vmstat: small revisions to refresh_cpu_vm_stats()
[linux-2.6/kvm.git] / mm / vmstat.c
blob9ffc573ceb6e8539ade001d949d880009aef3208
1 /*
2 * linux/mm/vmstat.c
4 * Manages VM statistics
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
7 * zoned VM statistics
8 * Copyright (C) 2006 Silicon Graphics, Inc.,
9 * Christoph Lameter <christoph@lameter.com>
12 #include <linux/mm.h>
13 #include <linux/err.h>
14 #include <linux/module.h>
15 #include <linux/cpu.h>
16 #include <linux/sched.h>
18 #ifdef CONFIG_VM_EVENT_COUNTERS
19 DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
20 EXPORT_PER_CPU_SYMBOL(vm_event_states);
22 static void sum_vm_events(unsigned long *ret, cpumask_t *cpumask)
24 int cpu = 0;
25 int i;
27 memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
29 cpu = first_cpu(*cpumask);
30 while (cpu < NR_CPUS) {
31 struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
33 cpu = next_cpu(cpu, *cpumask);
35 if (cpu < NR_CPUS)
36 prefetch(&per_cpu(vm_event_states, cpu));
39 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
40 ret[i] += this->event[i];
45 * Accumulate the vm event counters across all CPUs.
46 * The result is unavoidably approximate - it can change
47 * during and after execution of this function.
49 void all_vm_events(unsigned long *ret)
51 sum_vm_events(ret, &cpu_online_map);
53 EXPORT_SYMBOL_GPL(all_vm_events);
55 #ifdef CONFIG_HOTPLUG
57 * Fold the foreign cpu events into our own.
59 * This is adding to the events on one processor
60 * but keeps the global counts constant.
62 void vm_events_fold_cpu(int cpu)
64 struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
65 int i;
67 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
68 count_vm_events(i, fold_state->event[i]);
69 fold_state->event[i] = 0;
72 #endif /* CONFIG_HOTPLUG */
74 #endif /* CONFIG_VM_EVENT_COUNTERS */
77 * Manage combined zone based / global counters
79 * vm_stat contains the global counters
81 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
82 EXPORT_SYMBOL(vm_stat);
84 #ifdef CONFIG_SMP
86 static int calculate_threshold(struct zone *zone)
88 int threshold;
89 int mem; /* memory in 128 MB units */
92 * The threshold scales with the number of processors and the amount
93 * of memory per zone. More memory means that we can defer updates for
94 * longer, more processors could lead to more contention.
95 * fls() is used to have a cheap way of logarithmic scaling.
97 * Some sample thresholds:
99 * Threshold Processors (fls) Zonesize fls(mem+1)
100 * ------------------------------------------------------------------
101 * 8 1 1 0.9-1 GB 4
102 * 16 2 2 0.9-1 GB 4
103 * 20 2 2 1-2 GB 5
104 * 24 2 2 2-4 GB 6
105 * 28 2 2 4-8 GB 7
106 * 32 2 2 8-16 GB 8
107 * 4 2 2 <128M 1
108 * 30 4 3 2-4 GB 5
109 * 48 4 3 8-16 GB 8
110 * 32 8 4 1-2 GB 4
111 * 32 8 4 0.9-1GB 4
112 * 10 16 5 <128M 1
113 * 40 16 5 900M 4
114 * 70 64 7 2-4 GB 5
115 * 84 64 7 4-8 GB 6
116 * 108 512 9 4-8 GB 6
117 * 125 1024 10 8-16 GB 8
118 * 125 1024 10 16-32 GB 9
121 mem = zone->present_pages >> (27 - PAGE_SHIFT);
123 threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
126 * Maximum threshold is 125
128 threshold = min(125, threshold);
130 return threshold;
134 * Refresh the thresholds for each zone.
136 static void refresh_zone_stat_thresholds(void)
138 struct zone *zone;
139 int cpu;
140 int threshold;
142 for_each_zone(zone) {
144 if (!zone->present_pages)
145 continue;
147 threshold = calculate_threshold(zone);
149 for_each_online_cpu(cpu)
150 zone_pcp(zone, cpu)->stat_threshold = threshold;
155 * For use when we know that interrupts are disabled.
157 void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
158 int delta)
160 struct per_cpu_pageset *pcp = zone_pcp(zone, smp_processor_id());
161 s8 *p = pcp->vm_stat_diff + item;
162 long x;
164 x = delta + *p;
166 if (unlikely(x > pcp->stat_threshold || x < -pcp->stat_threshold)) {
167 zone_page_state_add(x, zone, item);
168 x = 0;
170 *p = x;
172 EXPORT_SYMBOL(__mod_zone_page_state);
175 * For an unknown interrupt state
177 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
178 int delta)
180 unsigned long flags;
182 local_irq_save(flags);
183 __mod_zone_page_state(zone, item, delta);
184 local_irq_restore(flags);
186 EXPORT_SYMBOL(mod_zone_page_state);
189 * Optimized increment and decrement functions.
191 * These are only for a single page and therefore can take a struct page *
192 * argument instead of struct zone *. This allows the inclusion of the code
193 * generated for page_zone(page) into the optimized functions.
195 * No overflow check is necessary and therefore the differential can be
196 * incremented or decremented in place which may allow the compilers to
197 * generate better code.
198 * The increment or decrement is known and therefore one boundary check can
199 * be omitted.
201 * NOTE: These functions are very performance sensitive. Change only
202 * with care.
204 * Some processors have inc/dec instructions that are atomic vs an interrupt.
205 * However, the code must first determine the differential location in a zone
206 * based on the processor number and then inc/dec the counter. There is no
207 * guarantee without disabling preemption that the processor will not change
208 * in between and therefore the atomicity vs. interrupt cannot be exploited
209 * in a useful way here.
211 void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
213 struct per_cpu_pageset *pcp = zone_pcp(zone, smp_processor_id());
214 s8 *p = pcp->vm_stat_diff + item;
216 (*p)++;
218 if (unlikely(*p > pcp->stat_threshold)) {
219 int overstep = pcp->stat_threshold / 2;
221 zone_page_state_add(*p + overstep, zone, item);
222 *p = -overstep;
226 void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
228 __inc_zone_state(page_zone(page), item);
230 EXPORT_SYMBOL(__inc_zone_page_state);
232 void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
234 struct per_cpu_pageset *pcp = zone_pcp(zone, smp_processor_id());
235 s8 *p = pcp->vm_stat_diff + item;
237 (*p)--;
239 if (unlikely(*p < - pcp->stat_threshold)) {
240 int overstep = pcp->stat_threshold / 2;
242 zone_page_state_add(*p - overstep, zone, item);
243 *p = overstep;
247 void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
249 __dec_zone_state(page_zone(page), item);
251 EXPORT_SYMBOL(__dec_zone_page_state);
253 void inc_zone_state(struct zone *zone, enum zone_stat_item item)
255 unsigned long flags;
257 local_irq_save(flags);
258 __inc_zone_state(zone, item);
259 local_irq_restore(flags);
262 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
264 unsigned long flags;
265 struct zone *zone;
267 zone = page_zone(page);
268 local_irq_save(flags);
269 __inc_zone_state(zone, item);
270 local_irq_restore(flags);
272 EXPORT_SYMBOL(inc_zone_page_state);
274 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
276 unsigned long flags;
278 local_irq_save(flags);
279 __dec_zone_page_state(page, item);
280 local_irq_restore(flags);
282 EXPORT_SYMBOL(dec_zone_page_state);
285 * Update the zone counters for one cpu.
287 * The cpu specified must be either the current cpu or a processor that
288 * is not online. If it is the current cpu then the execution thread must
289 * be pinned to the current cpu.
291 * Note that refresh_cpu_vm_stats strives to only access
292 * node local memory. The per cpu pagesets on remote zones are placed
293 * in the memory local to the processor using that pageset. So the
294 * loop over all zones will access a series of cachelines local to
295 * the processor.
297 * The call to zone_page_state_add updates the cachelines with the
298 * statistics in the remote zone struct as well as the global cachelines
299 * with the global counters. These could cause remote node cache line
300 * bouncing and will have to be only done when necessary.
302 void refresh_cpu_vm_stats(int cpu)
304 struct zone *zone;
305 int i;
306 int global_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
308 for_each_zone(zone) {
309 struct per_cpu_pageset *p;
311 if (!populated_zone(zone))
312 continue;
314 p = zone_pcp(zone, cpu);
316 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
317 if (p->vm_stat_diff[i]) {
318 unsigned long flags;
319 int v;
321 local_irq_save(flags);
322 v = p->vm_stat_diff[i];
323 p->vm_stat_diff[i] = 0;
324 local_irq_restore(flags);
325 atomic_long_add(v, &zone->vm_stat[i]);
326 global_diff[i] += v;
327 #ifdef CONFIG_NUMA
328 /* 3 seconds idle till flush */
329 p->expire = 3;
330 #endif
332 #ifdef CONFIG_NUMA
334 * Deal with draining the remote pageset of this
335 * processor
337 * Check if there are pages remaining in this pageset
338 * if not then there is nothing to expire.
340 if (!p->expire || (!p->pcp[0].count && !p->pcp[1].count))
341 continue;
344 * We never drain zones local to this processor.
346 if (zone_to_nid(zone) == numa_node_id()) {
347 p->expire = 0;
348 continue;
351 p->expire--;
352 if (p->expire)
353 continue;
355 if (p->pcp[0].count)
356 drain_zone_pages(zone, p->pcp + 0);
358 if (p->pcp[1].count)
359 drain_zone_pages(zone, p->pcp + 1);
360 #endif
363 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
364 if (global_diff[i])
365 atomic_long_add(global_diff[i], &vm_stat[i]);
368 #endif
370 #ifdef CONFIG_NUMA
372 * zonelist = the list of zones passed to the allocator
373 * z = the zone from which the allocation occurred.
375 * Must be called with interrupts disabled.
377 void zone_statistics(struct zonelist *zonelist, struct zone *z)
379 if (z->zone_pgdat == zonelist->zones[0]->zone_pgdat) {
380 __inc_zone_state(z, NUMA_HIT);
381 } else {
382 __inc_zone_state(z, NUMA_MISS);
383 __inc_zone_state(zonelist->zones[0], NUMA_FOREIGN);
385 if (z->node == numa_node_id())
386 __inc_zone_state(z, NUMA_LOCAL);
387 else
388 __inc_zone_state(z, NUMA_OTHER);
390 #endif
392 #ifdef CONFIG_PROC_FS
394 #include <linux/seq_file.h>
396 static char * const migratetype_names[MIGRATE_TYPES] = {
397 "Unmovable",
398 "Reclaimable",
399 "Movable",
400 "Reserve",
403 static void *frag_start(struct seq_file *m, loff_t *pos)
405 pg_data_t *pgdat;
406 loff_t node = *pos;
407 for (pgdat = first_online_pgdat();
408 pgdat && node;
409 pgdat = next_online_pgdat(pgdat))
410 --node;
412 return pgdat;
415 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
417 pg_data_t *pgdat = (pg_data_t *)arg;
419 (*pos)++;
420 return next_online_pgdat(pgdat);
423 static void frag_stop(struct seq_file *m, void *arg)
427 /* Walk all the zones in a node and print using a callback */
428 static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
429 void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
431 struct zone *zone;
432 struct zone *node_zones = pgdat->node_zones;
433 unsigned long flags;
435 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
436 if (!populated_zone(zone))
437 continue;
439 spin_lock_irqsave(&zone->lock, flags);
440 print(m, pgdat, zone);
441 spin_unlock_irqrestore(&zone->lock, flags);
445 static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
446 struct zone *zone)
448 int order;
450 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
451 for (order = 0; order < MAX_ORDER; ++order)
452 seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
453 seq_putc(m, '\n');
457 * This walks the free areas for each zone.
459 static int frag_show(struct seq_file *m, void *arg)
461 pg_data_t *pgdat = (pg_data_t *)arg;
462 walk_zones_in_node(m, pgdat, frag_show_print);
463 return 0;
466 static void pagetypeinfo_showfree_print(struct seq_file *m,
467 pg_data_t *pgdat, struct zone *zone)
469 int order, mtype;
471 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
472 seq_printf(m, "Node %4d, zone %8s, type %12s ",
473 pgdat->node_id,
474 zone->name,
475 migratetype_names[mtype]);
476 for (order = 0; order < MAX_ORDER; ++order) {
477 unsigned long freecount = 0;
478 struct free_area *area;
479 struct list_head *curr;
481 area = &(zone->free_area[order]);
483 list_for_each(curr, &area->free_list[mtype])
484 freecount++;
485 seq_printf(m, "%6lu ", freecount);
487 seq_putc(m, '\n');
491 /* Print out the free pages at each order for each migatetype */
492 static int pagetypeinfo_showfree(struct seq_file *m, void *arg)
494 int order;
495 pg_data_t *pgdat = (pg_data_t *)arg;
497 /* Print header */
498 seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
499 for (order = 0; order < MAX_ORDER; ++order)
500 seq_printf(m, "%6d ", order);
501 seq_putc(m, '\n');
503 walk_zones_in_node(m, pgdat, pagetypeinfo_showfree_print);
505 return 0;
508 static void pagetypeinfo_showblockcount_print(struct seq_file *m,
509 pg_data_t *pgdat, struct zone *zone)
511 int mtype;
512 unsigned long pfn;
513 unsigned long start_pfn = zone->zone_start_pfn;
514 unsigned long end_pfn = start_pfn + zone->spanned_pages;
515 unsigned long count[MIGRATE_TYPES] = { 0, };
517 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
518 struct page *page;
520 if (!pfn_valid(pfn))
521 continue;
523 page = pfn_to_page(pfn);
524 mtype = get_pageblock_migratetype(page);
526 count[mtype]++;
529 /* Print counts */
530 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
531 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
532 seq_printf(m, "%12lu ", count[mtype]);
533 seq_putc(m, '\n');
536 /* Print out the free pages at each order for each migratetype */
537 static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
539 int mtype;
540 pg_data_t *pgdat = (pg_data_t *)arg;
542 seq_printf(m, "\n%-23s", "Number of blocks type ");
543 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
544 seq_printf(m, "%12s ", migratetype_names[mtype]);
545 seq_putc(m, '\n');
546 walk_zones_in_node(m, pgdat, pagetypeinfo_showblockcount_print);
548 return 0;
552 * This prints out statistics in relation to grouping pages by mobility.
553 * It is expensive to collect so do not constantly read the file.
555 static int pagetypeinfo_show(struct seq_file *m, void *arg)
557 pg_data_t *pgdat = (pg_data_t *)arg;
559 seq_printf(m, "Page block order: %d\n", pageblock_order);
560 seq_printf(m, "Pages per block: %lu\n", pageblock_nr_pages);
561 seq_putc(m, '\n');
562 pagetypeinfo_showfree(m, pgdat);
563 pagetypeinfo_showblockcount(m, pgdat);
565 return 0;
568 const struct seq_operations fragmentation_op = {
569 .start = frag_start,
570 .next = frag_next,
571 .stop = frag_stop,
572 .show = frag_show,
575 const struct seq_operations pagetypeinfo_op = {
576 .start = frag_start,
577 .next = frag_next,
578 .stop = frag_stop,
579 .show = pagetypeinfo_show,
582 #ifdef CONFIG_ZONE_DMA
583 #define TEXT_FOR_DMA(xx) xx "_dma",
584 #else
585 #define TEXT_FOR_DMA(xx)
586 #endif
588 #ifdef CONFIG_ZONE_DMA32
589 #define TEXT_FOR_DMA32(xx) xx "_dma32",
590 #else
591 #define TEXT_FOR_DMA32(xx)
592 #endif
594 #ifdef CONFIG_HIGHMEM
595 #define TEXT_FOR_HIGHMEM(xx) xx "_high",
596 #else
597 #define TEXT_FOR_HIGHMEM(xx)
598 #endif
600 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
601 TEXT_FOR_HIGHMEM(xx) xx "_movable",
603 static const char * const vmstat_text[] = {
604 /* Zoned VM counters */
605 "nr_free_pages",
606 "nr_inactive",
607 "nr_active",
608 "nr_anon_pages",
609 "nr_mapped",
610 "nr_file_pages",
611 "nr_dirty",
612 "nr_writeback",
613 "nr_slab_reclaimable",
614 "nr_slab_unreclaimable",
615 "nr_page_table_pages",
616 "nr_unstable",
617 "nr_bounce",
618 "nr_vmscan_write",
620 #ifdef CONFIG_NUMA
621 "numa_hit",
622 "numa_miss",
623 "numa_foreign",
624 "numa_interleave",
625 "numa_local",
626 "numa_other",
627 #endif
629 #ifdef CONFIG_VM_EVENT_COUNTERS
630 "pgpgin",
631 "pgpgout",
632 "pswpin",
633 "pswpout",
635 TEXTS_FOR_ZONES("pgalloc")
637 "pgfree",
638 "pgactivate",
639 "pgdeactivate",
641 "pgfault",
642 "pgmajfault",
644 TEXTS_FOR_ZONES("pgrefill")
645 TEXTS_FOR_ZONES("pgsteal")
646 TEXTS_FOR_ZONES("pgscan_kswapd")
647 TEXTS_FOR_ZONES("pgscan_direct")
649 "pginodesteal",
650 "slabs_scanned",
651 "kswapd_steal",
652 "kswapd_inodesteal",
653 "pageoutrun",
654 "allocstall",
656 "pgrotated",
657 #endif
660 static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
661 struct zone *zone)
663 int i;
664 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
665 seq_printf(m,
666 "\n pages free %lu"
667 "\n min %lu"
668 "\n low %lu"
669 "\n high %lu"
670 "\n scanned %lu (a: %lu i: %lu)"
671 "\n spanned %lu"
672 "\n present %lu",
673 zone_page_state(zone, NR_FREE_PAGES),
674 zone->pages_min,
675 zone->pages_low,
676 zone->pages_high,
677 zone->pages_scanned,
678 zone->nr_scan_active, zone->nr_scan_inactive,
679 zone->spanned_pages,
680 zone->present_pages);
682 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
683 seq_printf(m, "\n %-12s %lu", vmstat_text[i],
684 zone_page_state(zone, i));
686 seq_printf(m,
687 "\n protection: (%lu",
688 zone->lowmem_reserve[0]);
689 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
690 seq_printf(m, ", %lu", zone->lowmem_reserve[i]);
691 seq_printf(m,
693 "\n pagesets");
694 for_each_online_cpu(i) {
695 struct per_cpu_pageset *pageset;
696 int j;
698 pageset = zone_pcp(zone, i);
699 for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
700 seq_printf(m,
701 "\n cpu: %i pcp: %i"
702 "\n count: %i"
703 "\n high: %i"
704 "\n batch: %i",
705 i, j,
706 pageset->pcp[j].count,
707 pageset->pcp[j].high,
708 pageset->pcp[j].batch);
710 #ifdef CONFIG_SMP
711 seq_printf(m, "\n vm stats threshold: %d",
712 pageset->stat_threshold);
713 #endif
715 seq_printf(m,
716 "\n all_unreclaimable: %u"
717 "\n prev_priority: %i"
718 "\n start_pfn: %lu",
719 zone_is_all_unreclaimable(zone),
720 zone->prev_priority,
721 zone->zone_start_pfn);
722 seq_putc(m, '\n');
726 * Output information about zones in @pgdat.
728 static int zoneinfo_show(struct seq_file *m, void *arg)
730 pg_data_t *pgdat = (pg_data_t *)arg;
731 walk_zones_in_node(m, pgdat, zoneinfo_show_print);
732 return 0;
735 const struct seq_operations zoneinfo_op = {
736 .start = frag_start, /* iterate over all zones. The same as in
737 * fragmentation. */
738 .next = frag_next,
739 .stop = frag_stop,
740 .show = zoneinfo_show,
743 static void *vmstat_start(struct seq_file *m, loff_t *pos)
745 unsigned long *v;
746 #ifdef CONFIG_VM_EVENT_COUNTERS
747 unsigned long *e;
748 #endif
749 int i;
751 if (*pos >= ARRAY_SIZE(vmstat_text))
752 return NULL;
754 #ifdef CONFIG_VM_EVENT_COUNTERS
755 v = kmalloc(NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long)
756 + sizeof(struct vm_event_state), GFP_KERNEL);
757 #else
758 v = kmalloc(NR_VM_ZONE_STAT_ITEMS * sizeof(unsigned long),
759 GFP_KERNEL);
760 #endif
761 m->private = v;
762 if (!v)
763 return ERR_PTR(-ENOMEM);
764 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
765 v[i] = global_page_state(i);
766 #ifdef CONFIG_VM_EVENT_COUNTERS
767 e = v + NR_VM_ZONE_STAT_ITEMS;
768 all_vm_events(e);
769 e[PGPGIN] /= 2; /* sectors -> kbytes */
770 e[PGPGOUT] /= 2;
771 #endif
772 return v + *pos;
775 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
777 (*pos)++;
778 if (*pos >= ARRAY_SIZE(vmstat_text))
779 return NULL;
780 return (unsigned long *)m->private + *pos;
783 static int vmstat_show(struct seq_file *m, void *arg)
785 unsigned long *l = arg;
786 unsigned long off = l - (unsigned long *)m->private;
788 seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
789 return 0;
792 static void vmstat_stop(struct seq_file *m, void *arg)
794 kfree(m->private);
795 m->private = NULL;
798 const struct seq_operations vmstat_op = {
799 .start = vmstat_start,
800 .next = vmstat_next,
801 .stop = vmstat_stop,
802 .show = vmstat_show,
805 #endif /* CONFIG_PROC_FS */
807 #ifdef CONFIG_SMP
808 static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
809 int sysctl_stat_interval __read_mostly = HZ;
811 static void vmstat_update(struct work_struct *w)
813 refresh_cpu_vm_stats(smp_processor_id());
814 schedule_delayed_work(&__get_cpu_var(vmstat_work),
815 sysctl_stat_interval);
818 static void __cpuinit start_cpu_timer(int cpu)
820 struct delayed_work *vmstat_work = &per_cpu(vmstat_work, cpu);
822 INIT_DELAYED_WORK_DEFERRABLE(vmstat_work, vmstat_update);
823 schedule_delayed_work_on(cpu, vmstat_work, HZ + cpu);
827 * Use the cpu notifier to insure that the thresholds are recalculated
828 * when necessary.
830 static int __cpuinit vmstat_cpuup_callback(struct notifier_block *nfb,
831 unsigned long action,
832 void *hcpu)
834 long cpu = (long)hcpu;
836 switch (action) {
837 case CPU_ONLINE:
838 case CPU_ONLINE_FROZEN:
839 start_cpu_timer(cpu);
840 break;
841 case CPU_DOWN_PREPARE:
842 case CPU_DOWN_PREPARE_FROZEN:
843 cancel_rearming_delayed_work(&per_cpu(vmstat_work, cpu));
844 per_cpu(vmstat_work, cpu).work.func = NULL;
845 break;
846 case CPU_DOWN_FAILED:
847 case CPU_DOWN_FAILED_FROZEN:
848 start_cpu_timer(cpu);
849 break;
850 case CPU_DEAD:
851 case CPU_DEAD_FROZEN:
852 refresh_zone_stat_thresholds();
853 break;
854 default:
855 break;
857 return NOTIFY_OK;
860 static struct notifier_block __cpuinitdata vmstat_notifier =
861 { &vmstat_cpuup_callback, NULL, 0 };
863 static int __init setup_vmstat(void)
865 int cpu;
867 refresh_zone_stat_thresholds();
868 register_cpu_notifier(&vmstat_notifier);
870 for_each_online_cpu(cpu)
871 start_cpu_timer(cpu);
872 return 0;
874 module_init(setup_vmstat)
875 #endif