2 * Read-Copy Update mechanism for mutual exclusion
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 * Copyright IBM Corporation, 2008
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
27 * For detailed explanation of Read-Copy Update mechanism see -
30 #include <linux/types.h>
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp.h>
35 #include <linux/rcupdate.h>
36 #include <linux/interrupt.h>
37 #include <linux/sched.h>
38 #include <linux/nmi.h>
39 #include <linux/atomic.h>
40 #include <linux/bitops.h>
41 #include <linux/module.h>
42 #include <linux/completion.h>
43 #include <linux/moduleparam.h>
44 #include <linux/percpu.h>
45 #include <linux/notifier.h>
46 #include <linux/cpu.h>
47 #include <linux/mutex.h>
48 #include <linux/time.h>
49 #include <linux/kernel_stat.h>
50 #include <linux/wait.h>
51 #include <linux/kthread.h>
52 #include <linux/prefetch.h>
56 /* Data structures. */
58 static struct lock_class_key rcu_node_class
[NUM_RCU_LVLS
];
60 #define RCU_STATE_INITIALIZER(structname) { \
61 .level = { &structname.node[0] }, \
63 NUM_RCU_LVL_0, /* root of hierarchy. */ \
67 NUM_RCU_LVL_4, /* == MAX_RCU_LVLS */ \
69 .signaled = RCU_GP_IDLE, \
72 .onofflock = __RAW_SPIN_LOCK_UNLOCKED(&structname.onofflock), \
73 .fqslock = __RAW_SPIN_LOCK_UNLOCKED(&structname.fqslock), \
75 .n_force_qs_ngp = 0, \
76 .name = #structname, \
79 struct rcu_state rcu_sched_state
= RCU_STATE_INITIALIZER(rcu_sched_state
);
80 DEFINE_PER_CPU(struct rcu_data
, rcu_sched_data
);
82 struct rcu_state rcu_bh_state
= RCU_STATE_INITIALIZER(rcu_bh_state
);
83 DEFINE_PER_CPU(struct rcu_data
, rcu_bh_data
);
85 static struct rcu_state
*rcu_state
;
88 * The rcu_scheduler_active variable transitions from zero to one just
89 * before the first task is spawned. So when this variable is zero, RCU
90 * can assume that there is but one task, allowing RCU to (for example)
91 * optimized synchronize_sched() to a simple barrier(). When this variable
92 * is one, RCU must actually do all the hard work required to detect real
93 * grace periods. This variable is also used to suppress boot-time false
94 * positives from lockdep-RCU error checking.
96 int rcu_scheduler_active __read_mostly
;
97 EXPORT_SYMBOL_GPL(rcu_scheduler_active
);
100 * The rcu_scheduler_fully_active variable transitions from zero to one
101 * during the early_initcall() processing, which is after the scheduler
102 * is capable of creating new tasks. So RCU processing (for example,
103 * creating tasks for RCU priority boosting) must be delayed until after
104 * rcu_scheduler_fully_active transitions from zero to one. We also
105 * currently delay invocation of any RCU callbacks until after this point.
107 * It might later prove better for people registering RCU callbacks during
108 * early boot to take responsibility for these callbacks, but one step at
111 static int rcu_scheduler_fully_active __read_mostly
;
113 #ifdef CONFIG_RCU_BOOST
116 * Control variables for per-CPU and per-rcu_node kthreads. These
117 * handle all flavors of RCU.
119 static DEFINE_PER_CPU(struct task_struct
*, rcu_cpu_kthread_task
);
120 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status
);
121 DEFINE_PER_CPU(int, rcu_cpu_kthread_cpu
);
122 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops
);
123 DEFINE_PER_CPU(char, rcu_cpu_has_work
);
125 #endif /* #ifdef CONFIG_RCU_BOOST */
127 static void rcu_node_kthread_setaffinity(struct rcu_node
*rnp
, int outgoingcpu
);
128 static void invoke_rcu_core(void);
129 static void invoke_rcu_callbacks(struct rcu_state
*rsp
, struct rcu_data
*rdp
);
131 #define RCU_KTHREAD_PRIO 1 /* RT priority for per-CPU kthreads. */
134 * Track the rcutorture test sequence number and the update version
135 * number within a given test. The rcutorture_testseq is incremented
136 * on every rcutorture module load and unload, so has an odd value
137 * when a test is running. The rcutorture_vernum is set to zero
138 * when rcutorture starts and is incremented on each rcutorture update.
139 * These variables enable correlating rcutorture output with the
140 * RCU tracing information.
142 unsigned long rcutorture_testseq
;
143 unsigned long rcutorture_vernum
;
146 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
147 * permit this function to be invoked without holding the root rcu_node
148 * structure's ->lock, but of course results can be subject to change.
150 static int rcu_gp_in_progress(struct rcu_state
*rsp
)
152 return ACCESS_ONCE(rsp
->completed
) != ACCESS_ONCE(rsp
->gpnum
);
156 * Note a quiescent state. Because we do not need to know
157 * how many quiescent states passed, just if there was at least
158 * one since the start of the grace period, this just sets a flag.
160 void rcu_sched_qs(int cpu
)
162 struct rcu_data
*rdp
= &per_cpu(rcu_sched_data
, cpu
);
164 rdp
->passed_quiesc_completed
= rdp
->gpnum
- 1;
166 rdp
->passed_quiesc
= 1;
169 void rcu_bh_qs(int cpu
)
171 struct rcu_data
*rdp
= &per_cpu(rcu_bh_data
, cpu
);
173 rdp
->passed_quiesc_completed
= rdp
->gpnum
- 1;
175 rdp
->passed_quiesc
= 1;
179 * Note a context switch. This is a quiescent state for RCU-sched,
180 * and requires special handling for preemptible RCU.
182 void rcu_note_context_switch(int cpu
)
185 rcu_preempt_note_context_switch(cpu
);
187 EXPORT_SYMBOL_GPL(rcu_note_context_switch
);
190 DEFINE_PER_CPU(struct rcu_dynticks
, rcu_dynticks
) = {
191 .dynticks_nesting
= 1,
192 .dynticks
= ATOMIC_INIT(1),
194 #endif /* #ifdef CONFIG_NO_HZ */
196 static int blimit
= 10; /* Maximum callbacks per softirq. */
197 static int qhimark
= 10000; /* If this many pending, ignore blimit. */
198 static int qlowmark
= 100; /* Once only this many pending, use blimit. */
200 module_param(blimit
, int, 0);
201 module_param(qhimark
, int, 0);
202 module_param(qlowmark
, int, 0);
204 int rcu_cpu_stall_suppress __read_mostly
;
205 module_param(rcu_cpu_stall_suppress
, int, 0644);
207 static void force_quiescent_state(struct rcu_state
*rsp
, int relaxed
);
208 static int rcu_pending(int cpu
);
211 * Return the number of RCU-sched batches processed thus far for debug & stats.
213 long rcu_batches_completed_sched(void)
215 return rcu_sched_state
.completed
;
217 EXPORT_SYMBOL_GPL(rcu_batches_completed_sched
);
220 * Return the number of RCU BH batches processed thus far for debug & stats.
222 long rcu_batches_completed_bh(void)
224 return rcu_bh_state
.completed
;
226 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh
);
229 * Force a quiescent state for RCU BH.
231 void rcu_bh_force_quiescent_state(void)
233 force_quiescent_state(&rcu_bh_state
, 0);
235 EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state
);
238 * Record the number of times rcutorture tests have been initiated and
239 * terminated. This information allows the debugfs tracing stats to be
240 * correlated to the rcutorture messages, even when the rcutorture module
241 * is being repeatedly loaded and unloaded. In other words, we cannot
242 * store this state in rcutorture itself.
244 void rcutorture_record_test_transition(void)
246 rcutorture_testseq
++;
247 rcutorture_vernum
= 0;
249 EXPORT_SYMBOL_GPL(rcutorture_record_test_transition
);
252 * Record the number of writer passes through the current rcutorture test.
253 * This is also used to correlate debugfs tracing stats with the rcutorture
256 void rcutorture_record_progress(unsigned long vernum
)
260 EXPORT_SYMBOL_GPL(rcutorture_record_progress
);
263 * Force a quiescent state for RCU-sched.
265 void rcu_sched_force_quiescent_state(void)
267 force_quiescent_state(&rcu_sched_state
, 0);
269 EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state
);
272 * Does the CPU have callbacks ready to be invoked?
275 cpu_has_callbacks_ready_to_invoke(struct rcu_data
*rdp
)
277 return &rdp
->nxtlist
!= rdp
->nxttail
[RCU_DONE_TAIL
];
281 * Does the current CPU require a yet-as-unscheduled grace period?
284 cpu_needs_another_gp(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
286 return *rdp
->nxttail
[RCU_DONE_TAIL
] && !rcu_gp_in_progress(rsp
);
290 * Return the root node of the specified rcu_state structure.
292 static struct rcu_node
*rcu_get_root(struct rcu_state
*rsp
)
294 return &rsp
->node
[0];
300 * If the specified CPU is offline, tell the caller that it is in
301 * a quiescent state. Otherwise, whack it with a reschedule IPI.
302 * Grace periods can end up waiting on an offline CPU when that
303 * CPU is in the process of coming online -- it will be added to the
304 * rcu_node bitmasks before it actually makes it online. The same thing
305 * can happen while a CPU is in the process of coming online. Because this
306 * race is quite rare, we check for it after detecting that the grace
307 * period has been delayed rather than checking each and every CPU
308 * each and every time we start a new grace period.
310 static int rcu_implicit_offline_qs(struct rcu_data
*rdp
)
313 * If the CPU is offline, it is in a quiescent state. We can
314 * trust its state not to change because interrupts are disabled.
316 if (cpu_is_offline(rdp
->cpu
)) {
321 /* If preemptible RCU, no point in sending reschedule IPI. */
322 if (rdp
->preemptible
)
325 /* The CPU is online, so send it a reschedule IPI. */
326 if (rdp
->cpu
!= smp_processor_id())
327 smp_send_reschedule(rdp
->cpu
);
334 #endif /* #ifdef CONFIG_SMP */
339 * rcu_enter_nohz - inform RCU that current CPU is entering nohz
341 * Enter nohz mode, in other words, -leave- the mode in which RCU
342 * read-side critical sections can occur. (Though RCU read-side
343 * critical sections can occur in irq handlers in nohz mode, a possibility
344 * handled by rcu_irq_enter() and rcu_irq_exit()).
346 void rcu_enter_nohz(void)
349 struct rcu_dynticks
*rdtp
;
351 local_irq_save(flags
);
352 rdtp
= &__get_cpu_var(rcu_dynticks
);
353 if (--rdtp
->dynticks_nesting
) {
354 local_irq_restore(flags
);
357 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
358 smp_mb__before_atomic_inc(); /* See above. */
359 atomic_inc(&rdtp
->dynticks
);
360 smp_mb__after_atomic_inc(); /* Force ordering with next sojourn. */
361 WARN_ON_ONCE(atomic_read(&rdtp
->dynticks
) & 0x1);
362 local_irq_restore(flags
);
364 /* If the interrupt queued a callback, get out of dyntick mode. */
366 (__get_cpu_var(rcu_sched_data
).nxtlist
||
367 __get_cpu_var(rcu_bh_data
).nxtlist
||
368 rcu_preempt_needs_cpu(smp_processor_id())))
373 * rcu_exit_nohz - inform RCU that current CPU is leaving nohz
375 * Exit nohz mode, in other words, -enter- the mode in which RCU
376 * read-side critical sections normally occur.
378 void rcu_exit_nohz(void)
381 struct rcu_dynticks
*rdtp
;
383 local_irq_save(flags
);
384 rdtp
= &__get_cpu_var(rcu_dynticks
);
385 if (rdtp
->dynticks_nesting
++) {
386 local_irq_restore(flags
);
389 smp_mb__before_atomic_inc(); /* Force ordering w/previous sojourn. */
390 atomic_inc(&rdtp
->dynticks
);
391 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
392 smp_mb__after_atomic_inc(); /* See above. */
393 WARN_ON_ONCE(!(atomic_read(&rdtp
->dynticks
) & 0x1));
394 local_irq_restore(flags
);
398 * rcu_nmi_enter - inform RCU of entry to NMI context
400 * If the CPU was idle with dynamic ticks active, and there is no
401 * irq handler running, this updates rdtp->dynticks_nmi to let the
402 * RCU grace-period handling know that the CPU is active.
404 void rcu_nmi_enter(void)
406 struct rcu_dynticks
*rdtp
= &__get_cpu_var(rcu_dynticks
);
408 if (rdtp
->dynticks_nmi_nesting
== 0 &&
409 (atomic_read(&rdtp
->dynticks
) & 0x1))
411 rdtp
->dynticks_nmi_nesting
++;
412 smp_mb__before_atomic_inc(); /* Force delay from prior write. */
413 atomic_inc(&rdtp
->dynticks
);
414 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
415 smp_mb__after_atomic_inc(); /* See above. */
416 WARN_ON_ONCE(!(atomic_read(&rdtp
->dynticks
) & 0x1));
420 * rcu_nmi_exit - inform RCU of exit from NMI context
422 * If the CPU was idle with dynamic ticks active, and there is no
423 * irq handler running, this updates rdtp->dynticks_nmi to let the
424 * RCU grace-period handling know that the CPU is no longer active.
426 void rcu_nmi_exit(void)
428 struct rcu_dynticks
*rdtp
= &__get_cpu_var(rcu_dynticks
);
430 if (rdtp
->dynticks_nmi_nesting
== 0 ||
431 --rdtp
->dynticks_nmi_nesting
!= 0)
433 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
434 smp_mb__before_atomic_inc(); /* See above. */
435 atomic_inc(&rdtp
->dynticks
);
436 smp_mb__after_atomic_inc(); /* Force delay to next write. */
437 WARN_ON_ONCE(atomic_read(&rdtp
->dynticks
) & 0x1);
441 * rcu_irq_enter - inform RCU of entry to hard irq context
443 * If the CPU was idle with dynamic ticks active, this updates the
444 * rdtp->dynticks to let the RCU handling know that the CPU is active.
446 void rcu_irq_enter(void)
452 * rcu_irq_exit - inform RCU of exit from hard irq context
454 * If the CPU was idle with dynamic ticks active, update the rdp->dynticks
455 * to put let the RCU handling be aware that the CPU is going back to idle
458 void rcu_irq_exit(void)
466 * Snapshot the specified CPU's dynticks counter so that we can later
467 * credit them with an implicit quiescent state. Return 1 if this CPU
468 * is in dynticks idle mode, which is an extended quiescent state.
470 static int dyntick_save_progress_counter(struct rcu_data
*rdp
)
472 rdp
->dynticks_snap
= atomic_add_return(0, &rdp
->dynticks
->dynticks
);
477 * Return true if the specified CPU has passed through a quiescent
478 * state by virtue of being in or having passed through an dynticks
479 * idle state since the last call to dyntick_save_progress_counter()
482 static int rcu_implicit_dynticks_qs(struct rcu_data
*rdp
)
487 curr
= (unsigned long)atomic_add_return(0, &rdp
->dynticks
->dynticks
);
488 snap
= (unsigned long)rdp
->dynticks_snap
;
491 * If the CPU passed through or entered a dynticks idle phase with
492 * no active irq/NMI handlers, then we can safely pretend that the CPU
493 * already acknowledged the request to pass through a quiescent
494 * state. Either way, that CPU cannot possibly be in an RCU
495 * read-side critical section that started before the beginning
496 * of the current RCU grace period.
498 if ((curr
& 0x1) == 0 || ULONG_CMP_GE(curr
, snap
+ 2)) {
503 /* Go check for the CPU being offline. */
504 return rcu_implicit_offline_qs(rdp
);
507 #endif /* #ifdef CONFIG_SMP */
509 #else /* #ifdef CONFIG_NO_HZ */
513 static int dyntick_save_progress_counter(struct rcu_data
*rdp
)
518 static int rcu_implicit_dynticks_qs(struct rcu_data
*rdp
)
520 return rcu_implicit_offline_qs(rdp
);
523 #endif /* #ifdef CONFIG_SMP */
525 #endif /* #else #ifdef CONFIG_NO_HZ */
527 int rcu_cpu_stall_suppress __read_mostly
;
529 static void record_gp_stall_check_time(struct rcu_state
*rsp
)
531 rsp
->gp_start
= jiffies
;
532 rsp
->jiffies_stall
= jiffies
+ RCU_SECONDS_TILL_STALL_CHECK
;
535 static void print_other_cpu_stall(struct rcu_state
*rsp
)
540 struct rcu_node
*rnp
= rcu_get_root(rsp
);
542 /* Only let one CPU complain about others per time interval. */
544 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
545 delta
= jiffies
- rsp
->jiffies_stall
;
546 if (delta
< RCU_STALL_RAT_DELAY
|| !rcu_gp_in_progress(rsp
)) {
547 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
550 rsp
->jiffies_stall
= jiffies
+ RCU_SECONDS_TILL_STALL_RECHECK
;
553 * Now rat on any tasks that got kicked up to the root rcu_node
554 * due to CPU offlining.
556 rcu_print_task_stall(rnp
);
557 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
560 * OK, time to rat on our buddy...
561 * See Documentation/RCU/stallwarn.txt for info on how to debug
562 * RCU CPU stall warnings.
564 printk(KERN_ERR
"INFO: %s detected stalls on CPUs/tasks: {",
566 rcu_for_each_leaf_node(rsp
, rnp
) {
567 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
568 rcu_print_task_stall(rnp
);
569 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
570 if (rnp
->qsmask
== 0)
572 for (cpu
= 0; cpu
<= rnp
->grphi
- rnp
->grplo
; cpu
++)
573 if (rnp
->qsmask
& (1UL << cpu
))
574 printk(" %d", rnp
->grplo
+ cpu
);
576 printk("} (detected by %d, t=%ld jiffies)\n",
577 smp_processor_id(), (long)(jiffies
- rsp
->gp_start
));
578 trigger_all_cpu_backtrace();
580 /* If so configured, complain about tasks blocking the grace period. */
582 rcu_print_detail_task_stall(rsp
);
584 force_quiescent_state(rsp
, 0); /* Kick them all. */
587 static void print_cpu_stall(struct rcu_state
*rsp
)
590 struct rcu_node
*rnp
= rcu_get_root(rsp
);
593 * OK, time to rat on ourselves...
594 * See Documentation/RCU/stallwarn.txt for info on how to debug
595 * RCU CPU stall warnings.
597 printk(KERN_ERR
"INFO: %s detected stall on CPU %d (t=%lu jiffies)\n",
598 rsp
->name
, smp_processor_id(), jiffies
- rsp
->gp_start
);
599 trigger_all_cpu_backtrace();
601 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
602 if (ULONG_CMP_GE(jiffies
, rsp
->jiffies_stall
))
604 jiffies
+ RCU_SECONDS_TILL_STALL_RECHECK
;
605 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
607 set_need_resched(); /* kick ourselves to get things going. */
610 static void check_cpu_stall(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
614 struct rcu_node
*rnp
;
616 if (rcu_cpu_stall_suppress
)
618 j
= ACCESS_ONCE(jiffies
);
619 js
= ACCESS_ONCE(rsp
->jiffies_stall
);
621 if ((ACCESS_ONCE(rnp
->qsmask
) & rdp
->grpmask
) && ULONG_CMP_GE(j
, js
)) {
623 /* We haven't checked in, so go dump stack. */
624 print_cpu_stall(rsp
);
626 } else if (rcu_gp_in_progress(rsp
) &&
627 ULONG_CMP_GE(j
, js
+ RCU_STALL_RAT_DELAY
)) {
629 /* They had a few time units to dump stack, so complain. */
630 print_other_cpu_stall(rsp
);
634 static int rcu_panic(struct notifier_block
*this, unsigned long ev
, void *ptr
)
636 rcu_cpu_stall_suppress
= 1;
641 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
643 * Set the stall-warning timeout way off into the future, thus preventing
644 * any RCU CPU stall-warning messages from appearing in the current set of
647 * The caller must disable hard irqs.
649 void rcu_cpu_stall_reset(void)
651 rcu_sched_state
.jiffies_stall
= jiffies
+ ULONG_MAX
/ 2;
652 rcu_bh_state
.jiffies_stall
= jiffies
+ ULONG_MAX
/ 2;
653 rcu_preempt_stall_reset();
656 static struct notifier_block rcu_panic_block
= {
657 .notifier_call
= rcu_panic
,
660 static void __init
check_cpu_stall_init(void)
662 atomic_notifier_chain_register(&panic_notifier_list
, &rcu_panic_block
);
666 * Update CPU-local rcu_data state to record the newly noticed grace period.
667 * This is used both when we started the grace period and when we notice
668 * that someone else started the grace period. The caller must hold the
669 * ->lock of the leaf rcu_node structure corresponding to the current CPU,
670 * and must have irqs disabled.
672 static void __note_new_gpnum(struct rcu_state
*rsp
, struct rcu_node
*rnp
, struct rcu_data
*rdp
)
674 if (rdp
->gpnum
!= rnp
->gpnum
) {
676 * If the current grace period is waiting for this CPU,
677 * set up to detect a quiescent state, otherwise don't
678 * go looking for one.
680 rdp
->gpnum
= rnp
->gpnum
;
681 if (rnp
->qsmask
& rdp
->grpmask
) {
683 rdp
->passed_quiesc
= 0;
689 static void note_new_gpnum(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
692 struct rcu_node
*rnp
;
694 local_irq_save(flags
);
696 if (rdp
->gpnum
== ACCESS_ONCE(rnp
->gpnum
) || /* outside lock. */
697 !raw_spin_trylock(&rnp
->lock
)) { /* irqs already off, so later. */
698 local_irq_restore(flags
);
701 __note_new_gpnum(rsp
, rnp
, rdp
);
702 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
706 * Did someone else start a new RCU grace period start since we last
707 * checked? Update local state appropriately if so. Must be called
708 * on the CPU corresponding to rdp.
711 check_for_new_grace_period(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
716 local_irq_save(flags
);
717 if (rdp
->gpnum
!= rsp
->gpnum
) {
718 note_new_gpnum(rsp
, rdp
);
721 local_irq_restore(flags
);
726 * Advance this CPU's callbacks, but only if the current grace period
727 * has ended. This may be called only from the CPU to whom the rdp
728 * belongs. In addition, the corresponding leaf rcu_node structure's
729 * ->lock must be held by the caller, with irqs disabled.
732 __rcu_process_gp_end(struct rcu_state
*rsp
, struct rcu_node
*rnp
, struct rcu_data
*rdp
)
734 /* Did another grace period end? */
735 if (rdp
->completed
!= rnp
->completed
) {
737 /* Advance callbacks. No harm if list empty. */
738 rdp
->nxttail
[RCU_DONE_TAIL
] = rdp
->nxttail
[RCU_WAIT_TAIL
];
739 rdp
->nxttail
[RCU_WAIT_TAIL
] = rdp
->nxttail
[RCU_NEXT_READY_TAIL
];
740 rdp
->nxttail
[RCU_NEXT_READY_TAIL
] = rdp
->nxttail
[RCU_NEXT_TAIL
];
742 /* Remember that we saw this grace-period completion. */
743 rdp
->completed
= rnp
->completed
;
746 * If we were in an extended quiescent state, we may have
747 * missed some grace periods that others CPUs handled on
748 * our behalf. Catch up with this state to avoid noting
749 * spurious new grace periods. If another grace period
750 * has started, then rnp->gpnum will have advanced, so
751 * we will detect this later on.
753 if (ULONG_CMP_LT(rdp
->gpnum
, rdp
->completed
))
754 rdp
->gpnum
= rdp
->completed
;
757 * If RCU does not need a quiescent state from this CPU,
758 * then make sure that this CPU doesn't go looking for one.
760 if ((rnp
->qsmask
& rdp
->grpmask
) == 0)
766 * Advance this CPU's callbacks, but only if the current grace period
767 * has ended. This may be called only from the CPU to whom the rdp
771 rcu_process_gp_end(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
774 struct rcu_node
*rnp
;
776 local_irq_save(flags
);
778 if (rdp
->completed
== ACCESS_ONCE(rnp
->completed
) || /* outside lock. */
779 !raw_spin_trylock(&rnp
->lock
)) { /* irqs already off, so later. */
780 local_irq_restore(flags
);
783 __rcu_process_gp_end(rsp
, rnp
, rdp
);
784 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
788 * Do per-CPU grace-period initialization for running CPU. The caller
789 * must hold the lock of the leaf rcu_node structure corresponding to
793 rcu_start_gp_per_cpu(struct rcu_state
*rsp
, struct rcu_node
*rnp
, struct rcu_data
*rdp
)
795 /* Prior grace period ended, so advance callbacks for current CPU. */
796 __rcu_process_gp_end(rsp
, rnp
, rdp
);
799 * Because this CPU just now started the new grace period, we know
800 * that all of its callbacks will be covered by this upcoming grace
801 * period, even the ones that were registered arbitrarily recently.
802 * Therefore, advance all outstanding callbacks to RCU_WAIT_TAIL.
804 * Other CPUs cannot be sure exactly when the grace period started.
805 * Therefore, their recently registered callbacks must pass through
806 * an additional RCU_NEXT_READY stage, so that they will be handled
807 * by the next RCU grace period.
809 rdp
->nxttail
[RCU_NEXT_READY_TAIL
] = rdp
->nxttail
[RCU_NEXT_TAIL
];
810 rdp
->nxttail
[RCU_WAIT_TAIL
] = rdp
->nxttail
[RCU_NEXT_TAIL
];
812 /* Set state so that this CPU will detect the next quiescent state. */
813 __note_new_gpnum(rsp
, rnp
, rdp
);
817 * Start a new RCU grace period if warranted, re-initializing the hierarchy
818 * in preparation for detecting the next grace period. The caller must hold
819 * the root node's ->lock, which is released before return. Hard irqs must
823 rcu_start_gp(struct rcu_state
*rsp
, unsigned long flags
)
824 __releases(rcu_get_root(rsp
)->lock
)
826 struct rcu_data
*rdp
= this_cpu_ptr(rsp
->rda
);
827 struct rcu_node
*rnp
= rcu_get_root(rsp
);
829 if (!cpu_needs_another_gp(rsp
, rdp
) || rsp
->fqs_active
) {
830 if (cpu_needs_another_gp(rsp
, rdp
))
831 rsp
->fqs_need_gp
= 1;
832 if (rnp
->completed
== rsp
->completed
) {
833 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
836 raw_spin_unlock(&rnp
->lock
); /* irqs remain disabled. */
839 * Propagate new ->completed value to rcu_node structures
840 * so that other CPUs don't have to wait until the start
841 * of the next grace period to process their callbacks.
843 rcu_for_each_node_breadth_first(rsp
, rnp
) {
844 raw_spin_lock(&rnp
->lock
); /* irqs already disabled. */
845 rnp
->completed
= rsp
->completed
;
846 raw_spin_unlock(&rnp
->lock
); /* irqs remain disabled. */
848 local_irq_restore(flags
);
852 /* Advance to a new grace period and initialize state. */
854 WARN_ON_ONCE(rsp
->signaled
== RCU_GP_INIT
);
855 rsp
->signaled
= RCU_GP_INIT
; /* Hold off force_quiescent_state. */
856 rsp
->jiffies_force_qs
= jiffies
+ RCU_JIFFIES_TILL_FORCE_QS
;
857 record_gp_stall_check_time(rsp
);
859 /* Special-case the common single-level case. */
860 if (NUM_RCU_NODES
== 1) {
861 rcu_preempt_check_blocked_tasks(rnp
);
862 rnp
->qsmask
= rnp
->qsmaskinit
;
863 rnp
->gpnum
= rsp
->gpnum
;
864 rnp
->completed
= rsp
->completed
;
865 rsp
->signaled
= RCU_SIGNAL_INIT
; /* force_quiescent_state OK. */
866 rcu_start_gp_per_cpu(rsp
, rnp
, rdp
);
867 rcu_preempt_boost_start_gp(rnp
);
868 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
872 raw_spin_unlock(&rnp
->lock
); /* leave irqs disabled. */
875 /* Exclude any concurrent CPU-hotplug operations. */
876 raw_spin_lock(&rsp
->onofflock
); /* irqs already disabled. */
879 * Set the quiescent-state-needed bits in all the rcu_node
880 * structures for all currently online CPUs in breadth-first
881 * order, starting from the root rcu_node structure. This
882 * operation relies on the layout of the hierarchy within the
883 * rsp->node[] array. Note that other CPUs will access only
884 * the leaves of the hierarchy, which still indicate that no
885 * grace period is in progress, at least until the corresponding
886 * leaf node has been initialized. In addition, we have excluded
887 * CPU-hotplug operations.
889 * Note that the grace period cannot complete until we finish
890 * the initialization process, as there will be at least one
891 * qsmask bit set in the root node until that time, namely the
892 * one corresponding to this CPU, due to the fact that we have
895 rcu_for_each_node_breadth_first(rsp
, rnp
) {
896 raw_spin_lock(&rnp
->lock
); /* irqs already disabled. */
897 rcu_preempt_check_blocked_tasks(rnp
);
898 rnp
->qsmask
= rnp
->qsmaskinit
;
899 rnp
->gpnum
= rsp
->gpnum
;
900 rnp
->completed
= rsp
->completed
;
901 if (rnp
== rdp
->mynode
)
902 rcu_start_gp_per_cpu(rsp
, rnp
, rdp
);
903 rcu_preempt_boost_start_gp(rnp
);
904 raw_spin_unlock(&rnp
->lock
); /* irqs remain disabled. */
907 rnp
= rcu_get_root(rsp
);
908 raw_spin_lock(&rnp
->lock
); /* irqs already disabled. */
909 rsp
->signaled
= RCU_SIGNAL_INIT
; /* force_quiescent_state now OK. */
910 raw_spin_unlock(&rnp
->lock
); /* irqs remain disabled. */
911 raw_spin_unlock_irqrestore(&rsp
->onofflock
, flags
);
915 * Report a full set of quiescent states to the specified rcu_state
916 * data structure. This involves cleaning up after the prior grace
917 * period and letting rcu_start_gp() start up the next grace period
918 * if one is needed. Note that the caller must hold rnp->lock, as
919 * required by rcu_start_gp(), which will release it.
921 static void rcu_report_qs_rsp(struct rcu_state
*rsp
, unsigned long flags
)
922 __releases(rcu_get_root(rsp
)->lock
)
924 unsigned long gp_duration
;
926 WARN_ON_ONCE(!rcu_gp_in_progress(rsp
));
929 * Ensure that all grace-period and pre-grace-period activity
930 * is seen before the assignment to rsp->completed.
932 smp_mb(); /* See above block comment. */
933 gp_duration
= jiffies
- rsp
->gp_start
;
934 if (gp_duration
> rsp
->gp_max
)
935 rsp
->gp_max
= gp_duration
;
936 rsp
->completed
= rsp
->gpnum
;
937 rsp
->signaled
= RCU_GP_IDLE
;
938 rcu_start_gp(rsp
, flags
); /* releases root node's rnp->lock. */
942 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
943 * Allows quiescent states for a group of CPUs to be reported at one go
944 * to the specified rcu_node structure, though all the CPUs in the group
945 * must be represented by the same rcu_node structure (which need not be
946 * a leaf rcu_node structure, though it often will be). That structure's
947 * lock must be held upon entry, and it is released before return.
950 rcu_report_qs_rnp(unsigned long mask
, struct rcu_state
*rsp
,
951 struct rcu_node
*rnp
, unsigned long flags
)
952 __releases(rnp
->lock
)
954 struct rcu_node
*rnp_c
;
956 /* Walk up the rcu_node hierarchy. */
958 if (!(rnp
->qsmask
& mask
)) {
960 /* Our bit has already been cleared, so done. */
961 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
964 rnp
->qsmask
&= ~mask
;
965 if (rnp
->qsmask
!= 0 || rcu_preempt_blocked_readers_cgp(rnp
)) {
967 /* Other bits still set at this level, so done. */
968 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
972 if (rnp
->parent
== NULL
) {
974 /* No more levels. Exit loop holding root lock. */
978 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
981 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
982 WARN_ON_ONCE(rnp_c
->qsmask
);
986 * Get here if we are the last CPU to pass through a quiescent
987 * state for this grace period. Invoke rcu_report_qs_rsp()
988 * to clean up and start the next grace period if one is needed.
990 rcu_report_qs_rsp(rsp
, flags
); /* releases rnp->lock. */
994 * Record a quiescent state for the specified CPU to that CPU's rcu_data
995 * structure. This must be either called from the specified CPU, or
996 * called when the specified CPU is known to be offline (and when it is
997 * also known that no other CPU is concurrently trying to help the offline
998 * CPU). The lastcomp argument is used to make sure we are still in the
999 * grace period of interest. We don't want to end the current grace period
1000 * based on quiescent states detected in an earlier grace period!
1003 rcu_report_qs_rdp(int cpu
, struct rcu_state
*rsp
, struct rcu_data
*rdp
, long lastcomp
)
1005 unsigned long flags
;
1007 struct rcu_node
*rnp
;
1010 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
1011 if (lastcomp
!= rnp
->completed
) {
1014 * Someone beat us to it for this grace period, so leave.
1015 * The race with GP start is resolved by the fact that we
1016 * hold the leaf rcu_node lock, so that the per-CPU bits
1017 * cannot yet be initialized -- so we would simply find our
1018 * CPU's bit already cleared in rcu_report_qs_rnp() if this
1021 rdp
->passed_quiesc
= 0; /* try again later! */
1022 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
1025 mask
= rdp
->grpmask
;
1026 if ((rnp
->qsmask
& mask
) == 0) {
1027 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
1029 rdp
->qs_pending
= 0;
1032 * This GP can't end until cpu checks in, so all of our
1033 * callbacks can be processed during the next GP.
1035 rdp
->nxttail
[RCU_NEXT_READY_TAIL
] = rdp
->nxttail
[RCU_NEXT_TAIL
];
1037 rcu_report_qs_rnp(mask
, rsp
, rnp
, flags
); /* rlses rnp->lock */
1042 * Check to see if there is a new grace period of which this CPU
1043 * is not yet aware, and if so, set up local rcu_data state for it.
1044 * Otherwise, see if this CPU has just passed through its first
1045 * quiescent state for this grace period, and record that fact if so.
1048 rcu_check_quiescent_state(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
1050 /* If there is now a new grace period, record and return. */
1051 if (check_for_new_grace_period(rsp
, rdp
))
1055 * Does this CPU still need to do its part for current grace period?
1056 * If no, return and let the other CPUs do their part as well.
1058 if (!rdp
->qs_pending
)
1062 * Was there a quiescent state since the beginning of the grace
1063 * period? If no, then exit and wait for the next call.
1065 if (!rdp
->passed_quiesc
)
1069 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
1072 rcu_report_qs_rdp(rdp
->cpu
, rsp
, rdp
, rdp
->passed_quiesc_completed
);
1075 #ifdef CONFIG_HOTPLUG_CPU
1078 * Move a dying CPU's RCU callbacks to online CPU's callback list.
1079 * Synchronization is not required because this function executes
1080 * in stop_machine() context.
1082 static void rcu_send_cbs_to_online(struct rcu_state
*rsp
)
1085 /* current DYING CPU is cleared in the cpu_online_mask */
1086 int receive_cpu
= cpumask_any(cpu_online_mask
);
1087 struct rcu_data
*rdp
= this_cpu_ptr(rsp
->rda
);
1088 struct rcu_data
*receive_rdp
= per_cpu_ptr(rsp
->rda
, receive_cpu
);
1090 if (rdp
->nxtlist
== NULL
)
1091 return; /* irqs disabled, so comparison is stable. */
1093 *receive_rdp
->nxttail
[RCU_NEXT_TAIL
] = rdp
->nxtlist
;
1094 receive_rdp
->nxttail
[RCU_NEXT_TAIL
] = rdp
->nxttail
[RCU_NEXT_TAIL
];
1095 receive_rdp
->qlen
+= rdp
->qlen
;
1096 receive_rdp
->n_cbs_adopted
+= rdp
->qlen
;
1097 rdp
->n_cbs_orphaned
+= rdp
->qlen
;
1099 rdp
->nxtlist
= NULL
;
1100 for (i
= 0; i
< RCU_NEXT_SIZE
; i
++)
1101 rdp
->nxttail
[i
] = &rdp
->nxtlist
;
1106 * Remove the outgoing CPU from the bitmasks in the rcu_node hierarchy
1107 * and move all callbacks from the outgoing CPU to the current one.
1108 * There can only be one CPU hotplug operation at a time, so no other
1109 * CPU can be attempting to update rcu_cpu_kthread_task.
1111 static void __rcu_offline_cpu(int cpu
, struct rcu_state
*rsp
)
1113 unsigned long flags
;
1115 int need_report
= 0;
1116 struct rcu_data
*rdp
= per_cpu_ptr(rsp
->rda
, cpu
);
1117 struct rcu_node
*rnp
;
1119 rcu_stop_cpu_kthread(cpu
);
1121 /* Exclude any attempts to start a new grace period. */
1122 raw_spin_lock_irqsave(&rsp
->onofflock
, flags
);
1124 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
1125 rnp
= rdp
->mynode
; /* this is the outgoing CPU's rnp. */
1126 mask
= rdp
->grpmask
; /* rnp->grplo is constant. */
1128 raw_spin_lock(&rnp
->lock
); /* irqs already disabled. */
1129 rnp
->qsmaskinit
&= ~mask
;
1130 if (rnp
->qsmaskinit
!= 0) {
1131 if (rnp
!= rdp
->mynode
)
1132 raw_spin_unlock(&rnp
->lock
); /* irqs remain disabled. */
1135 if (rnp
== rdp
->mynode
)
1136 need_report
= rcu_preempt_offline_tasks(rsp
, rnp
, rdp
);
1138 raw_spin_unlock(&rnp
->lock
); /* irqs remain disabled. */
1139 mask
= rnp
->grpmask
;
1141 } while (rnp
!= NULL
);
1144 * We still hold the leaf rcu_node structure lock here, and
1145 * irqs are still disabled. The reason for this subterfuge is
1146 * because invoking rcu_report_unblock_qs_rnp() with ->onofflock
1147 * held leads to deadlock.
1149 raw_spin_unlock(&rsp
->onofflock
); /* irqs remain disabled. */
1151 if (need_report
& RCU_OFL_TASKS_NORM_GP
)
1152 rcu_report_unblock_qs_rnp(rnp
, flags
);
1154 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
1155 if (need_report
& RCU_OFL_TASKS_EXP_GP
)
1156 rcu_report_exp_rnp(rsp
, rnp
);
1157 rcu_node_kthread_setaffinity(rnp
, -1);
1161 * Remove the specified CPU from the RCU hierarchy and move any pending
1162 * callbacks that it might have to the current CPU. This code assumes
1163 * that at least one CPU in the system will remain running at all times.
1164 * Any attempt to offline -all- CPUs is likely to strand RCU callbacks.
1166 static void rcu_offline_cpu(int cpu
)
1168 __rcu_offline_cpu(cpu
, &rcu_sched_state
);
1169 __rcu_offline_cpu(cpu
, &rcu_bh_state
);
1170 rcu_preempt_offline_cpu(cpu
);
1173 #else /* #ifdef CONFIG_HOTPLUG_CPU */
1175 static void rcu_send_cbs_to_online(struct rcu_state
*rsp
)
1179 static void rcu_offline_cpu(int cpu
)
1183 #endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
1186 * Invoke any RCU callbacks that have made it to the end of their grace
1187 * period. Thottle as specified by rdp->blimit.
1189 static void rcu_do_batch(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
1191 unsigned long flags
;
1192 struct rcu_head
*next
, *list
, **tail
;
1195 /* If no callbacks are ready, just return.*/
1196 if (!cpu_has_callbacks_ready_to_invoke(rdp
))
1200 * Extract the list of ready callbacks, disabling to prevent
1201 * races with call_rcu() from interrupt handlers.
1203 local_irq_save(flags
);
1204 list
= rdp
->nxtlist
;
1205 rdp
->nxtlist
= *rdp
->nxttail
[RCU_DONE_TAIL
];
1206 *rdp
->nxttail
[RCU_DONE_TAIL
] = NULL
;
1207 tail
= rdp
->nxttail
[RCU_DONE_TAIL
];
1208 for (count
= RCU_NEXT_SIZE
- 1; count
>= 0; count
--)
1209 if (rdp
->nxttail
[count
] == rdp
->nxttail
[RCU_DONE_TAIL
])
1210 rdp
->nxttail
[count
] = &rdp
->nxtlist
;
1211 local_irq_restore(flags
);
1213 /* Invoke callbacks. */
1218 debug_rcu_head_unqueue(list
);
1219 __rcu_reclaim(list
);
1221 if (++count
>= rdp
->blimit
)
1225 local_irq_save(flags
);
1227 /* Update count, and requeue any remaining callbacks. */
1229 rdp
->n_cbs_invoked
+= count
;
1231 *tail
= rdp
->nxtlist
;
1232 rdp
->nxtlist
= list
;
1233 for (count
= 0; count
< RCU_NEXT_SIZE
; count
++)
1234 if (&rdp
->nxtlist
== rdp
->nxttail
[count
])
1235 rdp
->nxttail
[count
] = tail
;
1240 /* Reinstate batch limit if we have worked down the excess. */
1241 if (rdp
->blimit
== LONG_MAX
&& rdp
->qlen
<= qlowmark
)
1242 rdp
->blimit
= blimit
;
1244 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
1245 if (rdp
->qlen
== 0 && rdp
->qlen_last_fqs_check
!= 0) {
1246 rdp
->qlen_last_fqs_check
= 0;
1247 rdp
->n_force_qs_snap
= rsp
->n_force_qs
;
1248 } else if (rdp
->qlen
< rdp
->qlen_last_fqs_check
- qhimark
)
1249 rdp
->qlen_last_fqs_check
= rdp
->qlen
;
1251 local_irq_restore(flags
);
1253 /* Re-raise the RCU softirq if there are callbacks remaining. */
1254 if (cpu_has_callbacks_ready_to_invoke(rdp
))
1259 * Check to see if this CPU is in a non-context-switch quiescent state
1260 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
1261 * Also schedule the RCU softirq handler.
1263 * This function must be called with hardirqs disabled. It is normally
1264 * invoked from the scheduling-clock interrupt. If rcu_pending returns
1265 * false, there is no point in invoking rcu_check_callbacks().
1267 void rcu_check_callbacks(int cpu
, int user
)
1270 (idle_cpu(cpu
) && rcu_scheduler_active
&&
1271 !in_softirq() && hardirq_count() <= (1 << HARDIRQ_SHIFT
))) {
1274 * Get here if this CPU took its interrupt from user
1275 * mode or from the idle loop, and if this is not a
1276 * nested interrupt. In this case, the CPU is in
1277 * a quiescent state, so note it.
1279 * No memory barrier is required here because both
1280 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
1281 * variables that other CPUs neither access nor modify,
1282 * at least not while the corresponding CPU is online.
1288 } else if (!in_softirq()) {
1291 * Get here if this CPU did not take its interrupt from
1292 * softirq, in other words, if it is not interrupting
1293 * a rcu_bh read-side critical section. This is an _bh
1294 * critical section, so note it.
1299 rcu_preempt_check_callbacks(cpu
);
1300 if (rcu_pending(cpu
))
1307 * Scan the leaf rcu_node structures, processing dyntick state for any that
1308 * have not yet encountered a quiescent state, using the function specified.
1309 * Also initiate boosting for any threads blocked on the root rcu_node.
1311 * The caller must have suppressed start of new grace periods.
1313 static void force_qs_rnp(struct rcu_state
*rsp
, int (*f
)(struct rcu_data
*))
1317 unsigned long flags
;
1319 struct rcu_node
*rnp
;
1321 rcu_for_each_leaf_node(rsp
, rnp
) {
1323 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
1324 if (!rcu_gp_in_progress(rsp
)) {
1325 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
1328 if (rnp
->qsmask
== 0) {
1329 rcu_initiate_boost(rnp
, flags
); /* releases rnp->lock */
1334 for (; cpu
<= rnp
->grphi
; cpu
++, bit
<<= 1) {
1335 if ((rnp
->qsmask
& bit
) != 0 &&
1336 f(per_cpu_ptr(rsp
->rda
, cpu
)))
1341 /* rcu_report_qs_rnp() releases rnp->lock. */
1342 rcu_report_qs_rnp(mask
, rsp
, rnp
, flags
);
1345 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
1347 rnp
= rcu_get_root(rsp
);
1348 if (rnp
->qsmask
== 0) {
1349 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
1350 rcu_initiate_boost(rnp
, flags
); /* releases rnp->lock. */
1355 * Force quiescent states on reluctant CPUs, and also detect which
1356 * CPUs are in dyntick-idle mode.
1358 static void force_quiescent_state(struct rcu_state
*rsp
, int relaxed
)
1360 unsigned long flags
;
1361 struct rcu_node
*rnp
= rcu_get_root(rsp
);
1363 if (!rcu_gp_in_progress(rsp
))
1364 return; /* No grace period in progress, nothing to force. */
1365 if (!raw_spin_trylock_irqsave(&rsp
->fqslock
, flags
)) {
1366 rsp
->n_force_qs_lh
++; /* Inexact, can lose counts. Tough! */
1367 return; /* Someone else is already on the job. */
1369 if (relaxed
&& ULONG_CMP_GE(rsp
->jiffies_force_qs
, jiffies
))
1370 goto unlock_fqs_ret
; /* no emergency and done recently. */
1372 raw_spin_lock(&rnp
->lock
); /* irqs already disabled */
1373 rsp
->jiffies_force_qs
= jiffies
+ RCU_JIFFIES_TILL_FORCE_QS
;
1374 if(!rcu_gp_in_progress(rsp
)) {
1375 rsp
->n_force_qs_ngp
++;
1376 raw_spin_unlock(&rnp
->lock
); /* irqs remain disabled */
1377 goto unlock_fqs_ret
; /* no GP in progress, time updated. */
1379 rsp
->fqs_active
= 1;
1380 switch (rsp
->signaled
) {
1384 break; /* grace period idle or initializing, ignore. */
1386 case RCU_SAVE_DYNTICK
:
1387 if (RCU_SIGNAL_INIT
!= RCU_SAVE_DYNTICK
)
1388 break; /* So gcc recognizes the dead code. */
1390 raw_spin_unlock(&rnp
->lock
); /* irqs remain disabled */
1392 /* Record dyntick-idle state. */
1393 force_qs_rnp(rsp
, dyntick_save_progress_counter
);
1394 raw_spin_lock(&rnp
->lock
); /* irqs already disabled */
1395 if (rcu_gp_in_progress(rsp
))
1396 rsp
->signaled
= RCU_FORCE_QS
;
1401 /* Check dyntick-idle state, send IPI to laggarts. */
1402 raw_spin_unlock(&rnp
->lock
); /* irqs remain disabled */
1403 force_qs_rnp(rsp
, rcu_implicit_dynticks_qs
);
1405 /* Leave state in case more forcing is required. */
1407 raw_spin_lock(&rnp
->lock
); /* irqs already disabled */
1410 rsp
->fqs_active
= 0;
1411 if (rsp
->fqs_need_gp
) {
1412 raw_spin_unlock(&rsp
->fqslock
); /* irqs remain disabled */
1413 rsp
->fqs_need_gp
= 0;
1414 rcu_start_gp(rsp
, flags
); /* releases rnp->lock */
1417 raw_spin_unlock(&rnp
->lock
); /* irqs remain disabled */
1419 raw_spin_unlock_irqrestore(&rsp
->fqslock
, flags
);
1422 #else /* #ifdef CONFIG_SMP */
1424 static void force_quiescent_state(struct rcu_state
*rsp
, int relaxed
)
1429 #endif /* #else #ifdef CONFIG_SMP */
1432 * This does the RCU processing work from softirq context for the
1433 * specified rcu_state and rcu_data structures. This may be called
1434 * only from the CPU to whom the rdp belongs.
1437 __rcu_process_callbacks(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
1439 unsigned long flags
;
1441 WARN_ON_ONCE(rdp
->beenonline
== 0);
1444 * If an RCU GP has gone long enough, go check for dyntick
1445 * idle CPUs and, if needed, send resched IPIs.
1447 if (ULONG_CMP_LT(ACCESS_ONCE(rsp
->jiffies_force_qs
), jiffies
))
1448 force_quiescent_state(rsp
, 1);
1451 * Advance callbacks in response to end of earlier grace
1452 * period that some other CPU ended.
1454 rcu_process_gp_end(rsp
, rdp
);
1456 /* Update RCU state based on any recent quiescent states. */
1457 rcu_check_quiescent_state(rsp
, rdp
);
1459 /* Does this CPU require a not-yet-started grace period? */
1460 if (cpu_needs_another_gp(rsp
, rdp
)) {
1461 raw_spin_lock_irqsave(&rcu_get_root(rsp
)->lock
, flags
);
1462 rcu_start_gp(rsp
, flags
); /* releases above lock */
1465 /* If there are callbacks ready, invoke them. */
1466 if (cpu_has_callbacks_ready_to_invoke(rdp
))
1467 invoke_rcu_callbacks(rsp
, rdp
);
1471 * Do softirq processing for the current CPU.
1473 static void rcu_process_callbacks(struct softirq_action
*unused
)
1475 __rcu_process_callbacks(&rcu_sched_state
,
1476 &__get_cpu_var(rcu_sched_data
));
1477 __rcu_process_callbacks(&rcu_bh_state
, &__get_cpu_var(rcu_bh_data
));
1478 rcu_preempt_process_callbacks();
1480 /* If we are last CPU on way to dyntick-idle mode, accelerate it. */
1481 rcu_needs_cpu_flush();
1485 * Wake up the current CPU's kthread. This replaces raise_softirq()
1486 * in earlier versions of RCU. Note that because we are running on
1487 * the current CPU with interrupts disabled, the rcu_cpu_kthread_task
1488 * cannot disappear out from under us.
1490 static void invoke_rcu_callbacks(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
1492 if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active
)))
1494 if (likely(!rsp
->boost
)) {
1495 rcu_do_batch(rsp
, rdp
);
1498 invoke_rcu_callbacks_kthread();
1501 static void invoke_rcu_core(void)
1503 raise_softirq(RCU_SOFTIRQ
);
1507 __call_rcu(struct rcu_head
*head
, void (*func
)(struct rcu_head
*rcu
),
1508 struct rcu_state
*rsp
)
1510 unsigned long flags
;
1511 struct rcu_data
*rdp
;
1513 debug_rcu_head_queue(head
);
1517 smp_mb(); /* Ensure RCU update seen before callback registry. */
1520 * Opportunistically note grace-period endings and beginnings.
1521 * Note that we might see a beginning right after we see an
1522 * end, but never vice versa, since this CPU has to pass through
1523 * a quiescent state betweentimes.
1525 local_irq_save(flags
);
1526 rdp
= this_cpu_ptr(rsp
->rda
);
1528 /* Add the callback to our list. */
1529 *rdp
->nxttail
[RCU_NEXT_TAIL
] = head
;
1530 rdp
->nxttail
[RCU_NEXT_TAIL
] = &head
->next
;
1533 /* If interrupts were disabled, don't dive into RCU core. */
1534 if (irqs_disabled_flags(flags
)) {
1535 local_irq_restore(flags
);
1540 * Force the grace period if too many callbacks or too long waiting.
1541 * Enforce hysteresis, and don't invoke force_quiescent_state()
1542 * if some other CPU has recently done so. Also, don't bother
1543 * invoking force_quiescent_state() if the newly enqueued callback
1544 * is the only one waiting for a grace period to complete.
1546 if (unlikely(rdp
->qlen
> rdp
->qlen_last_fqs_check
+ qhimark
)) {
1548 /* Are we ignoring a completed grace period? */
1549 rcu_process_gp_end(rsp
, rdp
);
1550 check_for_new_grace_period(rsp
, rdp
);
1552 /* Start a new grace period if one not already started. */
1553 if (!rcu_gp_in_progress(rsp
)) {
1554 unsigned long nestflag
;
1555 struct rcu_node
*rnp_root
= rcu_get_root(rsp
);
1557 raw_spin_lock_irqsave(&rnp_root
->lock
, nestflag
);
1558 rcu_start_gp(rsp
, nestflag
); /* rlses rnp_root->lock */
1560 /* Give the grace period a kick. */
1561 rdp
->blimit
= LONG_MAX
;
1562 if (rsp
->n_force_qs
== rdp
->n_force_qs_snap
&&
1563 *rdp
->nxttail
[RCU_DONE_TAIL
] != head
)
1564 force_quiescent_state(rsp
, 0);
1565 rdp
->n_force_qs_snap
= rsp
->n_force_qs
;
1566 rdp
->qlen_last_fqs_check
= rdp
->qlen
;
1568 } else if (ULONG_CMP_LT(ACCESS_ONCE(rsp
->jiffies_force_qs
), jiffies
))
1569 force_quiescent_state(rsp
, 1);
1570 local_irq_restore(flags
);
1574 * Queue an RCU-sched callback for invocation after a grace period.
1576 void call_rcu_sched(struct rcu_head
*head
, void (*func
)(struct rcu_head
*rcu
))
1578 __call_rcu(head
, func
, &rcu_sched_state
);
1580 EXPORT_SYMBOL_GPL(call_rcu_sched
);
1583 * Queue an RCU for invocation after a quicker grace period.
1585 void call_rcu_bh(struct rcu_head
*head
, void (*func
)(struct rcu_head
*rcu
))
1587 __call_rcu(head
, func
, &rcu_bh_state
);
1589 EXPORT_SYMBOL_GPL(call_rcu_bh
);
1592 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
1594 * Control will return to the caller some time after a full rcu-sched
1595 * grace period has elapsed, in other words after all currently executing
1596 * rcu-sched read-side critical sections have completed. These read-side
1597 * critical sections are delimited by rcu_read_lock_sched() and
1598 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
1599 * local_irq_disable(), and so on may be used in place of
1600 * rcu_read_lock_sched().
1602 * This means that all preempt_disable code sequences, including NMI and
1603 * hardware-interrupt handlers, in progress on entry will have completed
1604 * before this primitive returns. However, this does not guarantee that
1605 * softirq handlers will have completed, since in some kernels, these
1606 * handlers can run in process context, and can block.
1608 * This primitive provides the guarantees made by the (now removed)
1609 * synchronize_kernel() API. In contrast, synchronize_rcu() only
1610 * guarantees that rcu_read_lock() sections will have completed.
1611 * In "classic RCU", these two guarantees happen to be one and
1612 * the same, but can differ in realtime RCU implementations.
1614 void synchronize_sched(void)
1616 struct rcu_synchronize rcu
;
1618 if (rcu_blocking_is_gp())
1621 init_rcu_head_on_stack(&rcu
.head
);
1622 init_completion(&rcu
.completion
);
1623 /* Will wake me after RCU finished. */
1624 call_rcu_sched(&rcu
.head
, wakeme_after_rcu
);
1626 wait_for_completion(&rcu
.completion
);
1627 destroy_rcu_head_on_stack(&rcu
.head
);
1629 EXPORT_SYMBOL_GPL(synchronize_sched
);
1632 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
1634 * Control will return to the caller some time after a full rcu_bh grace
1635 * period has elapsed, in other words after all currently executing rcu_bh
1636 * read-side critical sections have completed. RCU read-side critical
1637 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
1638 * and may be nested.
1640 void synchronize_rcu_bh(void)
1642 struct rcu_synchronize rcu
;
1644 if (rcu_blocking_is_gp())
1647 init_rcu_head_on_stack(&rcu
.head
);
1648 init_completion(&rcu
.completion
);
1649 /* Will wake me after RCU finished. */
1650 call_rcu_bh(&rcu
.head
, wakeme_after_rcu
);
1652 wait_for_completion(&rcu
.completion
);
1653 destroy_rcu_head_on_stack(&rcu
.head
);
1655 EXPORT_SYMBOL_GPL(synchronize_rcu_bh
);
1658 * Check to see if there is any immediate RCU-related work to be done
1659 * by the current CPU, for the specified type of RCU, returning 1 if so.
1660 * The checks are in order of increasing expense: checks that can be
1661 * carried out against CPU-local state are performed first. However,
1662 * we must check for CPU stalls first, else we might not get a chance.
1664 static int __rcu_pending(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
1666 struct rcu_node
*rnp
= rdp
->mynode
;
1668 rdp
->n_rcu_pending
++;
1670 /* Check for CPU stalls, if enabled. */
1671 check_cpu_stall(rsp
, rdp
);
1673 /* Is the RCU core waiting for a quiescent state from this CPU? */
1674 if (rdp
->qs_pending
&& !rdp
->passed_quiesc
) {
1677 * If force_quiescent_state() coming soon and this CPU
1678 * needs a quiescent state, and this is either RCU-sched
1679 * or RCU-bh, force a local reschedule.
1681 rdp
->n_rp_qs_pending
++;
1682 if (!rdp
->preemptible
&&
1683 ULONG_CMP_LT(ACCESS_ONCE(rsp
->jiffies_force_qs
) - 1,
1686 } else if (rdp
->qs_pending
&& rdp
->passed_quiesc
) {
1687 rdp
->n_rp_report_qs
++;
1691 /* Does this CPU have callbacks ready to invoke? */
1692 if (cpu_has_callbacks_ready_to_invoke(rdp
)) {
1693 rdp
->n_rp_cb_ready
++;
1697 /* Has RCU gone idle with this CPU needing another grace period? */
1698 if (cpu_needs_another_gp(rsp
, rdp
)) {
1699 rdp
->n_rp_cpu_needs_gp
++;
1703 /* Has another RCU grace period completed? */
1704 if (ACCESS_ONCE(rnp
->completed
) != rdp
->completed
) { /* outside lock */
1705 rdp
->n_rp_gp_completed
++;
1709 /* Has a new RCU grace period started? */
1710 if (ACCESS_ONCE(rnp
->gpnum
) != rdp
->gpnum
) { /* outside lock */
1711 rdp
->n_rp_gp_started
++;
1715 /* Has an RCU GP gone long enough to send resched IPIs &c? */
1716 if (rcu_gp_in_progress(rsp
) &&
1717 ULONG_CMP_LT(ACCESS_ONCE(rsp
->jiffies_force_qs
), jiffies
)) {
1718 rdp
->n_rp_need_fqs
++;
1723 rdp
->n_rp_need_nothing
++;
1728 * Check to see if there is any immediate RCU-related work to be done
1729 * by the current CPU, returning 1 if so. This function is part of the
1730 * RCU implementation; it is -not- an exported member of the RCU API.
1732 static int rcu_pending(int cpu
)
1734 return __rcu_pending(&rcu_sched_state
, &per_cpu(rcu_sched_data
, cpu
)) ||
1735 __rcu_pending(&rcu_bh_state
, &per_cpu(rcu_bh_data
, cpu
)) ||
1736 rcu_preempt_pending(cpu
);
1740 * Check to see if any future RCU-related work will need to be done
1741 * by the current CPU, even if none need be done immediately, returning
1744 static int rcu_needs_cpu_quick_check(int cpu
)
1746 /* RCU callbacks either ready or pending? */
1747 return per_cpu(rcu_sched_data
, cpu
).nxtlist
||
1748 per_cpu(rcu_bh_data
, cpu
).nxtlist
||
1749 rcu_preempt_needs_cpu(cpu
);
1752 static DEFINE_PER_CPU(struct rcu_head
, rcu_barrier_head
) = {NULL
};
1753 static atomic_t rcu_barrier_cpu_count
;
1754 static DEFINE_MUTEX(rcu_barrier_mutex
);
1755 static struct completion rcu_barrier_completion
;
1757 static void rcu_barrier_callback(struct rcu_head
*notused
)
1759 if (atomic_dec_and_test(&rcu_barrier_cpu_count
))
1760 complete(&rcu_barrier_completion
);
1764 * Called with preemption disabled, and from cross-cpu IRQ context.
1766 static void rcu_barrier_func(void *type
)
1768 int cpu
= smp_processor_id();
1769 struct rcu_head
*head
= &per_cpu(rcu_barrier_head
, cpu
);
1770 void (*call_rcu_func
)(struct rcu_head
*head
,
1771 void (*func
)(struct rcu_head
*head
));
1773 atomic_inc(&rcu_barrier_cpu_count
);
1774 call_rcu_func
= type
;
1775 call_rcu_func(head
, rcu_barrier_callback
);
1779 * Orchestrate the specified type of RCU barrier, waiting for all
1780 * RCU callbacks of the specified type to complete.
1782 static void _rcu_barrier(struct rcu_state
*rsp
,
1783 void (*call_rcu_func
)(struct rcu_head
*head
,
1784 void (*func
)(struct rcu_head
*head
)))
1786 BUG_ON(in_interrupt());
1787 /* Take mutex to serialize concurrent rcu_barrier() requests. */
1788 mutex_lock(&rcu_barrier_mutex
);
1789 init_completion(&rcu_barrier_completion
);
1791 * Initialize rcu_barrier_cpu_count to 1, then invoke
1792 * rcu_barrier_func() on each CPU, so that each CPU also has
1793 * incremented rcu_barrier_cpu_count. Only then is it safe to
1794 * decrement rcu_barrier_cpu_count -- otherwise the first CPU
1795 * might complete its grace period before all of the other CPUs
1796 * did their increment, causing this function to return too
1797 * early. Note that on_each_cpu() disables irqs, which prevents
1798 * any CPUs from coming online or going offline until each online
1799 * CPU has queued its RCU-barrier callback.
1801 atomic_set(&rcu_barrier_cpu_count
, 1);
1802 on_each_cpu(rcu_barrier_func
, (void *)call_rcu_func
, 1);
1803 if (atomic_dec_and_test(&rcu_barrier_cpu_count
))
1804 complete(&rcu_barrier_completion
);
1805 wait_for_completion(&rcu_barrier_completion
);
1806 mutex_unlock(&rcu_barrier_mutex
);
1810 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
1812 void rcu_barrier_bh(void)
1814 _rcu_barrier(&rcu_bh_state
, call_rcu_bh
);
1816 EXPORT_SYMBOL_GPL(rcu_barrier_bh
);
1819 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
1821 void rcu_barrier_sched(void)
1823 _rcu_barrier(&rcu_sched_state
, call_rcu_sched
);
1825 EXPORT_SYMBOL_GPL(rcu_barrier_sched
);
1828 * Do boot-time initialization of a CPU's per-CPU RCU data.
1831 rcu_boot_init_percpu_data(int cpu
, struct rcu_state
*rsp
)
1833 unsigned long flags
;
1835 struct rcu_data
*rdp
= per_cpu_ptr(rsp
->rda
, cpu
);
1836 struct rcu_node
*rnp
= rcu_get_root(rsp
);
1838 /* Set up local state, ensuring consistent view of global state. */
1839 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
1840 rdp
->grpmask
= 1UL << (cpu
- rdp
->mynode
->grplo
);
1841 rdp
->nxtlist
= NULL
;
1842 for (i
= 0; i
< RCU_NEXT_SIZE
; i
++)
1843 rdp
->nxttail
[i
] = &rdp
->nxtlist
;
1846 rdp
->dynticks
= &per_cpu(rcu_dynticks
, cpu
);
1847 #endif /* #ifdef CONFIG_NO_HZ */
1849 raw_spin_unlock_irqrestore(&rnp
->lock
, flags
);
1853 * Initialize a CPU's per-CPU RCU data. Note that only one online or
1854 * offline event can be happening at a given time. Note also that we
1855 * can accept some slop in the rsp->completed access due to the fact
1856 * that this CPU cannot possibly have any RCU callbacks in flight yet.
1858 static void __cpuinit
1859 rcu_init_percpu_data(int cpu
, struct rcu_state
*rsp
, int preemptible
)
1861 unsigned long flags
;
1863 struct rcu_data
*rdp
= per_cpu_ptr(rsp
->rda
, cpu
);
1864 struct rcu_node
*rnp
= rcu_get_root(rsp
);
1866 /* Set up local state, ensuring consistent view of global state. */
1867 raw_spin_lock_irqsave(&rnp
->lock
, flags
);
1868 rdp
->passed_quiesc
= 0; /* We could be racing with new GP, */
1869 rdp
->qs_pending
= 1; /* so set up to respond to current GP. */
1870 rdp
->beenonline
= 1; /* We have now been online. */
1871 rdp
->preemptible
= preemptible
;
1872 rdp
->qlen_last_fqs_check
= 0;
1873 rdp
->n_force_qs_snap
= rsp
->n_force_qs
;
1874 rdp
->blimit
= blimit
;
1875 raw_spin_unlock(&rnp
->lock
); /* irqs remain disabled. */
1878 * A new grace period might start here. If so, we won't be part
1879 * of it, but that is OK, as we are currently in a quiescent state.
1882 /* Exclude any attempts to start a new GP on large systems. */
1883 raw_spin_lock(&rsp
->onofflock
); /* irqs already disabled. */
1885 /* Add CPU to rcu_node bitmasks. */
1887 mask
= rdp
->grpmask
;
1889 /* Exclude any attempts to start a new GP on small systems. */
1890 raw_spin_lock(&rnp
->lock
); /* irqs already disabled. */
1891 rnp
->qsmaskinit
|= mask
;
1892 mask
= rnp
->grpmask
;
1893 if (rnp
== rdp
->mynode
) {
1894 rdp
->gpnum
= rnp
->completed
; /* if GP in progress... */
1895 rdp
->completed
= rnp
->completed
;
1896 rdp
->passed_quiesc_completed
= rnp
->completed
- 1;
1898 raw_spin_unlock(&rnp
->lock
); /* irqs already disabled. */
1900 } while (rnp
!= NULL
&& !(rnp
->qsmaskinit
& mask
));
1902 raw_spin_unlock_irqrestore(&rsp
->onofflock
, flags
);
1905 static void __cpuinit
rcu_prepare_cpu(int cpu
)
1907 rcu_init_percpu_data(cpu
, &rcu_sched_state
, 0);
1908 rcu_init_percpu_data(cpu
, &rcu_bh_state
, 0);
1909 rcu_preempt_init_percpu_data(cpu
);
1913 * Handle CPU online/offline notification events.
1915 static int __cpuinit
rcu_cpu_notify(struct notifier_block
*self
,
1916 unsigned long action
, void *hcpu
)
1918 long cpu
= (long)hcpu
;
1919 struct rcu_data
*rdp
= per_cpu_ptr(rcu_state
->rda
, cpu
);
1920 struct rcu_node
*rnp
= rdp
->mynode
;
1923 case CPU_UP_PREPARE
:
1924 case CPU_UP_PREPARE_FROZEN
:
1925 rcu_prepare_cpu(cpu
);
1926 rcu_prepare_kthreads(cpu
);
1929 case CPU_DOWN_FAILED
:
1930 rcu_node_kthread_setaffinity(rnp
, -1);
1931 rcu_cpu_kthread_setrt(cpu
, 1);
1933 case CPU_DOWN_PREPARE
:
1934 rcu_node_kthread_setaffinity(rnp
, cpu
);
1935 rcu_cpu_kthread_setrt(cpu
, 0);
1938 case CPU_DYING_FROZEN
:
1940 * The whole machine is "stopped" except this CPU, so we can
1941 * touch any data without introducing corruption. We send the
1942 * dying CPU's callbacks to an arbitrarily chosen online CPU.
1944 rcu_send_cbs_to_online(&rcu_bh_state
);
1945 rcu_send_cbs_to_online(&rcu_sched_state
);
1946 rcu_preempt_send_cbs_to_online();
1949 case CPU_DEAD_FROZEN
:
1950 case CPU_UP_CANCELED
:
1951 case CPU_UP_CANCELED_FROZEN
:
1952 rcu_offline_cpu(cpu
);
1961 * This function is invoked towards the end of the scheduler's initialization
1962 * process. Before this is called, the idle task might contain
1963 * RCU read-side critical sections (during which time, this idle
1964 * task is booting the system). After this function is called, the
1965 * idle tasks are prohibited from containing RCU read-side critical
1966 * sections. This function also enables RCU lockdep checking.
1968 void rcu_scheduler_starting(void)
1970 WARN_ON(num_online_cpus() != 1);
1971 WARN_ON(nr_context_switches() > 0);
1972 rcu_scheduler_active
= 1;
1976 * Compute the per-level fanout, either using the exact fanout specified
1977 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
1979 #ifdef CONFIG_RCU_FANOUT_EXACT
1980 static void __init
rcu_init_levelspread(struct rcu_state
*rsp
)
1984 for (i
= NUM_RCU_LVLS
- 1; i
> 0; i
--)
1985 rsp
->levelspread
[i
] = CONFIG_RCU_FANOUT
;
1986 rsp
->levelspread
[0] = RCU_FANOUT_LEAF
;
1988 #else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
1989 static void __init
rcu_init_levelspread(struct rcu_state
*rsp
)
1996 for (i
= NUM_RCU_LVLS
- 1; i
>= 0; i
--) {
1997 ccur
= rsp
->levelcnt
[i
];
1998 rsp
->levelspread
[i
] = (cprv
+ ccur
- 1) / ccur
;
2002 #endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
2005 * Helper function for rcu_init() that initializes one rcu_state structure.
2007 static void __init
rcu_init_one(struct rcu_state
*rsp
,
2008 struct rcu_data __percpu
*rda
)
2010 static char *buf
[] = { "rcu_node_level_0",
2013 "rcu_node_level_3" }; /* Match MAX_RCU_LVLS */
2017 struct rcu_node
*rnp
;
2019 BUILD_BUG_ON(MAX_RCU_LVLS
> ARRAY_SIZE(buf
)); /* Fix buf[] init! */
2021 /* Initialize the level-tracking arrays. */
2023 for (i
= 1; i
< NUM_RCU_LVLS
; i
++)
2024 rsp
->level
[i
] = rsp
->level
[i
- 1] + rsp
->levelcnt
[i
- 1];
2025 rcu_init_levelspread(rsp
);
2027 /* Initialize the elements themselves, starting from the leaves. */
2029 for (i
= NUM_RCU_LVLS
- 1; i
>= 0; i
--) {
2030 cpustride
*= rsp
->levelspread
[i
];
2031 rnp
= rsp
->level
[i
];
2032 for (j
= 0; j
< rsp
->levelcnt
[i
]; j
++, rnp
++) {
2033 raw_spin_lock_init(&rnp
->lock
);
2034 lockdep_set_class_and_name(&rnp
->lock
,
2035 &rcu_node_class
[i
], buf
[i
]);
2038 rnp
->qsmaskinit
= 0;
2039 rnp
->grplo
= j
* cpustride
;
2040 rnp
->grphi
= (j
+ 1) * cpustride
- 1;
2041 if (rnp
->grphi
>= NR_CPUS
)
2042 rnp
->grphi
= NR_CPUS
- 1;
2048 rnp
->grpnum
= j
% rsp
->levelspread
[i
- 1];
2049 rnp
->grpmask
= 1UL << rnp
->grpnum
;
2050 rnp
->parent
= rsp
->level
[i
- 1] +
2051 j
/ rsp
->levelspread
[i
- 1];
2054 INIT_LIST_HEAD(&rnp
->blkd_tasks
);
2059 rnp
= rsp
->level
[NUM_RCU_LVLS
- 1];
2060 for_each_possible_cpu(i
) {
2061 while (i
> rnp
->grphi
)
2063 per_cpu_ptr(rsp
->rda
, i
)->mynode
= rnp
;
2064 rcu_boot_init_percpu_data(i
, rsp
);
2068 void __init
rcu_init(void)
2072 rcu_bootup_announce();
2073 rcu_init_one(&rcu_sched_state
, &rcu_sched_data
);
2074 rcu_init_one(&rcu_bh_state
, &rcu_bh_data
);
2075 __rcu_init_preempt();
2076 open_softirq(RCU_SOFTIRQ
, rcu_process_callbacks
);
2079 * We don't need protection against CPU-hotplug here because
2080 * this is called early in boot, before either interrupts
2081 * or the scheduler are operational.
2083 cpu_notifier(rcu_cpu_notify
, 0);
2084 for_each_online_cpu(cpu
)
2085 rcu_cpu_notify(NULL
, CPU_UP_PREPARE
, (void *)(long)cpu
);
2086 check_cpu_stall_init();
2089 #include "rcutree_plugin.h"