2 * CFQ, or complete fairness queueing, disk scheduler.
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
9 #include <linux/module.h>
10 #include <linux/slab.h>
11 #include <linux/blkdev.h>
12 #include <linux/elevator.h>
13 #include <linux/jiffies.h>
14 #include <linux/rbtree.h>
15 #include <linux/ioprio.h>
16 #include <linux/blktrace_api.h>
22 /* max queue in one round of service */
23 static const int cfq_quantum
= 8;
24 static const int cfq_fifo_expire
[2] = { HZ
/ 4, HZ
/ 8 };
25 /* maximum backwards seek, in KiB */
26 static const int cfq_back_max
= 16 * 1024;
27 /* penalty of a backwards seek */
28 static const int cfq_back_penalty
= 2;
29 static const int cfq_slice_sync
= HZ
/ 10;
30 static int cfq_slice_async
= HZ
/ 25;
31 static const int cfq_slice_async_rq
= 2;
32 static int cfq_slice_idle
= HZ
/ 125;
33 static int cfq_group_idle
= HZ
/ 125;
34 static const int cfq_target_latency
= HZ
* 3/10; /* 300 ms */
35 static const int cfq_hist_divisor
= 4;
38 * offset from end of service tree
40 #define CFQ_IDLE_DELAY (HZ / 5)
43 * below this threshold, we consider thinktime immediate
45 #define CFQ_MIN_TT (2)
47 #define CFQ_SLICE_SCALE (5)
48 #define CFQ_HW_QUEUE_MIN (5)
49 #define CFQ_SERVICE_SHIFT 12
51 #define CFQQ_SEEK_THR (sector_t)(8 * 100)
52 #define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
53 #define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
54 #define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
57 ((struct cfq_io_context *) (rq)->elevator_private[0])
58 #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private[1])
59 #define RQ_CFQG(rq) (struct cfq_group *) ((rq)->elevator_private[2])
61 static struct kmem_cache
*cfq_pool
;
62 static struct kmem_cache
*cfq_ioc_pool
;
64 static DEFINE_PER_CPU(unsigned long, cfq_ioc_count
);
65 static struct completion
*ioc_gone
;
66 static DEFINE_SPINLOCK(ioc_gone_lock
);
68 static DEFINE_SPINLOCK(cic_index_lock
);
69 static DEFINE_IDA(cic_index_ida
);
71 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
72 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
73 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
75 #define sample_valid(samples) ((samples) > 80)
76 #define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
79 * Most of our rbtree usage is for sorting with min extraction, so
80 * if we cache the leftmost node we don't have to walk down the tree
81 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
82 * move this into the elevator for the rq sorting as well.
88 unsigned total_weight
;
91 #define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, .left = NULL, \
92 .count = 0, .min_vdisktime = 0, }
95 * Per process-grouping structure
100 /* various state flags, see below */
102 /* parent cfq_data */
103 struct cfq_data
*cfqd
;
104 /* service_tree member */
105 struct rb_node rb_node
;
106 /* service_tree key */
107 unsigned long rb_key
;
108 /* prio tree member */
109 struct rb_node p_node
;
110 /* prio tree root we belong to, if any */
111 struct rb_root
*p_root
;
112 /* sorted list of pending requests */
113 struct rb_root sort_list
;
114 /* if fifo isn't expired, next request to serve */
115 struct request
*next_rq
;
116 /* requests queued in sort_list */
118 /* currently allocated requests */
120 /* fifo list of requests in sort_list */
121 struct list_head fifo
;
123 /* time when queue got scheduled in to dispatch first request. */
124 unsigned long dispatch_start
;
125 unsigned int allocated_slice
;
126 unsigned int slice_dispatch
;
127 /* time when first request from queue completed and slice started. */
128 unsigned long slice_start
;
129 unsigned long slice_end
;
132 /* pending metadata requests */
134 /* number of requests that are on the dispatch list or inside driver */
137 /* io prio of this group */
138 unsigned short ioprio
, org_ioprio
;
139 unsigned short ioprio_class
, org_ioprio_class
;
144 sector_t last_request_pos
;
146 struct cfq_rb_root
*service_tree
;
147 struct cfq_queue
*new_cfqq
;
148 struct cfq_group
*cfqg
;
149 /* Number of sectors dispatched from queue in single dispatch round */
150 unsigned long nr_sectors
;
154 * First index in the service_trees.
155 * IDLE is handled separately, so it has negative index
165 * Second index in the service_trees.
169 SYNC_NOIDLE_WORKLOAD
= 1,
173 /* This is per cgroup per device grouping structure */
175 /* group service_tree member */
176 struct rb_node rb_node
;
178 /* group service_tree key */
181 unsigned int new_weight
;
184 /* number of cfqq currently on this group */
188 * Per group busy queues average. Useful for workload slice calc. We
189 * create the array for each prio class but at run time it is used
190 * only for RT and BE class and slot for IDLE class remains unused.
191 * This is primarily done to avoid confusion and a gcc warning.
193 unsigned int busy_queues_avg
[CFQ_PRIO_NR
];
195 * rr lists of queues with requests. We maintain service trees for
196 * RT and BE classes. These trees are subdivided in subclasses
197 * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
198 * class there is no subclassification and all the cfq queues go on
199 * a single tree service_tree_idle.
200 * Counts are embedded in the cfq_rb_root
202 struct cfq_rb_root service_trees
[2][3];
203 struct cfq_rb_root service_tree_idle
;
205 unsigned long saved_workload_slice
;
206 enum wl_type_t saved_workload
;
207 enum wl_prio_t saved_serving_prio
;
208 struct blkio_group blkg
;
209 #ifdef CONFIG_CFQ_GROUP_IOSCHED
210 struct hlist_node cfqd_node
;
213 /* number of requests that are on the dispatch list or inside driver */
218 * Per block device queue structure
221 struct request_queue
*queue
;
222 /* Root service tree for cfq_groups */
223 struct cfq_rb_root grp_service_tree
;
224 struct cfq_group root_group
;
227 * The priority currently being served
229 enum wl_prio_t serving_prio
;
230 enum wl_type_t serving_type
;
231 unsigned long workload_expires
;
232 struct cfq_group
*serving_group
;
235 * Each priority tree is sorted by next_request position. These
236 * trees are used when determining if two or more queues are
237 * interleaving requests (see cfq_close_cooperator).
239 struct rb_root prio_trees
[CFQ_PRIO_LISTS
];
241 unsigned int busy_queues
;
242 unsigned int busy_sync_queues
;
248 * queue-depth detection
254 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
255 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
258 int hw_tag_est_depth
;
259 unsigned int hw_tag_samples
;
262 * idle window management
264 struct timer_list idle_slice_timer
;
265 struct work_struct unplug_work
;
267 struct cfq_queue
*active_queue
;
268 struct cfq_io_context
*active_cic
;
271 * async queue for each priority case
273 struct cfq_queue
*async_cfqq
[2][IOPRIO_BE_NR
];
274 struct cfq_queue
*async_idle_cfqq
;
276 sector_t last_position
;
279 * tunables, see top of file
281 unsigned int cfq_quantum
;
282 unsigned int cfq_fifo_expire
[2];
283 unsigned int cfq_back_penalty
;
284 unsigned int cfq_back_max
;
285 unsigned int cfq_slice
[2];
286 unsigned int cfq_slice_async_rq
;
287 unsigned int cfq_slice_idle
;
288 unsigned int cfq_group_idle
;
289 unsigned int cfq_latency
;
291 unsigned int cic_index
;
292 struct list_head cic_list
;
295 * Fallback dummy cfqq for extreme OOM conditions
297 struct cfq_queue oom_cfqq
;
299 unsigned long last_delayed_sync
;
301 /* List of cfq groups being managed on this device*/
302 struct hlist_head cfqg_list
;
304 /* Number of groups which are on blkcg->blkg_list */
305 unsigned int nr_blkcg_linked_grps
;
308 static struct cfq_group
*cfq_get_next_cfqg(struct cfq_data
*cfqd
);
310 static struct cfq_rb_root
*service_tree_for(struct cfq_group
*cfqg
,
317 if (prio
== IDLE_WORKLOAD
)
318 return &cfqg
->service_tree_idle
;
320 return &cfqg
->service_trees
[prio
][type
];
323 enum cfqq_state_flags
{
324 CFQ_CFQQ_FLAG_on_rr
= 0, /* on round-robin busy list */
325 CFQ_CFQQ_FLAG_wait_request
, /* waiting for a request */
326 CFQ_CFQQ_FLAG_must_dispatch
, /* must be allowed a dispatch */
327 CFQ_CFQQ_FLAG_must_alloc_slice
, /* per-slice must_alloc flag */
328 CFQ_CFQQ_FLAG_fifo_expire
, /* FIFO checked in this slice */
329 CFQ_CFQQ_FLAG_idle_window
, /* slice idling enabled */
330 CFQ_CFQQ_FLAG_prio_changed
, /* task priority has changed */
331 CFQ_CFQQ_FLAG_slice_new
, /* no requests dispatched in slice */
332 CFQ_CFQQ_FLAG_sync
, /* synchronous queue */
333 CFQ_CFQQ_FLAG_coop
, /* cfqq is shared */
334 CFQ_CFQQ_FLAG_split_coop
, /* shared cfqq will be splitted */
335 CFQ_CFQQ_FLAG_deep
, /* sync cfqq experienced large depth */
336 CFQ_CFQQ_FLAG_wait_busy
, /* Waiting for next request */
339 #define CFQ_CFQQ_FNS(name) \
340 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
342 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
344 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
346 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
348 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
350 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
354 CFQ_CFQQ_FNS(wait_request
);
355 CFQ_CFQQ_FNS(must_dispatch
);
356 CFQ_CFQQ_FNS(must_alloc_slice
);
357 CFQ_CFQQ_FNS(fifo_expire
);
358 CFQ_CFQQ_FNS(idle_window
);
359 CFQ_CFQQ_FNS(prio_changed
);
360 CFQ_CFQQ_FNS(slice_new
);
363 CFQ_CFQQ_FNS(split_coop
);
365 CFQ_CFQQ_FNS(wait_busy
);
368 #ifdef CONFIG_CFQ_GROUP_IOSCHED
369 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
370 blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
371 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
372 blkg_path(&(cfqq)->cfqg->blkg), ##args)
374 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) \
375 blk_add_trace_msg((cfqd)->queue, "%s " fmt, \
376 blkg_path(&(cfqg)->blkg), ##args) \
379 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
380 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
381 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0)
383 #define cfq_log(cfqd, fmt, args...) \
384 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
386 /* Traverses through cfq group service trees */
387 #define for_each_cfqg_st(cfqg, i, j, st) \
388 for (i = 0; i <= IDLE_WORKLOAD; i++) \
389 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
390 : &cfqg->service_tree_idle; \
391 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
392 (i == IDLE_WORKLOAD && j == 0); \
393 j++, st = i < IDLE_WORKLOAD ? \
394 &cfqg->service_trees[i][j]: NULL) \
397 static inline bool iops_mode(struct cfq_data *cfqd)
400 * If we are not idling on queues and it is a NCQ drive, parallel
401 * execution of requests is on and measuring time is not possible
402 * in most of the cases until and unless we drive shallower queue
403 * depths and that becomes a performance bottleneck. In such cases
404 * switch to start providing fairness in terms of number of IOs.
406 if (!cfqd
->cfq_slice_idle
&& cfqd
->hw_tag
)
412 static inline enum wl_prio_t
cfqq_prio(struct cfq_queue
*cfqq
)
414 if (cfq_class_idle(cfqq
))
415 return IDLE_WORKLOAD
;
416 if (cfq_class_rt(cfqq
))
422 static enum wl_type_t
cfqq_type(struct cfq_queue
*cfqq
)
424 if (!cfq_cfqq_sync(cfqq
))
425 return ASYNC_WORKLOAD
;
426 if (!cfq_cfqq_idle_window(cfqq
))
427 return SYNC_NOIDLE_WORKLOAD
;
428 return SYNC_WORKLOAD
;
431 static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl
,
432 struct cfq_data
*cfqd
,
433 struct cfq_group
*cfqg
)
435 if (wl
== IDLE_WORKLOAD
)
436 return cfqg
->service_tree_idle
.count
;
438 return cfqg
->service_trees
[wl
][ASYNC_WORKLOAD
].count
439 + cfqg
->service_trees
[wl
][SYNC_NOIDLE_WORKLOAD
].count
440 + cfqg
->service_trees
[wl
][SYNC_WORKLOAD
].count
;
443 static inline int cfqg_busy_async_queues(struct cfq_data
*cfqd
,
444 struct cfq_group
*cfqg
)
446 return cfqg
->service_trees
[RT_WORKLOAD
][ASYNC_WORKLOAD
].count
447 + cfqg
->service_trees
[BE_WORKLOAD
][ASYNC_WORKLOAD
].count
;
450 static void cfq_dispatch_insert(struct request_queue
*, struct request
*);
451 static struct cfq_queue
*cfq_get_queue(struct cfq_data
*, bool,
452 struct io_context
*, gfp_t
);
453 static struct cfq_io_context
*cfq_cic_lookup(struct cfq_data
*,
454 struct io_context
*);
456 static inline struct cfq_queue
*cic_to_cfqq(struct cfq_io_context
*cic
,
459 return cic
->cfqq
[is_sync
];
462 static inline void cic_set_cfqq(struct cfq_io_context
*cic
,
463 struct cfq_queue
*cfqq
, bool is_sync
)
465 cic
->cfqq
[is_sync
] = cfqq
;
468 #define CIC_DEAD_KEY 1ul
469 #define CIC_DEAD_INDEX_SHIFT 1
471 static inline void *cfqd_dead_key(struct cfq_data
*cfqd
)
473 return (void *)(cfqd
->cic_index
<< CIC_DEAD_INDEX_SHIFT
| CIC_DEAD_KEY
);
476 static inline struct cfq_data
*cic_to_cfqd(struct cfq_io_context
*cic
)
478 struct cfq_data
*cfqd
= cic
->key
;
480 if (unlikely((unsigned long) cfqd
& CIC_DEAD_KEY
))
487 * We regard a request as SYNC, if it's either a read or has the SYNC bit
488 * set (in which case it could also be direct WRITE).
490 static inline bool cfq_bio_sync(struct bio
*bio
)
492 return bio_data_dir(bio
) == READ
|| (bio
->bi_rw
& REQ_SYNC
);
496 * scheduler run of queue, if there are requests pending and no one in the
497 * driver that will restart queueing
499 static inline void cfq_schedule_dispatch(struct cfq_data
*cfqd
)
501 if (cfqd
->busy_queues
) {
502 cfq_log(cfqd
, "schedule dispatch");
503 kblockd_schedule_work(cfqd
->queue
, &cfqd
->unplug_work
);
508 * Scale schedule slice based on io priority. Use the sync time slice only
509 * if a queue is marked sync and has sync io queued. A sync queue with async
510 * io only, should not get full sync slice length.
512 static inline int cfq_prio_slice(struct cfq_data
*cfqd
, bool sync
,
515 const int base_slice
= cfqd
->cfq_slice
[sync
];
517 WARN_ON(prio
>= IOPRIO_BE_NR
);
519 return base_slice
+ (base_slice
/CFQ_SLICE_SCALE
* (4 - prio
));
523 cfq_prio_to_slice(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
525 return cfq_prio_slice(cfqd
, cfq_cfqq_sync(cfqq
), cfqq
->ioprio
);
528 static inline u64
cfq_scale_slice(unsigned long delta
, struct cfq_group
*cfqg
)
530 u64 d
= delta
<< CFQ_SERVICE_SHIFT
;
532 d
= d
* BLKIO_WEIGHT_DEFAULT
;
533 do_div(d
, cfqg
->weight
);
537 static inline u64
max_vdisktime(u64 min_vdisktime
, u64 vdisktime
)
539 s64 delta
= (s64
)(vdisktime
- min_vdisktime
);
541 min_vdisktime
= vdisktime
;
543 return min_vdisktime
;
546 static inline u64
min_vdisktime(u64 min_vdisktime
, u64 vdisktime
)
548 s64 delta
= (s64
)(vdisktime
- min_vdisktime
);
550 min_vdisktime
= vdisktime
;
552 return min_vdisktime
;
555 static void update_min_vdisktime(struct cfq_rb_root
*st
)
557 struct cfq_group
*cfqg
;
560 cfqg
= rb_entry_cfqg(st
->left
);
561 st
->min_vdisktime
= max_vdisktime(st
->min_vdisktime
,
567 * get averaged number of queues of RT/BE priority.
568 * average is updated, with a formula that gives more weight to higher numbers,
569 * to quickly follows sudden increases and decrease slowly
572 static inline unsigned cfq_group_get_avg_queues(struct cfq_data
*cfqd
,
573 struct cfq_group
*cfqg
, bool rt
)
575 unsigned min_q
, max_q
;
576 unsigned mult
= cfq_hist_divisor
- 1;
577 unsigned round
= cfq_hist_divisor
/ 2;
578 unsigned busy
= cfq_group_busy_queues_wl(rt
, cfqd
, cfqg
);
580 min_q
= min(cfqg
->busy_queues_avg
[rt
], busy
);
581 max_q
= max(cfqg
->busy_queues_avg
[rt
], busy
);
582 cfqg
->busy_queues_avg
[rt
] = (mult
* max_q
+ min_q
+ round
) /
584 return cfqg
->busy_queues_avg
[rt
];
587 static inline unsigned
588 cfq_group_slice(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
)
590 struct cfq_rb_root
*st
= &cfqd
->grp_service_tree
;
592 return cfq_target_latency
* cfqg
->weight
/ st
->total_weight
;
595 static inline unsigned
596 cfq_scaled_cfqq_slice(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
598 unsigned slice
= cfq_prio_to_slice(cfqd
, cfqq
);
599 if (cfqd
->cfq_latency
) {
601 * interested queues (we consider only the ones with the same
602 * priority class in the cfq group)
604 unsigned iq
= cfq_group_get_avg_queues(cfqd
, cfqq
->cfqg
,
606 unsigned sync_slice
= cfqd
->cfq_slice
[1];
607 unsigned expect_latency
= sync_slice
* iq
;
608 unsigned group_slice
= cfq_group_slice(cfqd
, cfqq
->cfqg
);
610 if (expect_latency
> group_slice
) {
611 unsigned base_low_slice
= 2 * cfqd
->cfq_slice_idle
;
612 /* scale low_slice according to IO priority
613 * and sync vs async */
615 min(slice
, base_low_slice
* slice
/ sync_slice
);
616 /* the adapted slice value is scaled to fit all iqs
617 * into the target latency */
618 slice
= max(slice
* group_slice
/ expect_latency
,
626 cfq_set_prio_slice(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
628 unsigned slice
= cfq_scaled_cfqq_slice(cfqd
, cfqq
);
630 cfqq
->slice_start
= jiffies
;
631 cfqq
->slice_end
= jiffies
+ slice
;
632 cfqq
->allocated_slice
= slice
;
633 cfq_log_cfqq(cfqd
, cfqq
, "set_slice=%lu", cfqq
->slice_end
- jiffies
);
637 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
638 * isn't valid until the first request from the dispatch is activated
639 * and the slice time set.
641 static inline bool cfq_slice_used(struct cfq_queue
*cfqq
)
643 if (cfq_cfqq_slice_new(cfqq
))
645 if (time_before(jiffies
, cfqq
->slice_end
))
652 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
653 * We choose the request that is closest to the head right now. Distance
654 * behind the head is penalized and only allowed to a certain extent.
656 static struct request
*
657 cfq_choose_req(struct cfq_data
*cfqd
, struct request
*rq1
, struct request
*rq2
, sector_t last
)
659 sector_t s1
, s2
, d1
= 0, d2
= 0;
660 unsigned long back_max
;
661 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
662 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
663 unsigned wrap
= 0; /* bit mask: requests behind the disk head? */
665 if (rq1
== NULL
|| rq1
== rq2
)
670 if (rq_is_sync(rq1
) != rq_is_sync(rq2
))
671 return rq_is_sync(rq1
) ? rq1
: rq2
;
673 if ((rq1
->cmd_flags
^ rq2
->cmd_flags
) & REQ_META
)
674 return rq1
->cmd_flags
& REQ_META
? rq1
: rq2
;
676 s1
= blk_rq_pos(rq1
);
677 s2
= blk_rq_pos(rq2
);
680 * by definition, 1KiB is 2 sectors
682 back_max
= cfqd
->cfq_back_max
* 2;
685 * Strict one way elevator _except_ in the case where we allow
686 * short backward seeks which are biased as twice the cost of a
687 * similar forward seek.
691 else if (s1
+ back_max
>= last
)
692 d1
= (last
- s1
) * cfqd
->cfq_back_penalty
;
694 wrap
|= CFQ_RQ1_WRAP
;
698 else if (s2
+ back_max
>= last
)
699 d2
= (last
- s2
) * cfqd
->cfq_back_penalty
;
701 wrap
|= CFQ_RQ2_WRAP
;
703 /* Found required data */
706 * By doing switch() on the bit mask "wrap" we avoid having to
707 * check two variables for all permutations: --> faster!
710 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
726 case (CFQ_RQ1_WRAP
|CFQ_RQ2_WRAP
): /* both rqs wrapped */
729 * Since both rqs are wrapped,
730 * start with the one that's further behind head
731 * (--> only *one* back seek required),
732 * since back seek takes more time than forward.
742 * The below is leftmost cache rbtree addon
744 static struct cfq_queue
*cfq_rb_first(struct cfq_rb_root
*root
)
746 /* Service tree is empty */
751 root
->left
= rb_first(&root
->rb
);
754 return rb_entry(root
->left
, struct cfq_queue
, rb_node
);
759 static struct cfq_group
*cfq_rb_first_group(struct cfq_rb_root
*root
)
762 root
->left
= rb_first(&root
->rb
);
765 return rb_entry_cfqg(root
->left
);
770 static void rb_erase_init(struct rb_node
*n
, struct rb_root
*root
)
776 static void cfq_rb_erase(struct rb_node
*n
, struct cfq_rb_root
*root
)
780 rb_erase_init(n
, &root
->rb
);
785 * would be nice to take fifo expire time into account as well
787 static struct request
*
788 cfq_find_next_rq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
789 struct request
*last
)
791 struct rb_node
*rbnext
= rb_next(&last
->rb_node
);
792 struct rb_node
*rbprev
= rb_prev(&last
->rb_node
);
793 struct request
*next
= NULL
, *prev
= NULL
;
795 BUG_ON(RB_EMPTY_NODE(&last
->rb_node
));
798 prev
= rb_entry_rq(rbprev
);
801 next
= rb_entry_rq(rbnext
);
803 rbnext
= rb_first(&cfqq
->sort_list
);
804 if (rbnext
&& rbnext
!= &last
->rb_node
)
805 next
= rb_entry_rq(rbnext
);
808 return cfq_choose_req(cfqd
, next
, prev
, blk_rq_pos(last
));
811 static unsigned long cfq_slice_offset(struct cfq_data
*cfqd
,
812 struct cfq_queue
*cfqq
)
815 * just an approximation, should be ok.
817 return (cfqq
->cfqg
->nr_cfqq
- 1) * (cfq_prio_slice(cfqd
, 1, 0) -
818 cfq_prio_slice(cfqd
, cfq_cfqq_sync(cfqq
), cfqq
->ioprio
));
822 cfqg_key(struct cfq_rb_root
*st
, struct cfq_group
*cfqg
)
824 return cfqg
->vdisktime
- st
->min_vdisktime
;
828 __cfq_group_service_tree_add(struct cfq_rb_root
*st
, struct cfq_group
*cfqg
)
830 struct rb_node
**node
= &st
->rb
.rb_node
;
831 struct rb_node
*parent
= NULL
;
832 struct cfq_group
*__cfqg
;
833 s64 key
= cfqg_key(st
, cfqg
);
836 while (*node
!= NULL
) {
838 __cfqg
= rb_entry_cfqg(parent
);
840 if (key
< cfqg_key(st
, __cfqg
))
841 node
= &parent
->rb_left
;
843 node
= &parent
->rb_right
;
849 st
->left
= &cfqg
->rb_node
;
851 rb_link_node(&cfqg
->rb_node
, parent
, node
);
852 rb_insert_color(&cfqg
->rb_node
, &st
->rb
);
856 cfq_update_group_weight(struct cfq_group
*cfqg
)
858 BUG_ON(!RB_EMPTY_NODE(&cfqg
->rb_node
));
859 if (cfqg
->needs_update
) {
860 cfqg
->weight
= cfqg
->new_weight
;
861 cfqg
->needs_update
= false;
866 cfq_group_service_tree_add(struct cfq_rb_root
*st
, struct cfq_group
*cfqg
)
868 BUG_ON(!RB_EMPTY_NODE(&cfqg
->rb_node
));
870 cfq_update_group_weight(cfqg
);
871 __cfq_group_service_tree_add(st
, cfqg
);
872 st
->total_weight
+= cfqg
->weight
;
876 cfq_group_notify_queue_add(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
)
878 struct cfq_rb_root
*st
= &cfqd
->grp_service_tree
;
879 struct cfq_group
*__cfqg
;
883 if (!RB_EMPTY_NODE(&cfqg
->rb_node
))
887 * Currently put the group at the end. Later implement something
888 * so that groups get lesser vtime based on their weights, so that
889 * if group does not loose all if it was not continuously backlogged.
891 n
= rb_last(&st
->rb
);
893 __cfqg
= rb_entry_cfqg(n
);
894 cfqg
->vdisktime
= __cfqg
->vdisktime
+ CFQ_IDLE_DELAY
;
896 cfqg
->vdisktime
= st
->min_vdisktime
;
897 cfq_group_service_tree_add(st
, cfqg
);
901 cfq_group_service_tree_del(struct cfq_rb_root
*st
, struct cfq_group
*cfqg
)
903 st
->total_weight
-= cfqg
->weight
;
904 if (!RB_EMPTY_NODE(&cfqg
->rb_node
))
905 cfq_rb_erase(&cfqg
->rb_node
, st
);
909 cfq_group_notify_queue_del(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
)
911 struct cfq_rb_root
*st
= &cfqd
->grp_service_tree
;
913 BUG_ON(cfqg
->nr_cfqq
< 1);
916 /* If there are other cfq queues under this group, don't delete it */
920 cfq_log_cfqg(cfqd
, cfqg
, "del_from_rr group");
921 cfq_group_service_tree_del(st
, cfqg
);
922 cfqg
->saved_workload_slice
= 0;
923 cfq_blkiocg_update_dequeue_stats(&cfqg
->blkg
, 1);
926 static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue
*cfqq
,
927 unsigned int *unaccounted_time
)
929 unsigned int slice_used
;
932 * Queue got expired before even a single request completed or
933 * got expired immediately after first request completion.
935 if (!cfqq
->slice_start
|| cfqq
->slice_start
== jiffies
) {
937 * Also charge the seek time incurred to the group, otherwise
938 * if there are mutiple queues in the group, each can dispatch
939 * a single request on seeky media and cause lots of seek time
940 * and group will never know it.
942 slice_used
= max_t(unsigned, (jiffies
- cfqq
->dispatch_start
),
945 slice_used
= jiffies
- cfqq
->slice_start
;
946 if (slice_used
> cfqq
->allocated_slice
) {
947 *unaccounted_time
= slice_used
- cfqq
->allocated_slice
;
948 slice_used
= cfqq
->allocated_slice
;
950 if (time_after(cfqq
->slice_start
, cfqq
->dispatch_start
))
951 *unaccounted_time
+= cfqq
->slice_start
-
952 cfqq
->dispatch_start
;
958 static void cfq_group_served(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
,
959 struct cfq_queue
*cfqq
)
961 struct cfq_rb_root
*st
= &cfqd
->grp_service_tree
;
962 unsigned int used_sl
, charge
, unaccounted_sl
= 0;
963 int nr_sync
= cfqg
->nr_cfqq
- cfqg_busy_async_queues(cfqd
, cfqg
)
964 - cfqg
->service_tree_idle
.count
;
967 used_sl
= charge
= cfq_cfqq_slice_usage(cfqq
, &unaccounted_sl
);
970 charge
= cfqq
->slice_dispatch
;
971 else if (!cfq_cfqq_sync(cfqq
) && !nr_sync
)
972 charge
= cfqq
->allocated_slice
;
974 /* Can't update vdisktime while group is on service tree */
975 cfq_group_service_tree_del(st
, cfqg
);
976 cfqg
->vdisktime
+= cfq_scale_slice(charge
, cfqg
);
977 /* If a new weight was requested, update now, off tree */
978 cfq_group_service_tree_add(st
, cfqg
);
980 /* This group is being expired. Save the context */
981 if (time_after(cfqd
->workload_expires
, jiffies
)) {
982 cfqg
->saved_workload_slice
= cfqd
->workload_expires
984 cfqg
->saved_workload
= cfqd
->serving_type
;
985 cfqg
->saved_serving_prio
= cfqd
->serving_prio
;
987 cfqg
->saved_workload_slice
= 0;
989 cfq_log_cfqg(cfqd
, cfqg
, "served: vt=%llu min_vt=%llu", cfqg
->vdisktime
,
991 cfq_log_cfqq(cfqq
->cfqd
, cfqq
,
992 "sl_used=%u disp=%u charge=%u iops=%u sect=%lu",
993 used_sl
, cfqq
->slice_dispatch
, charge
,
994 iops_mode(cfqd
), cfqq
->nr_sectors
);
995 cfq_blkiocg_update_timeslice_used(&cfqg
->blkg
, used_sl
,
997 cfq_blkiocg_set_start_empty_time(&cfqg
->blkg
);
1000 #ifdef CONFIG_CFQ_GROUP_IOSCHED
1001 static inline struct cfq_group
*cfqg_of_blkg(struct blkio_group
*blkg
)
1004 return container_of(blkg
, struct cfq_group
, blkg
);
1008 void cfq_update_blkio_group_weight(void *key
, struct blkio_group
*blkg
,
1009 unsigned int weight
)
1011 struct cfq_group
*cfqg
= cfqg_of_blkg(blkg
);
1012 cfqg
->new_weight
= weight
;
1013 cfqg
->needs_update
= true;
1016 static void cfq_init_add_cfqg_lists(struct cfq_data
*cfqd
,
1017 struct cfq_group
*cfqg
, struct blkio_cgroup
*blkcg
)
1019 struct backing_dev_info
*bdi
= &cfqd
->queue
->backing_dev_info
;
1020 unsigned int major
, minor
;
1023 * Add group onto cgroup list. It might happen that bdi->dev is
1024 * not initialized yet. Initialize this new group without major
1025 * and minor info and this info will be filled in once a new thread
1029 sscanf(dev_name(bdi
->dev
), "%u:%u", &major
, &minor
);
1030 cfq_blkiocg_add_blkio_group(blkcg
, &cfqg
->blkg
,
1031 (void *)cfqd
, MKDEV(major
, minor
));
1033 cfq_blkiocg_add_blkio_group(blkcg
, &cfqg
->blkg
,
1036 cfqd
->nr_blkcg_linked_grps
++;
1037 cfqg
->weight
= blkcg_get_weight(blkcg
, cfqg
->blkg
.dev
);
1039 /* Add group on cfqd list */
1040 hlist_add_head(&cfqg
->cfqd_node
, &cfqd
->cfqg_list
);
1044 * Should be called from sleepable context. No request queue lock as per
1045 * cpu stats are allocated dynamically and alloc_percpu needs to be called
1046 * from sleepable context.
1048 static struct cfq_group
* cfq_alloc_cfqg(struct cfq_data
*cfqd
)
1050 struct cfq_group
*cfqg
= NULL
;
1052 struct cfq_rb_root
*st
;
1054 cfqg
= kzalloc_node(sizeof(*cfqg
), GFP_ATOMIC
, cfqd
->queue
->node
);
1058 for_each_cfqg_st(cfqg
, i
, j
, st
)
1060 RB_CLEAR_NODE(&cfqg
->rb_node
);
1063 * Take the initial reference that will be released on destroy
1064 * This can be thought of a joint reference by cgroup and
1065 * elevator which will be dropped by either elevator exit
1066 * or cgroup deletion path depending on who is exiting first.
1070 ret
= blkio_alloc_blkg_stats(&cfqg
->blkg
);
1079 static struct cfq_group
*
1080 cfq_find_cfqg(struct cfq_data
*cfqd
, struct blkio_cgroup
*blkcg
)
1082 struct cfq_group
*cfqg
= NULL
;
1084 struct backing_dev_info
*bdi
= &cfqd
->queue
->backing_dev_info
;
1085 unsigned int major
, minor
;
1088 * This is the common case when there are no blkio cgroups.
1089 * Avoid lookup in this case
1091 if (blkcg
== &blkio_root_cgroup
)
1092 cfqg
= &cfqd
->root_group
;
1094 cfqg
= cfqg_of_blkg(blkiocg_lookup_group(blkcg
, key
));
1096 if (cfqg
&& !cfqg
->blkg
.dev
&& bdi
->dev
&& dev_name(bdi
->dev
)) {
1097 sscanf(dev_name(bdi
->dev
), "%u:%u", &major
, &minor
);
1098 cfqg
->blkg
.dev
= MKDEV(major
, minor
);
1105 * Search for the cfq group current task belongs to. request_queue lock must
1108 static struct cfq_group
*cfq_get_cfqg(struct cfq_data
*cfqd
)
1110 struct blkio_cgroup
*blkcg
;
1111 struct cfq_group
*cfqg
= NULL
, *__cfqg
= NULL
;
1112 struct request_queue
*q
= cfqd
->queue
;
1115 blkcg
= task_blkio_cgroup(current
);
1116 cfqg
= cfq_find_cfqg(cfqd
, blkcg
);
1123 * Need to allocate a group. Allocation of group also needs allocation
1124 * of per cpu stats which in-turn takes a mutex() and can block. Hence
1125 * we need to drop rcu lock and queue_lock before we call alloc.
1127 * Not taking any queue reference here and assuming that queue is
1128 * around by the time we return. CFQ queue allocation code does
1129 * the same. It might be racy though.
1133 spin_unlock_irq(q
->queue_lock
);
1135 cfqg
= cfq_alloc_cfqg(cfqd
);
1137 spin_lock_irq(q
->queue_lock
);
1140 blkcg
= task_blkio_cgroup(current
);
1143 * If some other thread already allocated the group while we were
1144 * not holding queue lock, free up the group
1146 __cfqg
= cfq_find_cfqg(cfqd
, blkcg
);
1155 cfqg
= &cfqd
->root_group
;
1157 cfq_init_add_cfqg_lists(cfqd
, cfqg
, blkcg
);
1162 static inline struct cfq_group
*cfq_ref_get_cfqg(struct cfq_group
*cfqg
)
1168 static void cfq_link_cfqq_cfqg(struct cfq_queue
*cfqq
, struct cfq_group
*cfqg
)
1170 /* Currently, all async queues are mapped to root group */
1171 if (!cfq_cfqq_sync(cfqq
))
1172 cfqg
= &cfqq
->cfqd
->root_group
;
1175 /* cfqq reference on cfqg */
1179 static void cfq_put_cfqg(struct cfq_group
*cfqg
)
1181 struct cfq_rb_root
*st
;
1184 BUG_ON(cfqg
->ref
<= 0);
1188 for_each_cfqg_st(cfqg
, i
, j
, st
)
1189 BUG_ON(!RB_EMPTY_ROOT(&st
->rb
));
1190 free_percpu(cfqg
->blkg
.stats_cpu
);
1194 static void cfq_destroy_cfqg(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
)
1196 /* Something wrong if we are trying to remove same group twice */
1197 BUG_ON(hlist_unhashed(&cfqg
->cfqd_node
));
1199 hlist_del_init(&cfqg
->cfqd_node
);
1202 * Put the reference taken at the time of creation so that when all
1203 * queues are gone, group can be destroyed.
1208 static void cfq_release_cfq_groups(struct cfq_data
*cfqd
)
1210 struct hlist_node
*pos
, *n
;
1211 struct cfq_group
*cfqg
;
1213 hlist_for_each_entry_safe(cfqg
, pos
, n
, &cfqd
->cfqg_list
, cfqd_node
) {
1215 * If cgroup removal path got to blk_group first and removed
1216 * it from cgroup list, then it will take care of destroying
1219 if (!cfq_blkiocg_del_blkio_group(&cfqg
->blkg
))
1220 cfq_destroy_cfqg(cfqd
, cfqg
);
1225 * Blk cgroup controller notification saying that blkio_group object is being
1226 * delinked as associated cgroup object is going away. That also means that
1227 * no new IO will come in this group. So get rid of this group as soon as
1228 * any pending IO in the group is finished.
1230 * This function is called under rcu_read_lock(). key is the rcu protected
1231 * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
1234 * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
1235 * it should not be NULL as even if elevator was exiting, cgroup deltion
1236 * path got to it first.
1238 void cfq_unlink_blkio_group(void *key
, struct blkio_group
*blkg
)
1240 unsigned long flags
;
1241 struct cfq_data
*cfqd
= key
;
1243 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
1244 cfq_destroy_cfqg(cfqd
, cfqg_of_blkg(blkg
));
1245 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
1248 #else /* GROUP_IOSCHED */
1249 static struct cfq_group
*cfq_get_cfqg(struct cfq_data
*cfqd
)
1251 return &cfqd
->root_group
;
1254 static inline struct cfq_group
*cfq_ref_get_cfqg(struct cfq_group
*cfqg
)
1260 cfq_link_cfqq_cfqg(struct cfq_queue
*cfqq
, struct cfq_group
*cfqg
) {
1264 static void cfq_release_cfq_groups(struct cfq_data
*cfqd
) {}
1265 static inline void cfq_put_cfqg(struct cfq_group
*cfqg
) {}
1267 #endif /* GROUP_IOSCHED */
1270 * The cfqd->service_trees holds all pending cfq_queue's that have
1271 * requests waiting to be processed. It is sorted in the order that
1272 * we will service the queues.
1274 static void cfq_service_tree_add(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
1277 struct rb_node
**p
, *parent
;
1278 struct cfq_queue
*__cfqq
;
1279 unsigned long rb_key
;
1280 struct cfq_rb_root
*service_tree
;
1284 service_tree
= service_tree_for(cfqq
->cfqg
, cfqq_prio(cfqq
),
1286 if (cfq_class_idle(cfqq
)) {
1287 rb_key
= CFQ_IDLE_DELAY
;
1288 parent
= rb_last(&service_tree
->rb
);
1289 if (parent
&& parent
!= &cfqq
->rb_node
) {
1290 __cfqq
= rb_entry(parent
, struct cfq_queue
, rb_node
);
1291 rb_key
+= __cfqq
->rb_key
;
1294 } else if (!add_front
) {
1296 * Get our rb key offset. Subtract any residual slice
1297 * value carried from last service. A negative resid
1298 * count indicates slice overrun, and this should position
1299 * the next service time further away in the tree.
1301 rb_key
= cfq_slice_offset(cfqd
, cfqq
) + jiffies
;
1302 rb_key
-= cfqq
->slice_resid
;
1303 cfqq
->slice_resid
= 0;
1306 __cfqq
= cfq_rb_first(service_tree
);
1307 rb_key
+= __cfqq
? __cfqq
->rb_key
: jiffies
;
1310 if (!RB_EMPTY_NODE(&cfqq
->rb_node
)) {
1313 * same position, nothing more to do
1315 if (rb_key
== cfqq
->rb_key
&&
1316 cfqq
->service_tree
== service_tree
)
1319 cfq_rb_erase(&cfqq
->rb_node
, cfqq
->service_tree
);
1320 cfqq
->service_tree
= NULL
;
1325 cfqq
->service_tree
= service_tree
;
1326 p
= &service_tree
->rb
.rb_node
;
1331 __cfqq
= rb_entry(parent
, struct cfq_queue
, rb_node
);
1334 * sort by key, that represents service time.
1336 if (time_before(rb_key
, __cfqq
->rb_key
))
1339 n
= &(*p
)->rb_right
;
1347 service_tree
->left
= &cfqq
->rb_node
;
1349 cfqq
->rb_key
= rb_key
;
1350 rb_link_node(&cfqq
->rb_node
, parent
, p
);
1351 rb_insert_color(&cfqq
->rb_node
, &service_tree
->rb
);
1352 service_tree
->count
++;
1353 if (add_front
|| !new_cfqq
)
1355 cfq_group_notify_queue_add(cfqd
, cfqq
->cfqg
);
1358 static struct cfq_queue
*
1359 cfq_prio_tree_lookup(struct cfq_data
*cfqd
, struct rb_root
*root
,
1360 sector_t sector
, struct rb_node
**ret_parent
,
1361 struct rb_node
***rb_link
)
1363 struct rb_node
**p
, *parent
;
1364 struct cfq_queue
*cfqq
= NULL
;
1372 cfqq
= rb_entry(parent
, struct cfq_queue
, p_node
);
1375 * Sort strictly based on sector. Smallest to the left,
1376 * largest to the right.
1378 if (sector
> blk_rq_pos(cfqq
->next_rq
))
1379 n
= &(*p
)->rb_right
;
1380 else if (sector
< blk_rq_pos(cfqq
->next_rq
))
1388 *ret_parent
= parent
;
1394 static void cfq_prio_tree_add(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1396 struct rb_node
**p
, *parent
;
1397 struct cfq_queue
*__cfqq
;
1400 rb_erase(&cfqq
->p_node
, cfqq
->p_root
);
1401 cfqq
->p_root
= NULL
;
1404 if (cfq_class_idle(cfqq
))
1409 cfqq
->p_root
= &cfqd
->prio_trees
[cfqq
->org_ioprio
];
1410 __cfqq
= cfq_prio_tree_lookup(cfqd
, cfqq
->p_root
,
1411 blk_rq_pos(cfqq
->next_rq
), &parent
, &p
);
1413 rb_link_node(&cfqq
->p_node
, parent
, p
);
1414 rb_insert_color(&cfqq
->p_node
, cfqq
->p_root
);
1416 cfqq
->p_root
= NULL
;
1420 * Update cfqq's position in the service tree.
1422 static void cfq_resort_rr_list(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1425 * Resorting requires the cfqq to be on the RR list already.
1427 if (cfq_cfqq_on_rr(cfqq
)) {
1428 cfq_service_tree_add(cfqd
, cfqq
, 0);
1429 cfq_prio_tree_add(cfqd
, cfqq
);
1434 * add to busy list of queues for service, trying to be fair in ordering
1435 * the pending list according to last request service
1437 static void cfq_add_cfqq_rr(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1439 cfq_log_cfqq(cfqd
, cfqq
, "add_to_rr");
1440 BUG_ON(cfq_cfqq_on_rr(cfqq
));
1441 cfq_mark_cfqq_on_rr(cfqq
);
1442 cfqd
->busy_queues
++;
1443 if (cfq_cfqq_sync(cfqq
))
1444 cfqd
->busy_sync_queues
++;
1446 cfq_resort_rr_list(cfqd
, cfqq
);
1450 * Called when the cfqq no longer has requests pending, remove it from
1453 static void cfq_del_cfqq_rr(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1455 cfq_log_cfqq(cfqd
, cfqq
, "del_from_rr");
1456 BUG_ON(!cfq_cfqq_on_rr(cfqq
));
1457 cfq_clear_cfqq_on_rr(cfqq
);
1459 if (!RB_EMPTY_NODE(&cfqq
->rb_node
)) {
1460 cfq_rb_erase(&cfqq
->rb_node
, cfqq
->service_tree
);
1461 cfqq
->service_tree
= NULL
;
1464 rb_erase(&cfqq
->p_node
, cfqq
->p_root
);
1465 cfqq
->p_root
= NULL
;
1468 cfq_group_notify_queue_del(cfqd
, cfqq
->cfqg
);
1469 BUG_ON(!cfqd
->busy_queues
);
1470 cfqd
->busy_queues
--;
1471 if (cfq_cfqq_sync(cfqq
))
1472 cfqd
->busy_sync_queues
--;
1476 * rb tree support functions
1478 static void cfq_del_rq_rb(struct request
*rq
)
1480 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
1481 const int sync
= rq_is_sync(rq
);
1483 BUG_ON(!cfqq
->queued
[sync
]);
1484 cfqq
->queued
[sync
]--;
1486 elv_rb_del(&cfqq
->sort_list
, rq
);
1488 if (cfq_cfqq_on_rr(cfqq
) && RB_EMPTY_ROOT(&cfqq
->sort_list
)) {
1490 * Queue will be deleted from service tree when we actually
1491 * expire it later. Right now just remove it from prio tree
1495 rb_erase(&cfqq
->p_node
, cfqq
->p_root
);
1496 cfqq
->p_root
= NULL
;
1501 static void cfq_add_rq_rb(struct request
*rq
)
1503 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
1504 struct cfq_data
*cfqd
= cfqq
->cfqd
;
1505 struct request
*__alias
, *prev
;
1507 cfqq
->queued
[rq_is_sync(rq
)]++;
1510 * looks a little odd, but the first insert might return an alias.
1511 * if that happens, put the alias on the dispatch list
1513 while ((__alias
= elv_rb_add(&cfqq
->sort_list
, rq
)) != NULL
)
1514 cfq_dispatch_insert(cfqd
->queue
, __alias
);
1516 if (!cfq_cfqq_on_rr(cfqq
))
1517 cfq_add_cfqq_rr(cfqd
, cfqq
);
1520 * check if this request is a better next-serve candidate
1522 prev
= cfqq
->next_rq
;
1523 cfqq
->next_rq
= cfq_choose_req(cfqd
, cfqq
->next_rq
, rq
, cfqd
->last_position
);
1526 * adjust priority tree position, if ->next_rq changes
1528 if (prev
!= cfqq
->next_rq
)
1529 cfq_prio_tree_add(cfqd
, cfqq
);
1531 BUG_ON(!cfqq
->next_rq
);
1534 static void cfq_reposition_rq_rb(struct cfq_queue
*cfqq
, struct request
*rq
)
1536 elv_rb_del(&cfqq
->sort_list
, rq
);
1537 cfqq
->queued
[rq_is_sync(rq
)]--;
1538 cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq
))->blkg
,
1539 rq_data_dir(rq
), rq_is_sync(rq
));
1541 cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq
))->blkg
,
1542 &cfqq
->cfqd
->serving_group
->blkg
, rq_data_dir(rq
),
1546 static struct request
*
1547 cfq_find_rq_fmerge(struct cfq_data
*cfqd
, struct bio
*bio
)
1549 struct task_struct
*tsk
= current
;
1550 struct cfq_io_context
*cic
;
1551 struct cfq_queue
*cfqq
;
1553 cic
= cfq_cic_lookup(cfqd
, tsk
->io_context
);
1557 cfqq
= cic_to_cfqq(cic
, cfq_bio_sync(bio
));
1559 sector_t sector
= bio
->bi_sector
+ bio_sectors(bio
);
1561 return elv_rb_find(&cfqq
->sort_list
, sector
);
1567 static void cfq_activate_request(struct request_queue
*q
, struct request
*rq
)
1569 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1571 cfqd
->rq_in_driver
++;
1572 cfq_log_cfqq(cfqd
, RQ_CFQQ(rq
), "activate rq, drv=%d",
1573 cfqd
->rq_in_driver
);
1575 cfqd
->last_position
= blk_rq_pos(rq
) + blk_rq_sectors(rq
);
1578 static void cfq_deactivate_request(struct request_queue
*q
, struct request
*rq
)
1580 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1582 WARN_ON(!cfqd
->rq_in_driver
);
1583 cfqd
->rq_in_driver
--;
1584 cfq_log_cfqq(cfqd
, RQ_CFQQ(rq
), "deactivate rq, drv=%d",
1585 cfqd
->rq_in_driver
);
1588 static void cfq_remove_request(struct request
*rq
)
1590 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
1592 if (cfqq
->next_rq
== rq
)
1593 cfqq
->next_rq
= cfq_find_next_rq(cfqq
->cfqd
, cfqq
, rq
);
1595 list_del_init(&rq
->queuelist
);
1598 cfqq
->cfqd
->rq_queued
--;
1599 cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq
))->blkg
,
1600 rq_data_dir(rq
), rq_is_sync(rq
));
1601 if (rq
->cmd_flags
& REQ_META
) {
1602 WARN_ON(!cfqq
->meta_pending
);
1603 cfqq
->meta_pending
--;
1607 static int cfq_merge(struct request_queue
*q
, struct request
**req
,
1610 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1611 struct request
*__rq
;
1613 __rq
= cfq_find_rq_fmerge(cfqd
, bio
);
1614 if (__rq
&& elv_rq_merge_ok(__rq
, bio
)) {
1616 return ELEVATOR_FRONT_MERGE
;
1619 return ELEVATOR_NO_MERGE
;
1622 static void cfq_merged_request(struct request_queue
*q
, struct request
*req
,
1625 if (type
== ELEVATOR_FRONT_MERGE
) {
1626 struct cfq_queue
*cfqq
= RQ_CFQQ(req
);
1628 cfq_reposition_rq_rb(cfqq
, req
);
1632 static void cfq_bio_merged(struct request_queue
*q
, struct request
*req
,
1635 cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(req
))->blkg
,
1636 bio_data_dir(bio
), cfq_bio_sync(bio
));
1640 cfq_merged_requests(struct request_queue
*q
, struct request
*rq
,
1641 struct request
*next
)
1643 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
1645 * reposition in fifo if next is older than rq
1647 if (!list_empty(&rq
->queuelist
) && !list_empty(&next
->queuelist
) &&
1648 time_before(rq_fifo_time(next
), rq_fifo_time(rq
))) {
1649 list_move(&rq
->queuelist
, &next
->queuelist
);
1650 rq_set_fifo_time(rq
, rq_fifo_time(next
));
1653 if (cfqq
->next_rq
== next
)
1655 cfq_remove_request(next
);
1656 cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(rq
))->blkg
,
1657 rq_data_dir(next
), rq_is_sync(next
));
1660 static int cfq_allow_merge(struct request_queue
*q
, struct request
*rq
,
1663 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1664 struct cfq_io_context
*cic
;
1665 struct cfq_queue
*cfqq
;
1668 * Disallow merge of a sync bio into an async request.
1670 if (cfq_bio_sync(bio
) && !rq_is_sync(rq
))
1674 * Lookup the cfqq that this bio will be queued with. Allow
1675 * merge only if rq is queued there.
1677 cic
= cfq_cic_lookup(cfqd
, current
->io_context
);
1681 cfqq
= cic_to_cfqq(cic
, cfq_bio_sync(bio
));
1682 return cfqq
== RQ_CFQQ(rq
);
1685 static inline void cfq_del_timer(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1687 del_timer(&cfqd
->idle_slice_timer
);
1688 cfq_blkiocg_update_idle_time_stats(&cfqq
->cfqg
->blkg
);
1691 static void __cfq_set_active_queue(struct cfq_data
*cfqd
,
1692 struct cfq_queue
*cfqq
)
1695 cfq_log_cfqq(cfqd
, cfqq
, "set_active wl_prio:%d wl_type:%d",
1696 cfqd
->serving_prio
, cfqd
->serving_type
);
1697 cfq_blkiocg_update_avg_queue_size_stats(&cfqq
->cfqg
->blkg
);
1698 cfqq
->slice_start
= 0;
1699 cfqq
->dispatch_start
= jiffies
;
1700 cfqq
->allocated_slice
= 0;
1701 cfqq
->slice_end
= 0;
1702 cfqq
->slice_dispatch
= 0;
1703 cfqq
->nr_sectors
= 0;
1705 cfq_clear_cfqq_wait_request(cfqq
);
1706 cfq_clear_cfqq_must_dispatch(cfqq
);
1707 cfq_clear_cfqq_must_alloc_slice(cfqq
);
1708 cfq_clear_cfqq_fifo_expire(cfqq
);
1709 cfq_mark_cfqq_slice_new(cfqq
);
1711 cfq_del_timer(cfqd
, cfqq
);
1714 cfqd
->active_queue
= cfqq
;
1718 * current cfqq expired its slice (or was too idle), select new one
1721 __cfq_slice_expired(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
1724 cfq_log_cfqq(cfqd
, cfqq
, "slice expired t=%d", timed_out
);
1726 if (cfq_cfqq_wait_request(cfqq
))
1727 cfq_del_timer(cfqd
, cfqq
);
1729 cfq_clear_cfqq_wait_request(cfqq
);
1730 cfq_clear_cfqq_wait_busy(cfqq
);
1733 * If this cfqq is shared between multiple processes, check to
1734 * make sure that those processes are still issuing I/Os within
1735 * the mean seek distance. If not, it may be time to break the
1736 * queues apart again.
1738 if (cfq_cfqq_coop(cfqq
) && CFQQ_SEEKY(cfqq
))
1739 cfq_mark_cfqq_split_coop(cfqq
);
1742 * store what was left of this slice, if the queue idled/timed out
1745 if (cfq_cfqq_slice_new(cfqq
))
1746 cfqq
->slice_resid
= cfq_scaled_cfqq_slice(cfqd
, cfqq
);
1748 cfqq
->slice_resid
= cfqq
->slice_end
- jiffies
;
1749 cfq_log_cfqq(cfqd
, cfqq
, "resid=%ld", cfqq
->slice_resid
);
1752 cfq_group_served(cfqd
, cfqq
->cfqg
, cfqq
);
1754 if (cfq_cfqq_on_rr(cfqq
) && RB_EMPTY_ROOT(&cfqq
->sort_list
))
1755 cfq_del_cfqq_rr(cfqd
, cfqq
);
1757 cfq_resort_rr_list(cfqd
, cfqq
);
1759 if (cfqq
== cfqd
->active_queue
)
1760 cfqd
->active_queue
= NULL
;
1762 if (cfqd
->active_cic
) {
1763 put_io_context(cfqd
->active_cic
->ioc
);
1764 cfqd
->active_cic
= NULL
;
1768 static inline void cfq_slice_expired(struct cfq_data
*cfqd
, bool timed_out
)
1770 struct cfq_queue
*cfqq
= cfqd
->active_queue
;
1773 __cfq_slice_expired(cfqd
, cfqq
, timed_out
);
1777 * Get next queue for service. Unless we have a queue preemption,
1778 * we'll simply select the first cfqq in the service tree.
1780 static struct cfq_queue
*cfq_get_next_queue(struct cfq_data
*cfqd
)
1782 struct cfq_rb_root
*service_tree
=
1783 service_tree_for(cfqd
->serving_group
, cfqd
->serving_prio
,
1784 cfqd
->serving_type
);
1786 if (!cfqd
->rq_queued
)
1789 /* There is nothing to dispatch */
1792 if (RB_EMPTY_ROOT(&service_tree
->rb
))
1794 return cfq_rb_first(service_tree
);
1797 static struct cfq_queue
*cfq_get_next_queue_forced(struct cfq_data
*cfqd
)
1799 struct cfq_group
*cfqg
;
1800 struct cfq_queue
*cfqq
;
1802 struct cfq_rb_root
*st
;
1804 if (!cfqd
->rq_queued
)
1807 cfqg
= cfq_get_next_cfqg(cfqd
);
1811 for_each_cfqg_st(cfqg
, i
, j
, st
)
1812 if ((cfqq
= cfq_rb_first(st
)) != NULL
)
1818 * Get and set a new active queue for service.
1820 static struct cfq_queue
*cfq_set_active_queue(struct cfq_data
*cfqd
,
1821 struct cfq_queue
*cfqq
)
1824 cfqq
= cfq_get_next_queue(cfqd
);
1826 __cfq_set_active_queue(cfqd
, cfqq
);
1830 static inline sector_t
cfq_dist_from_last(struct cfq_data
*cfqd
,
1833 if (blk_rq_pos(rq
) >= cfqd
->last_position
)
1834 return blk_rq_pos(rq
) - cfqd
->last_position
;
1836 return cfqd
->last_position
- blk_rq_pos(rq
);
1839 static inline int cfq_rq_close(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
1842 return cfq_dist_from_last(cfqd
, rq
) <= CFQQ_CLOSE_THR
;
1845 static struct cfq_queue
*cfqq_close(struct cfq_data
*cfqd
,
1846 struct cfq_queue
*cur_cfqq
)
1848 struct rb_root
*root
= &cfqd
->prio_trees
[cur_cfqq
->org_ioprio
];
1849 struct rb_node
*parent
, *node
;
1850 struct cfq_queue
*__cfqq
;
1851 sector_t sector
= cfqd
->last_position
;
1853 if (RB_EMPTY_ROOT(root
))
1857 * First, if we find a request starting at the end of the last
1858 * request, choose it.
1860 __cfqq
= cfq_prio_tree_lookup(cfqd
, root
, sector
, &parent
, NULL
);
1865 * If the exact sector wasn't found, the parent of the NULL leaf
1866 * will contain the closest sector.
1868 __cfqq
= rb_entry(parent
, struct cfq_queue
, p_node
);
1869 if (cfq_rq_close(cfqd
, cur_cfqq
, __cfqq
->next_rq
))
1872 if (blk_rq_pos(__cfqq
->next_rq
) < sector
)
1873 node
= rb_next(&__cfqq
->p_node
);
1875 node
= rb_prev(&__cfqq
->p_node
);
1879 __cfqq
= rb_entry(node
, struct cfq_queue
, p_node
);
1880 if (cfq_rq_close(cfqd
, cur_cfqq
, __cfqq
->next_rq
))
1888 * cur_cfqq - passed in so that we don't decide that the current queue is
1889 * closely cooperating with itself.
1891 * So, basically we're assuming that that cur_cfqq has dispatched at least
1892 * one request, and that cfqd->last_position reflects a position on the disk
1893 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1896 static struct cfq_queue
*cfq_close_cooperator(struct cfq_data
*cfqd
,
1897 struct cfq_queue
*cur_cfqq
)
1899 struct cfq_queue
*cfqq
;
1901 if (cfq_class_idle(cur_cfqq
))
1903 if (!cfq_cfqq_sync(cur_cfqq
))
1905 if (CFQQ_SEEKY(cur_cfqq
))
1909 * Don't search priority tree if it's the only queue in the group.
1911 if (cur_cfqq
->cfqg
->nr_cfqq
== 1)
1915 * We should notice if some of the queues are cooperating, eg
1916 * working closely on the same area of the disk. In that case,
1917 * we can group them together and don't waste time idling.
1919 cfqq
= cfqq_close(cfqd
, cur_cfqq
);
1923 /* If new queue belongs to different cfq_group, don't choose it */
1924 if (cur_cfqq
->cfqg
!= cfqq
->cfqg
)
1928 * It only makes sense to merge sync queues.
1930 if (!cfq_cfqq_sync(cfqq
))
1932 if (CFQQ_SEEKY(cfqq
))
1936 * Do not merge queues of different priority classes
1938 if (cfq_class_rt(cfqq
) != cfq_class_rt(cur_cfqq
))
1945 * Determine whether we should enforce idle window for this queue.
1948 static bool cfq_should_idle(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1950 enum wl_prio_t prio
= cfqq_prio(cfqq
);
1951 struct cfq_rb_root
*service_tree
= cfqq
->service_tree
;
1953 BUG_ON(!service_tree
);
1954 BUG_ON(!service_tree
->count
);
1956 if (!cfqd
->cfq_slice_idle
)
1959 /* We never do for idle class queues. */
1960 if (prio
== IDLE_WORKLOAD
)
1963 /* We do for queues that were marked with idle window flag. */
1964 if (cfq_cfqq_idle_window(cfqq
) &&
1965 !(blk_queue_nonrot(cfqd
->queue
) && cfqd
->hw_tag
))
1969 * Otherwise, we do only if they are the last ones
1970 * in their service tree.
1972 if (service_tree
->count
== 1 && cfq_cfqq_sync(cfqq
))
1974 cfq_log_cfqq(cfqd
, cfqq
, "Not idling. st->count:%d",
1975 service_tree
->count
);
1979 static void cfq_arm_slice_timer(struct cfq_data
*cfqd
)
1981 struct cfq_queue
*cfqq
= cfqd
->active_queue
;
1982 struct cfq_io_context
*cic
;
1983 unsigned long sl
, group_idle
= 0;
1986 * SSD device without seek penalty, disable idling. But only do so
1987 * for devices that support queuing, otherwise we still have a problem
1988 * with sync vs async workloads.
1990 if (blk_queue_nonrot(cfqd
->queue
) && cfqd
->hw_tag
)
1993 WARN_ON(!RB_EMPTY_ROOT(&cfqq
->sort_list
));
1994 WARN_ON(cfq_cfqq_slice_new(cfqq
));
1997 * idle is disabled, either manually or by past process history
1999 if (!cfq_should_idle(cfqd
, cfqq
)) {
2000 /* no queue idling. Check for group idling */
2001 if (cfqd
->cfq_group_idle
)
2002 group_idle
= cfqd
->cfq_group_idle
;
2008 * still active requests from this queue, don't idle
2010 if (cfqq
->dispatched
)
2014 * task has exited, don't wait
2016 cic
= cfqd
->active_cic
;
2017 if (!cic
|| !atomic_read(&cic
->ioc
->nr_tasks
))
2021 * If our average think time is larger than the remaining time
2022 * slice, then don't idle. This avoids overrunning the allotted
2025 if (sample_valid(cic
->ttime_samples
) &&
2026 (cfqq
->slice_end
- jiffies
< cic
->ttime_mean
)) {
2027 cfq_log_cfqq(cfqd
, cfqq
, "Not idling. think_time:%lu",
2032 /* There are other queues in the group, don't do group idle */
2033 if (group_idle
&& cfqq
->cfqg
->nr_cfqq
> 1)
2036 cfq_mark_cfqq_wait_request(cfqq
);
2039 sl
= cfqd
->cfq_group_idle
;
2041 sl
= cfqd
->cfq_slice_idle
;
2043 mod_timer(&cfqd
->idle_slice_timer
, jiffies
+ sl
);
2044 cfq_blkiocg_update_set_idle_time_stats(&cfqq
->cfqg
->blkg
);
2045 cfq_log_cfqq(cfqd
, cfqq
, "arm_idle: %lu group_idle: %d", sl
,
2046 group_idle
? 1 : 0);
2050 * Move request from internal lists to the request queue dispatch list.
2052 static void cfq_dispatch_insert(struct request_queue
*q
, struct request
*rq
)
2054 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
2055 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
2057 cfq_log_cfqq(cfqd
, cfqq
, "dispatch_insert");
2059 cfqq
->next_rq
= cfq_find_next_rq(cfqd
, cfqq
, rq
);
2060 cfq_remove_request(rq
);
2062 (RQ_CFQG(rq
))->dispatched
++;
2063 elv_dispatch_sort(q
, rq
);
2065 cfqd
->rq_in_flight
[cfq_cfqq_sync(cfqq
)]++;
2066 cfqq
->nr_sectors
+= blk_rq_sectors(rq
);
2067 cfq_blkiocg_update_dispatch_stats(&cfqq
->cfqg
->blkg
, blk_rq_bytes(rq
),
2068 rq_data_dir(rq
), rq_is_sync(rq
));
2072 * return expired entry, or NULL to just start from scratch in rbtree
2074 static struct request
*cfq_check_fifo(struct cfq_queue
*cfqq
)
2076 struct request
*rq
= NULL
;
2078 if (cfq_cfqq_fifo_expire(cfqq
))
2081 cfq_mark_cfqq_fifo_expire(cfqq
);
2083 if (list_empty(&cfqq
->fifo
))
2086 rq
= rq_entry_fifo(cfqq
->fifo
.next
);
2087 if (time_before(jiffies
, rq_fifo_time(rq
)))
2090 cfq_log_cfqq(cfqq
->cfqd
, cfqq
, "fifo=%p", rq
);
2095 cfq_prio_to_maxrq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
2097 const int base_rq
= cfqd
->cfq_slice_async_rq
;
2099 WARN_ON(cfqq
->ioprio
>= IOPRIO_BE_NR
);
2101 return 2 * base_rq
* (IOPRIO_BE_NR
- cfqq
->ioprio
);
2105 * Must be called with the queue_lock held.
2107 static int cfqq_process_refs(struct cfq_queue
*cfqq
)
2109 int process_refs
, io_refs
;
2111 io_refs
= cfqq
->allocated
[READ
] + cfqq
->allocated
[WRITE
];
2112 process_refs
= cfqq
->ref
- io_refs
;
2113 BUG_ON(process_refs
< 0);
2114 return process_refs
;
2117 static void cfq_setup_merge(struct cfq_queue
*cfqq
, struct cfq_queue
*new_cfqq
)
2119 int process_refs
, new_process_refs
;
2120 struct cfq_queue
*__cfqq
;
2123 * If there are no process references on the new_cfqq, then it is
2124 * unsafe to follow the ->new_cfqq chain as other cfqq's in the
2125 * chain may have dropped their last reference (not just their
2126 * last process reference).
2128 if (!cfqq_process_refs(new_cfqq
))
2131 /* Avoid a circular list and skip interim queue merges */
2132 while ((__cfqq
= new_cfqq
->new_cfqq
)) {
2138 process_refs
= cfqq_process_refs(cfqq
);
2139 new_process_refs
= cfqq_process_refs(new_cfqq
);
2141 * If the process for the cfqq has gone away, there is no
2142 * sense in merging the queues.
2144 if (process_refs
== 0 || new_process_refs
== 0)
2148 * Merge in the direction of the lesser amount of work.
2150 if (new_process_refs
>= process_refs
) {
2151 cfqq
->new_cfqq
= new_cfqq
;
2152 new_cfqq
->ref
+= process_refs
;
2154 new_cfqq
->new_cfqq
= cfqq
;
2155 cfqq
->ref
+= new_process_refs
;
2159 static enum wl_type_t
cfq_choose_wl(struct cfq_data
*cfqd
,
2160 struct cfq_group
*cfqg
, enum wl_prio_t prio
)
2162 struct cfq_queue
*queue
;
2164 bool key_valid
= false;
2165 unsigned long lowest_key
= 0;
2166 enum wl_type_t cur_best
= SYNC_NOIDLE_WORKLOAD
;
2168 for (i
= 0; i
<= SYNC_WORKLOAD
; ++i
) {
2169 /* select the one with lowest rb_key */
2170 queue
= cfq_rb_first(service_tree_for(cfqg
, prio
, i
));
2172 (!key_valid
|| time_before(queue
->rb_key
, lowest_key
))) {
2173 lowest_key
= queue
->rb_key
;
2182 static void choose_service_tree(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
)
2186 struct cfq_rb_root
*st
;
2187 unsigned group_slice
;
2188 enum wl_prio_t original_prio
= cfqd
->serving_prio
;
2190 /* Choose next priority. RT > BE > IDLE */
2191 if (cfq_group_busy_queues_wl(RT_WORKLOAD
, cfqd
, cfqg
))
2192 cfqd
->serving_prio
= RT_WORKLOAD
;
2193 else if (cfq_group_busy_queues_wl(BE_WORKLOAD
, cfqd
, cfqg
))
2194 cfqd
->serving_prio
= BE_WORKLOAD
;
2196 cfqd
->serving_prio
= IDLE_WORKLOAD
;
2197 cfqd
->workload_expires
= jiffies
+ 1;
2201 if (original_prio
!= cfqd
->serving_prio
)
2205 * For RT and BE, we have to choose also the type
2206 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
2209 st
= service_tree_for(cfqg
, cfqd
->serving_prio
, cfqd
->serving_type
);
2213 * check workload expiration, and that we still have other queues ready
2215 if (count
&& !time_after(jiffies
, cfqd
->workload_expires
))
2219 /* otherwise select new workload type */
2220 cfqd
->serving_type
=
2221 cfq_choose_wl(cfqd
, cfqg
, cfqd
->serving_prio
);
2222 st
= service_tree_for(cfqg
, cfqd
->serving_prio
, cfqd
->serving_type
);
2226 * the workload slice is computed as a fraction of target latency
2227 * proportional to the number of queues in that workload, over
2228 * all the queues in the same priority class
2230 group_slice
= cfq_group_slice(cfqd
, cfqg
);
2232 slice
= group_slice
* count
/
2233 max_t(unsigned, cfqg
->busy_queues_avg
[cfqd
->serving_prio
],
2234 cfq_group_busy_queues_wl(cfqd
->serving_prio
, cfqd
, cfqg
));
2236 if (cfqd
->serving_type
== ASYNC_WORKLOAD
) {
2240 * Async queues are currently system wide. Just taking
2241 * proportion of queues with-in same group will lead to higher
2242 * async ratio system wide as generally root group is going
2243 * to have higher weight. A more accurate thing would be to
2244 * calculate system wide asnc/sync ratio.
2246 tmp
= cfq_target_latency
* cfqg_busy_async_queues(cfqd
, cfqg
);
2247 tmp
= tmp
/cfqd
->busy_queues
;
2248 slice
= min_t(unsigned, slice
, tmp
);
2250 /* async workload slice is scaled down according to
2251 * the sync/async slice ratio. */
2252 slice
= slice
* cfqd
->cfq_slice
[0] / cfqd
->cfq_slice
[1];
2254 /* sync workload slice is at least 2 * cfq_slice_idle */
2255 slice
= max(slice
, 2 * cfqd
->cfq_slice_idle
);
2257 slice
= max_t(unsigned, slice
, CFQ_MIN_TT
);
2258 cfq_log(cfqd
, "workload slice:%d", slice
);
2259 cfqd
->workload_expires
= jiffies
+ slice
;
2262 static struct cfq_group
*cfq_get_next_cfqg(struct cfq_data
*cfqd
)
2264 struct cfq_rb_root
*st
= &cfqd
->grp_service_tree
;
2265 struct cfq_group
*cfqg
;
2267 if (RB_EMPTY_ROOT(&st
->rb
))
2269 cfqg
= cfq_rb_first_group(st
);
2270 update_min_vdisktime(st
);
2274 static void cfq_choose_cfqg(struct cfq_data
*cfqd
)
2276 struct cfq_group
*cfqg
= cfq_get_next_cfqg(cfqd
);
2278 cfqd
->serving_group
= cfqg
;
2280 /* Restore the workload type data */
2281 if (cfqg
->saved_workload_slice
) {
2282 cfqd
->workload_expires
= jiffies
+ cfqg
->saved_workload_slice
;
2283 cfqd
->serving_type
= cfqg
->saved_workload
;
2284 cfqd
->serving_prio
= cfqg
->saved_serving_prio
;
2286 cfqd
->workload_expires
= jiffies
- 1;
2288 choose_service_tree(cfqd
, cfqg
);
2292 * Select a queue for service. If we have a current active queue,
2293 * check whether to continue servicing it, or retrieve and set a new one.
2295 static struct cfq_queue
*cfq_select_queue(struct cfq_data
*cfqd
)
2297 struct cfq_queue
*cfqq
, *new_cfqq
= NULL
;
2299 cfqq
= cfqd
->active_queue
;
2303 if (!cfqd
->rq_queued
)
2307 * We were waiting for group to get backlogged. Expire the queue
2309 if (cfq_cfqq_wait_busy(cfqq
) && !RB_EMPTY_ROOT(&cfqq
->sort_list
))
2313 * The active queue has run out of time, expire it and select new.
2315 if (cfq_slice_used(cfqq
) && !cfq_cfqq_must_dispatch(cfqq
)) {
2317 * If slice had not expired at the completion of last request
2318 * we might not have turned on wait_busy flag. Don't expire
2319 * the queue yet. Allow the group to get backlogged.
2321 * The very fact that we have used the slice, that means we
2322 * have been idling all along on this queue and it should be
2323 * ok to wait for this request to complete.
2325 if (cfqq
->cfqg
->nr_cfqq
== 1 && RB_EMPTY_ROOT(&cfqq
->sort_list
)
2326 && cfqq
->dispatched
&& cfq_should_idle(cfqd
, cfqq
)) {
2330 goto check_group_idle
;
2334 * The active queue has requests and isn't expired, allow it to
2337 if (!RB_EMPTY_ROOT(&cfqq
->sort_list
))
2341 * If another queue has a request waiting within our mean seek
2342 * distance, let it run. The expire code will check for close
2343 * cooperators and put the close queue at the front of the service
2344 * tree. If possible, merge the expiring queue with the new cfqq.
2346 new_cfqq
= cfq_close_cooperator(cfqd
, cfqq
);
2348 if (!cfqq
->new_cfqq
)
2349 cfq_setup_merge(cfqq
, new_cfqq
);
2354 * No requests pending. If the active queue still has requests in
2355 * flight or is idling for a new request, allow either of these
2356 * conditions to happen (or time out) before selecting a new queue.
2358 if (timer_pending(&cfqd
->idle_slice_timer
)) {
2364 * This is a deep seek queue, but the device is much faster than
2365 * the queue can deliver, don't idle
2367 if (CFQQ_SEEKY(cfqq
) && cfq_cfqq_idle_window(cfqq
) &&
2368 (cfq_cfqq_slice_new(cfqq
) ||
2369 (cfqq
->slice_end
- jiffies
> jiffies
- cfqq
->slice_start
))) {
2370 cfq_clear_cfqq_deep(cfqq
);
2371 cfq_clear_cfqq_idle_window(cfqq
);
2374 if (cfqq
->dispatched
&& cfq_should_idle(cfqd
, cfqq
)) {
2380 * If group idle is enabled and there are requests dispatched from
2381 * this group, wait for requests to complete.
2384 if (cfqd
->cfq_group_idle
&& cfqq
->cfqg
->nr_cfqq
== 1
2385 && cfqq
->cfqg
->dispatched
) {
2391 cfq_slice_expired(cfqd
, 0);
2394 * Current queue expired. Check if we have to switch to a new
2398 cfq_choose_cfqg(cfqd
);
2400 cfqq
= cfq_set_active_queue(cfqd
, new_cfqq
);
2405 static int __cfq_forced_dispatch_cfqq(struct cfq_queue
*cfqq
)
2409 while (cfqq
->next_rq
) {
2410 cfq_dispatch_insert(cfqq
->cfqd
->queue
, cfqq
->next_rq
);
2414 BUG_ON(!list_empty(&cfqq
->fifo
));
2416 /* By default cfqq is not expired if it is empty. Do it explicitly */
2417 __cfq_slice_expired(cfqq
->cfqd
, cfqq
, 0);
2422 * Drain our current requests. Used for barriers and when switching
2423 * io schedulers on-the-fly.
2425 static int cfq_forced_dispatch(struct cfq_data
*cfqd
)
2427 struct cfq_queue
*cfqq
;
2430 /* Expire the timeslice of the current active queue first */
2431 cfq_slice_expired(cfqd
, 0);
2432 while ((cfqq
= cfq_get_next_queue_forced(cfqd
)) != NULL
) {
2433 __cfq_set_active_queue(cfqd
, cfqq
);
2434 dispatched
+= __cfq_forced_dispatch_cfqq(cfqq
);
2437 BUG_ON(cfqd
->busy_queues
);
2439 cfq_log(cfqd
, "forced_dispatch=%d", dispatched
);
2443 static inline bool cfq_slice_used_soon(struct cfq_data
*cfqd
,
2444 struct cfq_queue
*cfqq
)
2446 /* the queue hasn't finished any request, can't estimate */
2447 if (cfq_cfqq_slice_new(cfqq
))
2449 if (time_after(jiffies
+ cfqd
->cfq_slice_idle
* cfqq
->dispatched
,
2456 static bool cfq_may_dispatch(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
2458 unsigned int max_dispatch
;
2461 * Drain async requests before we start sync IO
2463 if (cfq_should_idle(cfqd
, cfqq
) && cfqd
->rq_in_flight
[BLK_RW_ASYNC
])
2467 * If this is an async queue and we have sync IO in flight, let it wait
2469 if (cfqd
->rq_in_flight
[BLK_RW_SYNC
] && !cfq_cfqq_sync(cfqq
))
2472 max_dispatch
= max_t(unsigned int, cfqd
->cfq_quantum
/ 2, 1);
2473 if (cfq_class_idle(cfqq
))
2477 * Does this cfqq already have too much IO in flight?
2479 if (cfqq
->dispatched
>= max_dispatch
) {
2480 bool promote_sync
= false;
2482 * idle queue must always only have a single IO in flight
2484 if (cfq_class_idle(cfqq
))
2488 * If there is only one sync queue
2489 * we can ignore async queue here and give the sync
2490 * queue no dispatch limit. The reason is a sync queue can
2491 * preempt async queue, limiting the sync queue doesn't make
2492 * sense. This is useful for aiostress test.
2494 if (cfq_cfqq_sync(cfqq
) && cfqd
->busy_sync_queues
== 1)
2495 promote_sync
= true;
2498 * We have other queues, don't allow more IO from this one
2500 if (cfqd
->busy_queues
> 1 && cfq_slice_used_soon(cfqd
, cfqq
) &&
2505 * Sole queue user, no limit
2507 if (cfqd
->busy_queues
== 1 || promote_sync
)
2511 * Normally we start throttling cfqq when cfq_quantum/2
2512 * requests have been dispatched. But we can drive
2513 * deeper queue depths at the beginning of slice
2514 * subjected to upper limit of cfq_quantum.
2516 max_dispatch
= cfqd
->cfq_quantum
;
2520 * Async queues must wait a bit before being allowed dispatch.
2521 * We also ramp up the dispatch depth gradually for async IO,
2522 * based on the last sync IO we serviced
2524 if (!cfq_cfqq_sync(cfqq
) && cfqd
->cfq_latency
) {
2525 unsigned long last_sync
= jiffies
- cfqd
->last_delayed_sync
;
2528 depth
= last_sync
/ cfqd
->cfq_slice
[1];
2529 if (!depth
&& !cfqq
->dispatched
)
2531 if (depth
< max_dispatch
)
2532 max_dispatch
= depth
;
2536 * If we're below the current max, allow a dispatch
2538 return cfqq
->dispatched
< max_dispatch
;
2542 * Dispatch a request from cfqq, moving them to the request queue
2545 static bool cfq_dispatch_request(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
2549 BUG_ON(RB_EMPTY_ROOT(&cfqq
->sort_list
));
2551 if (!cfq_may_dispatch(cfqd
, cfqq
))
2555 * follow expired path, else get first next available
2557 rq
= cfq_check_fifo(cfqq
);
2562 * insert request into driver dispatch list
2564 cfq_dispatch_insert(cfqd
->queue
, rq
);
2566 if (!cfqd
->active_cic
) {
2567 struct cfq_io_context
*cic
= RQ_CIC(rq
);
2569 atomic_long_inc(&cic
->ioc
->refcount
);
2570 cfqd
->active_cic
= cic
;
2577 * Find the cfqq that we need to service and move a request from that to the
2580 static int cfq_dispatch_requests(struct request_queue
*q
, int force
)
2582 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
2583 struct cfq_queue
*cfqq
;
2585 if (!cfqd
->busy_queues
)
2588 if (unlikely(force
))
2589 return cfq_forced_dispatch(cfqd
);
2591 cfqq
= cfq_select_queue(cfqd
);
2596 * Dispatch a request from this cfqq, if it is allowed
2598 if (!cfq_dispatch_request(cfqd
, cfqq
))
2601 cfqq
->slice_dispatch
++;
2602 cfq_clear_cfqq_must_dispatch(cfqq
);
2605 * expire an async queue immediately if it has used up its slice. idle
2606 * queue always expire after 1 dispatch round.
2608 if (cfqd
->busy_queues
> 1 && ((!cfq_cfqq_sync(cfqq
) &&
2609 cfqq
->slice_dispatch
>= cfq_prio_to_maxrq(cfqd
, cfqq
)) ||
2610 cfq_class_idle(cfqq
))) {
2611 cfqq
->slice_end
= jiffies
+ 1;
2612 cfq_slice_expired(cfqd
, 0);
2615 cfq_log_cfqq(cfqd
, cfqq
, "dispatched a request");
2620 * task holds one reference to the queue, dropped when task exits. each rq
2621 * in-flight on this queue also holds a reference, dropped when rq is freed.
2623 * Each cfq queue took a reference on the parent group. Drop it now.
2624 * queue lock must be held here.
2626 static void cfq_put_queue(struct cfq_queue
*cfqq
)
2628 struct cfq_data
*cfqd
= cfqq
->cfqd
;
2629 struct cfq_group
*cfqg
;
2631 BUG_ON(cfqq
->ref
<= 0);
2637 cfq_log_cfqq(cfqd
, cfqq
, "put_queue");
2638 BUG_ON(rb_first(&cfqq
->sort_list
));
2639 BUG_ON(cfqq
->allocated
[READ
] + cfqq
->allocated
[WRITE
]);
2642 if (unlikely(cfqd
->active_queue
== cfqq
)) {
2643 __cfq_slice_expired(cfqd
, cfqq
, 0);
2644 cfq_schedule_dispatch(cfqd
);
2647 BUG_ON(cfq_cfqq_on_rr(cfqq
));
2648 kmem_cache_free(cfq_pool
, cfqq
);
2653 * Call func for each cic attached to this ioc.
2656 call_for_each_cic(struct io_context
*ioc
,
2657 void (*func
)(struct io_context
*, struct cfq_io_context
*))
2659 struct cfq_io_context
*cic
;
2660 struct hlist_node
*n
;
2664 hlist_for_each_entry_rcu(cic
, n
, &ioc
->cic_list
, cic_list
)
2670 static void cfq_cic_free_rcu(struct rcu_head
*head
)
2672 struct cfq_io_context
*cic
;
2674 cic
= container_of(head
, struct cfq_io_context
, rcu_head
);
2676 kmem_cache_free(cfq_ioc_pool
, cic
);
2677 elv_ioc_count_dec(cfq_ioc_count
);
2681 * CFQ scheduler is exiting, grab exit lock and check
2682 * the pending io context count. If it hits zero,
2683 * complete ioc_gone and set it back to NULL
2685 spin_lock(&ioc_gone_lock
);
2686 if (ioc_gone
&& !elv_ioc_count_read(cfq_ioc_count
)) {
2690 spin_unlock(&ioc_gone_lock
);
2694 static void cfq_cic_free(struct cfq_io_context
*cic
)
2696 call_rcu(&cic
->rcu_head
, cfq_cic_free_rcu
);
2699 static void cic_free_func(struct io_context
*ioc
, struct cfq_io_context
*cic
)
2701 unsigned long flags
;
2702 unsigned long dead_key
= (unsigned long) cic
->key
;
2704 BUG_ON(!(dead_key
& CIC_DEAD_KEY
));
2706 spin_lock_irqsave(&ioc
->lock
, flags
);
2707 radix_tree_delete(&ioc
->radix_root
, dead_key
>> CIC_DEAD_INDEX_SHIFT
);
2708 hlist_del_rcu(&cic
->cic_list
);
2709 spin_unlock_irqrestore(&ioc
->lock
, flags
);
2715 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
2716 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
2717 * and ->trim() which is called with the task lock held
2719 static void cfq_free_io_context(struct io_context
*ioc
)
2722 * ioc->refcount is zero here, or we are called from elv_unregister(),
2723 * so no more cic's are allowed to be linked into this ioc. So it
2724 * should be ok to iterate over the known list, we will see all cic's
2725 * since no new ones are added.
2727 call_for_each_cic(ioc
, cic_free_func
);
2730 static void cfq_put_cooperator(struct cfq_queue
*cfqq
)
2732 struct cfq_queue
*__cfqq
, *next
;
2735 * If this queue was scheduled to merge with another queue, be
2736 * sure to drop the reference taken on that queue (and others in
2737 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
2739 __cfqq
= cfqq
->new_cfqq
;
2741 if (__cfqq
== cfqq
) {
2742 WARN(1, "cfqq->new_cfqq loop detected\n");
2745 next
= __cfqq
->new_cfqq
;
2746 cfq_put_queue(__cfqq
);
2751 static void cfq_exit_cfqq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
2753 if (unlikely(cfqq
== cfqd
->active_queue
)) {
2754 __cfq_slice_expired(cfqd
, cfqq
, 0);
2755 cfq_schedule_dispatch(cfqd
);
2758 cfq_put_cooperator(cfqq
);
2760 cfq_put_queue(cfqq
);
2763 static void __cfq_exit_single_io_context(struct cfq_data
*cfqd
,
2764 struct cfq_io_context
*cic
)
2766 struct io_context
*ioc
= cic
->ioc
;
2768 list_del_init(&cic
->queue_list
);
2771 * Make sure dead mark is seen for dead queues
2774 cic
->key
= cfqd_dead_key(cfqd
);
2777 if (rcu_dereference(ioc
->ioc_data
) == cic
) {
2779 spin_lock(&ioc
->lock
);
2780 rcu_assign_pointer(ioc
->ioc_data
, NULL
);
2781 spin_unlock(&ioc
->lock
);
2785 if (cic
->cfqq
[BLK_RW_ASYNC
]) {
2786 cfq_exit_cfqq(cfqd
, cic
->cfqq
[BLK_RW_ASYNC
]);
2787 cic
->cfqq
[BLK_RW_ASYNC
] = NULL
;
2790 if (cic
->cfqq
[BLK_RW_SYNC
]) {
2791 cfq_exit_cfqq(cfqd
, cic
->cfqq
[BLK_RW_SYNC
]);
2792 cic
->cfqq
[BLK_RW_SYNC
] = NULL
;
2796 static void cfq_exit_single_io_context(struct io_context
*ioc
,
2797 struct cfq_io_context
*cic
)
2799 struct cfq_data
*cfqd
= cic_to_cfqd(cic
);
2802 struct request_queue
*q
= cfqd
->queue
;
2803 unsigned long flags
;
2805 spin_lock_irqsave(q
->queue_lock
, flags
);
2808 * Ensure we get a fresh copy of the ->key to prevent
2809 * race between exiting task and queue
2811 smp_read_barrier_depends();
2812 if (cic
->key
== cfqd
)
2813 __cfq_exit_single_io_context(cfqd
, cic
);
2815 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2820 * The process that ioc belongs to has exited, we need to clean up
2821 * and put the internal structures we have that belongs to that process.
2823 static void cfq_exit_io_context(struct io_context
*ioc
)
2825 call_for_each_cic(ioc
, cfq_exit_single_io_context
);
2828 static struct cfq_io_context
*
2829 cfq_alloc_io_context(struct cfq_data
*cfqd
, gfp_t gfp_mask
)
2831 struct cfq_io_context
*cic
;
2833 cic
= kmem_cache_alloc_node(cfq_ioc_pool
, gfp_mask
| __GFP_ZERO
,
2836 cic
->last_end_request
= jiffies
;
2837 INIT_LIST_HEAD(&cic
->queue_list
);
2838 INIT_HLIST_NODE(&cic
->cic_list
);
2839 cic
->dtor
= cfq_free_io_context
;
2840 cic
->exit
= cfq_exit_io_context
;
2841 elv_ioc_count_inc(cfq_ioc_count
);
2847 static void cfq_init_prio_data(struct cfq_queue
*cfqq
, struct io_context
*ioc
)
2849 struct task_struct
*tsk
= current
;
2852 if (!cfq_cfqq_prio_changed(cfqq
))
2855 ioprio_class
= IOPRIO_PRIO_CLASS(ioc
->ioprio
);
2856 switch (ioprio_class
) {
2858 printk(KERN_ERR
"cfq: bad prio %x\n", ioprio_class
);
2859 case IOPRIO_CLASS_NONE
:
2861 * no prio set, inherit CPU scheduling settings
2863 cfqq
->ioprio
= task_nice_ioprio(tsk
);
2864 cfqq
->ioprio_class
= task_nice_ioclass(tsk
);
2866 case IOPRIO_CLASS_RT
:
2867 cfqq
->ioprio
= task_ioprio(ioc
);
2868 cfqq
->ioprio_class
= IOPRIO_CLASS_RT
;
2870 case IOPRIO_CLASS_BE
:
2871 cfqq
->ioprio
= task_ioprio(ioc
);
2872 cfqq
->ioprio_class
= IOPRIO_CLASS_BE
;
2874 case IOPRIO_CLASS_IDLE
:
2875 cfqq
->ioprio_class
= IOPRIO_CLASS_IDLE
;
2877 cfq_clear_cfqq_idle_window(cfqq
);
2882 * keep track of original prio settings in case we have to temporarily
2883 * elevate the priority of this queue
2885 cfqq
->org_ioprio
= cfqq
->ioprio
;
2886 cfqq
->org_ioprio_class
= cfqq
->ioprio_class
;
2887 cfq_clear_cfqq_prio_changed(cfqq
);
2890 static void changed_ioprio(struct io_context
*ioc
, struct cfq_io_context
*cic
)
2892 struct cfq_data
*cfqd
= cic_to_cfqd(cic
);
2893 struct cfq_queue
*cfqq
;
2894 unsigned long flags
;
2896 if (unlikely(!cfqd
))
2899 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
2901 cfqq
= cic
->cfqq
[BLK_RW_ASYNC
];
2903 struct cfq_queue
*new_cfqq
;
2904 new_cfqq
= cfq_get_queue(cfqd
, BLK_RW_ASYNC
, cic
->ioc
,
2907 cic
->cfqq
[BLK_RW_ASYNC
] = new_cfqq
;
2908 cfq_put_queue(cfqq
);
2912 cfqq
= cic
->cfqq
[BLK_RW_SYNC
];
2914 cfq_mark_cfqq_prio_changed(cfqq
);
2916 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
2919 static void cfq_ioc_set_ioprio(struct io_context
*ioc
)
2921 call_for_each_cic(ioc
, changed_ioprio
);
2922 ioc
->ioprio_changed
= 0;
2925 static void cfq_init_cfqq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
2926 pid_t pid
, bool is_sync
)
2928 RB_CLEAR_NODE(&cfqq
->rb_node
);
2929 RB_CLEAR_NODE(&cfqq
->p_node
);
2930 INIT_LIST_HEAD(&cfqq
->fifo
);
2935 cfq_mark_cfqq_prio_changed(cfqq
);
2938 if (!cfq_class_idle(cfqq
))
2939 cfq_mark_cfqq_idle_window(cfqq
);
2940 cfq_mark_cfqq_sync(cfqq
);
2945 #ifdef CONFIG_CFQ_GROUP_IOSCHED
2946 static void changed_cgroup(struct io_context
*ioc
, struct cfq_io_context
*cic
)
2948 struct cfq_queue
*sync_cfqq
= cic_to_cfqq(cic
, 1);
2949 struct cfq_data
*cfqd
= cic_to_cfqd(cic
);
2950 unsigned long flags
;
2951 struct request_queue
*q
;
2953 if (unlikely(!cfqd
))
2958 spin_lock_irqsave(q
->queue_lock
, flags
);
2962 * Drop reference to sync queue. A new sync queue will be
2963 * assigned in new group upon arrival of a fresh request.
2965 cfq_log_cfqq(cfqd
, sync_cfqq
, "changed cgroup");
2966 cic_set_cfqq(cic
, NULL
, 1);
2967 cfq_put_queue(sync_cfqq
);
2970 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2973 static void cfq_ioc_set_cgroup(struct io_context
*ioc
)
2975 call_for_each_cic(ioc
, changed_cgroup
);
2976 ioc
->cgroup_changed
= 0;
2978 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
2980 static struct cfq_queue
*
2981 cfq_find_alloc_queue(struct cfq_data
*cfqd
, bool is_sync
,
2982 struct io_context
*ioc
, gfp_t gfp_mask
)
2984 struct cfq_queue
*cfqq
, *new_cfqq
= NULL
;
2985 struct cfq_io_context
*cic
;
2986 struct cfq_group
*cfqg
;
2989 cfqg
= cfq_get_cfqg(cfqd
);
2990 cic
= cfq_cic_lookup(cfqd
, ioc
);
2991 /* cic always exists here */
2992 cfqq
= cic_to_cfqq(cic
, is_sync
);
2995 * Always try a new alloc if we fell back to the OOM cfqq
2996 * originally, since it should just be a temporary situation.
2998 if (!cfqq
|| cfqq
== &cfqd
->oom_cfqq
) {
3003 } else if (gfp_mask
& __GFP_WAIT
) {
3004 spin_unlock_irq(cfqd
->queue
->queue_lock
);
3005 new_cfqq
= kmem_cache_alloc_node(cfq_pool
,
3006 gfp_mask
| __GFP_ZERO
,
3008 spin_lock_irq(cfqd
->queue
->queue_lock
);
3012 cfqq
= kmem_cache_alloc_node(cfq_pool
,
3013 gfp_mask
| __GFP_ZERO
,
3018 cfq_init_cfqq(cfqd
, cfqq
, current
->pid
, is_sync
);
3019 cfq_init_prio_data(cfqq
, ioc
);
3020 cfq_link_cfqq_cfqg(cfqq
, cfqg
);
3021 cfq_log_cfqq(cfqd
, cfqq
, "alloced");
3023 cfqq
= &cfqd
->oom_cfqq
;
3027 kmem_cache_free(cfq_pool
, new_cfqq
);
3032 static struct cfq_queue
**
3033 cfq_async_queue_prio(struct cfq_data
*cfqd
, int ioprio_class
, int ioprio
)
3035 switch (ioprio_class
) {
3036 case IOPRIO_CLASS_RT
:
3037 return &cfqd
->async_cfqq
[0][ioprio
];
3038 case IOPRIO_CLASS_BE
:
3039 return &cfqd
->async_cfqq
[1][ioprio
];
3040 case IOPRIO_CLASS_IDLE
:
3041 return &cfqd
->async_idle_cfqq
;
3047 static struct cfq_queue
*
3048 cfq_get_queue(struct cfq_data
*cfqd
, bool is_sync
, struct io_context
*ioc
,
3051 const int ioprio
= task_ioprio(ioc
);
3052 const int ioprio_class
= task_ioprio_class(ioc
);
3053 struct cfq_queue
**async_cfqq
= NULL
;
3054 struct cfq_queue
*cfqq
= NULL
;
3057 async_cfqq
= cfq_async_queue_prio(cfqd
, ioprio_class
, ioprio
);
3062 cfqq
= cfq_find_alloc_queue(cfqd
, is_sync
, ioc
, gfp_mask
);
3065 * pin the queue now that it's allocated, scheduler exit will prune it
3067 if (!is_sync
&& !(*async_cfqq
)) {
3077 * We drop cfq io contexts lazily, so we may find a dead one.
3080 cfq_drop_dead_cic(struct cfq_data
*cfqd
, struct io_context
*ioc
,
3081 struct cfq_io_context
*cic
)
3083 unsigned long flags
;
3085 WARN_ON(!list_empty(&cic
->queue_list
));
3086 BUG_ON(cic
->key
!= cfqd_dead_key(cfqd
));
3088 spin_lock_irqsave(&ioc
->lock
, flags
);
3090 BUG_ON(rcu_dereference_check(ioc
->ioc_data
,
3091 lockdep_is_held(&ioc
->lock
)) == cic
);
3093 radix_tree_delete(&ioc
->radix_root
, cfqd
->cic_index
);
3094 hlist_del_rcu(&cic
->cic_list
);
3095 spin_unlock_irqrestore(&ioc
->lock
, flags
);
3100 static struct cfq_io_context
*
3101 cfq_cic_lookup(struct cfq_data
*cfqd
, struct io_context
*ioc
)
3103 struct cfq_io_context
*cic
;
3104 unsigned long flags
;
3112 * we maintain a last-hit cache, to avoid browsing over the tree
3114 cic
= rcu_dereference(ioc
->ioc_data
);
3115 if (cic
&& cic
->key
== cfqd
) {
3121 cic
= radix_tree_lookup(&ioc
->radix_root
, cfqd
->cic_index
);
3125 if (unlikely(cic
->key
!= cfqd
)) {
3126 cfq_drop_dead_cic(cfqd
, ioc
, cic
);
3131 spin_lock_irqsave(&ioc
->lock
, flags
);
3132 rcu_assign_pointer(ioc
->ioc_data
, cic
);
3133 spin_unlock_irqrestore(&ioc
->lock
, flags
);
3141 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
3142 * the process specific cfq io context when entered from the block layer.
3143 * Also adds the cic to a per-cfqd list, used when this queue is removed.
3145 static int cfq_cic_link(struct cfq_data
*cfqd
, struct io_context
*ioc
,
3146 struct cfq_io_context
*cic
, gfp_t gfp_mask
)
3148 unsigned long flags
;
3151 ret
= radix_tree_preload(gfp_mask
);
3156 spin_lock_irqsave(&ioc
->lock
, flags
);
3157 ret
= radix_tree_insert(&ioc
->radix_root
,
3158 cfqd
->cic_index
, cic
);
3160 hlist_add_head_rcu(&cic
->cic_list
, &ioc
->cic_list
);
3161 spin_unlock_irqrestore(&ioc
->lock
, flags
);
3163 radix_tree_preload_end();
3166 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
3167 list_add(&cic
->queue_list
, &cfqd
->cic_list
);
3168 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
3173 printk(KERN_ERR
"cfq: cic link failed!\n");
3179 * Setup general io context and cfq io context. There can be several cfq
3180 * io contexts per general io context, if this process is doing io to more
3181 * than one device managed by cfq.
3183 static struct cfq_io_context
*
3184 cfq_get_io_context(struct cfq_data
*cfqd
, gfp_t gfp_mask
)
3186 struct io_context
*ioc
= NULL
;
3187 struct cfq_io_context
*cic
;
3189 might_sleep_if(gfp_mask
& __GFP_WAIT
);
3191 ioc
= get_io_context(gfp_mask
, cfqd
->queue
->node
);
3195 cic
= cfq_cic_lookup(cfqd
, ioc
);
3199 cic
= cfq_alloc_io_context(cfqd
, gfp_mask
);
3203 if (cfq_cic_link(cfqd
, ioc
, cic
, gfp_mask
))
3207 smp_read_barrier_depends();
3208 if (unlikely(ioc
->ioprio_changed
))
3209 cfq_ioc_set_ioprio(ioc
);
3211 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3212 if (unlikely(ioc
->cgroup_changed
))
3213 cfq_ioc_set_cgroup(ioc
);
3219 put_io_context(ioc
);
3224 cfq_update_io_thinktime(struct cfq_data
*cfqd
, struct cfq_io_context
*cic
)
3226 unsigned long elapsed
= jiffies
- cic
->last_end_request
;
3227 unsigned long ttime
= min(elapsed
, 2UL * cfqd
->cfq_slice_idle
);
3229 cic
->ttime_samples
= (7*cic
->ttime_samples
+ 256) / 8;
3230 cic
->ttime_total
= (7*cic
->ttime_total
+ 256*ttime
) / 8;
3231 cic
->ttime_mean
= (cic
->ttime_total
+ 128) / cic
->ttime_samples
;
3235 cfq_update_io_seektime(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
3239 sector_t n_sec
= blk_rq_sectors(rq
);
3240 if (cfqq
->last_request_pos
) {
3241 if (cfqq
->last_request_pos
< blk_rq_pos(rq
))
3242 sdist
= blk_rq_pos(rq
) - cfqq
->last_request_pos
;
3244 sdist
= cfqq
->last_request_pos
- blk_rq_pos(rq
);
3247 cfqq
->seek_history
<<= 1;
3248 if (blk_queue_nonrot(cfqd
->queue
))
3249 cfqq
->seek_history
|= (n_sec
< CFQQ_SECT_THR_NONROT
);
3251 cfqq
->seek_history
|= (sdist
> CFQQ_SEEK_THR
);
3255 * Disable idle window if the process thinks too long or seeks so much that
3259 cfq_update_idle_window(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
3260 struct cfq_io_context
*cic
)
3262 int old_idle
, enable_idle
;
3265 * Don't idle for async or idle io prio class
3267 if (!cfq_cfqq_sync(cfqq
) || cfq_class_idle(cfqq
))
3270 enable_idle
= old_idle
= cfq_cfqq_idle_window(cfqq
);
3272 if (cfqq
->queued
[0] + cfqq
->queued
[1] >= 4)
3273 cfq_mark_cfqq_deep(cfqq
);
3275 if (cfqq
->next_rq
&& (cfqq
->next_rq
->cmd_flags
& REQ_NOIDLE
))
3277 else if (!atomic_read(&cic
->ioc
->nr_tasks
) || !cfqd
->cfq_slice_idle
||
3278 (!cfq_cfqq_deep(cfqq
) && CFQQ_SEEKY(cfqq
)))
3280 else if (sample_valid(cic
->ttime_samples
)) {
3281 if (cic
->ttime_mean
> cfqd
->cfq_slice_idle
)
3287 if (old_idle
!= enable_idle
) {
3288 cfq_log_cfqq(cfqd
, cfqq
, "idle=%d", enable_idle
);
3290 cfq_mark_cfqq_idle_window(cfqq
);
3292 cfq_clear_cfqq_idle_window(cfqq
);
3297 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3298 * no or if we aren't sure, a 1 will cause a preempt.
3301 cfq_should_preempt(struct cfq_data
*cfqd
, struct cfq_queue
*new_cfqq
,
3304 struct cfq_queue
*cfqq
;
3306 cfqq
= cfqd
->active_queue
;
3310 if (cfq_class_idle(new_cfqq
))
3313 if (cfq_class_idle(cfqq
))
3317 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3319 if (cfq_class_rt(cfqq
) && !cfq_class_rt(new_cfqq
))
3323 * if the new request is sync, but the currently running queue is
3324 * not, let the sync request have priority.
3326 if (rq_is_sync(rq
) && !cfq_cfqq_sync(cfqq
))
3329 if (new_cfqq
->cfqg
!= cfqq
->cfqg
)
3332 if (cfq_slice_used(cfqq
))
3335 /* Allow preemption only if we are idling on sync-noidle tree */
3336 if (cfqd
->serving_type
== SYNC_NOIDLE_WORKLOAD
&&
3337 cfqq_type(new_cfqq
) == SYNC_NOIDLE_WORKLOAD
&&
3338 new_cfqq
->service_tree
->count
== 2 &&
3339 RB_EMPTY_ROOT(&cfqq
->sort_list
))
3343 * So both queues are sync. Let the new request get disk time if
3344 * it's a metadata request and the current queue is doing regular IO.
3346 if ((rq
->cmd_flags
& REQ_META
) && !cfqq
->meta_pending
)
3350 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3352 if (cfq_class_rt(new_cfqq
) && !cfq_class_rt(cfqq
))
3355 /* An idle queue should not be idle now for some reason */
3356 if (RB_EMPTY_ROOT(&cfqq
->sort_list
) && !cfq_should_idle(cfqd
, cfqq
))
3359 if (!cfqd
->active_cic
|| !cfq_cfqq_wait_request(cfqq
))
3363 * if this request is as-good as one we would expect from the
3364 * current cfqq, let it preempt
3366 if (cfq_rq_close(cfqd
, cfqq
, rq
))
3373 * cfqq preempts the active queue. if we allowed preempt with no slice left,
3374 * let it have half of its nominal slice.
3376 static void cfq_preempt_queue(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
3378 struct cfq_queue
*old_cfqq
= cfqd
->active_queue
;
3380 cfq_log_cfqq(cfqd
, cfqq
, "preempt");
3381 cfq_slice_expired(cfqd
, 1);
3384 * workload type is changed, don't save slice, otherwise preempt
3387 if (cfqq_type(old_cfqq
) != cfqq_type(cfqq
))
3388 cfqq
->cfqg
->saved_workload_slice
= 0;
3391 * Put the new queue at the front of the of the current list,
3392 * so we know that it will be selected next.
3394 BUG_ON(!cfq_cfqq_on_rr(cfqq
));
3396 cfq_service_tree_add(cfqd
, cfqq
, 1);
3398 cfqq
->slice_end
= 0;
3399 cfq_mark_cfqq_slice_new(cfqq
);
3403 * Called when a new fs request (rq) is added (to cfqq). Check if there's
3404 * something we should do about it
3407 cfq_rq_enqueued(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
3410 struct cfq_io_context
*cic
= RQ_CIC(rq
);
3413 if (rq
->cmd_flags
& REQ_META
)
3414 cfqq
->meta_pending
++;
3416 cfq_update_io_thinktime(cfqd
, cic
);
3417 cfq_update_io_seektime(cfqd
, cfqq
, rq
);
3418 cfq_update_idle_window(cfqd
, cfqq
, cic
);
3420 cfqq
->last_request_pos
= blk_rq_pos(rq
) + blk_rq_sectors(rq
);
3422 if (cfqq
== cfqd
->active_queue
) {
3424 * Remember that we saw a request from this process, but
3425 * don't start queuing just yet. Otherwise we risk seeing lots
3426 * of tiny requests, because we disrupt the normal plugging
3427 * and merging. If the request is already larger than a single
3428 * page, let it rip immediately. For that case we assume that
3429 * merging is already done. Ditto for a busy system that
3430 * has other work pending, don't risk delaying until the
3431 * idle timer unplug to continue working.
3433 if (cfq_cfqq_wait_request(cfqq
)) {
3434 if (blk_rq_bytes(rq
) > PAGE_CACHE_SIZE
||
3435 cfqd
->busy_queues
> 1) {
3436 cfq_del_timer(cfqd
, cfqq
);
3437 cfq_clear_cfqq_wait_request(cfqq
);
3438 __blk_run_queue(cfqd
->queue
);
3440 cfq_blkiocg_update_idle_time_stats(
3442 cfq_mark_cfqq_must_dispatch(cfqq
);
3445 } else if (cfq_should_preempt(cfqd
, cfqq
, rq
)) {
3447 * not the active queue - expire current slice if it is
3448 * idle and has expired it's mean thinktime or this new queue
3449 * has some old slice time left and is of higher priority or
3450 * this new queue is RT and the current one is BE
3452 cfq_preempt_queue(cfqd
, cfqq
);
3453 __blk_run_queue(cfqd
->queue
);
3457 static void cfq_insert_request(struct request_queue
*q
, struct request
*rq
)
3459 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
3460 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
3462 cfq_log_cfqq(cfqd
, cfqq
, "insert_request");
3463 cfq_init_prio_data(cfqq
, RQ_CIC(rq
)->ioc
);
3465 rq_set_fifo_time(rq
, jiffies
+ cfqd
->cfq_fifo_expire
[rq_is_sync(rq
)]);
3466 list_add_tail(&rq
->queuelist
, &cfqq
->fifo
);
3468 cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq
))->blkg
,
3469 &cfqd
->serving_group
->blkg
, rq_data_dir(rq
),
3471 cfq_rq_enqueued(cfqd
, cfqq
, rq
);
3475 * Update hw_tag based on peak queue depth over 50 samples under
3478 static void cfq_update_hw_tag(struct cfq_data
*cfqd
)
3480 struct cfq_queue
*cfqq
= cfqd
->active_queue
;
3482 if (cfqd
->rq_in_driver
> cfqd
->hw_tag_est_depth
)
3483 cfqd
->hw_tag_est_depth
= cfqd
->rq_in_driver
;
3485 if (cfqd
->hw_tag
== 1)
3488 if (cfqd
->rq_queued
<= CFQ_HW_QUEUE_MIN
&&
3489 cfqd
->rq_in_driver
<= CFQ_HW_QUEUE_MIN
)
3493 * If active queue hasn't enough requests and can idle, cfq might not
3494 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3497 if (cfqq
&& cfq_cfqq_idle_window(cfqq
) &&
3498 cfqq
->dispatched
+ cfqq
->queued
[0] + cfqq
->queued
[1] <
3499 CFQ_HW_QUEUE_MIN
&& cfqd
->rq_in_driver
< CFQ_HW_QUEUE_MIN
)
3502 if (cfqd
->hw_tag_samples
++ < 50)
3505 if (cfqd
->hw_tag_est_depth
>= CFQ_HW_QUEUE_MIN
)
3511 static bool cfq_should_wait_busy(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
3513 struct cfq_io_context
*cic
= cfqd
->active_cic
;
3515 /* If the queue already has requests, don't wait */
3516 if (!RB_EMPTY_ROOT(&cfqq
->sort_list
))
3519 /* If there are other queues in the group, don't wait */
3520 if (cfqq
->cfqg
->nr_cfqq
> 1)
3523 if (cfq_slice_used(cfqq
))
3526 /* if slice left is less than think time, wait busy */
3527 if (cic
&& sample_valid(cic
->ttime_samples
)
3528 && (cfqq
->slice_end
- jiffies
< cic
->ttime_mean
))
3532 * If think times is less than a jiffy than ttime_mean=0 and above
3533 * will not be true. It might happen that slice has not expired yet
3534 * but will expire soon (4-5 ns) during select_queue(). To cover the
3535 * case where think time is less than a jiffy, mark the queue wait
3536 * busy if only 1 jiffy is left in the slice.
3538 if (cfqq
->slice_end
- jiffies
== 1)
3544 static void cfq_completed_request(struct request_queue
*q
, struct request
*rq
)
3546 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
3547 struct cfq_data
*cfqd
= cfqq
->cfqd
;
3548 const int sync
= rq_is_sync(rq
);
3552 cfq_log_cfqq(cfqd
, cfqq
, "complete rqnoidle %d",
3553 !!(rq
->cmd_flags
& REQ_NOIDLE
));
3555 cfq_update_hw_tag(cfqd
);
3557 WARN_ON(!cfqd
->rq_in_driver
);
3558 WARN_ON(!cfqq
->dispatched
);
3559 cfqd
->rq_in_driver
--;
3561 (RQ_CFQG(rq
))->dispatched
--;
3562 cfq_blkiocg_update_completion_stats(&cfqq
->cfqg
->blkg
,
3563 rq_start_time_ns(rq
), rq_io_start_time_ns(rq
),
3564 rq_data_dir(rq
), rq_is_sync(rq
));
3566 cfqd
->rq_in_flight
[cfq_cfqq_sync(cfqq
)]--;
3569 RQ_CIC(rq
)->last_end_request
= now
;
3570 if (!time_after(rq
->start_time
+ cfqd
->cfq_fifo_expire
[1], now
))
3571 cfqd
->last_delayed_sync
= now
;
3575 * If this is the active queue, check if it needs to be expired,
3576 * or if we want to idle in case it has no pending requests.
3578 if (cfqd
->active_queue
== cfqq
) {
3579 const bool cfqq_empty
= RB_EMPTY_ROOT(&cfqq
->sort_list
);
3581 if (cfq_cfqq_slice_new(cfqq
)) {
3582 cfq_set_prio_slice(cfqd
, cfqq
);
3583 cfq_clear_cfqq_slice_new(cfqq
);
3587 * Should we wait for next request to come in before we expire
3590 if (cfq_should_wait_busy(cfqd
, cfqq
)) {
3591 unsigned long extend_sl
= cfqd
->cfq_slice_idle
;
3592 if (!cfqd
->cfq_slice_idle
)
3593 extend_sl
= cfqd
->cfq_group_idle
;
3594 cfqq
->slice_end
= jiffies
+ extend_sl
;
3595 cfq_mark_cfqq_wait_busy(cfqq
);
3596 cfq_log_cfqq(cfqd
, cfqq
, "will busy wait");
3600 * Idling is not enabled on:
3602 * - idle-priority queues
3604 * - queues with still some requests queued
3605 * - when there is a close cooperator
3607 if (cfq_slice_used(cfqq
) || cfq_class_idle(cfqq
))
3608 cfq_slice_expired(cfqd
, 1);
3609 else if (sync
&& cfqq_empty
&&
3610 !cfq_close_cooperator(cfqd
, cfqq
)) {
3611 cfq_arm_slice_timer(cfqd
);
3615 if (!cfqd
->rq_in_driver
)
3616 cfq_schedule_dispatch(cfqd
);
3620 * we temporarily boost lower priority queues if they are holding fs exclusive
3621 * resources. they are boosted to normal prio (CLASS_BE/4)
3623 static void cfq_prio_boost(struct cfq_queue
*cfqq
)
3625 if (has_fs_excl()) {
3627 * boost idle prio on transactions that would lock out other
3628 * users of the filesystem
3630 if (cfq_class_idle(cfqq
))
3631 cfqq
->ioprio_class
= IOPRIO_CLASS_BE
;
3632 if (cfqq
->ioprio
> IOPRIO_NORM
)
3633 cfqq
->ioprio
= IOPRIO_NORM
;
3636 * unboost the queue (if needed)
3638 cfqq
->ioprio_class
= cfqq
->org_ioprio_class
;
3639 cfqq
->ioprio
= cfqq
->org_ioprio
;
3643 static inline int __cfq_may_queue(struct cfq_queue
*cfqq
)
3645 if (cfq_cfqq_wait_request(cfqq
) && !cfq_cfqq_must_alloc_slice(cfqq
)) {
3646 cfq_mark_cfqq_must_alloc_slice(cfqq
);
3647 return ELV_MQUEUE_MUST
;
3650 return ELV_MQUEUE_MAY
;
3653 static int cfq_may_queue(struct request_queue
*q
, int rw
)
3655 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
3656 struct task_struct
*tsk
= current
;
3657 struct cfq_io_context
*cic
;
3658 struct cfq_queue
*cfqq
;
3661 * don't force setup of a queue from here, as a call to may_queue
3662 * does not necessarily imply that a request actually will be queued.
3663 * so just lookup a possibly existing queue, or return 'may queue'
3666 cic
= cfq_cic_lookup(cfqd
, tsk
->io_context
);
3668 return ELV_MQUEUE_MAY
;
3670 cfqq
= cic_to_cfqq(cic
, rw_is_sync(rw
));
3672 cfq_init_prio_data(cfqq
, cic
->ioc
);
3673 cfq_prio_boost(cfqq
);
3675 return __cfq_may_queue(cfqq
);
3678 return ELV_MQUEUE_MAY
;
3682 * queue lock held here
3684 static void cfq_put_request(struct request
*rq
)
3686 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
3689 const int rw
= rq_data_dir(rq
);
3691 BUG_ON(!cfqq
->allocated
[rw
]);
3692 cfqq
->allocated
[rw
]--;
3694 put_io_context(RQ_CIC(rq
)->ioc
);
3696 rq
->elevator_private
[0] = NULL
;
3697 rq
->elevator_private
[1] = NULL
;
3699 /* Put down rq reference on cfqg */
3700 cfq_put_cfqg(RQ_CFQG(rq
));
3701 rq
->elevator_private
[2] = NULL
;
3703 cfq_put_queue(cfqq
);
3707 static struct cfq_queue
*
3708 cfq_merge_cfqqs(struct cfq_data
*cfqd
, struct cfq_io_context
*cic
,
3709 struct cfq_queue
*cfqq
)
3711 cfq_log_cfqq(cfqd
, cfqq
, "merging with queue %p", cfqq
->new_cfqq
);
3712 cic_set_cfqq(cic
, cfqq
->new_cfqq
, 1);
3713 cfq_mark_cfqq_coop(cfqq
->new_cfqq
);
3714 cfq_put_queue(cfqq
);
3715 return cic_to_cfqq(cic
, 1);
3719 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3720 * was the last process referring to said cfqq.
3722 static struct cfq_queue
*
3723 split_cfqq(struct cfq_io_context
*cic
, struct cfq_queue
*cfqq
)
3725 if (cfqq_process_refs(cfqq
) == 1) {
3726 cfqq
->pid
= current
->pid
;
3727 cfq_clear_cfqq_coop(cfqq
);
3728 cfq_clear_cfqq_split_coop(cfqq
);
3732 cic_set_cfqq(cic
, NULL
, 1);
3734 cfq_put_cooperator(cfqq
);
3736 cfq_put_queue(cfqq
);
3740 * Allocate cfq data structures associated with this request.
3743 cfq_set_request(struct request_queue
*q
, struct request
*rq
, gfp_t gfp_mask
)
3745 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
3746 struct cfq_io_context
*cic
;
3747 const int rw
= rq_data_dir(rq
);
3748 const bool is_sync
= rq_is_sync(rq
);
3749 struct cfq_queue
*cfqq
;
3750 unsigned long flags
;
3752 might_sleep_if(gfp_mask
& __GFP_WAIT
);
3754 cic
= cfq_get_io_context(cfqd
, gfp_mask
);
3756 spin_lock_irqsave(q
->queue_lock
, flags
);
3762 cfqq
= cic_to_cfqq(cic
, is_sync
);
3763 if (!cfqq
|| cfqq
== &cfqd
->oom_cfqq
) {
3764 cfqq
= cfq_get_queue(cfqd
, is_sync
, cic
->ioc
, gfp_mask
);
3765 cic_set_cfqq(cic
, cfqq
, is_sync
);
3768 * If the queue was seeky for too long, break it apart.
3770 if (cfq_cfqq_coop(cfqq
) && cfq_cfqq_split_coop(cfqq
)) {
3771 cfq_log_cfqq(cfqd
, cfqq
, "breaking apart cfqq");
3772 cfqq
= split_cfqq(cic
, cfqq
);
3778 * Check to see if this queue is scheduled to merge with
3779 * another, closely cooperating queue. The merging of
3780 * queues happens here as it must be done in process context.
3781 * The reference on new_cfqq was taken in merge_cfqqs.
3784 cfqq
= cfq_merge_cfqqs(cfqd
, cic
, cfqq
);
3787 cfqq
->allocated
[rw
]++;
3790 rq
->elevator_private
[0] = cic
;
3791 rq
->elevator_private
[1] = cfqq
;
3792 rq
->elevator_private
[2] = cfq_ref_get_cfqg(cfqq
->cfqg
);
3793 spin_unlock_irqrestore(q
->queue_lock
, flags
);
3797 cfq_schedule_dispatch(cfqd
);
3798 spin_unlock_irqrestore(q
->queue_lock
, flags
);
3799 cfq_log(cfqd
, "set_request fail");
3803 static void cfq_kick_queue(struct work_struct
*work
)
3805 struct cfq_data
*cfqd
=
3806 container_of(work
, struct cfq_data
, unplug_work
);
3807 struct request_queue
*q
= cfqd
->queue
;
3809 spin_lock_irq(q
->queue_lock
);
3810 __blk_run_queue(cfqd
->queue
);
3811 spin_unlock_irq(q
->queue_lock
);
3815 * Timer running if the active_queue is currently idling inside its time slice
3817 static void cfq_idle_slice_timer(unsigned long data
)
3819 struct cfq_data
*cfqd
= (struct cfq_data
*) data
;
3820 struct cfq_queue
*cfqq
;
3821 unsigned long flags
;
3824 cfq_log(cfqd
, "idle timer fired");
3826 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
3828 cfqq
= cfqd
->active_queue
;
3833 * We saw a request before the queue expired, let it through
3835 if (cfq_cfqq_must_dispatch(cfqq
))
3841 if (cfq_slice_used(cfqq
))
3845 * only expire and reinvoke request handler, if there are
3846 * other queues with pending requests
3848 if (!cfqd
->busy_queues
)
3852 * not expired and it has a request pending, let it dispatch
3854 if (!RB_EMPTY_ROOT(&cfqq
->sort_list
))
3858 * Queue depth flag is reset only when the idle didn't succeed
3860 cfq_clear_cfqq_deep(cfqq
);
3863 cfq_slice_expired(cfqd
, timed_out
);
3865 cfq_schedule_dispatch(cfqd
);
3867 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
3870 static void cfq_shutdown_timer_wq(struct cfq_data
*cfqd
)
3872 del_timer_sync(&cfqd
->idle_slice_timer
);
3873 cancel_work_sync(&cfqd
->unplug_work
);
3876 static void cfq_put_async_queues(struct cfq_data
*cfqd
)
3880 for (i
= 0; i
< IOPRIO_BE_NR
; i
++) {
3881 if (cfqd
->async_cfqq
[0][i
])
3882 cfq_put_queue(cfqd
->async_cfqq
[0][i
]);
3883 if (cfqd
->async_cfqq
[1][i
])
3884 cfq_put_queue(cfqd
->async_cfqq
[1][i
]);
3887 if (cfqd
->async_idle_cfqq
)
3888 cfq_put_queue(cfqd
->async_idle_cfqq
);
3891 static void cfq_exit_queue(struct elevator_queue
*e
)
3893 struct cfq_data
*cfqd
= e
->elevator_data
;
3894 struct request_queue
*q
= cfqd
->queue
;
3897 cfq_shutdown_timer_wq(cfqd
);
3899 spin_lock_irq(q
->queue_lock
);
3901 if (cfqd
->active_queue
)
3902 __cfq_slice_expired(cfqd
, cfqd
->active_queue
, 0);
3904 while (!list_empty(&cfqd
->cic_list
)) {
3905 struct cfq_io_context
*cic
= list_entry(cfqd
->cic_list
.next
,
3906 struct cfq_io_context
,
3909 __cfq_exit_single_io_context(cfqd
, cic
);
3912 cfq_put_async_queues(cfqd
);
3913 cfq_release_cfq_groups(cfqd
);
3916 * If there are groups which we could not unlink from blkcg list,
3917 * wait for a rcu period for them to be freed.
3919 if (cfqd
->nr_blkcg_linked_grps
)
3922 spin_unlock_irq(q
->queue_lock
);
3924 cfq_shutdown_timer_wq(cfqd
);
3926 spin_lock(&cic_index_lock
);
3927 ida_remove(&cic_index_ida
, cfqd
->cic_index
);
3928 spin_unlock(&cic_index_lock
);
3931 * Wait for cfqg->blkg->key accessors to exit their grace periods.
3932 * Do this wait only if there are other unlinked groups out
3933 * there. This can happen if cgroup deletion path claimed the
3934 * responsibility of cleaning up a group before queue cleanup code
3937 * Do not call synchronize_rcu() unconditionally as there are drivers
3938 * which create/delete request queue hundreds of times during scan/boot
3939 * and synchronize_rcu() can take significant time and slow down boot.
3944 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3945 /* Free up per cpu stats for root group */
3946 free_percpu(cfqd
->root_group
.blkg
.stats_cpu
);
3951 static int cfq_alloc_cic_index(void)
3956 if (!ida_pre_get(&cic_index_ida
, GFP_KERNEL
))
3959 spin_lock(&cic_index_lock
);
3960 error
= ida_get_new(&cic_index_ida
, &index
);
3961 spin_unlock(&cic_index_lock
);
3962 if (error
&& error
!= -EAGAIN
)
3969 static void *cfq_init_queue(struct request_queue
*q
)
3971 struct cfq_data
*cfqd
;
3973 struct cfq_group
*cfqg
;
3974 struct cfq_rb_root
*st
;
3976 i
= cfq_alloc_cic_index();
3980 cfqd
= kmalloc_node(sizeof(*cfqd
), GFP_KERNEL
| __GFP_ZERO
, q
->node
);
3982 spin_lock(&cic_index_lock
);
3983 ida_remove(&cic_index_ida
, i
);
3984 spin_unlock(&cic_index_lock
);
3989 * Don't need take queue_lock in the routine, since we are
3990 * initializing the ioscheduler, and nobody is using cfqd
3992 cfqd
->cic_index
= i
;
3994 /* Init root service tree */
3995 cfqd
->grp_service_tree
= CFQ_RB_ROOT
;
3997 /* Init root group */
3998 cfqg
= &cfqd
->root_group
;
3999 for_each_cfqg_st(cfqg
, i
, j
, st
)
4001 RB_CLEAR_NODE(&cfqg
->rb_node
);
4003 /* Give preference to root group over other groups */
4004 cfqg
->weight
= 2*BLKIO_WEIGHT_DEFAULT
;
4006 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4008 * Set root group reference to 2. One reference will be dropped when
4009 * all groups on cfqd->cfqg_list are being deleted during queue exit.
4010 * Other reference will remain there as we don't want to delete this
4011 * group as it is statically allocated and gets destroyed when
4012 * throtl_data goes away.
4016 if (blkio_alloc_blkg_stats(&cfqg
->blkg
)) {
4024 cfq_blkiocg_add_blkio_group(&blkio_root_cgroup
, &cfqg
->blkg
,
4027 cfqd
->nr_blkcg_linked_grps
++;
4029 /* Add group on cfqd->cfqg_list */
4030 hlist_add_head(&cfqg
->cfqd_node
, &cfqd
->cfqg_list
);
4033 * Not strictly needed (since RB_ROOT just clears the node and we
4034 * zeroed cfqd on alloc), but better be safe in case someone decides
4035 * to add magic to the rb code
4037 for (i
= 0; i
< CFQ_PRIO_LISTS
; i
++)
4038 cfqd
->prio_trees
[i
] = RB_ROOT
;
4041 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
4042 * Grab a permanent reference to it, so that the normal code flow
4043 * will not attempt to free it.
4045 cfq_init_cfqq(cfqd
, &cfqd
->oom_cfqq
, 1, 0);
4046 cfqd
->oom_cfqq
.ref
++;
4047 cfq_link_cfqq_cfqg(&cfqd
->oom_cfqq
, &cfqd
->root_group
);
4049 INIT_LIST_HEAD(&cfqd
->cic_list
);
4053 init_timer(&cfqd
->idle_slice_timer
);
4054 cfqd
->idle_slice_timer
.function
= cfq_idle_slice_timer
;
4055 cfqd
->idle_slice_timer
.data
= (unsigned long) cfqd
;
4057 INIT_WORK(&cfqd
->unplug_work
, cfq_kick_queue
);
4059 cfqd
->cfq_quantum
= cfq_quantum
;
4060 cfqd
->cfq_fifo_expire
[0] = cfq_fifo_expire
[0];
4061 cfqd
->cfq_fifo_expire
[1] = cfq_fifo_expire
[1];
4062 cfqd
->cfq_back_max
= cfq_back_max
;
4063 cfqd
->cfq_back_penalty
= cfq_back_penalty
;
4064 cfqd
->cfq_slice
[0] = cfq_slice_async
;
4065 cfqd
->cfq_slice
[1] = cfq_slice_sync
;
4066 cfqd
->cfq_slice_async_rq
= cfq_slice_async_rq
;
4067 cfqd
->cfq_slice_idle
= cfq_slice_idle
;
4068 cfqd
->cfq_group_idle
= cfq_group_idle
;
4069 cfqd
->cfq_latency
= 1;
4072 * we optimistically start assuming sync ops weren't delayed in last
4073 * second, in order to have larger depth for async operations.
4075 cfqd
->last_delayed_sync
= jiffies
- HZ
;
4079 static void cfq_slab_kill(void)
4082 * Caller already ensured that pending RCU callbacks are completed,
4083 * so we should have no busy allocations at this point.
4086 kmem_cache_destroy(cfq_pool
);
4088 kmem_cache_destroy(cfq_ioc_pool
);
4091 static int __init
cfq_slab_setup(void)
4093 cfq_pool
= KMEM_CACHE(cfq_queue
, 0);
4097 cfq_ioc_pool
= KMEM_CACHE(cfq_io_context
, 0);
4108 * sysfs parts below -->
4111 cfq_var_show(unsigned int var
, char *page
)
4113 return sprintf(page
, "%d\n", var
);
4117 cfq_var_store(unsigned int *var
, const char *page
, size_t count
)
4119 char *p
= (char *) page
;
4121 *var
= simple_strtoul(p
, &p
, 10);
4125 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
4126 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
4128 struct cfq_data *cfqd = e->elevator_data; \
4129 unsigned int __data = __VAR; \
4131 __data = jiffies_to_msecs(__data); \
4132 return cfq_var_show(__data, (page)); \
4134 SHOW_FUNCTION(cfq_quantum_show
, cfqd
->cfq_quantum
, 0);
4135 SHOW_FUNCTION(cfq_fifo_expire_sync_show
, cfqd
->cfq_fifo_expire
[1], 1);
4136 SHOW_FUNCTION(cfq_fifo_expire_async_show
, cfqd
->cfq_fifo_expire
[0], 1);
4137 SHOW_FUNCTION(cfq_back_seek_max_show
, cfqd
->cfq_back_max
, 0);
4138 SHOW_FUNCTION(cfq_back_seek_penalty_show
, cfqd
->cfq_back_penalty
, 0);
4139 SHOW_FUNCTION(cfq_slice_idle_show
, cfqd
->cfq_slice_idle
, 1);
4140 SHOW_FUNCTION(cfq_group_idle_show
, cfqd
->cfq_group_idle
, 1);
4141 SHOW_FUNCTION(cfq_slice_sync_show
, cfqd
->cfq_slice
[1], 1);
4142 SHOW_FUNCTION(cfq_slice_async_show
, cfqd
->cfq_slice
[0], 1);
4143 SHOW_FUNCTION(cfq_slice_async_rq_show
, cfqd
->cfq_slice_async_rq
, 0);
4144 SHOW_FUNCTION(cfq_low_latency_show
, cfqd
->cfq_latency
, 0);
4145 #undef SHOW_FUNCTION
4147 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
4148 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
4150 struct cfq_data *cfqd = e->elevator_data; \
4151 unsigned int __data; \
4152 int ret = cfq_var_store(&__data, (page), count); \
4153 if (__data < (MIN)) \
4155 else if (__data > (MAX)) \
4158 *(__PTR) = msecs_to_jiffies(__data); \
4160 *(__PTR) = __data; \
4163 STORE_FUNCTION(cfq_quantum_store
, &cfqd
->cfq_quantum
, 1, UINT_MAX
, 0);
4164 STORE_FUNCTION(cfq_fifo_expire_sync_store
, &cfqd
->cfq_fifo_expire
[1], 1,
4166 STORE_FUNCTION(cfq_fifo_expire_async_store
, &cfqd
->cfq_fifo_expire
[0], 1,
4168 STORE_FUNCTION(cfq_back_seek_max_store
, &cfqd
->cfq_back_max
, 0, UINT_MAX
, 0);
4169 STORE_FUNCTION(cfq_back_seek_penalty_store
, &cfqd
->cfq_back_penalty
, 1,
4171 STORE_FUNCTION(cfq_slice_idle_store
, &cfqd
->cfq_slice_idle
, 0, UINT_MAX
, 1);
4172 STORE_FUNCTION(cfq_group_idle_store
, &cfqd
->cfq_group_idle
, 0, UINT_MAX
, 1);
4173 STORE_FUNCTION(cfq_slice_sync_store
, &cfqd
->cfq_slice
[1], 1, UINT_MAX
, 1);
4174 STORE_FUNCTION(cfq_slice_async_store
, &cfqd
->cfq_slice
[0], 1, UINT_MAX
, 1);
4175 STORE_FUNCTION(cfq_slice_async_rq_store
, &cfqd
->cfq_slice_async_rq
, 1,
4177 STORE_FUNCTION(cfq_low_latency_store
, &cfqd
->cfq_latency
, 0, 1, 0);
4178 #undef STORE_FUNCTION
4180 #define CFQ_ATTR(name) \
4181 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
4183 static struct elv_fs_entry cfq_attrs
[] = {
4185 CFQ_ATTR(fifo_expire_sync
),
4186 CFQ_ATTR(fifo_expire_async
),
4187 CFQ_ATTR(back_seek_max
),
4188 CFQ_ATTR(back_seek_penalty
),
4189 CFQ_ATTR(slice_sync
),
4190 CFQ_ATTR(slice_async
),
4191 CFQ_ATTR(slice_async_rq
),
4192 CFQ_ATTR(slice_idle
),
4193 CFQ_ATTR(group_idle
),
4194 CFQ_ATTR(low_latency
),
4198 static struct elevator_type iosched_cfq
= {
4200 .elevator_merge_fn
= cfq_merge
,
4201 .elevator_merged_fn
= cfq_merged_request
,
4202 .elevator_merge_req_fn
= cfq_merged_requests
,
4203 .elevator_allow_merge_fn
= cfq_allow_merge
,
4204 .elevator_bio_merged_fn
= cfq_bio_merged
,
4205 .elevator_dispatch_fn
= cfq_dispatch_requests
,
4206 .elevator_add_req_fn
= cfq_insert_request
,
4207 .elevator_activate_req_fn
= cfq_activate_request
,
4208 .elevator_deactivate_req_fn
= cfq_deactivate_request
,
4209 .elevator_completed_req_fn
= cfq_completed_request
,
4210 .elevator_former_req_fn
= elv_rb_former_request
,
4211 .elevator_latter_req_fn
= elv_rb_latter_request
,
4212 .elevator_set_req_fn
= cfq_set_request
,
4213 .elevator_put_req_fn
= cfq_put_request
,
4214 .elevator_may_queue_fn
= cfq_may_queue
,
4215 .elevator_init_fn
= cfq_init_queue
,
4216 .elevator_exit_fn
= cfq_exit_queue
,
4217 .trim
= cfq_free_io_context
,
4219 .elevator_attrs
= cfq_attrs
,
4220 .elevator_name
= "cfq",
4221 .elevator_owner
= THIS_MODULE
,
4224 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4225 static struct blkio_policy_type blkio_policy_cfq
= {
4227 .blkio_unlink_group_fn
= cfq_unlink_blkio_group
,
4228 .blkio_update_group_weight_fn
= cfq_update_blkio_group_weight
,
4230 .plid
= BLKIO_POLICY_PROP
,
4233 static struct blkio_policy_type blkio_policy_cfq
;
4236 static int __init
cfq_init(void)
4239 * could be 0 on HZ < 1000 setups
4241 if (!cfq_slice_async
)
4242 cfq_slice_async
= 1;
4243 if (!cfq_slice_idle
)
4246 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4247 if (!cfq_group_idle
)
4252 if (cfq_slab_setup())
4255 elv_register(&iosched_cfq
);
4256 blkio_policy_register(&blkio_policy_cfq
);
4261 static void __exit
cfq_exit(void)
4263 DECLARE_COMPLETION_ONSTACK(all_gone
);
4264 blkio_policy_unregister(&blkio_policy_cfq
);
4265 elv_unregister(&iosched_cfq
);
4266 ioc_gone
= &all_gone
;
4267 /* ioc_gone's update must be visible before reading ioc_count */
4271 * this also protects us from entering cfq_slab_kill() with
4272 * pending RCU callbacks
4274 if (elv_ioc_count_read(cfq_ioc_count
))
4275 wait_for_completion(&all_gone
);
4276 ida_destroy(&cic_index_ida
);
4280 module_init(cfq_init
);
4281 module_exit(cfq_exit
);
4283 MODULE_AUTHOR("Jens Axboe");
4284 MODULE_LICENSE("GPL");
4285 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");