amd64_edac: Adjust ECC symbol size to F15h
[linux-2.6/kvm.git] / drivers / edac / amd64_edac.c
blobe4b2792062ea0d05bb7c498590f29b0eaa388066
1 #include "amd64_edac.h"
2 #include <asm/amd_nb.h>
4 static struct edac_pci_ctl_info *amd64_ctl_pci;
6 static int report_gart_errors;
7 module_param(report_gart_errors, int, 0644);
9 /*
10 * Set by command line parameter. If BIOS has enabled the ECC, this override is
11 * cleared to prevent re-enabling the hardware by this driver.
13 static int ecc_enable_override;
14 module_param(ecc_enable_override, int, 0644);
16 static struct msr __percpu *msrs;
19 * count successfully initialized driver instances for setup_pci_device()
21 static atomic_t drv_instances = ATOMIC_INIT(0);
23 /* Per-node driver instances */
24 static struct mem_ctl_info **mcis;
25 static struct ecc_settings **ecc_stngs;
28 * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
29 * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
30 * or higher value'.
32 *FIXME: Produce a better mapping/linearisation.
34 struct scrubrate {
35 u32 scrubval; /* bit pattern for scrub rate */
36 u32 bandwidth; /* bandwidth consumed (bytes/sec) */
37 } scrubrates[] = {
38 { 0x01, 1600000000UL},
39 { 0x02, 800000000UL},
40 { 0x03, 400000000UL},
41 { 0x04, 200000000UL},
42 { 0x05, 100000000UL},
43 { 0x06, 50000000UL},
44 { 0x07, 25000000UL},
45 { 0x08, 12284069UL},
46 { 0x09, 6274509UL},
47 { 0x0A, 3121951UL},
48 { 0x0B, 1560975UL},
49 { 0x0C, 781440UL},
50 { 0x0D, 390720UL},
51 { 0x0E, 195300UL},
52 { 0x0F, 97650UL},
53 { 0x10, 48854UL},
54 { 0x11, 24427UL},
55 { 0x12, 12213UL},
56 { 0x13, 6101UL},
57 { 0x14, 3051UL},
58 { 0x15, 1523UL},
59 { 0x16, 761UL},
60 { 0x00, 0UL}, /* scrubbing off */
63 static int __amd64_read_pci_cfg_dword(struct pci_dev *pdev, int offset,
64 u32 *val, const char *func)
66 int err = 0;
68 err = pci_read_config_dword(pdev, offset, val);
69 if (err)
70 amd64_warn("%s: error reading F%dx%03x.\n",
71 func, PCI_FUNC(pdev->devfn), offset);
73 return err;
76 int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset,
77 u32 val, const char *func)
79 int err = 0;
81 err = pci_write_config_dword(pdev, offset, val);
82 if (err)
83 amd64_warn("%s: error writing to F%dx%03x.\n",
84 func, PCI_FUNC(pdev->devfn), offset);
86 return err;
91 * Depending on the family, F2 DCT reads need special handling:
93 * K8: has a single DCT only
95 * F10h: each DCT has its own set of regs
96 * DCT0 -> F2x040..
97 * DCT1 -> F2x140..
99 * F15h: we select which DCT we access using F1x10C[DctCfgSel]
102 static int k8_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
103 const char *func)
105 if (addr >= 0x100)
106 return -EINVAL;
108 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
111 static int f10_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
112 const char *func)
114 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
117 static int f15_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
118 const char *func)
120 u32 reg = 0;
121 u8 dct = 0;
123 if (addr >= 0x140 && addr <= 0x1a0) {
124 dct = 1;
125 addr -= 0x100;
128 amd64_read_pci_cfg(pvt->F1, DCT_CFG_SEL, &reg);
129 reg &= 0xfffffffe;
130 reg |= dct;
131 amd64_write_pci_cfg(pvt->F1, DCT_CFG_SEL, reg);
133 return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
137 * Memory scrubber control interface. For K8, memory scrubbing is handled by
138 * hardware and can involve L2 cache, dcache as well as the main memory. With
139 * F10, this is extended to L3 cache scrubbing on CPU models sporting that
140 * functionality.
142 * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
143 * (dram) over to cache lines. This is nasty, so we will use bandwidth in
144 * bytes/sec for the setting.
146 * Currently, we only do dram scrubbing. If the scrubbing is done in software on
147 * other archs, we might not have access to the caches directly.
151 * scan the scrub rate mapping table for a close or matching bandwidth value to
152 * issue. If requested is too big, then use last maximum value found.
154 static int __amd64_set_scrub_rate(struct pci_dev *ctl, u32 new_bw, u32 min_rate)
156 u32 scrubval;
157 int i;
160 * map the configured rate (new_bw) to a value specific to the AMD64
161 * memory controller and apply to register. Search for the first
162 * bandwidth entry that is greater or equal than the setting requested
163 * and program that. If at last entry, turn off DRAM scrubbing.
165 for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
167 * skip scrub rates which aren't recommended
168 * (see F10 BKDG, F3x58)
170 if (scrubrates[i].scrubval < min_rate)
171 continue;
173 if (scrubrates[i].bandwidth <= new_bw)
174 break;
177 * if no suitable bandwidth found, turn off DRAM scrubbing
178 * entirely by falling back to the last element in the
179 * scrubrates array.
183 scrubval = scrubrates[i].scrubval;
185 pci_write_bits32(ctl, SCRCTRL, scrubval, 0x001F);
187 if (scrubval)
188 return scrubrates[i].bandwidth;
190 return 0;
193 static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 bw)
195 struct amd64_pvt *pvt = mci->pvt_info;
196 u32 min_scrubrate = 0x5;
198 if (boot_cpu_data.x86 == 0xf)
199 min_scrubrate = 0x0;
201 return __amd64_set_scrub_rate(pvt->F3, bw, min_scrubrate);
204 static int amd64_get_scrub_rate(struct mem_ctl_info *mci)
206 struct amd64_pvt *pvt = mci->pvt_info;
207 u32 scrubval = 0;
208 int i, retval = -EINVAL;
210 amd64_read_pci_cfg(pvt->F3, SCRCTRL, &scrubval);
212 scrubval = scrubval & 0x001F;
214 amd64_debug("pci-read, sdram scrub control value: %d\n", scrubval);
216 for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
217 if (scrubrates[i].scrubval == scrubval) {
218 retval = scrubrates[i].bandwidth;
219 break;
222 return retval;
226 * returns true if the SysAddr given by sys_addr matches the
227 * DRAM base/limit associated with node_id
229 static bool amd64_base_limit_match(struct amd64_pvt *pvt, u64 sys_addr, int nid)
231 u64 addr;
233 /* The K8 treats this as a 40-bit value. However, bits 63-40 will be
234 * all ones if the most significant implemented address bit is 1.
235 * Here we discard bits 63-40. See section 3.4.2 of AMD publication
236 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
237 * Application Programming.
239 addr = sys_addr & 0x000000ffffffffffull;
241 return ((addr >= get_dram_base(pvt, nid)) &&
242 (addr <= get_dram_limit(pvt, nid)));
246 * Attempt to map a SysAddr to a node. On success, return a pointer to the
247 * mem_ctl_info structure for the node that the SysAddr maps to.
249 * On failure, return NULL.
251 static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
252 u64 sys_addr)
254 struct amd64_pvt *pvt;
255 int node_id;
256 u32 intlv_en, bits;
259 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
260 * 3.4.4.2) registers to map the SysAddr to a node ID.
262 pvt = mci->pvt_info;
265 * The value of this field should be the same for all DRAM Base
266 * registers. Therefore we arbitrarily choose to read it from the
267 * register for node 0.
269 intlv_en = dram_intlv_en(pvt, 0);
271 if (intlv_en == 0) {
272 for (node_id = 0; node_id < DRAM_RANGES; node_id++) {
273 if (amd64_base_limit_match(pvt, sys_addr, node_id))
274 goto found;
276 goto err_no_match;
279 if (unlikely((intlv_en != 0x01) &&
280 (intlv_en != 0x03) &&
281 (intlv_en != 0x07))) {
282 amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en);
283 return NULL;
286 bits = (((u32) sys_addr) >> 12) & intlv_en;
288 for (node_id = 0; ; ) {
289 if ((dram_intlv_sel(pvt, node_id) & intlv_en) == bits)
290 break; /* intlv_sel field matches */
292 if (++node_id >= DRAM_RANGES)
293 goto err_no_match;
296 /* sanity test for sys_addr */
297 if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) {
298 amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address"
299 "range for node %d with node interleaving enabled.\n",
300 __func__, sys_addr, node_id);
301 return NULL;
304 found:
305 return edac_mc_find(node_id);
307 err_no_match:
308 debugf2("sys_addr 0x%lx doesn't match any node\n",
309 (unsigned long)sys_addr);
311 return NULL;
315 * compute the CS base address of the @csrow on the DRAM controller @dct.
316 * For details see F2x[5C:40] in the processor's BKDG
318 static void get_cs_base_and_mask(struct amd64_pvt *pvt, int csrow, u8 dct,
319 u64 *base, u64 *mask)
321 u64 csbase, csmask, base_bits, mask_bits;
322 u8 addr_shift;
324 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
325 csbase = pvt->csels[dct].csbases[csrow];
326 csmask = pvt->csels[dct].csmasks[csrow];
327 base_bits = GENMASK(21, 31) | GENMASK(9, 15);
328 mask_bits = GENMASK(21, 29) | GENMASK(9, 15);
329 addr_shift = 4;
330 } else {
331 csbase = pvt->csels[dct].csbases[csrow];
332 csmask = pvt->csels[dct].csmasks[csrow >> 1];
333 addr_shift = 8;
335 if (boot_cpu_data.x86 == 0x15)
336 base_bits = mask_bits = GENMASK(19,30) | GENMASK(5,13);
337 else
338 base_bits = mask_bits = GENMASK(19,28) | GENMASK(5,13);
341 *base = (csbase & base_bits) << addr_shift;
343 *mask = ~0ULL;
344 /* poke holes for the csmask */
345 *mask &= ~(mask_bits << addr_shift);
346 /* OR them in */
347 *mask |= (csmask & mask_bits) << addr_shift;
350 #define for_each_chip_select(i, dct, pvt) \
351 for (i = 0; i < pvt->csels[dct].b_cnt; i++)
353 #define chip_select_base(i, dct, pvt) \
354 pvt->csels[dct].csbases[i]
356 #define for_each_chip_select_mask(i, dct, pvt) \
357 for (i = 0; i < pvt->csels[dct].m_cnt; i++)
360 * @input_addr is an InputAddr associated with the node given by mci. Return the
361 * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
363 static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
365 struct amd64_pvt *pvt;
366 int csrow;
367 u64 base, mask;
369 pvt = mci->pvt_info;
371 for_each_chip_select(csrow, 0, pvt) {
372 if (!csrow_enabled(csrow, 0, pvt))
373 continue;
375 get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);
377 mask = ~mask;
379 if ((input_addr & mask) == (base & mask)) {
380 debugf2("InputAddr 0x%lx matches csrow %d (node %d)\n",
381 (unsigned long)input_addr, csrow,
382 pvt->mc_node_id);
384 return csrow;
387 debugf2("no matching csrow for InputAddr 0x%lx (MC node %d)\n",
388 (unsigned long)input_addr, pvt->mc_node_id);
390 return -1;
394 * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
395 * for the node represented by mci. Info is passed back in *hole_base,
396 * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if
397 * info is invalid. Info may be invalid for either of the following reasons:
399 * - The revision of the node is not E or greater. In this case, the DRAM Hole
400 * Address Register does not exist.
402 * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
403 * indicating that its contents are not valid.
405 * The values passed back in *hole_base, *hole_offset, and *hole_size are
406 * complete 32-bit values despite the fact that the bitfields in the DHAR
407 * only represent bits 31-24 of the base and offset values.
409 int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
410 u64 *hole_offset, u64 *hole_size)
412 struct amd64_pvt *pvt = mci->pvt_info;
413 u64 base;
415 /* only revE and later have the DRAM Hole Address Register */
416 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_E) {
417 debugf1(" revision %d for node %d does not support DHAR\n",
418 pvt->ext_model, pvt->mc_node_id);
419 return 1;
422 /* valid for Fam10h and above */
423 if (boot_cpu_data.x86 >= 0x10 && !dhar_mem_hoist_valid(pvt)) {
424 debugf1(" Dram Memory Hoisting is DISABLED on this system\n");
425 return 1;
428 if (!dhar_valid(pvt)) {
429 debugf1(" Dram Memory Hoisting is DISABLED on this node %d\n",
430 pvt->mc_node_id);
431 return 1;
434 /* This node has Memory Hoisting */
436 /* +------------------+--------------------+--------------------+-----
437 * | memory | DRAM hole | relocated |
438 * | [0, (x - 1)] | [x, 0xffffffff] | addresses from |
439 * | | | DRAM hole |
440 * | | | [0x100000000, |
441 * | | | (0x100000000+ |
442 * | | | (0xffffffff-x))] |
443 * +------------------+--------------------+--------------------+-----
445 * Above is a diagram of physical memory showing the DRAM hole and the
446 * relocated addresses from the DRAM hole. As shown, the DRAM hole
447 * starts at address x (the base address) and extends through address
448 * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the
449 * addresses in the hole so that they start at 0x100000000.
452 base = dhar_base(pvt);
454 *hole_base = base;
455 *hole_size = (0x1ull << 32) - base;
457 if (boot_cpu_data.x86 > 0xf)
458 *hole_offset = f10_dhar_offset(pvt);
459 else
460 *hole_offset = k8_dhar_offset(pvt);
462 debugf1(" DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
463 pvt->mc_node_id, (unsigned long)*hole_base,
464 (unsigned long)*hole_offset, (unsigned long)*hole_size);
466 return 0;
468 EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
471 * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is
472 * assumed that sys_addr maps to the node given by mci.
474 * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
475 * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
476 * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
477 * then it is also involved in translating a SysAddr to a DramAddr. Sections
478 * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
479 * These parts of the documentation are unclear. I interpret them as follows:
481 * When node n receives a SysAddr, it processes the SysAddr as follows:
483 * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
484 * Limit registers for node n. If the SysAddr is not within the range
485 * specified by the base and limit values, then node n ignores the Sysaddr
486 * (since it does not map to node n). Otherwise continue to step 2 below.
488 * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
489 * disabled so skip to step 3 below. Otherwise see if the SysAddr is within
490 * the range of relocated addresses (starting at 0x100000000) from the DRAM
491 * hole. If not, skip to step 3 below. Else get the value of the
492 * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
493 * offset defined by this value from the SysAddr.
495 * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
496 * Base register for node n. To obtain the DramAddr, subtract the base
497 * address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
499 static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
501 struct amd64_pvt *pvt = mci->pvt_info;
502 u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
503 int ret = 0;
505 dram_base = get_dram_base(pvt, pvt->mc_node_id);
507 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
508 &hole_size);
509 if (!ret) {
510 if ((sys_addr >= (1ull << 32)) &&
511 (sys_addr < ((1ull << 32) + hole_size))) {
512 /* use DHAR to translate SysAddr to DramAddr */
513 dram_addr = sys_addr - hole_offset;
515 debugf2("using DHAR to translate SysAddr 0x%lx to "
516 "DramAddr 0x%lx\n",
517 (unsigned long)sys_addr,
518 (unsigned long)dram_addr);
520 return dram_addr;
525 * Translate the SysAddr to a DramAddr as shown near the start of
526 * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8
527 * only deals with 40-bit values. Therefore we discard bits 63-40 of
528 * sys_addr below. If bit 39 of sys_addr is 1 then the bits we
529 * discard are all 1s. Otherwise the bits we discard are all 0s. See
530 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
531 * Programmer's Manual Volume 1 Application Programming.
533 dram_addr = (sys_addr & GENMASK(0, 39)) - dram_base;
535 debugf2("using DRAM Base register to translate SysAddr 0x%lx to "
536 "DramAddr 0x%lx\n", (unsigned long)sys_addr,
537 (unsigned long)dram_addr);
538 return dram_addr;
542 * @intlv_en is the value of the IntlvEn field from a DRAM Base register
543 * (section 3.4.4.1). Return the number of bits from a SysAddr that are used
544 * for node interleaving.
546 static int num_node_interleave_bits(unsigned intlv_en)
548 static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
549 int n;
551 BUG_ON(intlv_en > 7);
552 n = intlv_shift_table[intlv_en];
553 return n;
556 /* Translate the DramAddr given by @dram_addr to an InputAddr. */
557 static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
559 struct amd64_pvt *pvt;
560 int intlv_shift;
561 u64 input_addr;
563 pvt = mci->pvt_info;
566 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
567 * concerning translating a DramAddr to an InputAddr.
569 intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
570 input_addr = ((dram_addr >> intlv_shift) & GENMASK(12, 35)) +
571 (dram_addr & 0xfff);
573 debugf2(" Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
574 intlv_shift, (unsigned long)dram_addr,
575 (unsigned long)input_addr);
577 return input_addr;
581 * Translate the SysAddr represented by @sys_addr to an InputAddr. It is
582 * assumed that @sys_addr maps to the node given by mci.
584 static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
586 u64 input_addr;
588 input_addr =
589 dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
591 debugf2("SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
592 (unsigned long)sys_addr, (unsigned long)input_addr);
594 return input_addr;
599 * @input_addr is an InputAddr associated with the node represented by mci.
600 * Translate @input_addr to a DramAddr and return the result.
602 static u64 input_addr_to_dram_addr(struct mem_ctl_info *mci, u64 input_addr)
604 struct amd64_pvt *pvt;
605 int node_id, intlv_shift;
606 u64 bits, dram_addr;
607 u32 intlv_sel;
610 * Near the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
611 * shows how to translate a DramAddr to an InputAddr. Here we reverse
612 * this procedure. When translating from a DramAddr to an InputAddr, the
613 * bits used for node interleaving are discarded. Here we recover these
614 * bits from the IntlvSel field of the DRAM Limit register (section
615 * 3.4.4.2) for the node that input_addr is associated with.
617 pvt = mci->pvt_info;
618 node_id = pvt->mc_node_id;
619 BUG_ON((node_id < 0) || (node_id > 7));
621 intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
623 if (intlv_shift == 0) {
624 debugf1(" InputAddr 0x%lx translates to DramAddr of "
625 "same value\n", (unsigned long)input_addr);
627 return input_addr;
630 bits = ((input_addr & GENMASK(12, 35)) << intlv_shift) +
631 (input_addr & 0xfff);
633 intlv_sel = dram_intlv_sel(pvt, node_id) & ((1 << intlv_shift) - 1);
634 dram_addr = bits + (intlv_sel << 12);
636 debugf1("InputAddr 0x%lx translates to DramAddr 0x%lx "
637 "(%d node interleave bits)\n", (unsigned long)input_addr,
638 (unsigned long)dram_addr, intlv_shift);
640 return dram_addr;
644 * @dram_addr is a DramAddr that maps to the node represented by mci. Convert
645 * @dram_addr to a SysAddr.
647 static u64 dram_addr_to_sys_addr(struct mem_ctl_info *mci, u64 dram_addr)
649 struct amd64_pvt *pvt = mci->pvt_info;
650 u64 hole_base, hole_offset, hole_size, base, sys_addr;
651 int ret = 0;
653 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
654 &hole_size);
655 if (!ret) {
656 if ((dram_addr >= hole_base) &&
657 (dram_addr < (hole_base + hole_size))) {
658 sys_addr = dram_addr + hole_offset;
660 debugf1("using DHAR to translate DramAddr 0x%lx to "
661 "SysAddr 0x%lx\n", (unsigned long)dram_addr,
662 (unsigned long)sys_addr);
664 return sys_addr;
668 base = get_dram_base(pvt, pvt->mc_node_id);
669 sys_addr = dram_addr + base;
672 * The sys_addr we have computed up to this point is a 40-bit value
673 * because the k8 deals with 40-bit values. However, the value we are
674 * supposed to return is a full 64-bit physical address. The AMD
675 * x86-64 architecture specifies that the most significant implemented
676 * address bit through bit 63 of a physical address must be either all
677 * 0s or all 1s. Therefore we sign-extend the 40-bit sys_addr to a
678 * 64-bit value below. See section 3.4.2 of AMD publication 24592:
679 * AMD x86-64 Architecture Programmer's Manual Volume 1 Application
680 * Programming.
682 sys_addr |= ~((sys_addr & (1ull << 39)) - 1);
684 debugf1(" Node %d, DramAddr 0x%lx to SysAddr 0x%lx\n",
685 pvt->mc_node_id, (unsigned long)dram_addr,
686 (unsigned long)sys_addr);
688 return sys_addr;
692 * @input_addr is an InputAddr associated with the node given by mci. Translate
693 * @input_addr to a SysAddr.
695 static inline u64 input_addr_to_sys_addr(struct mem_ctl_info *mci,
696 u64 input_addr)
698 return dram_addr_to_sys_addr(mci,
699 input_addr_to_dram_addr(mci, input_addr));
703 * Find the minimum and maximum InputAddr values that map to the given @csrow.
704 * Pass back these values in *input_addr_min and *input_addr_max.
706 static void find_csrow_limits(struct mem_ctl_info *mci, int csrow,
707 u64 *input_addr_min, u64 *input_addr_max)
709 struct amd64_pvt *pvt;
710 u64 base, mask;
712 pvt = mci->pvt_info;
713 BUG_ON((csrow < 0) || (csrow >= pvt->csels[0].b_cnt));
715 get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);
717 *input_addr_min = base & ~mask;
718 *input_addr_max = base | mask;
721 /* Map the Error address to a PAGE and PAGE OFFSET. */
722 static inline void error_address_to_page_and_offset(u64 error_address,
723 u32 *page, u32 *offset)
725 *page = (u32) (error_address >> PAGE_SHIFT);
726 *offset = ((u32) error_address) & ~PAGE_MASK;
730 * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
731 * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
732 * of a node that detected an ECC memory error. mci represents the node that
733 * the error address maps to (possibly different from the node that detected
734 * the error). Return the number of the csrow that sys_addr maps to, or -1 on
735 * error.
737 static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
739 int csrow;
741 csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
743 if (csrow == -1)
744 amd64_mc_err(mci, "Failed to translate InputAddr to csrow for "
745 "address 0x%lx\n", (unsigned long)sys_addr);
746 return csrow;
749 static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
752 * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
753 * are ECC capable.
755 static enum edac_type amd64_determine_edac_cap(struct amd64_pvt *pvt)
757 u8 bit;
758 enum dev_type edac_cap = EDAC_FLAG_NONE;
760 bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= K8_REV_F)
761 ? 19
762 : 17;
764 if (pvt->dclr0 & BIT(bit))
765 edac_cap = EDAC_FLAG_SECDED;
767 return edac_cap;
771 static void amd64_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt);
773 static void amd64_dump_dramcfg_low(u32 dclr, int chan)
775 debugf1("F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);
777 debugf1(" DIMM type: %sbuffered; all DIMMs support ECC: %s\n",
778 (dclr & BIT(16)) ? "un" : "",
779 (dclr & BIT(19)) ? "yes" : "no");
781 debugf1(" PAR/ERR parity: %s\n",
782 (dclr & BIT(8)) ? "enabled" : "disabled");
784 if (boot_cpu_data.x86 == 0x10)
785 debugf1(" DCT 128bit mode width: %s\n",
786 (dclr & BIT(11)) ? "128b" : "64b");
788 debugf1(" x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
789 (dclr & BIT(12)) ? "yes" : "no",
790 (dclr & BIT(13)) ? "yes" : "no",
791 (dclr & BIT(14)) ? "yes" : "no",
792 (dclr & BIT(15)) ? "yes" : "no");
795 /* Display and decode various NB registers for debug purposes. */
796 static void dump_misc_regs(struct amd64_pvt *pvt)
798 debugf1("F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);
800 debugf1(" NB two channel DRAM capable: %s\n",
801 (pvt->nbcap & NBCAP_DCT_DUAL) ? "yes" : "no");
803 debugf1(" ECC capable: %s, ChipKill ECC capable: %s\n",
804 (pvt->nbcap & NBCAP_SECDED) ? "yes" : "no",
805 (pvt->nbcap & NBCAP_CHIPKILL) ? "yes" : "no");
807 amd64_dump_dramcfg_low(pvt->dclr0, 0);
809 debugf1("F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
811 debugf1("F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, "
812 "offset: 0x%08x\n",
813 pvt->dhar, dhar_base(pvt),
814 (boot_cpu_data.x86 == 0xf) ? k8_dhar_offset(pvt)
815 : f10_dhar_offset(pvt));
817 debugf1(" DramHoleValid: %s\n", dhar_valid(pvt) ? "yes" : "no");
819 amd64_debug_display_dimm_sizes(0, pvt);
821 /* everything below this point is Fam10h and above */
822 if (boot_cpu_data.x86 == 0xf)
823 return;
825 amd64_debug_display_dimm_sizes(1, pvt);
827 amd64_info("using %s syndromes.\n", ((pvt->ecc_sym_sz == 8) ? "x8" : "x4"));
829 /* Only if NOT ganged does dclr1 have valid info */
830 if (!dct_ganging_enabled(pvt))
831 amd64_dump_dramcfg_low(pvt->dclr1, 1);
835 * see BKDG, F2x[1,0][5C:40], F2[1,0][6C:60]
837 static void prep_chip_selects(struct amd64_pvt *pvt)
839 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
840 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
841 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 8;
842 } else {
843 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
844 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 4;
849 * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask registers
851 static void read_dct_base_mask(struct amd64_pvt *pvt)
853 int cs;
855 prep_chip_selects(pvt);
857 for_each_chip_select(cs, 0, pvt) {
858 u32 reg0 = DCSB0 + (cs * 4);
859 u32 reg1 = DCSB1 + (cs * 4);
860 u32 *base0 = &pvt->csels[0].csbases[cs];
861 u32 *base1 = &pvt->csels[1].csbases[cs];
863 if (!amd64_read_dct_pci_cfg(pvt, reg0, base0))
864 debugf0(" DCSB0[%d]=0x%08x reg: F2x%x\n",
865 cs, *base0, reg0);
867 if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt))
868 continue;
870 if (!amd64_read_dct_pci_cfg(pvt, reg1, base1))
871 debugf0(" DCSB1[%d]=0x%08x reg: F2x%x\n",
872 cs, *base1, reg1);
875 for_each_chip_select_mask(cs, 0, pvt) {
876 u32 reg0 = DCSM0 + (cs * 4);
877 u32 reg1 = DCSM1 + (cs * 4);
878 u32 *mask0 = &pvt->csels[0].csmasks[cs];
879 u32 *mask1 = &pvt->csels[1].csmasks[cs];
881 if (!amd64_read_dct_pci_cfg(pvt, reg0, mask0))
882 debugf0(" DCSM0[%d]=0x%08x reg: F2x%x\n",
883 cs, *mask0, reg0);
885 if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt))
886 continue;
888 if (!amd64_read_dct_pci_cfg(pvt, reg1, mask1))
889 debugf0(" DCSM1[%d]=0x%08x reg: F2x%x\n",
890 cs, *mask1, reg1);
894 static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt, int cs)
896 enum mem_type type;
898 /* F15h supports only DDR3 */
899 if (boot_cpu_data.x86 >= 0x15)
900 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
901 else if (boot_cpu_data.x86 == 0x10 || pvt->ext_model >= K8_REV_F) {
902 if (pvt->dchr0 & DDR3_MODE)
903 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
904 else
905 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
906 } else {
907 type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
910 amd64_info("CS%d: %s\n", cs, edac_mem_types[type]);
912 return type;
915 /* Get the number of DCT channels the memory controller is using. */
916 static int k8_early_channel_count(struct amd64_pvt *pvt)
918 int flag;
920 if (pvt->ext_model >= K8_REV_F)
921 /* RevF (NPT) and later */
922 flag = pvt->dclr0 & WIDTH_128;
923 else
924 /* RevE and earlier */
925 flag = pvt->dclr0 & REVE_WIDTH_128;
927 /* not used */
928 pvt->dclr1 = 0;
930 return (flag) ? 2 : 1;
933 /* On F10h and later ErrAddr is MC4_ADDR[47:1] */
934 static u64 get_error_address(struct mce *m)
936 u8 start_bit = 1;
937 u8 end_bit = 47;
939 if (boot_cpu_data.x86 == 0xf) {
940 start_bit = 3;
941 end_bit = 39;
944 return m->addr & GENMASK(start_bit, end_bit);
947 static void read_dram_base_limit_regs(struct amd64_pvt *pvt, unsigned range)
949 u32 off = range << 3;
951 amd64_read_pci_cfg(pvt->F1, DRAM_BASE_LO + off, &pvt->ranges[range].base.lo);
952 amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_LO + off, &pvt->ranges[range].lim.lo);
954 if (boot_cpu_data.x86 == 0xf)
955 return;
957 if (!dram_rw(pvt, range))
958 return;
960 amd64_read_pci_cfg(pvt->F1, DRAM_BASE_HI + off, &pvt->ranges[range].base.hi);
961 amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_HI + off, &pvt->ranges[range].lim.hi);
964 static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
965 u16 syndrome)
967 struct mem_ctl_info *src_mci;
968 struct amd64_pvt *pvt = mci->pvt_info;
969 int channel, csrow;
970 u32 page, offset;
972 /* CHIPKILL enabled */
973 if (pvt->nbcfg & NBCFG_CHIPKILL) {
974 channel = get_channel_from_ecc_syndrome(mci, syndrome);
975 if (channel < 0) {
977 * Syndrome didn't map, so we don't know which of the
978 * 2 DIMMs is in error. So we need to ID 'both' of them
979 * as suspect.
981 amd64_mc_warn(mci, "unknown syndrome 0x%04x - possible "
982 "error reporting race\n", syndrome);
983 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
984 return;
986 } else {
988 * non-chipkill ecc mode
990 * The k8 documentation is unclear about how to determine the
991 * channel number when using non-chipkill memory. This method
992 * was obtained from email communication with someone at AMD.
993 * (Wish the email was placed in this comment - norsk)
995 channel = ((sys_addr & BIT(3)) != 0);
999 * Find out which node the error address belongs to. This may be
1000 * different from the node that detected the error.
1002 src_mci = find_mc_by_sys_addr(mci, sys_addr);
1003 if (!src_mci) {
1004 amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n",
1005 (unsigned long)sys_addr);
1006 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1007 return;
1010 /* Now map the sys_addr to a CSROW */
1011 csrow = sys_addr_to_csrow(src_mci, sys_addr);
1012 if (csrow < 0) {
1013 edac_mc_handle_ce_no_info(src_mci, EDAC_MOD_STR);
1014 } else {
1015 error_address_to_page_and_offset(sys_addr, &page, &offset);
1017 edac_mc_handle_ce(src_mci, page, offset, syndrome, csrow,
1018 channel, EDAC_MOD_STR);
1022 static int ddr2_cs_size(unsigned i, bool dct_width)
1024 unsigned shift = 0;
1026 if (i <= 2)
1027 shift = i;
1028 else if (!(i & 0x1))
1029 shift = i >> 1;
1030 else
1031 shift = (i + 1) >> 1;
1033 return 128 << (shift + !!dct_width);
1036 static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1037 unsigned cs_mode)
1039 u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
1041 if (pvt->ext_model >= K8_REV_F) {
1042 WARN_ON(cs_mode > 11);
1043 return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
1045 else if (pvt->ext_model >= K8_REV_D) {
1046 WARN_ON(cs_mode > 10);
1048 if (cs_mode == 3 || cs_mode == 8)
1049 return 32 << (cs_mode - 1);
1050 else
1051 return 32 << cs_mode;
1053 else {
1054 WARN_ON(cs_mode > 6);
1055 return 32 << cs_mode;
1060 * Get the number of DCT channels in use.
1062 * Return:
1063 * number of Memory Channels in operation
1064 * Pass back:
1065 * contents of the DCL0_LOW register
1067 static int f1x_early_channel_count(struct amd64_pvt *pvt)
1069 int i, j, channels = 0;
1071 /* On F10h, if we are in 128 bit mode, then we are using 2 channels */
1072 if (boot_cpu_data.x86 == 0x10 && (pvt->dclr0 & WIDTH_128))
1073 return 2;
1076 * Need to check if in unganged mode: In such, there are 2 channels,
1077 * but they are not in 128 bit mode and thus the above 'dclr0' status
1078 * bit will be OFF.
1080 * Need to check DCT0[0] and DCT1[0] to see if only one of them has
1081 * their CSEnable bit on. If so, then SINGLE DIMM case.
1083 debugf0("Data width is not 128 bits - need more decoding\n");
1086 * Check DRAM Bank Address Mapping values for each DIMM to see if there
1087 * is more than just one DIMM present in unganged mode. Need to check
1088 * both controllers since DIMMs can be placed in either one.
1090 for (i = 0; i < 2; i++) {
1091 u32 dbam = (i ? pvt->dbam1 : pvt->dbam0);
1093 for (j = 0; j < 4; j++) {
1094 if (DBAM_DIMM(j, dbam) > 0) {
1095 channels++;
1096 break;
1101 if (channels > 2)
1102 channels = 2;
1104 amd64_info("MCT channel count: %d\n", channels);
1106 return channels;
1109 static int ddr3_cs_size(unsigned i, bool dct_width)
1111 unsigned shift = 0;
1112 int cs_size = 0;
1114 if (i == 0 || i == 3 || i == 4)
1115 cs_size = -1;
1116 else if (i <= 2)
1117 shift = i;
1118 else if (i == 12)
1119 shift = 7;
1120 else if (!(i & 0x1))
1121 shift = i >> 1;
1122 else
1123 shift = (i + 1) >> 1;
1125 if (cs_size != -1)
1126 cs_size = (128 * (1 << !!dct_width)) << shift;
1128 return cs_size;
1131 static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1132 unsigned cs_mode)
1134 u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
1136 WARN_ON(cs_mode > 11);
1138 if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
1139 return ddr3_cs_size(cs_mode, dclr & WIDTH_128);
1140 else
1141 return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
1145 * F15h supports only 64bit DCT interfaces
1147 static int f15_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1148 unsigned cs_mode)
1150 WARN_ON(cs_mode > 12);
1152 return ddr3_cs_size(cs_mode, false);
1155 static void read_dram_ctl_register(struct amd64_pvt *pvt)
1158 if (boot_cpu_data.x86 == 0xf)
1159 return;
1161 if (!amd64_read_dct_pci_cfg(pvt, DCT_SEL_LO, &pvt->dct_sel_lo)) {
1162 debugf0("F2x110 (DCTSelLow): 0x%08x, High range addrs at: 0x%x\n",
1163 pvt->dct_sel_lo, dct_sel_baseaddr(pvt));
1165 debugf0(" DCTs operate in %s mode.\n",
1166 (dct_ganging_enabled(pvt) ? "ganged" : "unganged"));
1168 if (!dct_ganging_enabled(pvt))
1169 debugf0(" Address range split per DCT: %s\n",
1170 (dct_high_range_enabled(pvt) ? "yes" : "no"));
1172 debugf0(" data interleave for ECC: %s, "
1173 "DRAM cleared since last warm reset: %s\n",
1174 (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
1175 (dct_memory_cleared(pvt) ? "yes" : "no"));
1177 debugf0(" channel interleave: %s, "
1178 "interleave bits selector: 0x%x\n",
1179 (dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
1180 dct_sel_interleave_addr(pvt));
1183 amd64_read_dct_pci_cfg(pvt, DCT_SEL_HI, &pvt->dct_sel_hi);
1187 * Determine channel (DCT) based on the interleaving mode: F10h BKDG, 2.8.9 Memory
1188 * Interleaving Modes.
1190 static u8 f1x_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
1191 bool hi_range_sel, u8 intlv_en)
1193 u32 dct_sel_high = (pvt->dct_sel_lo >> 1) & 1;
1195 if (dct_ganging_enabled(pvt))
1196 return 0;
1198 if (hi_range_sel)
1199 return dct_sel_high;
1202 * see F2x110[DctSelIntLvAddr] - channel interleave mode
1204 if (dct_interleave_enabled(pvt)) {
1205 u8 intlv_addr = dct_sel_interleave_addr(pvt);
1207 /* return DCT select function: 0=DCT0, 1=DCT1 */
1208 if (!intlv_addr)
1209 return sys_addr >> 6 & 1;
1211 if (intlv_addr & 0x2) {
1212 u8 shift = intlv_addr & 0x1 ? 9 : 6;
1213 u32 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;
1215 return ((sys_addr >> shift) & 1) ^ temp;
1218 return (sys_addr >> (12 + hweight8(intlv_en))) & 1;
1221 if (dct_high_range_enabled(pvt))
1222 return ~dct_sel_high & 1;
1224 return 0;
1227 /* Convert the sys_addr to the normalized DCT address */
1228 static u64 f1x_get_norm_dct_addr(struct amd64_pvt *pvt, int range,
1229 u64 sys_addr, bool hi_rng,
1230 u32 dct_sel_base_addr)
1232 u64 chan_off;
1233 u64 dram_base = get_dram_base(pvt, range);
1234 u64 hole_off = f10_dhar_offset(pvt);
1235 u32 hole_valid = dhar_valid(pvt);
1236 u64 dct_sel_base_off = (pvt->dct_sel_hi & 0xFFFFFC00) << 16;
1238 if (hi_rng) {
1240 * if
1241 * base address of high range is below 4Gb
1242 * (bits [47:27] at [31:11])
1243 * DRAM address space on this DCT is hoisted above 4Gb &&
1244 * sys_addr > 4Gb
1246 * remove hole offset from sys_addr
1247 * else
1248 * remove high range offset from sys_addr
1250 if ((!(dct_sel_base_addr >> 16) ||
1251 dct_sel_base_addr < dhar_base(pvt)) &&
1252 hole_valid &&
1253 (sys_addr >= BIT_64(32)))
1254 chan_off = hole_off;
1255 else
1256 chan_off = dct_sel_base_off;
1257 } else {
1259 * if
1260 * we have a valid hole &&
1261 * sys_addr > 4Gb
1263 * remove hole
1264 * else
1265 * remove dram base to normalize to DCT address
1267 if (hole_valid && (sys_addr >= BIT_64(32)))
1268 chan_off = hole_off;
1269 else
1270 chan_off = dram_base;
1273 return (sys_addr & GENMASK(6,47)) - (chan_off & GENMASK(23,47));
1277 * checks if the csrow passed in is marked as SPARED, if so returns the new
1278 * spare row
1280 static int f10_process_possible_spare(struct amd64_pvt *pvt, u8 dct, int csrow)
1282 int tmp_cs;
1284 if (online_spare_swap_done(pvt, dct) &&
1285 csrow == online_spare_bad_dramcs(pvt, dct)) {
1287 for_each_chip_select(tmp_cs, dct, pvt) {
1288 if (chip_select_base(tmp_cs, dct, pvt) & 0x2) {
1289 csrow = tmp_cs;
1290 break;
1294 return csrow;
1298 * Iterate over the DRAM DCT "base" and "mask" registers looking for a
1299 * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
1301 * Return:
1302 * -EINVAL: NOT FOUND
1303 * 0..csrow = Chip-Select Row
1305 static int f1x_lookup_addr_in_dct(u64 in_addr, u32 nid, u8 dct)
1307 struct mem_ctl_info *mci;
1308 struct amd64_pvt *pvt;
1309 u64 cs_base, cs_mask;
1310 int cs_found = -EINVAL;
1311 int csrow;
1313 mci = mcis[nid];
1314 if (!mci)
1315 return cs_found;
1317 pvt = mci->pvt_info;
1319 debugf1("input addr: 0x%llx, DCT: %d\n", in_addr, dct);
1321 for_each_chip_select(csrow, dct, pvt) {
1322 if (!csrow_enabled(csrow, dct, pvt))
1323 continue;
1325 get_cs_base_and_mask(pvt, csrow, dct, &cs_base, &cs_mask);
1327 debugf1(" CSROW=%d CSBase=0x%llx CSMask=0x%llx\n",
1328 csrow, cs_base, cs_mask);
1330 cs_mask = ~cs_mask;
1332 debugf1(" (InputAddr & ~CSMask)=0x%llx "
1333 "(CSBase & ~CSMask)=0x%llx\n",
1334 (in_addr & cs_mask), (cs_base & cs_mask));
1336 if ((in_addr & cs_mask) == (cs_base & cs_mask)) {
1337 cs_found = f10_process_possible_spare(pvt, dct, csrow);
1339 debugf1(" MATCH csrow=%d\n", cs_found);
1340 break;
1343 return cs_found;
1347 * See F2x10C. Non-interleaved graphics framebuffer memory under the 16G is
1348 * swapped with a region located at the bottom of memory so that the GPU can use
1349 * the interleaved region and thus two channels.
1351 static u64 f1x_swap_interleaved_region(struct amd64_pvt *pvt, u64 sys_addr)
1353 u32 swap_reg, swap_base, swap_limit, rgn_size, tmp_addr;
1355 if (boot_cpu_data.x86 == 0x10) {
1356 /* only revC3 and revE have that feature */
1357 if (boot_cpu_data.x86_model < 4 ||
1358 (boot_cpu_data.x86_model < 0xa &&
1359 boot_cpu_data.x86_mask < 3))
1360 return sys_addr;
1363 amd64_read_dct_pci_cfg(pvt, SWAP_INTLV_REG, &swap_reg);
1365 if (!(swap_reg & 0x1))
1366 return sys_addr;
1368 swap_base = (swap_reg >> 3) & 0x7f;
1369 swap_limit = (swap_reg >> 11) & 0x7f;
1370 rgn_size = (swap_reg >> 20) & 0x7f;
1371 tmp_addr = sys_addr >> 27;
1373 if (!(sys_addr >> 34) &&
1374 (((tmp_addr >= swap_base) &&
1375 (tmp_addr <= swap_limit)) ||
1376 (tmp_addr < rgn_size)))
1377 return sys_addr ^ (u64)swap_base << 27;
1379 return sys_addr;
1382 /* For a given @dram_range, check if @sys_addr falls within it. */
1383 static int f1x_match_to_this_node(struct amd64_pvt *pvt, int range,
1384 u64 sys_addr, int *nid, int *chan_sel)
1386 int cs_found = -EINVAL;
1387 u64 chan_addr;
1388 u32 dct_sel_base;
1389 u8 channel;
1390 bool high_range = false;
1392 u8 node_id = dram_dst_node(pvt, range);
1393 u8 intlv_en = dram_intlv_en(pvt, range);
1394 u32 intlv_sel = dram_intlv_sel(pvt, range);
1396 debugf1("(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
1397 range, sys_addr, get_dram_limit(pvt, range));
1399 if (dhar_valid(pvt) &&
1400 dhar_base(pvt) <= sys_addr &&
1401 sys_addr < BIT_64(32)) {
1402 amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
1403 sys_addr);
1404 return -EINVAL;
1407 if (intlv_en &&
1408 (intlv_sel != ((sys_addr >> 12) & intlv_en))) {
1409 amd64_warn("Botched intlv bits, en: 0x%x, sel: 0x%x\n",
1410 intlv_en, intlv_sel);
1411 return -EINVAL;
1414 sys_addr = f1x_swap_interleaved_region(pvt, sys_addr);
1416 dct_sel_base = dct_sel_baseaddr(pvt);
1419 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
1420 * select between DCT0 and DCT1.
1422 if (dct_high_range_enabled(pvt) &&
1423 !dct_ganging_enabled(pvt) &&
1424 ((sys_addr >> 27) >= (dct_sel_base >> 11)))
1425 high_range = true;
1427 channel = f1x_determine_channel(pvt, sys_addr, high_range, intlv_en);
1429 chan_addr = f1x_get_norm_dct_addr(pvt, range, sys_addr,
1430 high_range, dct_sel_base);
1432 /* Remove node interleaving, see F1x120 */
1433 if (intlv_en)
1434 chan_addr = ((chan_addr >> (12 + hweight8(intlv_en))) << 12) |
1435 (chan_addr & 0xfff);
1437 /* remove channel interleave */
1438 if (dct_interleave_enabled(pvt) &&
1439 !dct_high_range_enabled(pvt) &&
1440 !dct_ganging_enabled(pvt)) {
1442 if (dct_sel_interleave_addr(pvt) != 1) {
1443 if (dct_sel_interleave_addr(pvt) == 0x3)
1444 /* hash 9 */
1445 chan_addr = ((chan_addr >> 10) << 9) |
1446 (chan_addr & 0x1ff);
1447 else
1448 /* A[6] or hash 6 */
1449 chan_addr = ((chan_addr >> 7) << 6) |
1450 (chan_addr & 0x3f);
1451 } else
1452 /* A[12] */
1453 chan_addr = ((chan_addr >> 13) << 12) |
1454 (chan_addr & 0xfff);
1457 debugf1(" Normalized DCT addr: 0x%llx\n", chan_addr);
1459 cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, channel);
1461 if (cs_found >= 0) {
1462 *nid = node_id;
1463 *chan_sel = channel;
1465 return cs_found;
1468 static int f1x_translate_sysaddr_to_cs(struct amd64_pvt *pvt, u64 sys_addr,
1469 int *node, int *chan_sel)
1471 int range, cs_found = -EINVAL;
1473 for (range = 0; range < DRAM_RANGES; range++) {
1475 if (!dram_rw(pvt, range))
1476 continue;
1478 if ((get_dram_base(pvt, range) <= sys_addr) &&
1479 (get_dram_limit(pvt, range) >= sys_addr)) {
1481 cs_found = f1x_match_to_this_node(pvt, range,
1482 sys_addr, node,
1483 chan_sel);
1484 if (cs_found >= 0)
1485 break;
1488 return cs_found;
1492 * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
1493 * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
1495 * The @sys_addr is usually an error address received from the hardware
1496 * (MCX_ADDR).
1498 static void f1x_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
1499 u16 syndrome)
1501 struct amd64_pvt *pvt = mci->pvt_info;
1502 u32 page, offset;
1503 int nid, csrow, chan = 0;
1505 csrow = f1x_translate_sysaddr_to_cs(pvt, sys_addr, &nid, &chan);
1507 if (csrow < 0) {
1508 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1509 return;
1512 error_address_to_page_and_offset(sys_addr, &page, &offset);
1515 * We need the syndromes for channel detection only when we're
1516 * ganged. Otherwise @chan should already contain the channel at
1517 * this point.
1519 if (dct_ganging_enabled(pvt))
1520 chan = get_channel_from_ecc_syndrome(mci, syndrome);
1522 if (chan >= 0)
1523 edac_mc_handle_ce(mci, page, offset, syndrome, csrow, chan,
1524 EDAC_MOD_STR);
1525 else
1527 * Channel unknown, report all channels on this CSROW as failed.
1529 for (chan = 0; chan < mci->csrows[csrow].nr_channels; chan++)
1530 edac_mc_handle_ce(mci, page, offset, syndrome,
1531 csrow, chan, EDAC_MOD_STR);
1535 * debug routine to display the memory sizes of all logical DIMMs and its
1536 * CSROWs
1538 static void amd64_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt)
1540 int dimm, size0, size1, factor = 0;
1541 u32 *dcsb = ctrl ? pvt->csels[1].csbases : pvt->csels[0].csbases;
1542 u32 dbam = ctrl ? pvt->dbam1 : pvt->dbam0;
1544 if (boot_cpu_data.x86 == 0xf) {
1545 if (pvt->dclr0 & WIDTH_128)
1546 factor = 1;
1548 /* K8 families < revF not supported yet */
1549 if (pvt->ext_model < K8_REV_F)
1550 return;
1551 else
1552 WARN_ON(ctrl != 0);
1555 dbam = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->dbam1 : pvt->dbam0;
1556 dcsb = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->csels[1].csbases
1557 : pvt->csels[0].csbases;
1559 debugf1("F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n", ctrl, dbam);
1561 edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);
1563 /* Dump memory sizes for DIMM and its CSROWs */
1564 for (dimm = 0; dimm < 4; dimm++) {
1566 size0 = 0;
1567 if (dcsb[dimm*2] & DCSB_CS_ENABLE)
1568 size0 = pvt->ops->dbam_to_cs(pvt, ctrl,
1569 DBAM_DIMM(dimm, dbam));
1571 size1 = 0;
1572 if (dcsb[dimm*2 + 1] & DCSB_CS_ENABLE)
1573 size1 = pvt->ops->dbam_to_cs(pvt, ctrl,
1574 DBAM_DIMM(dimm, dbam));
1576 amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
1577 dimm * 2, size0 << factor,
1578 dimm * 2 + 1, size1 << factor);
1582 static struct amd64_family_type amd64_family_types[] = {
1583 [K8_CPUS] = {
1584 .ctl_name = "K8",
1585 .f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
1586 .f3_id = PCI_DEVICE_ID_AMD_K8_NB_MISC,
1587 .ops = {
1588 .early_channel_count = k8_early_channel_count,
1589 .map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow,
1590 .dbam_to_cs = k8_dbam_to_chip_select,
1591 .read_dct_pci_cfg = k8_read_dct_pci_cfg,
1594 [F10_CPUS] = {
1595 .ctl_name = "F10h",
1596 .f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP,
1597 .f3_id = PCI_DEVICE_ID_AMD_10H_NB_MISC,
1598 .ops = {
1599 .early_channel_count = f1x_early_channel_count,
1600 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
1601 .dbam_to_cs = f10_dbam_to_chip_select,
1602 .read_dct_pci_cfg = f10_read_dct_pci_cfg,
1605 [F15_CPUS] = {
1606 .ctl_name = "F15h",
1607 .ops = {
1608 .early_channel_count = f1x_early_channel_count,
1609 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
1610 .dbam_to_cs = f15_dbam_to_chip_select,
1611 .read_dct_pci_cfg = f15_read_dct_pci_cfg,
1616 static struct pci_dev *pci_get_related_function(unsigned int vendor,
1617 unsigned int device,
1618 struct pci_dev *related)
1620 struct pci_dev *dev = NULL;
1622 dev = pci_get_device(vendor, device, dev);
1623 while (dev) {
1624 if ((dev->bus->number == related->bus->number) &&
1625 (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
1626 break;
1627 dev = pci_get_device(vendor, device, dev);
1630 return dev;
1634 * These are tables of eigenvectors (one per line) which can be used for the
1635 * construction of the syndrome tables. The modified syndrome search algorithm
1636 * uses those to find the symbol in error and thus the DIMM.
1638 * Algorithm courtesy of Ross LaFetra from AMD.
1640 static u16 x4_vectors[] = {
1641 0x2f57, 0x1afe, 0x66cc, 0xdd88,
1642 0x11eb, 0x3396, 0x7f4c, 0xeac8,
1643 0x0001, 0x0002, 0x0004, 0x0008,
1644 0x1013, 0x3032, 0x4044, 0x8088,
1645 0x106b, 0x30d6, 0x70fc, 0xe0a8,
1646 0x4857, 0xc4fe, 0x13cc, 0x3288,
1647 0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
1648 0x1f39, 0x251e, 0xbd6c, 0x6bd8,
1649 0x15c1, 0x2a42, 0x89ac, 0x4758,
1650 0x2b03, 0x1602, 0x4f0c, 0xca08,
1651 0x1f07, 0x3a0e, 0x6b04, 0xbd08,
1652 0x8ba7, 0x465e, 0x244c, 0x1cc8,
1653 0x2b87, 0x164e, 0x642c, 0xdc18,
1654 0x40b9, 0x80de, 0x1094, 0x20e8,
1655 0x27db, 0x1eb6, 0x9dac, 0x7b58,
1656 0x11c1, 0x2242, 0x84ac, 0x4c58,
1657 0x1be5, 0x2d7a, 0x5e34, 0xa718,
1658 0x4b39, 0x8d1e, 0x14b4, 0x28d8,
1659 0x4c97, 0xc87e, 0x11fc, 0x33a8,
1660 0x8e97, 0x497e, 0x2ffc, 0x1aa8,
1661 0x16b3, 0x3d62, 0x4f34, 0x8518,
1662 0x1e2f, 0x391a, 0x5cac, 0xf858,
1663 0x1d9f, 0x3b7a, 0x572c, 0xfe18,
1664 0x15f5, 0x2a5a, 0x5264, 0xa3b8,
1665 0x1dbb, 0x3b66, 0x715c, 0xe3f8,
1666 0x4397, 0xc27e, 0x17fc, 0x3ea8,
1667 0x1617, 0x3d3e, 0x6464, 0xb8b8,
1668 0x23ff, 0x12aa, 0xab6c, 0x56d8,
1669 0x2dfb, 0x1ba6, 0x913c, 0x7328,
1670 0x185d, 0x2ca6, 0x7914, 0x9e28,
1671 0x171b, 0x3e36, 0x7d7c, 0xebe8,
1672 0x4199, 0x82ee, 0x19f4, 0x2e58,
1673 0x4807, 0xc40e, 0x130c, 0x3208,
1674 0x1905, 0x2e0a, 0x5804, 0xac08,
1675 0x213f, 0x132a, 0xadfc, 0x5ba8,
1676 0x19a9, 0x2efe, 0xb5cc, 0x6f88,
1679 static u16 x8_vectors[] = {
1680 0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
1681 0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
1682 0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
1683 0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
1684 0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
1685 0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
1686 0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
1687 0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
1688 0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
1689 0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
1690 0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
1691 0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
1692 0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
1693 0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
1694 0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
1695 0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
1696 0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
1697 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
1698 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
1701 static int decode_syndrome(u16 syndrome, u16 *vectors, int num_vecs,
1702 int v_dim)
1704 unsigned int i, err_sym;
1706 for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
1707 u16 s = syndrome;
1708 int v_idx = err_sym * v_dim;
1709 int v_end = (err_sym + 1) * v_dim;
1711 /* walk over all 16 bits of the syndrome */
1712 for (i = 1; i < (1U << 16); i <<= 1) {
1714 /* if bit is set in that eigenvector... */
1715 if (v_idx < v_end && vectors[v_idx] & i) {
1716 u16 ev_comp = vectors[v_idx++];
1718 /* ... and bit set in the modified syndrome, */
1719 if (s & i) {
1720 /* remove it. */
1721 s ^= ev_comp;
1723 if (!s)
1724 return err_sym;
1727 } else if (s & i)
1728 /* can't get to zero, move to next symbol */
1729 break;
1733 debugf0("syndrome(%x) not found\n", syndrome);
1734 return -1;
1737 static int map_err_sym_to_channel(int err_sym, int sym_size)
1739 if (sym_size == 4)
1740 switch (err_sym) {
1741 case 0x20:
1742 case 0x21:
1743 return 0;
1744 break;
1745 case 0x22:
1746 case 0x23:
1747 return 1;
1748 break;
1749 default:
1750 return err_sym >> 4;
1751 break;
1753 /* x8 symbols */
1754 else
1755 switch (err_sym) {
1756 /* imaginary bits not in a DIMM */
1757 case 0x10:
1758 WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
1759 err_sym);
1760 return -1;
1761 break;
1763 case 0x11:
1764 return 0;
1765 break;
1766 case 0x12:
1767 return 1;
1768 break;
1769 default:
1770 return err_sym >> 3;
1771 break;
1773 return -1;
1776 static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
1778 struct amd64_pvt *pvt = mci->pvt_info;
1779 int err_sym = -1;
1781 if (pvt->ecc_sym_sz == 8)
1782 err_sym = decode_syndrome(syndrome, x8_vectors,
1783 ARRAY_SIZE(x8_vectors),
1784 pvt->ecc_sym_sz);
1785 else if (pvt->ecc_sym_sz == 4)
1786 err_sym = decode_syndrome(syndrome, x4_vectors,
1787 ARRAY_SIZE(x4_vectors),
1788 pvt->ecc_sym_sz);
1789 else {
1790 amd64_warn("Illegal syndrome type: %u\n", pvt->ecc_sym_sz);
1791 return err_sym;
1794 return map_err_sym_to_channel(err_sym, pvt->ecc_sym_sz);
1798 * Handle any Correctable Errors (CEs) that have occurred. Check for valid ERROR
1799 * ADDRESS and process.
1801 static void amd64_handle_ce(struct mem_ctl_info *mci, struct mce *m)
1803 struct amd64_pvt *pvt = mci->pvt_info;
1804 u64 sys_addr;
1805 u16 syndrome;
1807 /* Ensure that the Error Address is VALID */
1808 if (!(m->status & MCI_STATUS_ADDRV)) {
1809 amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n");
1810 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1811 return;
1814 sys_addr = get_error_address(m);
1815 syndrome = extract_syndrome(m->status);
1817 amd64_mc_err(mci, "CE ERROR_ADDRESS= 0x%llx\n", sys_addr);
1819 pvt->ops->map_sysaddr_to_csrow(mci, sys_addr, syndrome);
1822 /* Handle any Un-correctable Errors (UEs) */
1823 static void amd64_handle_ue(struct mem_ctl_info *mci, struct mce *m)
1825 struct mem_ctl_info *log_mci, *src_mci = NULL;
1826 int csrow;
1827 u64 sys_addr;
1828 u32 page, offset;
1830 log_mci = mci;
1832 if (!(m->status & MCI_STATUS_ADDRV)) {
1833 amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n");
1834 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
1835 return;
1838 sys_addr = get_error_address(m);
1841 * Find out which node the error address belongs to. This may be
1842 * different from the node that detected the error.
1844 src_mci = find_mc_by_sys_addr(mci, sys_addr);
1845 if (!src_mci) {
1846 amd64_mc_err(mci, "ERROR ADDRESS (0x%lx) NOT mapped to a MC\n",
1847 (unsigned long)sys_addr);
1848 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
1849 return;
1852 log_mci = src_mci;
1854 csrow = sys_addr_to_csrow(log_mci, sys_addr);
1855 if (csrow < 0) {
1856 amd64_mc_err(mci, "ERROR_ADDRESS (0x%lx) NOT mapped to CS\n",
1857 (unsigned long)sys_addr);
1858 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
1859 } else {
1860 error_address_to_page_and_offset(sys_addr, &page, &offset);
1861 edac_mc_handle_ue(log_mci, page, offset, csrow, EDAC_MOD_STR);
1865 static inline void __amd64_decode_bus_error(struct mem_ctl_info *mci,
1866 struct mce *m)
1868 u16 ec = EC(m->status);
1869 u8 xec = XEC(m->status, 0x1f);
1870 u8 ecc_type = (m->status >> 45) & 0x3;
1872 /* Bail early out if this was an 'observed' error */
1873 if (PP(ec) == NBSL_PP_OBS)
1874 return;
1876 /* Do only ECC errors */
1877 if (xec && xec != F10_NBSL_EXT_ERR_ECC)
1878 return;
1880 if (ecc_type == 2)
1881 amd64_handle_ce(mci, m);
1882 else if (ecc_type == 1)
1883 amd64_handle_ue(mci, m);
1886 void amd64_decode_bus_error(int node_id, struct mce *m, u32 nbcfg)
1888 struct mem_ctl_info *mci = mcis[node_id];
1890 __amd64_decode_bus_error(mci, m);
1894 * Use pvt->F2 which contains the F2 CPU PCI device to get the related
1895 * F1 (AddrMap) and F3 (Misc) devices. Return negative value on error.
1897 static int reserve_mc_sibling_devs(struct amd64_pvt *pvt, u16 f1_id, u16 f3_id)
1899 /* Reserve the ADDRESS MAP Device */
1900 pvt->F1 = pci_get_related_function(pvt->F2->vendor, f1_id, pvt->F2);
1901 if (!pvt->F1) {
1902 amd64_err("error address map device not found: "
1903 "vendor %x device 0x%x (broken BIOS?)\n",
1904 PCI_VENDOR_ID_AMD, f1_id);
1905 return -ENODEV;
1908 /* Reserve the MISC Device */
1909 pvt->F3 = pci_get_related_function(pvt->F2->vendor, f3_id, pvt->F2);
1910 if (!pvt->F3) {
1911 pci_dev_put(pvt->F1);
1912 pvt->F1 = NULL;
1914 amd64_err("error F3 device not found: "
1915 "vendor %x device 0x%x (broken BIOS?)\n",
1916 PCI_VENDOR_ID_AMD, f3_id);
1918 return -ENODEV;
1920 debugf1("F1: %s\n", pci_name(pvt->F1));
1921 debugf1("F2: %s\n", pci_name(pvt->F2));
1922 debugf1("F3: %s\n", pci_name(pvt->F3));
1924 return 0;
1927 static void free_mc_sibling_devs(struct amd64_pvt *pvt)
1929 pci_dev_put(pvt->F1);
1930 pci_dev_put(pvt->F3);
1934 * Retrieve the hardware registers of the memory controller (this includes the
1935 * 'Address Map' and 'Misc' device regs)
1937 static void read_mc_regs(struct amd64_pvt *pvt)
1939 struct cpuinfo_x86 *c = &boot_cpu_data;
1940 u64 msr_val;
1941 u32 tmp;
1942 int range;
1945 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
1946 * those are Read-As-Zero
1948 rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
1949 debugf0(" TOP_MEM: 0x%016llx\n", pvt->top_mem);
1951 /* check first whether TOP_MEM2 is enabled */
1952 rdmsrl(MSR_K8_SYSCFG, msr_val);
1953 if (msr_val & (1U << 21)) {
1954 rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
1955 debugf0(" TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
1956 } else
1957 debugf0(" TOP_MEM2 disabled.\n");
1959 amd64_read_pci_cfg(pvt->F3, NBCAP, &pvt->nbcap);
1961 read_dram_ctl_register(pvt);
1963 for (range = 0; range < DRAM_RANGES; range++) {
1964 u8 rw;
1966 /* read settings for this DRAM range */
1967 read_dram_base_limit_regs(pvt, range);
1969 rw = dram_rw(pvt, range);
1970 if (!rw)
1971 continue;
1973 debugf1(" DRAM range[%d], base: 0x%016llx; limit: 0x%016llx\n",
1974 range,
1975 get_dram_base(pvt, range),
1976 get_dram_limit(pvt, range));
1978 debugf1(" IntlvEn=%s; Range access: %s%s IntlvSel=%d DstNode=%d\n",
1979 dram_intlv_en(pvt, range) ? "Enabled" : "Disabled",
1980 (rw & 0x1) ? "R" : "-",
1981 (rw & 0x2) ? "W" : "-",
1982 dram_intlv_sel(pvt, range),
1983 dram_dst_node(pvt, range));
1986 read_dct_base_mask(pvt);
1988 amd64_read_pci_cfg(pvt->F1, DHAR, &pvt->dhar);
1989 amd64_read_dct_pci_cfg(pvt, DBAM0, &pvt->dbam0);
1991 amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare);
1993 amd64_read_dct_pci_cfg(pvt, DCLR0, &pvt->dclr0);
1994 amd64_read_dct_pci_cfg(pvt, DCHR0, &pvt->dchr0);
1996 if (!dct_ganging_enabled(pvt)) {
1997 amd64_read_dct_pci_cfg(pvt, DCLR1, &pvt->dclr1);
1998 amd64_read_dct_pci_cfg(pvt, DCHR1, &pvt->dchr1);
2001 pvt->ecc_sym_sz = 4;
2003 if (c->x86 >= 0x10) {
2004 amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp);
2005 amd64_read_dct_pci_cfg(pvt, DBAM1, &pvt->dbam1);
2007 /* F10h, revD and later can do x8 ECC too */
2008 if ((c->x86 > 0x10 || c->x86_model > 7) && tmp & BIT(25))
2009 pvt->ecc_sym_sz = 8;
2011 dump_misc_regs(pvt);
2015 * NOTE: CPU Revision Dependent code
2017 * Input:
2018 * @csrow_nr ChipSelect Row Number (0..NUM_CHIPSELECTS-1)
2019 * k8 private pointer to -->
2020 * DRAM Bank Address mapping register
2021 * node_id
2022 * DCL register where dual_channel_active is
2024 * The DBAM register consists of 4 sets of 4 bits each definitions:
2026 * Bits: CSROWs
2027 * 0-3 CSROWs 0 and 1
2028 * 4-7 CSROWs 2 and 3
2029 * 8-11 CSROWs 4 and 5
2030 * 12-15 CSROWs 6 and 7
2032 * Values range from: 0 to 15
2033 * The meaning of the values depends on CPU revision and dual-channel state,
2034 * see relevant BKDG more info.
2036 * The memory controller provides for total of only 8 CSROWs in its current
2037 * architecture. Each "pair" of CSROWs normally represents just one DIMM in
2038 * single channel or two (2) DIMMs in dual channel mode.
2040 * The following code logic collapses the various tables for CSROW based on CPU
2041 * revision.
2043 * Returns:
2044 * The number of PAGE_SIZE pages on the specified CSROW number it
2045 * encompasses
2048 static u32 amd64_csrow_nr_pages(struct amd64_pvt *pvt, u8 dct, int csrow_nr)
2050 u32 cs_mode, nr_pages;
2053 * The math on this doesn't look right on the surface because x/2*4 can
2054 * be simplified to x*2 but this expression makes use of the fact that
2055 * it is integral math where 1/2=0. This intermediate value becomes the
2056 * number of bits to shift the DBAM register to extract the proper CSROW
2057 * field.
2059 cs_mode = (pvt->dbam0 >> ((csrow_nr / 2) * 4)) & 0xF;
2061 nr_pages = pvt->ops->dbam_to_cs(pvt, dct, cs_mode) << (20 - PAGE_SHIFT);
2064 * If dual channel then double the memory size of single channel.
2065 * Channel count is 1 or 2
2067 nr_pages <<= (pvt->channel_count - 1);
2069 debugf0(" (csrow=%d) DBAM map index= %d\n", csrow_nr, cs_mode);
2070 debugf0(" nr_pages= %u channel-count = %d\n",
2071 nr_pages, pvt->channel_count);
2073 return nr_pages;
2077 * Initialize the array of csrow attribute instances, based on the values
2078 * from pci config hardware registers.
2080 static int init_csrows(struct mem_ctl_info *mci)
2082 struct csrow_info *csrow;
2083 struct amd64_pvt *pvt = mci->pvt_info;
2084 u64 input_addr_min, input_addr_max, sys_addr, base, mask;
2085 u32 val;
2086 int i, empty = 1;
2088 amd64_read_pci_cfg(pvt->F3, NBCFG, &val);
2090 pvt->nbcfg = val;
2092 debugf0("node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
2093 pvt->mc_node_id, val,
2094 !!(val & NBCFG_CHIPKILL), !!(val & NBCFG_ECC_ENABLE));
2096 for_each_chip_select(i, 0, pvt) {
2097 csrow = &mci->csrows[i];
2099 if (!csrow_enabled(i, 0, pvt)) {
2100 debugf1("----CSROW %d EMPTY for node %d\n", i,
2101 pvt->mc_node_id);
2102 continue;
2105 debugf1("----CSROW %d VALID for MC node %d\n",
2106 i, pvt->mc_node_id);
2108 empty = 0;
2109 csrow->nr_pages = amd64_csrow_nr_pages(pvt, 0, i);
2110 find_csrow_limits(mci, i, &input_addr_min, &input_addr_max);
2111 sys_addr = input_addr_to_sys_addr(mci, input_addr_min);
2112 csrow->first_page = (u32) (sys_addr >> PAGE_SHIFT);
2113 sys_addr = input_addr_to_sys_addr(mci, input_addr_max);
2114 csrow->last_page = (u32) (sys_addr >> PAGE_SHIFT);
2116 get_cs_base_and_mask(pvt, i, 0, &base, &mask);
2117 csrow->page_mask = ~mask;
2118 /* 8 bytes of resolution */
2120 csrow->mtype = amd64_determine_memory_type(pvt, i);
2122 debugf1(" for MC node %d csrow %d:\n", pvt->mc_node_id, i);
2123 debugf1(" input_addr_min: 0x%lx input_addr_max: 0x%lx\n",
2124 (unsigned long)input_addr_min,
2125 (unsigned long)input_addr_max);
2126 debugf1(" sys_addr: 0x%lx page_mask: 0x%lx\n",
2127 (unsigned long)sys_addr, csrow->page_mask);
2128 debugf1(" nr_pages: %u first_page: 0x%lx "
2129 "last_page: 0x%lx\n",
2130 (unsigned)csrow->nr_pages,
2131 csrow->first_page, csrow->last_page);
2134 * determine whether CHIPKILL or JUST ECC or NO ECC is operating
2136 if (pvt->nbcfg & NBCFG_ECC_ENABLE)
2137 csrow->edac_mode =
2138 (pvt->nbcfg & NBCFG_CHIPKILL) ?
2139 EDAC_S4ECD4ED : EDAC_SECDED;
2140 else
2141 csrow->edac_mode = EDAC_NONE;
2144 return empty;
2147 /* get all cores on this DCT */
2148 static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, int nid)
2150 int cpu;
2152 for_each_online_cpu(cpu)
2153 if (amd_get_nb_id(cpu) == nid)
2154 cpumask_set_cpu(cpu, mask);
2157 /* check MCG_CTL on all the cpus on this node */
2158 static bool amd64_nb_mce_bank_enabled_on_node(int nid)
2160 cpumask_var_t mask;
2161 int cpu, nbe;
2162 bool ret = false;
2164 if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
2165 amd64_warn("%s: Error allocating mask\n", __func__);
2166 return false;
2169 get_cpus_on_this_dct_cpumask(mask, nid);
2171 rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);
2173 for_each_cpu(cpu, mask) {
2174 struct msr *reg = per_cpu_ptr(msrs, cpu);
2175 nbe = reg->l & MSR_MCGCTL_NBE;
2177 debugf0("core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
2178 cpu, reg->q,
2179 (nbe ? "enabled" : "disabled"));
2181 if (!nbe)
2182 goto out;
2184 ret = true;
2186 out:
2187 free_cpumask_var(mask);
2188 return ret;
2191 static int toggle_ecc_err_reporting(struct ecc_settings *s, u8 nid, bool on)
2193 cpumask_var_t cmask;
2194 int cpu;
2196 if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
2197 amd64_warn("%s: error allocating mask\n", __func__);
2198 return false;
2201 get_cpus_on_this_dct_cpumask(cmask, nid);
2203 rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2205 for_each_cpu(cpu, cmask) {
2207 struct msr *reg = per_cpu_ptr(msrs, cpu);
2209 if (on) {
2210 if (reg->l & MSR_MCGCTL_NBE)
2211 s->flags.nb_mce_enable = 1;
2213 reg->l |= MSR_MCGCTL_NBE;
2214 } else {
2216 * Turn off NB MCE reporting only when it was off before
2218 if (!s->flags.nb_mce_enable)
2219 reg->l &= ~MSR_MCGCTL_NBE;
2222 wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2224 free_cpumask_var(cmask);
2226 return 0;
2229 static bool enable_ecc_error_reporting(struct ecc_settings *s, u8 nid,
2230 struct pci_dev *F3)
2232 bool ret = true;
2233 u32 value, mask = 0x3; /* UECC/CECC enable */
2235 if (toggle_ecc_err_reporting(s, nid, ON)) {
2236 amd64_warn("Error enabling ECC reporting over MCGCTL!\n");
2237 return false;
2240 amd64_read_pci_cfg(F3, NBCTL, &value);
2242 s->old_nbctl = value & mask;
2243 s->nbctl_valid = true;
2245 value |= mask;
2246 amd64_write_pci_cfg(F3, NBCTL, value);
2248 amd64_read_pci_cfg(F3, NBCFG, &value);
2250 debugf0("1: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
2251 nid, value, !!(value & NBCFG_ECC_ENABLE));
2253 if (!(value & NBCFG_ECC_ENABLE)) {
2254 amd64_warn("DRAM ECC disabled on this node, enabling...\n");
2256 s->flags.nb_ecc_prev = 0;
2258 /* Attempt to turn on DRAM ECC Enable */
2259 value |= NBCFG_ECC_ENABLE;
2260 amd64_write_pci_cfg(F3, NBCFG, value);
2262 amd64_read_pci_cfg(F3, NBCFG, &value);
2264 if (!(value & NBCFG_ECC_ENABLE)) {
2265 amd64_warn("Hardware rejected DRAM ECC enable,"
2266 "check memory DIMM configuration.\n");
2267 ret = false;
2268 } else {
2269 amd64_info("Hardware accepted DRAM ECC Enable\n");
2271 } else {
2272 s->flags.nb_ecc_prev = 1;
2275 debugf0("2: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
2276 nid, value, !!(value & NBCFG_ECC_ENABLE));
2278 return ret;
2281 static void restore_ecc_error_reporting(struct ecc_settings *s, u8 nid,
2282 struct pci_dev *F3)
2284 u32 value, mask = 0x3; /* UECC/CECC enable */
2287 if (!s->nbctl_valid)
2288 return;
2290 amd64_read_pci_cfg(F3, NBCTL, &value);
2291 value &= ~mask;
2292 value |= s->old_nbctl;
2294 amd64_write_pci_cfg(F3, NBCTL, value);
2296 /* restore previous BIOS DRAM ECC "off" setting we force-enabled */
2297 if (!s->flags.nb_ecc_prev) {
2298 amd64_read_pci_cfg(F3, NBCFG, &value);
2299 value &= ~NBCFG_ECC_ENABLE;
2300 amd64_write_pci_cfg(F3, NBCFG, value);
2303 /* restore the NB Enable MCGCTL bit */
2304 if (toggle_ecc_err_reporting(s, nid, OFF))
2305 amd64_warn("Error restoring NB MCGCTL settings!\n");
2309 * EDAC requires that the BIOS have ECC enabled before
2310 * taking over the processing of ECC errors. A command line
2311 * option allows to force-enable hardware ECC later in
2312 * enable_ecc_error_reporting().
2314 static const char *ecc_msg =
2315 "ECC disabled in the BIOS or no ECC capability, module will not load.\n"
2316 " Either enable ECC checking or force module loading by setting "
2317 "'ecc_enable_override'.\n"
2318 " (Note that use of the override may cause unknown side effects.)\n";
2320 static bool ecc_enabled(struct pci_dev *F3, u8 nid)
2322 u32 value;
2323 u8 ecc_en = 0;
2324 bool nb_mce_en = false;
2326 amd64_read_pci_cfg(F3, NBCFG, &value);
2328 ecc_en = !!(value & NBCFG_ECC_ENABLE);
2329 amd64_info("DRAM ECC %s.\n", (ecc_en ? "enabled" : "disabled"));
2331 nb_mce_en = amd64_nb_mce_bank_enabled_on_node(nid);
2332 if (!nb_mce_en)
2333 amd64_notice("NB MCE bank disabled, set MSR "
2334 "0x%08x[4] on node %d to enable.\n",
2335 MSR_IA32_MCG_CTL, nid);
2337 if (!ecc_en || !nb_mce_en) {
2338 amd64_notice("%s", ecc_msg);
2339 return false;
2341 return true;
2344 struct mcidev_sysfs_attribute sysfs_attrs[ARRAY_SIZE(amd64_dbg_attrs) +
2345 ARRAY_SIZE(amd64_inj_attrs) +
2348 struct mcidev_sysfs_attribute terminator = { .attr = { .name = NULL } };
2350 static void set_mc_sysfs_attrs(struct mem_ctl_info *mci)
2352 unsigned int i = 0, j = 0;
2354 for (; i < ARRAY_SIZE(amd64_dbg_attrs); i++)
2355 sysfs_attrs[i] = amd64_dbg_attrs[i];
2357 if (boot_cpu_data.x86 >= 0x10)
2358 for (j = 0; j < ARRAY_SIZE(amd64_inj_attrs); j++, i++)
2359 sysfs_attrs[i] = amd64_inj_attrs[j];
2361 sysfs_attrs[i] = terminator;
2363 mci->mc_driver_sysfs_attributes = sysfs_attrs;
2366 static void setup_mci_misc_attrs(struct mem_ctl_info *mci)
2368 struct amd64_pvt *pvt = mci->pvt_info;
2370 mci->mtype_cap = MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
2371 mci->edac_ctl_cap = EDAC_FLAG_NONE;
2373 if (pvt->nbcap & NBCAP_SECDED)
2374 mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
2376 if (pvt->nbcap & NBCAP_CHIPKILL)
2377 mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
2379 mci->edac_cap = amd64_determine_edac_cap(pvt);
2380 mci->mod_name = EDAC_MOD_STR;
2381 mci->mod_ver = EDAC_AMD64_VERSION;
2382 mci->ctl_name = pvt->ctl_name;
2383 mci->dev_name = pci_name(pvt->F2);
2384 mci->ctl_page_to_phys = NULL;
2386 /* memory scrubber interface */
2387 mci->set_sdram_scrub_rate = amd64_set_scrub_rate;
2388 mci->get_sdram_scrub_rate = amd64_get_scrub_rate;
2392 * returns a pointer to the family descriptor on success, NULL otherwise.
2394 static struct amd64_family_type *amd64_per_family_init(struct amd64_pvt *pvt)
2396 u8 fam = boot_cpu_data.x86;
2397 struct amd64_family_type *fam_type = NULL;
2399 switch (fam) {
2400 case 0xf:
2401 fam_type = &amd64_family_types[K8_CPUS];
2402 pvt->ops = &amd64_family_types[K8_CPUS].ops;
2403 pvt->ctl_name = fam_type->ctl_name;
2404 break;
2405 case 0x10:
2406 fam_type = &amd64_family_types[F10_CPUS];
2407 pvt->ops = &amd64_family_types[F10_CPUS].ops;
2408 pvt->ctl_name = fam_type->ctl_name;
2409 break;
2411 default:
2412 amd64_err("Unsupported family!\n");
2413 return NULL;
2416 pvt->ext_model = boot_cpu_data.x86_model >> 4;
2418 amd64_info("%s %sdetected (node %d).\n", pvt->ctl_name,
2419 (fam == 0xf ?
2420 (pvt->ext_model >= K8_REV_F ? "revF or later "
2421 : "revE or earlier ")
2422 : ""), pvt->mc_node_id);
2423 return fam_type;
2426 static int amd64_init_one_instance(struct pci_dev *F2)
2428 struct amd64_pvt *pvt = NULL;
2429 struct amd64_family_type *fam_type = NULL;
2430 struct mem_ctl_info *mci = NULL;
2431 int err = 0, ret;
2432 u8 nid = get_node_id(F2);
2434 ret = -ENOMEM;
2435 pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
2436 if (!pvt)
2437 goto err_ret;
2439 pvt->mc_node_id = nid;
2440 pvt->F2 = F2;
2442 ret = -EINVAL;
2443 fam_type = amd64_per_family_init(pvt);
2444 if (!fam_type)
2445 goto err_free;
2447 ret = -ENODEV;
2448 err = reserve_mc_sibling_devs(pvt, fam_type->f1_id, fam_type->f3_id);
2449 if (err)
2450 goto err_free;
2452 read_mc_regs(pvt);
2455 * We need to determine how many memory channels there are. Then use
2456 * that information for calculating the size of the dynamic instance
2457 * tables in the 'mci' structure.
2459 ret = -EINVAL;
2460 pvt->channel_count = pvt->ops->early_channel_count(pvt);
2461 if (pvt->channel_count < 0)
2462 goto err_siblings;
2464 ret = -ENOMEM;
2465 mci = edac_mc_alloc(0, pvt->csels[0].b_cnt, pvt->channel_count, nid);
2466 if (!mci)
2467 goto err_siblings;
2469 mci->pvt_info = pvt;
2470 mci->dev = &pvt->F2->dev;
2472 setup_mci_misc_attrs(mci);
2474 if (init_csrows(mci))
2475 mci->edac_cap = EDAC_FLAG_NONE;
2477 set_mc_sysfs_attrs(mci);
2479 ret = -ENODEV;
2480 if (edac_mc_add_mc(mci)) {
2481 debugf1("failed edac_mc_add_mc()\n");
2482 goto err_add_mc;
2485 /* register stuff with EDAC MCE */
2486 if (report_gart_errors)
2487 amd_report_gart_errors(true);
2489 amd_register_ecc_decoder(amd64_decode_bus_error);
2491 mcis[nid] = mci;
2493 atomic_inc(&drv_instances);
2495 return 0;
2497 err_add_mc:
2498 edac_mc_free(mci);
2500 err_siblings:
2501 free_mc_sibling_devs(pvt);
2503 err_free:
2504 kfree(pvt);
2506 err_ret:
2507 return ret;
2510 static int __devinit amd64_probe_one_instance(struct pci_dev *pdev,
2511 const struct pci_device_id *mc_type)
2513 u8 nid = get_node_id(pdev);
2514 struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
2515 struct ecc_settings *s;
2516 int ret = 0;
2518 ret = pci_enable_device(pdev);
2519 if (ret < 0) {
2520 debugf0("ret=%d\n", ret);
2521 return -EIO;
2524 ret = -ENOMEM;
2525 s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL);
2526 if (!s)
2527 goto err_out;
2529 ecc_stngs[nid] = s;
2531 if (!ecc_enabled(F3, nid)) {
2532 ret = -ENODEV;
2534 if (!ecc_enable_override)
2535 goto err_enable;
2537 amd64_warn("Forcing ECC on!\n");
2539 if (!enable_ecc_error_reporting(s, nid, F3))
2540 goto err_enable;
2543 ret = amd64_init_one_instance(pdev);
2544 if (ret < 0) {
2545 amd64_err("Error probing instance: %d\n", nid);
2546 restore_ecc_error_reporting(s, nid, F3);
2549 return ret;
2551 err_enable:
2552 kfree(s);
2553 ecc_stngs[nid] = NULL;
2555 err_out:
2556 return ret;
2559 static void __devexit amd64_remove_one_instance(struct pci_dev *pdev)
2561 struct mem_ctl_info *mci;
2562 struct amd64_pvt *pvt;
2563 u8 nid = get_node_id(pdev);
2564 struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
2565 struct ecc_settings *s = ecc_stngs[nid];
2567 /* Remove from EDAC CORE tracking list */
2568 mci = edac_mc_del_mc(&pdev->dev);
2569 if (!mci)
2570 return;
2572 pvt = mci->pvt_info;
2574 restore_ecc_error_reporting(s, nid, F3);
2576 free_mc_sibling_devs(pvt);
2578 /* unregister from EDAC MCE */
2579 amd_report_gart_errors(false);
2580 amd_unregister_ecc_decoder(amd64_decode_bus_error);
2582 kfree(ecc_stngs[nid]);
2583 ecc_stngs[nid] = NULL;
2585 /* Free the EDAC CORE resources */
2586 mci->pvt_info = NULL;
2587 mcis[nid] = NULL;
2589 kfree(pvt);
2590 edac_mc_free(mci);
2594 * This table is part of the interface for loading drivers for PCI devices. The
2595 * PCI core identifies what devices are on a system during boot, and then
2596 * inquiry this table to see if this driver is for a given device found.
2598 static const struct pci_device_id amd64_pci_table[] __devinitdata = {
2600 .vendor = PCI_VENDOR_ID_AMD,
2601 .device = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
2602 .subvendor = PCI_ANY_ID,
2603 .subdevice = PCI_ANY_ID,
2604 .class = 0,
2605 .class_mask = 0,
2608 .vendor = PCI_VENDOR_ID_AMD,
2609 .device = PCI_DEVICE_ID_AMD_10H_NB_DRAM,
2610 .subvendor = PCI_ANY_ID,
2611 .subdevice = PCI_ANY_ID,
2612 .class = 0,
2613 .class_mask = 0,
2615 {0, }
2617 MODULE_DEVICE_TABLE(pci, amd64_pci_table);
2619 static struct pci_driver amd64_pci_driver = {
2620 .name = EDAC_MOD_STR,
2621 .probe = amd64_probe_one_instance,
2622 .remove = __devexit_p(amd64_remove_one_instance),
2623 .id_table = amd64_pci_table,
2626 static void setup_pci_device(void)
2628 struct mem_ctl_info *mci;
2629 struct amd64_pvt *pvt;
2631 if (amd64_ctl_pci)
2632 return;
2634 mci = mcis[0];
2635 if (mci) {
2637 pvt = mci->pvt_info;
2638 amd64_ctl_pci =
2639 edac_pci_create_generic_ctl(&pvt->F2->dev, EDAC_MOD_STR);
2641 if (!amd64_ctl_pci) {
2642 pr_warning("%s(): Unable to create PCI control\n",
2643 __func__);
2645 pr_warning("%s(): PCI error report via EDAC not set\n",
2646 __func__);
2651 static int __init amd64_edac_init(void)
2653 int err = -ENODEV;
2655 edac_printk(KERN_INFO, EDAC_MOD_STR, EDAC_AMD64_VERSION "\n");
2657 opstate_init();
2659 if (amd_cache_northbridges() < 0)
2660 goto err_ret;
2662 err = -ENOMEM;
2663 mcis = kzalloc(amd_nb_num() * sizeof(mcis[0]), GFP_KERNEL);
2664 ecc_stngs = kzalloc(amd_nb_num() * sizeof(ecc_stngs[0]), GFP_KERNEL);
2665 if (!(mcis && ecc_stngs))
2666 goto err_ret;
2668 msrs = msrs_alloc();
2669 if (!msrs)
2670 goto err_free;
2672 err = pci_register_driver(&amd64_pci_driver);
2673 if (err)
2674 goto err_pci;
2676 err = -ENODEV;
2677 if (!atomic_read(&drv_instances))
2678 goto err_no_instances;
2680 setup_pci_device();
2681 return 0;
2683 err_no_instances:
2684 pci_unregister_driver(&amd64_pci_driver);
2686 err_pci:
2687 msrs_free(msrs);
2688 msrs = NULL;
2690 err_free:
2691 kfree(mcis);
2692 mcis = NULL;
2694 kfree(ecc_stngs);
2695 ecc_stngs = NULL;
2697 err_ret:
2698 return err;
2701 static void __exit amd64_edac_exit(void)
2703 if (amd64_ctl_pci)
2704 edac_pci_release_generic_ctl(amd64_ctl_pci);
2706 pci_unregister_driver(&amd64_pci_driver);
2708 kfree(ecc_stngs);
2709 ecc_stngs = NULL;
2711 kfree(mcis);
2712 mcis = NULL;
2714 msrs_free(msrs);
2715 msrs = NULL;
2718 module_init(amd64_edac_init);
2719 module_exit(amd64_edac_exit);
2721 MODULE_LICENSE("GPL");
2722 MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
2723 "Dave Peterson, Thayne Harbaugh");
2724 MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
2725 EDAC_AMD64_VERSION);
2727 module_param(edac_op_state, int, 0444);
2728 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");