e1000e: fix incorrect link status when switch module pulled
[linux-2.6/kvm.git] / drivers / net / e1000e / ethtool.c
blob34f1f639429de3e9f7de384333488dc69c74f5b2
1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2008 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
29 /* ethtool support for e1000 */
31 #include <linux/netdevice.h>
32 #include <linux/ethtool.h>
33 #include <linux/pci.h>
34 #include <linux/delay.h>
36 #include "e1000.h"
38 struct e1000_stats {
39 char stat_string[ETH_GSTRING_LEN];
40 int sizeof_stat;
41 int stat_offset;
44 #define E1000_STAT(m) sizeof(((struct e1000_adapter *)0)->m), \
45 offsetof(struct e1000_adapter, m)
46 static const struct e1000_stats e1000_gstrings_stats[] = {
47 { "rx_packets", E1000_STAT(stats.gprc) },
48 { "tx_packets", E1000_STAT(stats.gptc) },
49 { "rx_bytes", E1000_STAT(stats.gorc) },
50 { "tx_bytes", E1000_STAT(stats.gotc) },
51 { "rx_broadcast", E1000_STAT(stats.bprc) },
52 { "tx_broadcast", E1000_STAT(stats.bptc) },
53 { "rx_multicast", E1000_STAT(stats.mprc) },
54 { "tx_multicast", E1000_STAT(stats.mptc) },
55 { "rx_errors", E1000_STAT(net_stats.rx_errors) },
56 { "tx_errors", E1000_STAT(net_stats.tx_errors) },
57 { "tx_dropped", E1000_STAT(net_stats.tx_dropped) },
58 { "multicast", E1000_STAT(stats.mprc) },
59 { "collisions", E1000_STAT(stats.colc) },
60 { "rx_length_errors", E1000_STAT(net_stats.rx_length_errors) },
61 { "rx_over_errors", E1000_STAT(net_stats.rx_over_errors) },
62 { "rx_crc_errors", E1000_STAT(stats.crcerrs) },
63 { "rx_frame_errors", E1000_STAT(net_stats.rx_frame_errors) },
64 { "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
65 { "rx_missed_errors", E1000_STAT(stats.mpc) },
66 { "tx_aborted_errors", E1000_STAT(stats.ecol) },
67 { "tx_carrier_errors", E1000_STAT(stats.tncrs) },
68 { "tx_fifo_errors", E1000_STAT(net_stats.tx_fifo_errors) },
69 { "tx_heartbeat_errors", E1000_STAT(net_stats.tx_heartbeat_errors) },
70 { "tx_window_errors", E1000_STAT(stats.latecol) },
71 { "tx_abort_late_coll", E1000_STAT(stats.latecol) },
72 { "tx_deferred_ok", E1000_STAT(stats.dc) },
73 { "tx_single_coll_ok", E1000_STAT(stats.scc) },
74 { "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
75 { "tx_timeout_count", E1000_STAT(tx_timeout_count) },
76 { "tx_restart_queue", E1000_STAT(restart_queue) },
77 { "rx_long_length_errors", E1000_STAT(stats.roc) },
78 { "rx_short_length_errors", E1000_STAT(stats.ruc) },
79 { "rx_align_errors", E1000_STAT(stats.algnerrc) },
80 { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
81 { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
82 { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
83 { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
84 { "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
85 { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
86 { "rx_long_byte_count", E1000_STAT(stats.gorc) },
87 { "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
88 { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
89 { "rx_header_split", E1000_STAT(rx_hdr_split) },
90 { "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
91 { "tx_smbus", E1000_STAT(stats.mgptc) },
92 { "rx_smbus", E1000_STAT(stats.mgprc) },
93 { "dropped_smbus", E1000_STAT(stats.mgpdc) },
94 { "rx_dma_failed", E1000_STAT(rx_dma_failed) },
95 { "tx_dma_failed", E1000_STAT(tx_dma_failed) },
98 #define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats)
99 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN)
100 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
101 "Register test (offline)", "Eeprom test (offline)",
102 "Interrupt test (offline)", "Loopback test (offline)",
103 "Link test (on/offline)"
105 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
107 static int e1000_get_settings(struct net_device *netdev,
108 struct ethtool_cmd *ecmd)
110 struct e1000_adapter *adapter = netdev_priv(netdev);
111 struct e1000_hw *hw = &adapter->hw;
112 u32 status;
114 if (hw->phy.media_type == e1000_media_type_copper) {
116 ecmd->supported = (SUPPORTED_10baseT_Half |
117 SUPPORTED_10baseT_Full |
118 SUPPORTED_100baseT_Half |
119 SUPPORTED_100baseT_Full |
120 SUPPORTED_1000baseT_Full |
121 SUPPORTED_Autoneg |
122 SUPPORTED_TP);
123 if (hw->phy.type == e1000_phy_ife)
124 ecmd->supported &= ~SUPPORTED_1000baseT_Full;
125 ecmd->advertising = ADVERTISED_TP;
127 if (hw->mac.autoneg == 1) {
128 ecmd->advertising |= ADVERTISED_Autoneg;
129 /* the e1000 autoneg seems to match ethtool nicely */
130 ecmd->advertising |= hw->phy.autoneg_advertised;
133 ecmd->port = PORT_TP;
134 ecmd->phy_address = hw->phy.addr;
135 ecmd->transceiver = XCVR_INTERNAL;
137 } else {
138 ecmd->supported = (SUPPORTED_1000baseT_Full |
139 SUPPORTED_FIBRE |
140 SUPPORTED_Autoneg);
142 ecmd->advertising = (ADVERTISED_1000baseT_Full |
143 ADVERTISED_FIBRE |
144 ADVERTISED_Autoneg);
146 ecmd->port = PORT_FIBRE;
147 ecmd->transceiver = XCVR_EXTERNAL;
150 status = er32(STATUS);
151 if (status & E1000_STATUS_LU) {
152 if (status & E1000_STATUS_SPEED_1000)
153 ecmd->speed = 1000;
154 else if (status & E1000_STATUS_SPEED_100)
155 ecmd->speed = 100;
156 else
157 ecmd->speed = 10;
159 if (status & E1000_STATUS_FD)
160 ecmd->duplex = DUPLEX_FULL;
161 else
162 ecmd->duplex = DUPLEX_HALF;
163 } else {
164 ecmd->speed = -1;
165 ecmd->duplex = -1;
168 ecmd->autoneg = ((hw->phy.media_type == e1000_media_type_fiber) ||
169 hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
170 return 0;
173 static u32 e1000_get_link(struct net_device *netdev)
175 struct e1000_adapter *adapter = netdev_priv(netdev);
177 return e1000_has_link(adapter);
180 static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx)
182 struct e1000_mac_info *mac = &adapter->hw.mac;
184 mac->autoneg = 0;
186 /* Fiber NICs only allow 1000 gbps Full duplex */
187 if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
188 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
189 e_err("Unsupported Speed/Duplex configuration\n");
190 return -EINVAL;
193 switch (spddplx) {
194 case SPEED_10 + DUPLEX_HALF:
195 mac->forced_speed_duplex = ADVERTISE_10_HALF;
196 break;
197 case SPEED_10 + DUPLEX_FULL:
198 mac->forced_speed_duplex = ADVERTISE_10_FULL;
199 break;
200 case SPEED_100 + DUPLEX_HALF:
201 mac->forced_speed_duplex = ADVERTISE_100_HALF;
202 break;
203 case SPEED_100 + DUPLEX_FULL:
204 mac->forced_speed_duplex = ADVERTISE_100_FULL;
205 break;
206 case SPEED_1000 + DUPLEX_FULL:
207 mac->autoneg = 1;
208 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
209 break;
210 case SPEED_1000 + DUPLEX_HALF: /* not supported */
211 default:
212 e_err("Unsupported Speed/Duplex configuration\n");
213 return -EINVAL;
215 return 0;
218 static int e1000_set_settings(struct net_device *netdev,
219 struct ethtool_cmd *ecmd)
221 struct e1000_adapter *adapter = netdev_priv(netdev);
222 struct e1000_hw *hw = &adapter->hw;
225 * When SoL/IDER sessions are active, autoneg/speed/duplex
226 * cannot be changed
228 if (e1000_check_reset_block(hw)) {
229 e_err("Cannot change link characteristics when SoL/IDER is "
230 "active.\n");
231 return -EINVAL;
234 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
235 msleep(1);
237 if (ecmd->autoneg == AUTONEG_ENABLE) {
238 hw->mac.autoneg = 1;
239 if (hw->phy.media_type == e1000_media_type_fiber)
240 hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
241 ADVERTISED_FIBRE |
242 ADVERTISED_Autoneg;
243 else
244 hw->phy.autoneg_advertised = ecmd->advertising |
245 ADVERTISED_TP |
246 ADVERTISED_Autoneg;
247 ecmd->advertising = hw->phy.autoneg_advertised;
248 if (adapter->fc_autoneg)
249 hw->fc.requested_mode = e1000_fc_default;
250 } else {
251 if (e1000_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex)) {
252 clear_bit(__E1000_RESETTING, &adapter->state);
253 return -EINVAL;
257 /* reset the link */
259 if (netif_running(adapter->netdev)) {
260 e1000e_down(adapter);
261 e1000e_up(adapter);
262 } else {
263 e1000e_reset(adapter);
266 clear_bit(__E1000_RESETTING, &adapter->state);
267 return 0;
270 static void e1000_get_pauseparam(struct net_device *netdev,
271 struct ethtool_pauseparam *pause)
273 struct e1000_adapter *adapter = netdev_priv(netdev);
274 struct e1000_hw *hw = &adapter->hw;
276 pause->autoneg =
277 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
279 if (hw->fc.current_mode == e1000_fc_rx_pause) {
280 pause->rx_pause = 1;
281 } else if (hw->fc.current_mode == e1000_fc_tx_pause) {
282 pause->tx_pause = 1;
283 } else if (hw->fc.current_mode == e1000_fc_full) {
284 pause->rx_pause = 1;
285 pause->tx_pause = 1;
289 static int e1000_set_pauseparam(struct net_device *netdev,
290 struct ethtool_pauseparam *pause)
292 struct e1000_adapter *adapter = netdev_priv(netdev);
293 struct e1000_hw *hw = &adapter->hw;
294 int retval = 0;
296 adapter->fc_autoneg = pause->autoneg;
298 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
299 msleep(1);
301 if (adapter->fc_autoneg == AUTONEG_ENABLE) {
302 hw->fc.requested_mode = e1000_fc_default;
303 if (netif_running(adapter->netdev)) {
304 e1000e_down(adapter);
305 e1000e_up(adapter);
306 } else {
307 e1000e_reset(adapter);
309 } else {
310 if (pause->rx_pause && pause->tx_pause)
311 hw->fc.requested_mode = e1000_fc_full;
312 else if (pause->rx_pause && !pause->tx_pause)
313 hw->fc.requested_mode = e1000_fc_rx_pause;
314 else if (!pause->rx_pause && pause->tx_pause)
315 hw->fc.requested_mode = e1000_fc_tx_pause;
316 else if (!pause->rx_pause && !pause->tx_pause)
317 hw->fc.requested_mode = e1000_fc_none;
319 hw->fc.current_mode = hw->fc.requested_mode;
321 retval = ((hw->phy.media_type == e1000_media_type_fiber) ?
322 hw->mac.ops.setup_link(hw) : e1000e_force_mac_fc(hw));
325 clear_bit(__E1000_RESETTING, &adapter->state);
326 return retval;
329 static u32 e1000_get_rx_csum(struct net_device *netdev)
331 struct e1000_adapter *adapter = netdev_priv(netdev);
332 return (adapter->flags & FLAG_RX_CSUM_ENABLED);
335 static int e1000_set_rx_csum(struct net_device *netdev, u32 data)
337 struct e1000_adapter *adapter = netdev_priv(netdev);
339 if (data)
340 adapter->flags |= FLAG_RX_CSUM_ENABLED;
341 else
342 adapter->flags &= ~FLAG_RX_CSUM_ENABLED;
344 if (netif_running(netdev))
345 e1000e_reinit_locked(adapter);
346 else
347 e1000e_reset(adapter);
348 return 0;
351 static u32 e1000_get_tx_csum(struct net_device *netdev)
353 return ((netdev->features & NETIF_F_HW_CSUM) != 0);
356 static int e1000_set_tx_csum(struct net_device *netdev, u32 data)
358 if (data)
359 netdev->features |= NETIF_F_HW_CSUM;
360 else
361 netdev->features &= ~NETIF_F_HW_CSUM;
363 return 0;
366 static int e1000_set_tso(struct net_device *netdev, u32 data)
368 struct e1000_adapter *adapter = netdev_priv(netdev);
370 if (data) {
371 netdev->features |= NETIF_F_TSO;
372 netdev->features |= NETIF_F_TSO6;
373 } else {
374 netdev->features &= ~NETIF_F_TSO;
375 netdev->features &= ~NETIF_F_TSO6;
378 e_info("TSO is %s\n", data ? "Enabled" : "Disabled");
379 adapter->flags |= FLAG_TSO_FORCE;
380 return 0;
383 static u32 e1000_get_msglevel(struct net_device *netdev)
385 struct e1000_adapter *adapter = netdev_priv(netdev);
386 return adapter->msg_enable;
389 static void e1000_set_msglevel(struct net_device *netdev, u32 data)
391 struct e1000_adapter *adapter = netdev_priv(netdev);
392 adapter->msg_enable = data;
395 static int e1000_get_regs_len(struct net_device *netdev)
397 #define E1000_REGS_LEN 32 /* overestimate */
398 return E1000_REGS_LEN * sizeof(u32);
401 static void e1000_get_regs(struct net_device *netdev,
402 struct ethtool_regs *regs, void *p)
404 struct e1000_adapter *adapter = netdev_priv(netdev);
405 struct e1000_hw *hw = &adapter->hw;
406 u32 *regs_buff = p;
407 u16 phy_data;
408 u8 revision_id;
410 memset(p, 0, E1000_REGS_LEN * sizeof(u32));
412 pci_read_config_byte(adapter->pdev, PCI_REVISION_ID, &revision_id);
414 regs->version = (1 << 24) | (revision_id << 16) | adapter->pdev->device;
416 regs_buff[0] = er32(CTRL);
417 regs_buff[1] = er32(STATUS);
419 regs_buff[2] = er32(RCTL);
420 regs_buff[3] = er32(RDLEN);
421 regs_buff[4] = er32(RDH);
422 regs_buff[5] = er32(RDT);
423 regs_buff[6] = er32(RDTR);
425 regs_buff[7] = er32(TCTL);
426 regs_buff[8] = er32(TDLEN);
427 regs_buff[9] = er32(TDH);
428 regs_buff[10] = er32(TDT);
429 regs_buff[11] = er32(TIDV);
431 regs_buff[12] = adapter->hw.phy.type; /* PHY type (IGP=1, M88=0) */
433 /* ethtool doesn't use anything past this point, so all this
434 * code is likely legacy junk for apps that may or may not
435 * exist */
436 if (hw->phy.type == e1000_phy_m88) {
437 e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
438 regs_buff[13] = (u32)phy_data; /* cable length */
439 regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */
440 regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */
441 regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */
442 e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
443 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
444 regs_buff[18] = regs_buff[13]; /* cable polarity */
445 regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */
446 regs_buff[20] = regs_buff[17]; /* polarity correction */
447 /* phy receive errors */
448 regs_buff[22] = adapter->phy_stats.receive_errors;
449 regs_buff[23] = regs_buff[13]; /* mdix mode */
451 regs_buff[21] = 0; /* was idle_errors */
452 e1e_rphy(hw, PHY_1000T_STATUS, &phy_data);
453 regs_buff[24] = (u32)phy_data; /* phy local receiver status */
454 regs_buff[25] = regs_buff[24]; /* phy remote receiver status */
457 static int e1000_get_eeprom_len(struct net_device *netdev)
459 struct e1000_adapter *adapter = netdev_priv(netdev);
460 return adapter->hw.nvm.word_size * 2;
463 static int e1000_get_eeprom(struct net_device *netdev,
464 struct ethtool_eeprom *eeprom, u8 *bytes)
466 struct e1000_adapter *adapter = netdev_priv(netdev);
467 struct e1000_hw *hw = &adapter->hw;
468 u16 *eeprom_buff;
469 int first_word;
470 int last_word;
471 int ret_val = 0;
472 u16 i;
474 if (eeprom->len == 0)
475 return -EINVAL;
477 eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16);
479 first_word = eeprom->offset >> 1;
480 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
482 eeprom_buff = kmalloc(sizeof(u16) *
483 (last_word - first_word + 1), GFP_KERNEL);
484 if (!eeprom_buff)
485 return -ENOMEM;
487 if (hw->nvm.type == e1000_nvm_eeprom_spi) {
488 ret_val = e1000_read_nvm(hw, first_word,
489 last_word - first_word + 1,
490 eeprom_buff);
491 } else {
492 for (i = 0; i < last_word - first_word + 1; i++) {
493 ret_val = e1000_read_nvm(hw, first_word + i, 1,
494 &eeprom_buff[i]);
495 if (ret_val) {
496 /* a read error occurred, throw away the
497 * result */
498 memset(eeprom_buff, 0xff, sizeof(eeprom_buff));
499 break;
504 /* Device's eeprom is always little-endian, word addressable */
505 for (i = 0; i < last_word - first_word + 1; i++)
506 le16_to_cpus(&eeprom_buff[i]);
508 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len);
509 kfree(eeprom_buff);
511 return ret_val;
514 static int e1000_set_eeprom(struct net_device *netdev,
515 struct ethtool_eeprom *eeprom, u8 *bytes)
517 struct e1000_adapter *adapter = netdev_priv(netdev);
518 struct e1000_hw *hw = &adapter->hw;
519 u16 *eeprom_buff;
520 void *ptr;
521 int max_len;
522 int first_word;
523 int last_word;
524 int ret_val = 0;
525 u16 i;
527 if (eeprom->len == 0)
528 return -EOPNOTSUPP;
530 if (eeprom->magic != (adapter->pdev->vendor | (adapter->pdev->device << 16)))
531 return -EFAULT;
533 if (adapter->flags & FLAG_READ_ONLY_NVM)
534 return -EINVAL;
536 max_len = hw->nvm.word_size * 2;
538 first_word = eeprom->offset >> 1;
539 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
540 eeprom_buff = kmalloc(max_len, GFP_KERNEL);
541 if (!eeprom_buff)
542 return -ENOMEM;
544 ptr = (void *)eeprom_buff;
546 if (eeprom->offset & 1) {
547 /* need read/modify/write of first changed EEPROM word */
548 /* only the second byte of the word is being modified */
549 ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]);
550 ptr++;
552 if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0))
553 /* need read/modify/write of last changed EEPROM word */
554 /* only the first byte of the word is being modified */
555 ret_val = e1000_read_nvm(hw, last_word, 1,
556 &eeprom_buff[last_word - first_word]);
558 /* Device's eeprom is always little-endian, word addressable */
559 for (i = 0; i < last_word - first_word + 1; i++)
560 le16_to_cpus(&eeprom_buff[i]);
562 memcpy(ptr, bytes, eeprom->len);
564 for (i = 0; i < last_word - first_word + 1; i++)
565 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
567 ret_val = e1000_write_nvm(hw, first_word,
568 last_word - first_word + 1, eeprom_buff);
571 * Update the checksum over the first part of the EEPROM if needed
572 * and flush shadow RAM for 82573 controllers
574 if ((ret_val == 0) && ((first_word <= NVM_CHECKSUM_REG) ||
575 (hw->mac.type == e1000_82574) ||
576 (hw->mac.type == e1000_82573)))
577 e1000e_update_nvm_checksum(hw);
579 kfree(eeprom_buff);
580 return ret_val;
583 static void e1000_get_drvinfo(struct net_device *netdev,
584 struct ethtool_drvinfo *drvinfo)
586 struct e1000_adapter *adapter = netdev_priv(netdev);
587 char firmware_version[32];
589 strncpy(drvinfo->driver, e1000e_driver_name, 32);
590 strncpy(drvinfo->version, e1000e_driver_version, 32);
593 * EEPROM image version # is reported as firmware version # for
594 * PCI-E controllers
596 sprintf(firmware_version, "%d.%d-%d",
597 (adapter->eeprom_vers & 0xF000) >> 12,
598 (adapter->eeprom_vers & 0x0FF0) >> 4,
599 (adapter->eeprom_vers & 0x000F));
601 strncpy(drvinfo->fw_version, firmware_version, 32);
602 strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
603 drvinfo->regdump_len = e1000_get_regs_len(netdev);
604 drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
607 static void e1000_get_ringparam(struct net_device *netdev,
608 struct ethtool_ringparam *ring)
610 struct e1000_adapter *adapter = netdev_priv(netdev);
611 struct e1000_ring *tx_ring = adapter->tx_ring;
612 struct e1000_ring *rx_ring = adapter->rx_ring;
614 ring->rx_max_pending = E1000_MAX_RXD;
615 ring->tx_max_pending = E1000_MAX_TXD;
616 ring->rx_mini_max_pending = 0;
617 ring->rx_jumbo_max_pending = 0;
618 ring->rx_pending = rx_ring->count;
619 ring->tx_pending = tx_ring->count;
620 ring->rx_mini_pending = 0;
621 ring->rx_jumbo_pending = 0;
624 static int e1000_set_ringparam(struct net_device *netdev,
625 struct ethtool_ringparam *ring)
627 struct e1000_adapter *adapter = netdev_priv(netdev);
628 struct e1000_ring *tx_ring, *tx_old;
629 struct e1000_ring *rx_ring, *rx_old;
630 int err;
632 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
633 return -EINVAL;
635 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
636 msleep(1);
638 if (netif_running(adapter->netdev))
639 e1000e_down(adapter);
641 tx_old = adapter->tx_ring;
642 rx_old = adapter->rx_ring;
644 err = -ENOMEM;
645 tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
646 if (!tx_ring)
647 goto err_alloc_tx;
649 * use a memcpy to save any previously configured
650 * items like napi structs from having to be
651 * reinitialized
653 memcpy(tx_ring, tx_old, sizeof(struct e1000_ring));
655 rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
656 if (!rx_ring)
657 goto err_alloc_rx;
658 memcpy(rx_ring, rx_old, sizeof(struct e1000_ring));
660 adapter->tx_ring = tx_ring;
661 adapter->rx_ring = rx_ring;
663 rx_ring->count = max(ring->rx_pending, (u32)E1000_MIN_RXD);
664 rx_ring->count = min(rx_ring->count, (u32)(E1000_MAX_RXD));
665 rx_ring->count = ALIGN(rx_ring->count, REQ_RX_DESCRIPTOR_MULTIPLE);
667 tx_ring->count = max(ring->tx_pending, (u32)E1000_MIN_TXD);
668 tx_ring->count = min(tx_ring->count, (u32)(E1000_MAX_TXD));
669 tx_ring->count = ALIGN(tx_ring->count, REQ_TX_DESCRIPTOR_MULTIPLE);
671 if (netif_running(adapter->netdev)) {
672 /* Try to get new resources before deleting old */
673 err = e1000e_setup_rx_resources(adapter);
674 if (err)
675 goto err_setup_rx;
676 err = e1000e_setup_tx_resources(adapter);
677 if (err)
678 goto err_setup_tx;
681 * restore the old in order to free it,
682 * then add in the new
684 adapter->rx_ring = rx_old;
685 adapter->tx_ring = tx_old;
686 e1000e_free_rx_resources(adapter);
687 e1000e_free_tx_resources(adapter);
688 kfree(tx_old);
689 kfree(rx_old);
690 adapter->rx_ring = rx_ring;
691 adapter->tx_ring = tx_ring;
692 err = e1000e_up(adapter);
693 if (err)
694 goto err_setup;
697 clear_bit(__E1000_RESETTING, &adapter->state);
698 return 0;
699 err_setup_tx:
700 e1000e_free_rx_resources(adapter);
701 err_setup_rx:
702 adapter->rx_ring = rx_old;
703 adapter->tx_ring = tx_old;
704 kfree(rx_ring);
705 err_alloc_rx:
706 kfree(tx_ring);
707 err_alloc_tx:
708 e1000e_up(adapter);
709 err_setup:
710 clear_bit(__E1000_RESETTING, &adapter->state);
711 return err;
714 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data,
715 int reg, int offset, u32 mask, u32 write)
717 u32 pat, val;
718 static const u32 test[] =
719 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
720 for (pat = 0; pat < ARRAY_SIZE(test); pat++) {
721 E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset,
722 (test[pat] & write));
723 val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset);
724 if (val != (test[pat] & write & mask)) {
725 e_err("pattern test reg %04X failed: got 0x%08X "
726 "expected 0x%08X\n", reg + offset, val,
727 (test[pat] & write & mask));
728 *data = reg;
729 return 1;
732 return 0;
735 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data,
736 int reg, u32 mask, u32 write)
738 u32 val;
739 __ew32(&adapter->hw, reg, write & mask);
740 val = __er32(&adapter->hw, reg);
741 if ((write & mask) != (val & mask)) {
742 e_err("set/check reg %04X test failed: got 0x%08X "
743 "expected 0x%08X\n", reg, (val & mask), (write & mask));
744 *data = reg;
745 return 1;
747 return 0;
749 #define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write) \
750 do { \
751 if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \
752 return 1; \
753 } while (0)
754 #define REG_PATTERN_TEST(reg, mask, write) \
755 REG_PATTERN_TEST_ARRAY(reg, 0, mask, write)
757 #define REG_SET_AND_CHECK(reg, mask, write) \
758 do { \
759 if (reg_set_and_check(adapter, data, reg, mask, write)) \
760 return 1; \
761 } while (0)
763 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
765 struct e1000_hw *hw = &adapter->hw;
766 struct e1000_mac_info *mac = &adapter->hw.mac;
767 u32 value;
768 u32 before;
769 u32 after;
770 u32 i;
771 u32 toggle;
774 * The status register is Read Only, so a write should fail.
775 * Some bits that get toggled are ignored.
777 switch (mac->type) {
778 /* there are several bits on newer hardware that are r/w */
779 case e1000_82571:
780 case e1000_82572:
781 case e1000_80003es2lan:
782 toggle = 0x7FFFF3FF;
783 break;
784 case e1000_82573:
785 case e1000_82574:
786 case e1000_ich8lan:
787 case e1000_ich9lan:
788 case e1000_ich10lan:
789 toggle = 0x7FFFF033;
790 break;
791 default:
792 toggle = 0xFFFFF833;
793 break;
796 before = er32(STATUS);
797 value = (er32(STATUS) & toggle);
798 ew32(STATUS, toggle);
799 after = er32(STATUS) & toggle;
800 if (value != after) {
801 e_err("failed STATUS register test got: 0x%08X expected: "
802 "0x%08X\n", after, value);
803 *data = 1;
804 return 1;
806 /* restore previous status */
807 ew32(STATUS, before);
809 if (!(adapter->flags & FLAG_IS_ICH)) {
810 REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
811 REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF);
812 REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF);
813 REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF);
816 REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF);
817 REG_PATTERN_TEST(E1000_RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
818 REG_PATTERN_TEST(E1000_RDLEN, 0x000FFF80, 0x000FFFFF);
819 REG_PATTERN_TEST(E1000_RDH, 0x0000FFFF, 0x0000FFFF);
820 REG_PATTERN_TEST(E1000_RDT, 0x0000FFFF, 0x0000FFFF);
821 REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8);
822 REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF);
823 REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
824 REG_PATTERN_TEST(E1000_TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
825 REG_PATTERN_TEST(E1000_TDLEN, 0x000FFF80, 0x000FFFFF);
827 REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000);
829 before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE);
830 REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB);
831 REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000);
833 REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF);
834 REG_PATTERN_TEST(E1000_RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
835 if (!(adapter->flags & FLAG_IS_ICH))
836 REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF);
837 REG_PATTERN_TEST(E1000_TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
838 REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF);
839 for (i = 0; i < mac->rar_entry_count; i++)
840 REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1),
841 ((mac->type == e1000_ich10lan) ?
842 0x8007FFFF : 0x8003FFFF),
843 0xFFFFFFFF);
845 for (i = 0; i < mac->mta_reg_count; i++)
846 REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF);
848 *data = 0;
849 return 0;
852 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
854 u16 temp;
855 u16 checksum = 0;
856 u16 i;
858 *data = 0;
859 /* Read and add up the contents of the EEPROM */
860 for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
861 if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) {
862 *data = 1;
863 break;
865 checksum += temp;
868 /* If Checksum is not Correct return error else test passed */
869 if ((checksum != (u16) NVM_SUM) && !(*data))
870 *data = 2;
872 return *data;
875 static irqreturn_t e1000_test_intr(int irq, void *data)
877 struct net_device *netdev = (struct net_device *) data;
878 struct e1000_adapter *adapter = netdev_priv(netdev);
879 struct e1000_hw *hw = &adapter->hw;
881 adapter->test_icr |= er32(ICR);
883 return IRQ_HANDLED;
886 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
888 struct net_device *netdev = adapter->netdev;
889 struct e1000_hw *hw = &adapter->hw;
890 u32 mask;
891 u32 shared_int = 1;
892 u32 irq = adapter->pdev->irq;
893 int i;
894 int ret_val = 0;
895 int int_mode = E1000E_INT_MODE_LEGACY;
897 *data = 0;
899 /* NOTE: we don't test MSI/MSI-X interrupts here, yet */
900 if (adapter->int_mode == E1000E_INT_MODE_MSIX) {
901 int_mode = adapter->int_mode;
902 e1000e_reset_interrupt_capability(adapter);
903 adapter->int_mode = E1000E_INT_MODE_LEGACY;
904 e1000e_set_interrupt_capability(adapter);
906 /* Hook up test interrupt handler just for this test */
907 if (!request_irq(irq, &e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
908 netdev)) {
909 shared_int = 0;
910 } else if (request_irq(irq, &e1000_test_intr, IRQF_SHARED,
911 netdev->name, netdev)) {
912 *data = 1;
913 ret_val = -1;
914 goto out;
916 e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared"));
918 /* Disable all the interrupts */
919 ew32(IMC, 0xFFFFFFFF);
920 msleep(10);
922 /* Test each interrupt */
923 for (i = 0; i < 10; i++) {
924 /* Interrupt to test */
925 mask = 1 << i;
927 if (adapter->flags & FLAG_IS_ICH) {
928 switch (mask) {
929 case E1000_ICR_RXSEQ:
930 continue;
931 case 0x00000100:
932 if (adapter->hw.mac.type == e1000_ich8lan ||
933 adapter->hw.mac.type == e1000_ich9lan)
934 continue;
935 break;
936 default:
937 break;
941 if (!shared_int) {
943 * Disable the interrupt to be reported in
944 * the cause register and then force the same
945 * interrupt and see if one gets posted. If
946 * an interrupt was posted to the bus, the
947 * test failed.
949 adapter->test_icr = 0;
950 ew32(IMC, mask);
951 ew32(ICS, mask);
952 msleep(10);
954 if (adapter->test_icr & mask) {
955 *data = 3;
956 break;
961 * Enable the interrupt to be reported in
962 * the cause register and then force the same
963 * interrupt and see if one gets posted. If
964 * an interrupt was not posted to the bus, the
965 * test failed.
967 adapter->test_icr = 0;
968 ew32(IMS, mask);
969 ew32(ICS, mask);
970 msleep(10);
972 if (!(adapter->test_icr & mask)) {
973 *data = 4;
974 break;
977 if (!shared_int) {
979 * Disable the other interrupts to be reported in
980 * the cause register and then force the other
981 * interrupts and see if any get posted. If
982 * an interrupt was posted to the bus, the
983 * test failed.
985 adapter->test_icr = 0;
986 ew32(IMC, ~mask & 0x00007FFF);
987 ew32(ICS, ~mask & 0x00007FFF);
988 msleep(10);
990 if (adapter->test_icr) {
991 *data = 5;
992 break;
997 /* Disable all the interrupts */
998 ew32(IMC, 0xFFFFFFFF);
999 msleep(10);
1001 /* Unhook test interrupt handler */
1002 free_irq(irq, netdev);
1004 out:
1005 if (int_mode == E1000E_INT_MODE_MSIX) {
1006 e1000e_reset_interrupt_capability(adapter);
1007 adapter->int_mode = int_mode;
1008 e1000e_set_interrupt_capability(adapter);
1011 return ret_val;
1014 static void e1000_free_desc_rings(struct e1000_adapter *adapter)
1016 struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1017 struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1018 struct pci_dev *pdev = adapter->pdev;
1019 int i;
1021 if (tx_ring->desc && tx_ring->buffer_info) {
1022 for (i = 0; i < tx_ring->count; i++) {
1023 if (tx_ring->buffer_info[i].dma)
1024 pci_unmap_single(pdev,
1025 tx_ring->buffer_info[i].dma,
1026 tx_ring->buffer_info[i].length,
1027 PCI_DMA_TODEVICE);
1028 if (tx_ring->buffer_info[i].skb)
1029 dev_kfree_skb(tx_ring->buffer_info[i].skb);
1033 if (rx_ring->desc && rx_ring->buffer_info) {
1034 for (i = 0; i < rx_ring->count; i++) {
1035 if (rx_ring->buffer_info[i].dma)
1036 pci_unmap_single(pdev,
1037 rx_ring->buffer_info[i].dma,
1038 2048, PCI_DMA_FROMDEVICE);
1039 if (rx_ring->buffer_info[i].skb)
1040 dev_kfree_skb(rx_ring->buffer_info[i].skb);
1044 if (tx_ring->desc) {
1045 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1046 tx_ring->dma);
1047 tx_ring->desc = NULL;
1049 if (rx_ring->desc) {
1050 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1051 rx_ring->dma);
1052 rx_ring->desc = NULL;
1055 kfree(tx_ring->buffer_info);
1056 tx_ring->buffer_info = NULL;
1057 kfree(rx_ring->buffer_info);
1058 rx_ring->buffer_info = NULL;
1061 static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
1063 struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1064 struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1065 struct pci_dev *pdev = adapter->pdev;
1066 struct e1000_hw *hw = &adapter->hw;
1067 u32 rctl;
1068 int i;
1069 int ret_val;
1071 /* Setup Tx descriptor ring and Tx buffers */
1073 if (!tx_ring->count)
1074 tx_ring->count = E1000_DEFAULT_TXD;
1076 tx_ring->buffer_info = kcalloc(tx_ring->count,
1077 sizeof(struct e1000_buffer),
1078 GFP_KERNEL);
1079 if (!(tx_ring->buffer_info)) {
1080 ret_val = 1;
1081 goto err_nomem;
1084 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1085 tx_ring->size = ALIGN(tx_ring->size, 4096);
1086 tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
1087 &tx_ring->dma, GFP_KERNEL);
1088 if (!tx_ring->desc) {
1089 ret_val = 2;
1090 goto err_nomem;
1092 tx_ring->next_to_use = 0;
1093 tx_ring->next_to_clean = 0;
1095 ew32(TDBAL, ((u64) tx_ring->dma & 0x00000000FFFFFFFF));
1096 ew32(TDBAH, ((u64) tx_ring->dma >> 32));
1097 ew32(TDLEN, tx_ring->count * sizeof(struct e1000_tx_desc));
1098 ew32(TDH, 0);
1099 ew32(TDT, 0);
1100 ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR |
1101 E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1102 E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1104 for (i = 0; i < tx_ring->count; i++) {
1105 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
1106 struct sk_buff *skb;
1107 unsigned int skb_size = 1024;
1109 skb = alloc_skb(skb_size, GFP_KERNEL);
1110 if (!skb) {
1111 ret_val = 3;
1112 goto err_nomem;
1114 skb_put(skb, skb_size);
1115 tx_ring->buffer_info[i].skb = skb;
1116 tx_ring->buffer_info[i].length = skb->len;
1117 tx_ring->buffer_info[i].dma =
1118 pci_map_single(pdev, skb->data, skb->len,
1119 PCI_DMA_TODEVICE);
1120 if (pci_dma_mapping_error(pdev, tx_ring->buffer_info[i].dma)) {
1121 ret_val = 4;
1122 goto err_nomem;
1124 tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma);
1125 tx_desc->lower.data = cpu_to_le32(skb->len);
1126 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1127 E1000_TXD_CMD_IFCS |
1128 E1000_TXD_CMD_RS);
1129 tx_desc->upper.data = 0;
1132 /* Setup Rx descriptor ring and Rx buffers */
1134 if (!rx_ring->count)
1135 rx_ring->count = E1000_DEFAULT_RXD;
1137 rx_ring->buffer_info = kcalloc(rx_ring->count,
1138 sizeof(struct e1000_buffer),
1139 GFP_KERNEL);
1140 if (!(rx_ring->buffer_info)) {
1141 ret_val = 5;
1142 goto err_nomem;
1145 rx_ring->size = rx_ring->count * sizeof(struct e1000_rx_desc);
1146 rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
1147 &rx_ring->dma, GFP_KERNEL);
1148 if (!rx_ring->desc) {
1149 ret_val = 6;
1150 goto err_nomem;
1152 rx_ring->next_to_use = 0;
1153 rx_ring->next_to_clean = 0;
1155 rctl = er32(RCTL);
1156 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1157 ew32(RDBAL, ((u64) rx_ring->dma & 0xFFFFFFFF));
1158 ew32(RDBAH, ((u64) rx_ring->dma >> 32));
1159 ew32(RDLEN, rx_ring->size);
1160 ew32(RDH, 0);
1161 ew32(RDT, 0);
1162 rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1163 E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE |
1164 E1000_RCTL_SBP | E1000_RCTL_SECRC |
1165 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1166 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1167 ew32(RCTL, rctl);
1169 for (i = 0; i < rx_ring->count; i++) {
1170 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
1171 struct sk_buff *skb;
1173 skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL);
1174 if (!skb) {
1175 ret_val = 7;
1176 goto err_nomem;
1178 skb_reserve(skb, NET_IP_ALIGN);
1179 rx_ring->buffer_info[i].skb = skb;
1180 rx_ring->buffer_info[i].dma =
1181 pci_map_single(pdev, skb->data, 2048,
1182 PCI_DMA_FROMDEVICE);
1183 if (pci_dma_mapping_error(pdev, rx_ring->buffer_info[i].dma)) {
1184 ret_val = 8;
1185 goto err_nomem;
1187 rx_desc->buffer_addr =
1188 cpu_to_le64(rx_ring->buffer_info[i].dma);
1189 memset(skb->data, 0x00, skb->len);
1192 return 0;
1194 err_nomem:
1195 e1000_free_desc_rings(adapter);
1196 return ret_val;
1199 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1201 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1202 e1e_wphy(&adapter->hw, 29, 0x001F);
1203 e1e_wphy(&adapter->hw, 30, 0x8FFC);
1204 e1e_wphy(&adapter->hw, 29, 0x001A);
1205 e1e_wphy(&adapter->hw, 30, 0x8FF0);
1208 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1210 struct e1000_hw *hw = &adapter->hw;
1211 u32 ctrl_reg = 0;
1212 u32 stat_reg = 0;
1213 u16 phy_reg = 0;
1215 hw->mac.autoneg = 0;
1217 if (hw->phy.type == e1000_phy_m88) {
1218 /* Auto-MDI/MDIX Off */
1219 e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1220 /* reset to update Auto-MDI/MDIX */
1221 e1e_wphy(hw, PHY_CONTROL, 0x9140);
1222 /* autoneg off */
1223 e1e_wphy(hw, PHY_CONTROL, 0x8140);
1224 } else if (hw->phy.type == e1000_phy_gg82563)
1225 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC);
1227 ctrl_reg = er32(CTRL);
1229 switch (hw->phy.type) {
1230 case e1000_phy_ife:
1231 /* force 100, set loopback */
1232 e1e_wphy(hw, PHY_CONTROL, 0x6100);
1234 /* Now set up the MAC to the same speed/duplex as the PHY. */
1235 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1236 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1237 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1238 E1000_CTRL_SPD_100 |/* Force Speed to 100 */
1239 E1000_CTRL_FD); /* Force Duplex to FULL */
1240 break;
1241 case e1000_phy_bm:
1242 /* Set Default MAC Interface speed to 1GB */
1243 e1e_rphy(hw, PHY_REG(2, 21), &phy_reg);
1244 phy_reg &= ~0x0007;
1245 phy_reg |= 0x006;
1246 e1e_wphy(hw, PHY_REG(2, 21), phy_reg);
1247 /* Assert SW reset for above settings to take effect */
1248 e1000e_commit_phy(hw);
1249 mdelay(1);
1250 /* Force Full Duplex */
1251 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1252 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C);
1253 /* Set Link Up (in force link) */
1254 e1e_rphy(hw, PHY_REG(776, 16), &phy_reg);
1255 e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040);
1256 /* Force Link */
1257 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1258 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040);
1259 /* Set Early Link Enable */
1260 e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
1261 e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400);
1262 /* fall through */
1263 default:
1264 /* force 1000, set loopback */
1265 e1e_wphy(hw, PHY_CONTROL, 0x4140);
1266 mdelay(250);
1268 /* Now set up the MAC to the same speed/duplex as the PHY. */
1269 ctrl_reg = er32(CTRL);
1270 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1271 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1272 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1273 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1274 E1000_CTRL_FD); /* Force Duplex to FULL */
1276 if (adapter->flags & FLAG_IS_ICH)
1277 ctrl_reg |= E1000_CTRL_SLU; /* Set Link Up */
1280 if (hw->phy.media_type == e1000_media_type_copper &&
1281 hw->phy.type == e1000_phy_m88) {
1282 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1283 } else {
1285 * Set the ILOS bit on the fiber Nic if half duplex link is
1286 * detected.
1288 stat_reg = er32(STATUS);
1289 if ((stat_reg & E1000_STATUS_FD) == 0)
1290 ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1293 ew32(CTRL, ctrl_reg);
1296 * Disable the receiver on the PHY so when a cable is plugged in, the
1297 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1299 if (hw->phy.type == e1000_phy_m88)
1300 e1000_phy_disable_receiver(adapter);
1302 udelay(500);
1304 return 0;
1307 static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter)
1309 struct e1000_hw *hw = &adapter->hw;
1310 u32 ctrl = er32(CTRL);
1311 int link = 0;
1313 /* special requirements for 82571/82572 fiber adapters */
1316 * jump through hoops to make sure link is up because serdes
1317 * link is hardwired up
1319 ctrl |= E1000_CTRL_SLU;
1320 ew32(CTRL, ctrl);
1322 /* disable autoneg */
1323 ctrl = er32(TXCW);
1324 ctrl &= ~(1 << 31);
1325 ew32(TXCW, ctrl);
1327 link = (er32(STATUS) & E1000_STATUS_LU);
1329 if (!link) {
1330 /* set invert loss of signal */
1331 ctrl = er32(CTRL);
1332 ctrl |= E1000_CTRL_ILOS;
1333 ew32(CTRL, ctrl);
1337 * special write to serdes control register to enable SerDes analog
1338 * loopback
1340 #define E1000_SERDES_LB_ON 0x410
1341 ew32(SCTL, E1000_SERDES_LB_ON);
1342 msleep(10);
1344 return 0;
1347 /* only call this for fiber/serdes connections to es2lan */
1348 static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter)
1350 struct e1000_hw *hw = &adapter->hw;
1351 u32 ctrlext = er32(CTRL_EXT);
1352 u32 ctrl = er32(CTRL);
1355 * save CTRL_EXT to restore later, reuse an empty variable (unused
1356 * on mac_type 80003es2lan)
1358 adapter->tx_fifo_head = ctrlext;
1360 /* clear the serdes mode bits, putting the device into mac loopback */
1361 ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1362 ew32(CTRL_EXT, ctrlext);
1364 /* force speed to 1000/FD, link up */
1365 ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1366 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX |
1367 E1000_CTRL_SPD_1000 | E1000_CTRL_FD);
1368 ew32(CTRL, ctrl);
1370 /* set mac loopback */
1371 ctrl = er32(RCTL);
1372 ctrl |= E1000_RCTL_LBM_MAC;
1373 ew32(RCTL, ctrl);
1375 /* set testing mode parameters (no need to reset later) */
1376 #define KMRNCTRLSTA_OPMODE (0x1F << 16)
1377 #define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582
1378 ew32(KMRNCTRLSTA,
1379 (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII));
1381 return 0;
1384 static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1386 struct e1000_hw *hw = &adapter->hw;
1387 u32 rctl;
1389 if (hw->phy.media_type == e1000_media_type_fiber ||
1390 hw->phy.media_type == e1000_media_type_internal_serdes) {
1391 switch (hw->mac.type) {
1392 case e1000_80003es2lan:
1393 return e1000_set_es2lan_mac_loopback(adapter);
1394 break;
1395 case e1000_82571:
1396 case e1000_82572:
1397 return e1000_set_82571_fiber_loopback(adapter);
1398 break;
1399 default:
1400 rctl = er32(RCTL);
1401 rctl |= E1000_RCTL_LBM_TCVR;
1402 ew32(RCTL, rctl);
1403 return 0;
1405 } else if (hw->phy.media_type == e1000_media_type_copper) {
1406 return e1000_integrated_phy_loopback(adapter);
1409 return 7;
1412 static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1414 struct e1000_hw *hw = &adapter->hw;
1415 u32 rctl;
1416 u16 phy_reg;
1418 rctl = er32(RCTL);
1419 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1420 ew32(RCTL, rctl);
1422 switch (hw->mac.type) {
1423 case e1000_80003es2lan:
1424 if (hw->phy.media_type == e1000_media_type_fiber ||
1425 hw->phy.media_type == e1000_media_type_internal_serdes) {
1426 /* restore CTRL_EXT, stealing space from tx_fifo_head */
1427 ew32(CTRL_EXT, adapter->tx_fifo_head);
1428 adapter->tx_fifo_head = 0;
1430 /* fall through */
1431 case e1000_82571:
1432 case e1000_82572:
1433 if (hw->phy.media_type == e1000_media_type_fiber ||
1434 hw->phy.media_type == e1000_media_type_internal_serdes) {
1435 #define E1000_SERDES_LB_OFF 0x400
1436 ew32(SCTL, E1000_SERDES_LB_OFF);
1437 msleep(10);
1438 break;
1440 /* Fall Through */
1441 default:
1442 hw->mac.autoneg = 1;
1443 if (hw->phy.type == e1000_phy_gg82563)
1444 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180);
1445 e1e_rphy(hw, PHY_CONTROL, &phy_reg);
1446 if (phy_reg & MII_CR_LOOPBACK) {
1447 phy_reg &= ~MII_CR_LOOPBACK;
1448 e1e_wphy(hw, PHY_CONTROL, phy_reg);
1449 e1000e_commit_phy(hw);
1451 break;
1455 static void e1000_create_lbtest_frame(struct sk_buff *skb,
1456 unsigned int frame_size)
1458 memset(skb->data, 0xFF, frame_size);
1459 frame_size &= ~1;
1460 memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1461 memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1462 memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1465 static int e1000_check_lbtest_frame(struct sk_buff *skb,
1466 unsigned int frame_size)
1468 frame_size &= ~1;
1469 if (*(skb->data + 3) == 0xFF)
1470 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1471 (*(skb->data + frame_size / 2 + 12) == 0xAF))
1472 return 0;
1473 return 13;
1476 static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1478 struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1479 struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1480 struct pci_dev *pdev = adapter->pdev;
1481 struct e1000_hw *hw = &adapter->hw;
1482 int i, j, k, l;
1483 int lc;
1484 int good_cnt;
1485 int ret_val = 0;
1486 unsigned long time;
1488 ew32(RDT, rx_ring->count - 1);
1491 * Calculate the loop count based on the largest descriptor ring
1492 * The idea is to wrap the largest ring a number of times using 64
1493 * send/receive pairs during each loop
1496 if (rx_ring->count <= tx_ring->count)
1497 lc = ((tx_ring->count / 64) * 2) + 1;
1498 else
1499 lc = ((rx_ring->count / 64) * 2) + 1;
1501 k = 0;
1502 l = 0;
1503 for (j = 0; j <= lc; j++) { /* loop count loop */
1504 for (i = 0; i < 64; i++) { /* send the packets */
1505 e1000_create_lbtest_frame(tx_ring->buffer_info[k].skb,
1506 1024);
1507 pci_dma_sync_single_for_device(pdev,
1508 tx_ring->buffer_info[k].dma,
1509 tx_ring->buffer_info[k].length,
1510 PCI_DMA_TODEVICE);
1511 k++;
1512 if (k == tx_ring->count)
1513 k = 0;
1515 ew32(TDT, k);
1516 msleep(200);
1517 time = jiffies; /* set the start time for the receive */
1518 good_cnt = 0;
1519 do { /* receive the sent packets */
1520 pci_dma_sync_single_for_cpu(pdev,
1521 rx_ring->buffer_info[l].dma, 2048,
1522 PCI_DMA_FROMDEVICE);
1524 ret_val = e1000_check_lbtest_frame(
1525 rx_ring->buffer_info[l].skb, 1024);
1526 if (!ret_val)
1527 good_cnt++;
1528 l++;
1529 if (l == rx_ring->count)
1530 l = 0;
1532 * time + 20 msecs (200 msecs on 2.4) is more than
1533 * enough time to complete the receives, if it's
1534 * exceeded, break and error off
1536 } while ((good_cnt < 64) && !time_after(jiffies, time + 20));
1537 if (good_cnt != 64) {
1538 ret_val = 13; /* ret_val is the same as mis-compare */
1539 break;
1541 if (jiffies >= (time + 20)) {
1542 ret_val = 14; /* error code for time out error */
1543 break;
1545 } /* end loop count loop */
1546 return ret_val;
1549 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1552 * PHY loopback cannot be performed if SoL/IDER
1553 * sessions are active
1555 if (e1000_check_reset_block(&adapter->hw)) {
1556 e_err("Cannot do PHY loopback test when SoL/IDER is active.\n");
1557 *data = 0;
1558 goto out;
1561 *data = e1000_setup_desc_rings(adapter);
1562 if (*data)
1563 goto out;
1565 *data = e1000_setup_loopback_test(adapter);
1566 if (*data)
1567 goto err_loopback;
1569 *data = e1000_run_loopback_test(adapter);
1570 e1000_loopback_cleanup(adapter);
1572 err_loopback:
1573 e1000_free_desc_rings(adapter);
1574 out:
1575 return *data;
1578 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1580 struct e1000_hw *hw = &adapter->hw;
1582 *data = 0;
1583 if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1584 int i = 0;
1585 hw->mac.serdes_has_link = 0;
1588 * On some blade server designs, link establishment
1589 * could take as long as 2-3 minutes
1591 do {
1592 hw->mac.ops.check_for_link(hw);
1593 if (hw->mac.serdes_has_link)
1594 return *data;
1595 msleep(20);
1596 } while (i++ < 3750);
1598 *data = 1;
1599 } else {
1600 hw->mac.ops.check_for_link(hw);
1601 if (hw->mac.autoneg)
1602 msleep(4000);
1604 if (!(er32(STATUS) &
1605 E1000_STATUS_LU))
1606 *data = 1;
1608 return *data;
1611 static int e1000e_get_sset_count(struct net_device *netdev, int sset)
1613 switch (sset) {
1614 case ETH_SS_TEST:
1615 return E1000_TEST_LEN;
1616 case ETH_SS_STATS:
1617 return E1000_STATS_LEN;
1618 default:
1619 return -EOPNOTSUPP;
1623 static void e1000_diag_test(struct net_device *netdev,
1624 struct ethtool_test *eth_test, u64 *data)
1626 struct e1000_adapter *adapter = netdev_priv(netdev);
1627 u16 autoneg_advertised;
1628 u8 forced_speed_duplex;
1629 u8 autoneg;
1630 bool if_running = netif_running(netdev);
1632 set_bit(__E1000_TESTING, &adapter->state);
1633 if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1634 /* Offline tests */
1636 /* save speed, duplex, autoneg settings */
1637 autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1638 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1639 autoneg = adapter->hw.mac.autoneg;
1641 e_info("offline testing starting\n");
1644 * Link test performed before hardware reset so autoneg doesn't
1645 * interfere with test result
1647 if (e1000_link_test(adapter, &data[4]))
1648 eth_test->flags |= ETH_TEST_FL_FAILED;
1650 if (if_running)
1651 /* indicate we're in test mode */
1652 dev_close(netdev);
1653 else
1654 e1000e_reset(adapter);
1656 if (e1000_reg_test(adapter, &data[0]))
1657 eth_test->flags |= ETH_TEST_FL_FAILED;
1659 e1000e_reset(adapter);
1660 if (e1000_eeprom_test(adapter, &data[1]))
1661 eth_test->flags |= ETH_TEST_FL_FAILED;
1663 e1000e_reset(adapter);
1664 if (e1000_intr_test(adapter, &data[2]))
1665 eth_test->flags |= ETH_TEST_FL_FAILED;
1667 e1000e_reset(adapter);
1668 /* make sure the phy is powered up */
1669 e1000e_power_up_phy(adapter);
1670 if (e1000_loopback_test(adapter, &data[3]))
1671 eth_test->flags |= ETH_TEST_FL_FAILED;
1673 /* restore speed, duplex, autoneg settings */
1674 adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1675 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1676 adapter->hw.mac.autoneg = autoneg;
1678 /* force this routine to wait until autoneg complete/timeout */
1679 adapter->hw.phy.autoneg_wait_to_complete = 1;
1680 e1000e_reset(adapter);
1681 adapter->hw.phy.autoneg_wait_to_complete = 0;
1683 clear_bit(__E1000_TESTING, &adapter->state);
1684 if (if_running)
1685 dev_open(netdev);
1686 } else {
1687 e_info("online testing starting\n");
1688 /* Online tests */
1689 if (e1000_link_test(adapter, &data[4]))
1690 eth_test->flags |= ETH_TEST_FL_FAILED;
1692 /* Online tests aren't run; pass by default */
1693 data[0] = 0;
1694 data[1] = 0;
1695 data[2] = 0;
1696 data[3] = 0;
1698 clear_bit(__E1000_TESTING, &adapter->state);
1700 msleep_interruptible(4 * 1000);
1703 static void e1000_get_wol(struct net_device *netdev,
1704 struct ethtool_wolinfo *wol)
1706 struct e1000_adapter *adapter = netdev_priv(netdev);
1708 wol->supported = 0;
1709 wol->wolopts = 0;
1711 if (!(adapter->flags & FLAG_HAS_WOL) ||
1712 !device_can_wakeup(&adapter->pdev->dev))
1713 return;
1715 wol->supported = WAKE_UCAST | WAKE_MCAST |
1716 WAKE_BCAST | WAKE_MAGIC |
1717 WAKE_PHY | WAKE_ARP;
1719 /* apply any specific unsupported masks here */
1720 if (adapter->flags & FLAG_NO_WAKE_UCAST) {
1721 wol->supported &= ~WAKE_UCAST;
1723 if (adapter->wol & E1000_WUFC_EX)
1724 e_err("Interface does not support directed (unicast) "
1725 "frame wake-up packets\n");
1728 if (adapter->wol & E1000_WUFC_EX)
1729 wol->wolopts |= WAKE_UCAST;
1730 if (adapter->wol & E1000_WUFC_MC)
1731 wol->wolopts |= WAKE_MCAST;
1732 if (adapter->wol & E1000_WUFC_BC)
1733 wol->wolopts |= WAKE_BCAST;
1734 if (adapter->wol & E1000_WUFC_MAG)
1735 wol->wolopts |= WAKE_MAGIC;
1736 if (adapter->wol & E1000_WUFC_LNKC)
1737 wol->wolopts |= WAKE_PHY;
1738 if (adapter->wol & E1000_WUFC_ARP)
1739 wol->wolopts |= WAKE_ARP;
1742 static int e1000_set_wol(struct net_device *netdev,
1743 struct ethtool_wolinfo *wol)
1745 struct e1000_adapter *adapter = netdev_priv(netdev);
1747 if (wol->wolopts & WAKE_MAGICSECURE)
1748 return -EOPNOTSUPP;
1750 if (!(adapter->flags & FLAG_HAS_WOL) ||
1751 !device_can_wakeup(&adapter->pdev->dev))
1752 return wol->wolopts ? -EOPNOTSUPP : 0;
1754 /* these settings will always override what we currently have */
1755 adapter->wol = 0;
1757 if (wol->wolopts & WAKE_UCAST)
1758 adapter->wol |= E1000_WUFC_EX;
1759 if (wol->wolopts & WAKE_MCAST)
1760 adapter->wol |= E1000_WUFC_MC;
1761 if (wol->wolopts & WAKE_BCAST)
1762 adapter->wol |= E1000_WUFC_BC;
1763 if (wol->wolopts & WAKE_MAGIC)
1764 adapter->wol |= E1000_WUFC_MAG;
1765 if (wol->wolopts & WAKE_PHY)
1766 adapter->wol |= E1000_WUFC_LNKC;
1767 if (wol->wolopts & WAKE_ARP)
1768 adapter->wol |= E1000_WUFC_ARP;
1770 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1772 return 0;
1775 /* toggle LED 4 times per second = 2 "blinks" per second */
1776 #define E1000_ID_INTERVAL (HZ/4)
1778 /* bit defines for adapter->led_status */
1779 #define E1000_LED_ON 0
1781 static void e1000_led_blink_callback(unsigned long data)
1783 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
1785 if (test_and_change_bit(E1000_LED_ON, &adapter->led_status))
1786 adapter->hw.mac.ops.led_off(&adapter->hw);
1787 else
1788 adapter->hw.mac.ops.led_on(&adapter->hw);
1790 mod_timer(&adapter->blink_timer, jiffies + E1000_ID_INTERVAL);
1793 static int e1000_phys_id(struct net_device *netdev, u32 data)
1795 struct e1000_adapter *adapter = netdev_priv(netdev);
1796 struct e1000_hw *hw = &adapter->hw;
1798 if (!data)
1799 data = INT_MAX;
1801 if ((hw->phy.type == e1000_phy_ife) ||
1802 (hw->mac.type == e1000_82574)) {
1803 if (!adapter->blink_timer.function) {
1804 init_timer(&adapter->blink_timer);
1805 adapter->blink_timer.function =
1806 e1000_led_blink_callback;
1807 adapter->blink_timer.data = (unsigned long) adapter;
1809 mod_timer(&adapter->blink_timer, jiffies);
1810 msleep_interruptible(data * 1000);
1811 del_timer_sync(&adapter->blink_timer);
1812 if (hw->phy.type == e1000_phy_ife)
1813 e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
1814 } else {
1815 e1000e_blink_led(hw);
1816 msleep_interruptible(data * 1000);
1819 hw->mac.ops.led_off(hw);
1820 clear_bit(E1000_LED_ON, &adapter->led_status);
1821 hw->mac.ops.cleanup_led(hw);
1823 return 0;
1826 static int e1000_get_coalesce(struct net_device *netdev,
1827 struct ethtool_coalesce *ec)
1829 struct e1000_adapter *adapter = netdev_priv(netdev);
1831 if (adapter->itr_setting <= 3)
1832 ec->rx_coalesce_usecs = adapter->itr_setting;
1833 else
1834 ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
1836 return 0;
1839 static int e1000_set_coalesce(struct net_device *netdev,
1840 struct ethtool_coalesce *ec)
1842 struct e1000_adapter *adapter = netdev_priv(netdev);
1843 struct e1000_hw *hw = &adapter->hw;
1845 if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
1846 ((ec->rx_coalesce_usecs > 3) &&
1847 (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
1848 (ec->rx_coalesce_usecs == 2))
1849 return -EINVAL;
1851 if (ec->rx_coalesce_usecs <= 3) {
1852 adapter->itr = 20000;
1853 adapter->itr_setting = ec->rx_coalesce_usecs;
1854 } else {
1855 adapter->itr = (1000000 / ec->rx_coalesce_usecs);
1856 adapter->itr_setting = adapter->itr & ~3;
1859 if (adapter->itr_setting != 0)
1860 ew32(ITR, 1000000000 / (adapter->itr * 256));
1861 else
1862 ew32(ITR, 0);
1864 return 0;
1867 static int e1000_nway_reset(struct net_device *netdev)
1869 struct e1000_adapter *adapter = netdev_priv(netdev);
1870 if (netif_running(netdev))
1871 e1000e_reinit_locked(adapter);
1872 return 0;
1875 static void e1000_get_ethtool_stats(struct net_device *netdev,
1876 struct ethtool_stats *stats,
1877 u64 *data)
1879 struct e1000_adapter *adapter = netdev_priv(netdev);
1880 int i;
1882 e1000e_update_stats(adapter);
1883 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1884 char *p = (char *)adapter+e1000_gstrings_stats[i].stat_offset;
1885 data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
1886 sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
1890 static void e1000_get_strings(struct net_device *netdev, u32 stringset,
1891 u8 *data)
1893 u8 *p = data;
1894 int i;
1896 switch (stringset) {
1897 case ETH_SS_TEST:
1898 memcpy(data, *e1000_gstrings_test, sizeof(e1000_gstrings_test));
1899 break;
1900 case ETH_SS_STATS:
1901 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1902 memcpy(p, e1000_gstrings_stats[i].stat_string,
1903 ETH_GSTRING_LEN);
1904 p += ETH_GSTRING_LEN;
1906 break;
1910 static const struct ethtool_ops e1000_ethtool_ops = {
1911 .get_settings = e1000_get_settings,
1912 .set_settings = e1000_set_settings,
1913 .get_drvinfo = e1000_get_drvinfo,
1914 .get_regs_len = e1000_get_regs_len,
1915 .get_regs = e1000_get_regs,
1916 .get_wol = e1000_get_wol,
1917 .set_wol = e1000_set_wol,
1918 .get_msglevel = e1000_get_msglevel,
1919 .set_msglevel = e1000_set_msglevel,
1920 .nway_reset = e1000_nway_reset,
1921 .get_link = e1000_get_link,
1922 .get_eeprom_len = e1000_get_eeprom_len,
1923 .get_eeprom = e1000_get_eeprom,
1924 .set_eeprom = e1000_set_eeprom,
1925 .get_ringparam = e1000_get_ringparam,
1926 .set_ringparam = e1000_set_ringparam,
1927 .get_pauseparam = e1000_get_pauseparam,
1928 .set_pauseparam = e1000_set_pauseparam,
1929 .get_rx_csum = e1000_get_rx_csum,
1930 .set_rx_csum = e1000_set_rx_csum,
1931 .get_tx_csum = e1000_get_tx_csum,
1932 .set_tx_csum = e1000_set_tx_csum,
1933 .get_sg = ethtool_op_get_sg,
1934 .set_sg = ethtool_op_set_sg,
1935 .get_tso = ethtool_op_get_tso,
1936 .set_tso = e1000_set_tso,
1937 .self_test = e1000_diag_test,
1938 .get_strings = e1000_get_strings,
1939 .phys_id = e1000_phys_id,
1940 .get_ethtool_stats = e1000_get_ethtool_stats,
1941 .get_sset_count = e1000e_get_sset_count,
1942 .get_coalesce = e1000_get_coalesce,
1943 .set_coalesce = e1000_set_coalesce,
1946 void e1000e_set_ethtool_ops(struct net_device *netdev)
1948 SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);