1037 * and the lower prio task should be moved to another CPU.
1038 * Even though this will probably make the lower prio task
1039 * lose its cache, we do not want to bounce a higher task
1040 * around just because it gave up its CPU, perhaps for a
1043 * For equal prio tasks, we just let the scheduler sort it out.
1045 * Otherwise, just let it ride on the affined RQ and the
1046 * post-schedule router will push the preempted task away
1048 * This test is optimistic, if we get it wrong the load-balancer
1049 * will have to sort it out.
1051 if (curr
&& unlikely(rt_task(curr
)) &&
1052 (curr
->rt
.nr_cpus_allowed
< 2 ||
1053 curr
->prio
< p
->prio
) &&
1054 (p
->rt
.nr_cpus_allowed
> 1)) {
1055 int target
= find_lowest_rq(p
);
1065 static void check_preempt_equal_prio(struct rq
*rq
, struct task_struct
*p
)
1067 if (rq
->curr
->rt
.nr_cpus_allowed
== 1)
1070 if (p
->rt
.nr_cpus_allowed
!= 1
1071 && cpupri_find(&rq
->rd
->cpupri
, p
, NULL
))
1074 if (!cpupri_find(&rq
->rd
->cpupri
, rq
->curr
, NULL
))
1078 * There appears to be other cpus that can accept
1079 * current and none to run 'p', so lets reschedule
1080 * to try and push current away:
1082 requeue_task_rt(rq
, p
, 1);
1083 resched_task(rq
->curr
);
1086 #endif /* CONFIG_SMP */
1089 * Preempt the current task with a newly woken task if needed:
1091 static void check_preempt_curr_rt(struct rq
*rq
, struct task_struct
*p
, int flags
)
1093 if (p
->prio
< rq
->curr
->prio
) {
1094 resched_task(rq
->curr
);
1102 * - the newly woken task is of equal priority to the current task
1103 * - the newly woken task is non-migratable while current is migratable
1104 * - current will be preempted on the next reschedule
1106 * we should check to see if current can readily move to a different
1107 * cpu. If so, we will reschedule to allow the push logic to try
1108 * to move current somewhere else, making room for our non-migratable
1111 if (p
->prio
== rq
->curr
->prio
&& !test_tsk_need_resched(rq
->curr
))
1112 check_preempt_equal_prio(rq
, p
);
1116 static struct sched_rt_entity
*pick_next_rt_entity(struct rq
*rq
,
1117 struct rt_rq
*rt_rq
)
1119 struct rt_prio_array
*array
= &rt_rq
->active
;
1120 struct sched_rt_entity
*next
= NULL
;
1121 struct list_head
*queue
;
1124 idx
= sched_find_first_bit(array
->bitmap
);
1125 BUG_ON(idx
>= MAX_RT_PRIO
);
1127 queue
= array
->queue
+ idx
;
1128 next
= list_entry(queue
->next
, struct sched_rt_entity
, run_list
);
1133 static struct task_struct
*_pick_next_task_rt(struct rq
*rq
)
1135 struct sched_rt_entity
*rt_se
;
1136 struct task_struct
*p
;
1137 struct rt_rq
*rt_rq
;
1141 if (!rt_rq
->rt_nr_running
)
1144 if (rt_rq_throttled(rt_rq
))
1148 rt_se
= pick_next_rt_entity(rq
, rt_rq
);
1150 rt_rq
= group_rt_rq(rt_se
);
1153 p
= rt_task_of(rt_se
);
1154 p
->se
.exec_start
= rq
->clock_task
;
1159 static struct task_struct
*pick_next_task_rt(struct rq
*rq
)
1161 struct task_struct
*p
= _pick_next_task_rt(rq
);
1163 /* The running task is never eligible for pushing */
1165 dequeue_pushable_task(rq
, p
);
1169 * We detect this state here so that we can avoid taking the RQ
1170 * lock again later if there is no need to push
1172 rq
->post_schedule
= has_pushable_tasks(rq
);
1178 static void put_prev_task_rt(struct rq
*rq
, struct task_struct
*p
)
1181 p
->se
.exec_start
= 0;
1184 * The previous task needs to be made eligible for pushing
1185 * if it is still active
1187 if (on_rt_rq(&p
->rt
) && p
->rt
.nr_cpus_allowed
> 1)
1188 enqueue_pushable_task(rq
, p
);
1193 /* Only try algorithms three times */
1194 #define RT_MAX_TRIES 3
1196 static void deactivate_task(struct rq
*rq
, struct task_struct
*p
, int sleep
);
1198 static int pick_rt_task(struct rq
*rq
, struct task_struct
*p
, int cpu
)
1200 if (!task_running(rq
, p
) &&
1201 (cpu
< 0 || cpumask_test_cpu(cpu
, &p
->cpus_allowed
)) &&
1202 (p
->rt
.nr_cpus_allowed
> 1))
1207 /* Return the second highest RT task, NULL otherwise */
1208 static struct task_struct
*pick_next_highest_task_rt(struct rq
*rq
, int cpu
)
1210 struct task_struct
*next
= NULL
;
1211 struct sched_rt_entity
*rt_se
;
1212 struct rt_prio_array
*array
;
1213 struct rt_rq
*rt_rq
;
1216 for_each_leaf_rt_rq(rt_rq
, rq
) {
1217 array
= &rt_rq
->active
;
1218 idx
= sched_find_first_bit(array
->bitmap
);
1220 if (idx
>= MAX_RT_PRIO
)
1222 if (next
&& next
->prio
< idx
)
1224 list_for_each_entry(rt_se
, array
->queue
+ idx
, run_list
) {
1225 struct task_struct
*p
;
1227 if (!rt_entity_is_task(rt_se
))
1230 p
= rt_task_of(rt_se
);
1231 if (pick_rt_task(rq
, p
, cpu
)) {
1237 idx
= find_next_bit(array
->bitmap
, MAX_RT_PRIO
, idx
+1);
1245 static DEFINE_PER_CPU(cpumask_var_t
, local_cpu_mask
);
1247 static int find_lowest_rq(struct task_struct
*task
)
1249 struct sched_domain
*sd
;
1250 struct cpumask
*lowest_mask
= __get_cpu_var(local_cpu_mask
);
1251 int this_cpu
= smp_processor_id();
1252 int cpu
= task_cpu(task
);
1254 /* Make sure the mask is initialized first */
1255 if (unlikely(!lowest_mask
))
1258 if (task
->rt
.nr_cpus_allowed
== 1)
1259 return -1; /* No other targets possible */
1261 if (!cpupri_find(&task_rq(task
)->rd
->cpupri
, task
, lowest_mask
))
1262 return -1; /* No targets found */
1265 * At this point we have built a mask of cpus representing the
1266 * lowest priority tasks in the system. Now we want to elect
1267 * the best one based on our affinity and topology.
1269 * We prioritize the last cpu that the task executed on since
1270 * it is most likely cache-hot in that location.
1272 if (cpumask_test_cpu(cpu
, lowest_mask
))
1276 * Otherwise, we consult the sched_domains span maps to figure
1277 * out which cpu is logically closest to our hot cache data.
1279 if (!cpumask_test_cpu(this_cpu
, lowest_mask
))
1280 this_cpu
= -1; /* Skip this_cpu opt if not among lowest */
1283 for_each_domain(cpu
, sd
) {
1284 if (sd
->flags
& SD_WAKE_AFFINE
) {
1288 * "this_cpu" is cheaper to preempt than a
1291 if (this_cpu
!= -1 &&
1292 cpumask_test_cpu(this_cpu
, sched_domain_span(sd
))) {
1297 best_cpu
= cpumask_first_and(lowest_mask
,
1298 sched_domain_span(sd
));
1299 if (best_cpu
< nr_cpu_ids
) {
1308 * And finally, if there were no matches within the domains
1309 * just give the caller *something* to work with from the compatible
1315 cpu
= cpumask_any(lowest_mask
);
1316 if (cpu
< nr_cpu_ids
)
1321 /* Will lock the rq it finds */
1322 static struct rq
*find_lock_lowest_rq(struct task_struct
*task
, struct rq
*rq
)
1324 struct rq
*lowest_rq
= NULL
;
1328 for (tries
= 0; tries
< RT_MAX_TRIES
; tries
++) {
1329 cpu
= find_lowest_rq(task
);
1331 if ((cpu
== -1) || (cpu
== rq
->cpu
))
1334 lowest_rq
= cpu_rq(cpu
);
1336 /* if the prio of this runqueue changed, try again */
1337 if (double_lock_balance(rq
, lowest_rq
)) {
1339 * We had to unlock the run queue. In
1340 * the mean time, task could have
1341 * migrated already or had its affinity changed.
1342 * Also make sure that it wasn't scheduled on its rq.
1344 if (unlikely(task_rq(task
) != rq
||
1345 !cpumask_test_cpu(lowest_rq
->cpu
,
1346 &task
->cpus_allowed
) ||
1347 task_running(rq
, task
) ||
1350 raw_spin_unlock(&lowest_rq
->lock
);
1356 /* If this rq is still suitable use it. */
1357 if (lowest_rq
->rt
.highest_prio
.curr
> task
->prio
)
1361 double_unlock_balance(rq
, lowest_rq
);
1368 static struct task_struct
*pick_next_pushable_task(struct rq
*rq
)
1370 struct task_struct
*p
;
1372 if (!has_pushable_tasks(rq
))
1375 p
= plist_first_entry(&rq
->rt
.pushable_tasks
,
1376 struct task_struct
, pushable_tasks
);
1378 BUG_ON(rq
->cpu
!= task_cpu(p
));
1379 BUG_ON(task_current(rq
, p
));
1380 BUG_ON(p
->rt
.nr_cpus_allowed
<= 1);
1383 BUG_ON(!rt_task(p
));
1389 * If the current CPU has more than one RT task, see if the non
1390 * running task can migrate over to a CPU that is running a task
1391 * of lesser priority.
1393 static int push_rt_task(struct rq
*rq
)
1395 struct task_struct
*next_task
;
1396 struct rq
*lowest_rq
;
1398 if (!rq
->rt
.overloaded
)
1401 next_task
= pick_next_pushable_task(rq
);
1406 if (unlikely(next_task
== rq
->curr
)) {
1412 * It's possible that the next_task slipped in of
1413 * higher priority than current. If that's the case
1414 * just reschedule current.
1416 if (unlikely(next_task
->prio
< rq
->curr
->prio
)) {
1417 resched_task(rq
->curr
);
1421 /* We might release rq lock */
1422 get_task_struct(next_task
);
1424 /* find_lock_lowest_rq locks the rq if found */
1425 lowest_rq
= find_lock_lowest_rq(next_task
, rq
);
1427 struct task_struct
*task
;
1429 * find lock_lowest_rq releases rq->lock
1430 * so it is possible that next_task has migrated.
1432 * We need to make sure that the task is still on the same
1433 * run-queue and is also still the next task eligible for
1436 task
= pick_next_pushable_task(rq
);
1437 if (task_cpu(next_task
) == rq
->cpu
&& task
== next_task
) {
1439 * If we get here, the task hasn't moved at all, but
1440 * it has failed to push. We will not try again,
1441 * since the other cpus will pull from us when they
1444 dequeue_pushable_task(rq
, next_task
);
1449 /* No more tasks, just exit */
1453 * Something has shifted, try again.
1455 put_task_struct(next_task
);
1460 deactivate_task(rq
, next_task
, 0);
1461 set_task_cpu(next_task
, lowest_rq
->cpu
);
1462 activate_task(lowest_rq
, next_task
, 0);
1464 resched_task(lowest_rq
->curr
);
1466 double_unlock_balance(rq
, lowest_rq
);
1469 put_task_struct(next_task
);
1474 static void push_rt_tasks(struct rq
*rq
)
1476 /* push_rt_task will return true if it moved an RT */
1477 while (push_rt_task(rq
))
1481 static int pull_rt_task(struct rq
*this_rq
)
1483 int this_cpu
= this_rq
->cpu
, ret
= 0, cpu
;
1484 struct task_struct
*p
;
1487 if (likely(!rt_overloaded(this_rq
)))
1490 for_each_cpu(cpu
, this_rq
->rd
->rto_mask
) {
1491 if (this_cpu
== cpu
)
1494 src_rq
= cpu_rq(cpu
);
1497 * Don't bother taking the src_rq->lock if the next highest
1498 * task is known to be lower-priority than our current task.
1499 * This may look racy, but if this value is about to go
1500 * logically higher, the src_rq will push this task away.
1501 * And if its going logically lower, we do not care
1503 if (src_rq
->rt
.highest_prio
.next
>=
1504 this_rq
->rt
.highest_prio
.curr
)
1508 * We can potentially drop this_rq's lock in
1509 * double_lock_balance, and another CPU could
1512 double_lock_balance(this_rq
, src_rq
);
1515 * Are there still pullable RT tasks?
1517 if (src_rq
->rt
.rt_nr_running
<= 1)
1520 p
= pick_next_highest_task_rt(src_rq
, this_cpu
);
1523 * Do we have an RT task that preempts
1524 * the to-be-scheduled task?
1526 if (p
&& (p
->prio
< this_rq
->rt
.highest_prio
.curr
)) {
1527 WARN_ON(p
== src_rq
->curr
);
1531 * There's a chance that p is higher in priority
1532 * than what's currently running on its cpu.
1533 * This is just that p is wakeing up and hasn't
1534 * had a chance to schedule. We only pull
1535 * p if it is lower in priority than the
1536 * current task on the run queue
1538 if (p
->prio
< src_rq
->curr
->prio
)
1543 deactivate_task(src_rq
, p
, 0);
1544 set_task_cpu(p
, this_cpu
);
1545 activate_task(this_rq
, p
, 0);
1547 * We continue with the search, just in
1548 * case there's an even higher prio task
1549 * in another runqueue. (low likelihood
1554 double_unlock_balance(this_rq
, src_rq
);
1560 static void pre_schedule_rt(struct rq
*rq
, struct task_struct
*prev
)
1562 /* Try to pull RT tasks here if we lower this rq's prio */
1563 if (rq
->rt
.highest_prio
.curr
> prev
->prio
)
1567 static void post_schedule_rt(struct rq
*rq
)
1573 * If we are not running and we are not going to reschedule soon, we should
1574 * try to push tasks away now
1576 static void task_woken_rt(struct rq
*rq
, struct task_struct
*p
)
1578 if (!task_running(rq
, p
) &&
1579 !test_tsk_need_resched(rq
->curr
) &&
1580 has_pushable_tasks(rq
) &&
1581 p
->rt
.nr_cpus_allowed
> 1 &&
1582 rt_task(rq
->curr
) &&
1583 (rq
->curr
->rt
.nr_cpus_allowed
< 2 ||
1584 rq
->curr
->prio
< p
->prio
))
1588 static void set_cpus_allowed_rt(struct task_struct
*p
,
1589 const struct cpumask
*new_mask
)
1591 int weight
= cpumask_weight(new_mask
);
1593 BUG_ON(!rt_task(p
));
1596 * Update the migration status of the RQ if we have an RT task
1597 * which is running AND changing its weight value.
1599 if (p
->on_rq
&& (weight
!= p
->rt
.nr_cpus_allowed
)) {
1600 struct rq
*rq
= task_rq(p
);
1602 if (!task_current(rq
, p
)) {
1604 * Make sure we dequeue this task from the pushable list
1605 * before going further. It will either remain off of
1606 * the list because we are no longer pushable, or it
1609 if (p
->rt
.nr_cpus_allowed
> 1)
1610 dequeue_pushable_task(rq
, p
);
1613 * Requeue if our weight is changing and still > 1
1616 enqueue_pushable_task(rq
, p
);
1620 if ((p
->rt
.nr_cpus_allowed
<= 1) && (weight
> 1)) {
1621 rq
->rt
.rt_nr_migratory
++;
1622 } else if ((p
->rt
.nr_cpus_allowed
> 1) && (weight
<= 1)) {
1623 BUG_ON(!rq
->rt
.rt_nr_migratory
);
1624 rq
->rt
.rt_nr_migratory
--;
1627 update_rt_migration(&rq
->rt
);
1630 cpumask_copy(&p
->cpus_allowed
, new_mask
);
1631 p
->rt
.nr_cpus_allowed
= weight
;
1634 /* Assumes rq->lock is held */
1635 static void rq_online_rt(struct rq
*rq
)
1637 if (rq
->rt
.overloaded
)
1638 rt_set_overload(rq
);
1640 __enable_runtime(rq
);
1642 cpupri_set(&rq
->rd
->cpupri
, rq
->cpu
, rq
->rt
.highest_prio
.curr
);
1645 /* Assumes rq->lock is held */
1646 static void rq_offline_rt(struct rq
*rq
)
1648 if (rq
->rt
.overloaded
)
1649 rt_clear_overload(rq
);
1651 __disable_runtime(rq
);
1653 cpupri_set(&rq
->rd
->cpupri
, rq
->cpu
, CPUPRI_INVALID
);
1657 * When switch from the rt queue, we bring ourselves to a position
1658 * that we might want to pull RT tasks from other runqueues.
1660 static void switched_from_rt(struct rq
*rq
, struct task_struct
*p
)
1663 * If there are other RT tasks then we will reschedule
1664 * and the scheduling of the other RT tasks will handle
1665 * the balancing. But if we are the last RT task
1666 * we may need to handle the pulling of RT tasks
1669 if (p
->on_rq
&& !rq
->rt
.rt_nr_running
)
1673 static inline void init_sched_rt_class(void)
1677 for_each_possible_cpu(i
)
1678 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask
, i
),
1679 GFP_KERNEL
, cpu_to_node(i
));
1681 #endif /* CONFIG_SMP */
1684 * When switching a task to RT, we may overload the runqueue
1685 * with RT tasks. In this case we try to push them off to
1688 static void switched_to_rt(struct rq
*rq
, struct task_struct
*p
)
1690 int check_resched
= 1;
1693 * If we are already running, then there's nothing
1694 * that needs to be done. But if we are not running
1695 * we may need to preempt the current running task.
1696 * If that current running task is also an RT task
1697 * then see if we can move to another run queue.
1699 if (p
->on_rq
&& rq
->curr
!= p
) {
1701 if (rq
->rt
.overloaded
&& push_rt_task(rq
) &&
1702 /* Don't resched if we changed runqueues */
1705 #endif /* CONFIG_SMP */
1706 if (check_resched
&& p
->prio
< rq
->curr
->prio
)
1707 resched_task(rq
->curr
);
1712 * Priority of the task has changed. This may cause
1713 * us to initiate a push or pull.
1716 prio_changed_rt(struct rq
*rq
, struct task_struct
*p
, int oldprio
)
1721 if (rq
->curr
== p
) {
1724 * If our priority decreases while running, we
1725 * may need to pull tasks to this runqueue.
1727 if (oldprio
< p
->prio
)
1730 * If there's a higher priority task waiting to run
1731 * then reschedule. Note, the above pull_rt_task
1732 * can release the rq lock and p could migrate.
1733 * Only reschedule if p is still on the same runqueue.
1735 if (p
->prio
> rq
->rt
.highest_prio
.curr
&& rq
->curr
== p
)
1738 /* For UP simply resched on drop of prio */
1739 if (oldprio
< p
->prio
)
1741 #endif /* CONFIG_SMP */
1744 * This task is not running, but if it is
1745 * greater than the current running task
1748 if (p
->prio
< rq
->curr
->prio
)
1749 resched_task(rq
->curr
);
1753 static void watchdog(struct rq
*rq
, struct task_struct
*p
)
1755 unsigned long soft
, hard
;
1757 /* max may change after cur was read, this will be fixed next tick */
1758 soft
= task_rlimit(p
, RLIMIT_RTTIME
);
1759 hard
= task_rlimit_max(p
, RLIMIT_RTTIME
);
1761 if (soft
!= RLIM_INFINITY
) {
1765 next
= DIV_ROUND_UP(min(soft
, hard
), USEC_PER_SEC
/HZ
);
1766 if (p
->rt
.timeout
> next
)
1767 p
->cputime_expires
.sched_exp
= p
->se
.sum_exec_runtime
;
1771 static void task_tick_rt(struct rq
*rq
, struct task_struct
*p
, int queued
)
1778 * RR tasks need a special form of timeslice management.
1779 * FIFO tasks have no timeslices.
1781 if (p
->policy
!= SCHED_RR
)
1784 if (--p
->rt
.time_slice
)
1787 p
->rt
.time_slice
= DEF_TIMESLICE
;
1790 * Requeue to the end of queue if we are not the only element
1793 if (p
->rt
.run_list
.prev
!= p
->rt
.run_list
.next
) {
1794 requeue_task_rt(rq
, p
, 0);
1795 set_tsk_need_resched(p
);
1799 static void set_curr_task_rt(struct rq
*rq
)
1801 struct task_struct
*p
= rq
->curr
;
1803 p
->se
.exec_start
= rq
->clock_task
;
1805 /* The running task is never eligible for pushing */
1806 dequeue_pushable_task(rq
, p
);
1809 static unsigned int get_rr_interval_rt(struct rq
*rq
, struct task_struct
*task
)
1812 * Time slice is 0 for SCHED_FIFO tasks
1814 if (task
->policy
== SCHED_RR
)
1815 return DEF_TIMESLICE
;
1820 static const struct sched_class rt_sched_class
= {
1821 .next
= &fair_sched_class
,
1822 .enqueue_task
= enqueue_task_rt
,
1823 .dequeue_task
= dequeue_task_rt
,
1824 .yield_task
= yield_task_rt
,
1826 .check_preempt_curr
= check_preempt_curr_rt
,
1828 .pick_next_task
= pick_next_task_rt
,
1829 .put_prev_task
= put_prev_task_rt
,
1832 .select_task_rq
= select_task_rq_rt
,
1834 .set_cpus_allowed
= set_cpus_allowed_rt
,
1835 .rq_online
= rq_online_rt
,
1836 .rq_offline
= rq_offline_rt
,
1837 .pre_schedule
= pre_schedule_rt
,
1838 .post_schedule
= post_schedule_rt
,
1839 .task_woken
= task_woken_rt
,
1840 .switched_from
= switched_from_rt
,
1843 .set_curr_task
= set_curr_task_rt
,
1844 .task_tick
= task_tick_rt
,
1846 .get_rr_interval
= get_rr_interval_rt
,
1848 .prio_changed
= prio_changed_rt
,
1849 .switched_to
= switched_to_rt
,
1852 #ifdef CONFIG_SCHED_DEBUG
1853 extern void print_rt_rq(struct seq_file
*m
, int cpu
, struct rt_rq
*rt_rq
);
1855 static void print_rt_stats(struct seq_file
*m
, int cpu
)
1858 struct rt_rq
*rt_rq
;
1861 for_each_rt_rq(rt_rq
, iter
, cpu_rq(cpu
))
1862 print_rt_rq(m
, cpu
, rt_rq
);
1865 #endif /* CONFIG_SCHED_DEBUG */