Merge remote-tracking branch 'upstream/master' into kvm-devel
[linux-2.6/kvm.git] / net / core / neighbour.c
blob909ecb3c2a3344077332bfc9fb66fd7f0bfa8031
1 /*
2 * Generic address resolution entity
4 * Authors:
5 * Pedro Roque <roque@di.fc.ul.pt>
6 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
13 * Fixes:
14 * Vitaly E. Lavrov releasing NULL neighbor in neigh_add.
15 * Harald Welte Add neighbour cache statistics like rtstat
18 #include <linux/slab.h>
19 #include <linux/types.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/socket.h>
23 #include <linux/netdevice.h>
24 #include <linux/proc_fs.h>
25 #ifdef CONFIG_SYSCTL
26 #include <linux/sysctl.h>
27 #endif
28 #include <linux/times.h>
29 #include <net/net_namespace.h>
30 #include <net/neighbour.h>
31 #include <net/dst.h>
32 #include <net/sock.h>
33 #include <net/netevent.h>
34 #include <net/netlink.h>
35 #include <linux/rtnetlink.h>
36 #include <linux/random.h>
37 #include <linux/string.h>
38 #include <linux/log2.h>
40 #define NEIGH_DEBUG 1
42 #define NEIGH_PRINTK(x...) printk(x)
43 #define NEIGH_NOPRINTK(x...) do { ; } while(0)
44 #define NEIGH_PRINTK1 NEIGH_NOPRINTK
45 #define NEIGH_PRINTK2 NEIGH_NOPRINTK
47 #if NEIGH_DEBUG >= 1
48 #undef NEIGH_PRINTK1
49 #define NEIGH_PRINTK1 NEIGH_PRINTK
50 #endif
51 #if NEIGH_DEBUG >= 2
52 #undef NEIGH_PRINTK2
53 #define NEIGH_PRINTK2 NEIGH_PRINTK
54 #endif
56 #define PNEIGH_HASHMASK 0xF
58 static void neigh_timer_handler(unsigned long arg);
59 static void __neigh_notify(struct neighbour *n, int type, int flags);
60 static void neigh_update_notify(struct neighbour *neigh);
61 static int pneigh_ifdown(struct neigh_table *tbl, struct net_device *dev);
63 static struct neigh_table *neigh_tables;
64 #ifdef CONFIG_PROC_FS
65 static const struct file_operations neigh_stat_seq_fops;
66 #endif
69 Neighbour hash table buckets are protected with rwlock tbl->lock.
71 - All the scans/updates to hash buckets MUST be made under this lock.
72 - NOTHING clever should be made under this lock: no callbacks
73 to protocol backends, no attempts to send something to network.
74 It will result in deadlocks, if backend/driver wants to use neighbour
75 cache.
76 - If the entry requires some non-trivial actions, increase
77 its reference count and release table lock.
79 Neighbour entries are protected:
80 - with reference count.
81 - with rwlock neigh->lock
83 Reference count prevents destruction.
85 neigh->lock mainly serializes ll address data and its validity state.
86 However, the same lock is used to protect another entry fields:
87 - timer
88 - resolution queue
90 Again, nothing clever shall be made under neigh->lock,
91 the most complicated procedure, which we allow is dev->hard_header.
92 It is supposed, that dev->hard_header is simplistic and does
93 not make callbacks to neighbour tables.
95 The last lock is neigh_tbl_lock. It is pure SMP lock, protecting
96 list of neighbour tables. This list is used only in process context,
99 static DEFINE_RWLOCK(neigh_tbl_lock);
101 static int neigh_blackhole(struct neighbour *neigh, struct sk_buff *skb)
103 kfree_skb(skb);
104 return -ENETDOWN;
107 static void neigh_cleanup_and_release(struct neighbour *neigh)
109 if (neigh->parms->neigh_cleanup)
110 neigh->parms->neigh_cleanup(neigh);
112 __neigh_notify(neigh, RTM_DELNEIGH, 0);
113 neigh_release(neigh);
117 * It is random distribution in the interval (1/2)*base...(3/2)*base.
118 * It corresponds to default IPv6 settings and is not overridable,
119 * because it is really reasonable choice.
122 unsigned long neigh_rand_reach_time(unsigned long base)
124 return base ? (net_random() % base) + (base >> 1) : 0;
126 EXPORT_SYMBOL(neigh_rand_reach_time);
129 static int neigh_forced_gc(struct neigh_table *tbl)
131 int shrunk = 0;
132 int i;
133 struct neigh_hash_table *nht;
135 NEIGH_CACHE_STAT_INC(tbl, forced_gc_runs);
137 write_lock_bh(&tbl->lock);
138 nht = rcu_dereference_protected(tbl->nht,
139 lockdep_is_held(&tbl->lock));
140 for (i = 0; i < (1 << nht->hash_shift); i++) {
141 struct neighbour *n;
142 struct neighbour __rcu **np;
144 np = &nht->hash_buckets[i];
145 while ((n = rcu_dereference_protected(*np,
146 lockdep_is_held(&tbl->lock))) != NULL) {
147 /* Neighbour record may be discarded if:
148 * - nobody refers to it.
149 * - it is not permanent
151 write_lock(&n->lock);
152 if (atomic_read(&n->refcnt) == 1 &&
153 !(n->nud_state & NUD_PERMANENT)) {
154 rcu_assign_pointer(*np,
155 rcu_dereference_protected(n->next,
156 lockdep_is_held(&tbl->lock)));
157 n->dead = 1;
158 shrunk = 1;
159 write_unlock(&n->lock);
160 neigh_cleanup_and_release(n);
161 continue;
163 write_unlock(&n->lock);
164 np = &n->next;
168 tbl->last_flush = jiffies;
170 write_unlock_bh(&tbl->lock);
172 return shrunk;
175 static void neigh_add_timer(struct neighbour *n, unsigned long when)
177 neigh_hold(n);
178 if (unlikely(mod_timer(&n->timer, when))) {
179 printk("NEIGH: BUG, double timer add, state is %x\n",
180 n->nud_state);
181 dump_stack();
185 static int neigh_del_timer(struct neighbour *n)
187 if ((n->nud_state & NUD_IN_TIMER) &&
188 del_timer(&n->timer)) {
189 neigh_release(n);
190 return 1;
192 return 0;
195 static void pneigh_queue_purge(struct sk_buff_head *list)
197 struct sk_buff *skb;
199 while ((skb = skb_dequeue(list)) != NULL) {
200 dev_put(skb->dev);
201 kfree_skb(skb);
205 static void neigh_flush_dev(struct neigh_table *tbl, struct net_device *dev)
207 int i;
208 struct neigh_hash_table *nht;
210 nht = rcu_dereference_protected(tbl->nht,
211 lockdep_is_held(&tbl->lock));
213 for (i = 0; i < (1 << nht->hash_shift); i++) {
214 struct neighbour *n;
215 struct neighbour __rcu **np = &nht->hash_buckets[i];
217 while ((n = rcu_dereference_protected(*np,
218 lockdep_is_held(&tbl->lock))) != NULL) {
219 if (dev && n->dev != dev) {
220 np = &n->next;
221 continue;
223 rcu_assign_pointer(*np,
224 rcu_dereference_protected(n->next,
225 lockdep_is_held(&tbl->lock)));
226 write_lock(&n->lock);
227 neigh_del_timer(n);
228 n->dead = 1;
230 if (atomic_read(&n->refcnt) != 1) {
231 /* The most unpleasant situation.
232 We must destroy neighbour entry,
233 but someone still uses it.
235 The destroy will be delayed until
236 the last user releases us, but
237 we must kill timers etc. and move
238 it to safe state.
240 skb_queue_purge(&n->arp_queue);
241 n->output = neigh_blackhole;
242 if (n->nud_state & NUD_VALID)
243 n->nud_state = NUD_NOARP;
244 else
245 n->nud_state = NUD_NONE;
246 NEIGH_PRINTK2("neigh %p is stray.\n", n);
248 write_unlock(&n->lock);
249 neigh_cleanup_and_release(n);
254 void neigh_changeaddr(struct neigh_table *tbl, struct net_device *dev)
256 write_lock_bh(&tbl->lock);
257 neigh_flush_dev(tbl, dev);
258 write_unlock_bh(&tbl->lock);
260 EXPORT_SYMBOL(neigh_changeaddr);
262 int neigh_ifdown(struct neigh_table *tbl, struct net_device *dev)
264 write_lock_bh(&tbl->lock);
265 neigh_flush_dev(tbl, dev);
266 pneigh_ifdown(tbl, dev);
267 write_unlock_bh(&tbl->lock);
269 del_timer_sync(&tbl->proxy_timer);
270 pneigh_queue_purge(&tbl->proxy_queue);
271 return 0;
273 EXPORT_SYMBOL(neigh_ifdown);
275 static struct neighbour *neigh_alloc(struct neigh_table *tbl)
277 struct neighbour *n = NULL;
278 unsigned long now = jiffies;
279 int entries;
281 entries = atomic_inc_return(&tbl->entries) - 1;
282 if (entries >= tbl->gc_thresh3 ||
283 (entries >= tbl->gc_thresh2 &&
284 time_after(now, tbl->last_flush + 5 * HZ))) {
285 if (!neigh_forced_gc(tbl) &&
286 entries >= tbl->gc_thresh3)
287 goto out_entries;
290 n = kmem_cache_zalloc(tbl->kmem_cachep, GFP_ATOMIC);
291 if (!n)
292 goto out_entries;
294 skb_queue_head_init(&n->arp_queue);
295 rwlock_init(&n->lock);
296 seqlock_init(&n->ha_lock);
297 n->updated = n->used = now;
298 n->nud_state = NUD_NONE;
299 n->output = neigh_blackhole;
300 seqlock_init(&n->hh.hh_lock);
301 n->parms = neigh_parms_clone(&tbl->parms);
302 setup_timer(&n->timer, neigh_timer_handler, (unsigned long)n);
304 NEIGH_CACHE_STAT_INC(tbl, allocs);
305 n->tbl = tbl;
306 atomic_set(&n->refcnt, 1);
307 n->dead = 1;
308 out:
309 return n;
311 out_entries:
312 atomic_dec(&tbl->entries);
313 goto out;
316 static struct neigh_hash_table *neigh_hash_alloc(unsigned int shift)
318 size_t size = (1 << shift) * sizeof(struct neighbour *);
319 struct neigh_hash_table *ret;
320 struct neighbour __rcu **buckets;
322 ret = kmalloc(sizeof(*ret), GFP_ATOMIC);
323 if (!ret)
324 return NULL;
325 if (size <= PAGE_SIZE)
326 buckets = kzalloc(size, GFP_ATOMIC);
327 else
328 buckets = (struct neighbour __rcu **)
329 __get_free_pages(GFP_ATOMIC | __GFP_ZERO,
330 get_order(size));
331 if (!buckets) {
332 kfree(ret);
333 return NULL;
335 ret->hash_buckets = buckets;
336 ret->hash_shift = shift;
337 get_random_bytes(&ret->hash_rnd, sizeof(ret->hash_rnd));
338 ret->hash_rnd |= 1;
339 return ret;
342 static void neigh_hash_free_rcu(struct rcu_head *head)
344 struct neigh_hash_table *nht = container_of(head,
345 struct neigh_hash_table,
346 rcu);
347 size_t size = (1 << nht->hash_shift) * sizeof(struct neighbour *);
348 struct neighbour __rcu **buckets = nht->hash_buckets;
350 if (size <= PAGE_SIZE)
351 kfree(buckets);
352 else
353 free_pages((unsigned long)buckets, get_order(size));
354 kfree(nht);
357 static struct neigh_hash_table *neigh_hash_grow(struct neigh_table *tbl,
358 unsigned long new_shift)
360 unsigned int i, hash;
361 struct neigh_hash_table *new_nht, *old_nht;
363 NEIGH_CACHE_STAT_INC(tbl, hash_grows);
365 old_nht = rcu_dereference_protected(tbl->nht,
366 lockdep_is_held(&tbl->lock));
367 new_nht = neigh_hash_alloc(new_shift);
368 if (!new_nht)
369 return old_nht;
371 for (i = 0; i < (1 << old_nht->hash_shift); i++) {
372 struct neighbour *n, *next;
374 for (n = rcu_dereference_protected(old_nht->hash_buckets[i],
375 lockdep_is_held(&tbl->lock));
376 n != NULL;
377 n = next) {
378 hash = tbl->hash(n->primary_key, n->dev,
379 new_nht->hash_rnd);
381 hash >>= (32 - new_nht->hash_shift);
382 next = rcu_dereference_protected(n->next,
383 lockdep_is_held(&tbl->lock));
385 rcu_assign_pointer(n->next,
386 rcu_dereference_protected(
387 new_nht->hash_buckets[hash],
388 lockdep_is_held(&tbl->lock)));
389 rcu_assign_pointer(new_nht->hash_buckets[hash], n);
393 rcu_assign_pointer(tbl->nht, new_nht);
394 call_rcu(&old_nht->rcu, neigh_hash_free_rcu);
395 return new_nht;
398 struct neighbour *neigh_lookup(struct neigh_table *tbl, const void *pkey,
399 struct net_device *dev)
401 struct neighbour *n;
402 int key_len = tbl->key_len;
403 u32 hash_val;
404 struct neigh_hash_table *nht;
406 NEIGH_CACHE_STAT_INC(tbl, lookups);
408 rcu_read_lock_bh();
409 nht = rcu_dereference_bh(tbl->nht);
410 hash_val = tbl->hash(pkey, dev, nht->hash_rnd) >> (32 - nht->hash_shift);
412 for (n = rcu_dereference_bh(nht->hash_buckets[hash_val]);
413 n != NULL;
414 n = rcu_dereference_bh(n->next)) {
415 if (dev == n->dev && !memcmp(n->primary_key, pkey, key_len)) {
416 if (!atomic_inc_not_zero(&n->refcnt))
417 n = NULL;
418 NEIGH_CACHE_STAT_INC(tbl, hits);
419 break;
423 rcu_read_unlock_bh();
424 return n;
426 EXPORT_SYMBOL(neigh_lookup);
428 struct neighbour *neigh_lookup_nodev(struct neigh_table *tbl, struct net *net,
429 const void *pkey)
431 struct neighbour *n;
432 int key_len = tbl->key_len;
433 u32 hash_val;
434 struct neigh_hash_table *nht;
436 NEIGH_CACHE_STAT_INC(tbl, lookups);
438 rcu_read_lock_bh();
439 nht = rcu_dereference_bh(tbl->nht);
440 hash_val = tbl->hash(pkey, NULL, nht->hash_rnd) >> (32 - nht->hash_shift);
442 for (n = rcu_dereference_bh(nht->hash_buckets[hash_val]);
443 n != NULL;
444 n = rcu_dereference_bh(n->next)) {
445 if (!memcmp(n->primary_key, pkey, key_len) &&
446 net_eq(dev_net(n->dev), net)) {
447 if (!atomic_inc_not_zero(&n->refcnt))
448 n = NULL;
449 NEIGH_CACHE_STAT_INC(tbl, hits);
450 break;
454 rcu_read_unlock_bh();
455 return n;
457 EXPORT_SYMBOL(neigh_lookup_nodev);
459 struct neighbour *neigh_create(struct neigh_table *tbl, const void *pkey,
460 struct net_device *dev)
462 u32 hash_val;
463 int key_len = tbl->key_len;
464 int error;
465 struct neighbour *n1, *rc, *n = neigh_alloc(tbl);
466 struct neigh_hash_table *nht;
468 if (!n) {
469 rc = ERR_PTR(-ENOBUFS);
470 goto out;
473 memcpy(n->primary_key, pkey, key_len);
474 n->dev = dev;
475 dev_hold(dev);
477 /* Protocol specific setup. */
478 if (tbl->constructor && (error = tbl->constructor(n)) < 0) {
479 rc = ERR_PTR(error);
480 goto out_neigh_release;
483 /* Device specific setup. */
484 if (n->parms->neigh_setup &&
485 (error = n->parms->neigh_setup(n)) < 0) {
486 rc = ERR_PTR(error);
487 goto out_neigh_release;
490 n->confirmed = jiffies - (n->parms->base_reachable_time << 1);
492 write_lock_bh(&tbl->lock);
493 nht = rcu_dereference_protected(tbl->nht,
494 lockdep_is_held(&tbl->lock));
496 if (atomic_read(&tbl->entries) > (1 << nht->hash_shift))
497 nht = neigh_hash_grow(tbl, nht->hash_shift + 1);
499 hash_val = tbl->hash(pkey, dev, nht->hash_rnd) >> (32 - nht->hash_shift);
501 if (n->parms->dead) {
502 rc = ERR_PTR(-EINVAL);
503 goto out_tbl_unlock;
506 for (n1 = rcu_dereference_protected(nht->hash_buckets[hash_val],
507 lockdep_is_held(&tbl->lock));
508 n1 != NULL;
509 n1 = rcu_dereference_protected(n1->next,
510 lockdep_is_held(&tbl->lock))) {
511 if (dev == n1->dev && !memcmp(n1->primary_key, pkey, key_len)) {
512 neigh_hold(n1);
513 rc = n1;
514 goto out_tbl_unlock;
518 n->dead = 0;
519 neigh_hold(n);
520 rcu_assign_pointer(n->next,
521 rcu_dereference_protected(nht->hash_buckets[hash_val],
522 lockdep_is_held(&tbl->lock)));
523 rcu_assign_pointer(nht->hash_buckets[hash_val], n);
524 write_unlock_bh(&tbl->lock);
525 NEIGH_PRINTK2("neigh %p is created.\n", n);
526 rc = n;
527 out:
528 return rc;
529 out_tbl_unlock:
530 write_unlock_bh(&tbl->lock);
531 out_neigh_release:
532 neigh_release(n);
533 goto out;
535 EXPORT_SYMBOL(neigh_create);
537 static u32 pneigh_hash(const void *pkey, int key_len)
539 u32 hash_val = *(u32 *)(pkey + key_len - 4);
540 hash_val ^= (hash_val >> 16);
541 hash_val ^= hash_val >> 8;
542 hash_val ^= hash_val >> 4;
543 hash_val &= PNEIGH_HASHMASK;
544 return hash_val;
547 static struct pneigh_entry *__pneigh_lookup_1(struct pneigh_entry *n,
548 struct net *net,
549 const void *pkey,
550 int key_len,
551 struct net_device *dev)
553 while (n) {
554 if (!memcmp(n->key, pkey, key_len) &&
555 net_eq(pneigh_net(n), net) &&
556 (n->dev == dev || !n->dev))
557 return n;
558 n = n->next;
560 return NULL;
563 struct pneigh_entry *__pneigh_lookup(struct neigh_table *tbl,
564 struct net *net, const void *pkey, struct net_device *dev)
566 int key_len = tbl->key_len;
567 u32 hash_val = pneigh_hash(pkey, key_len);
569 return __pneigh_lookup_1(tbl->phash_buckets[hash_val],
570 net, pkey, key_len, dev);
572 EXPORT_SYMBOL_GPL(__pneigh_lookup);
574 struct pneigh_entry * pneigh_lookup(struct neigh_table *tbl,
575 struct net *net, const void *pkey,
576 struct net_device *dev, int creat)
578 struct pneigh_entry *n;
579 int key_len = tbl->key_len;
580 u32 hash_val = pneigh_hash(pkey, key_len);
582 read_lock_bh(&tbl->lock);
583 n = __pneigh_lookup_1(tbl->phash_buckets[hash_val],
584 net, pkey, key_len, dev);
585 read_unlock_bh(&tbl->lock);
587 if (n || !creat)
588 goto out;
590 ASSERT_RTNL();
592 n = kmalloc(sizeof(*n) + key_len, GFP_KERNEL);
593 if (!n)
594 goto out;
596 write_pnet(&n->net, hold_net(net));
597 memcpy(n->key, pkey, key_len);
598 n->dev = dev;
599 if (dev)
600 dev_hold(dev);
602 if (tbl->pconstructor && tbl->pconstructor(n)) {
603 if (dev)
604 dev_put(dev);
605 release_net(net);
606 kfree(n);
607 n = NULL;
608 goto out;
611 write_lock_bh(&tbl->lock);
612 n->next = tbl->phash_buckets[hash_val];
613 tbl->phash_buckets[hash_val] = n;
614 write_unlock_bh(&tbl->lock);
615 out:
616 return n;
618 EXPORT_SYMBOL(pneigh_lookup);
621 int pneigh_delete(struct neigh_table *tbl, struct net *net, const void *pkey,
622 struct net_device *dev)
624 struct pneigh_entry *n, **np;
625 int key_len = tbl->key_len;
626 u32 hash_val = pneigh_hash(pkey, key_len);
628 write_lock_bh(&tbl->lock);
629 for (np = &tbl->phash_buckets[hash_val]; (n = *np) != NULL;
630 np = &n->next) {
631 if (!memcmp(n->key, pkey, key_len) && n->dev == dev &&
632 net_eq(pneigh_net(n), net)) {
633 *np = n->next;
634 write_unlock_bh(&tbl->lock);
635 if (tbl->pdestructor)
636 tbl->pdestructor(n);
637 if (n->dev)
638 dev_put(n->dev);
639 release_net(pneigh_net(n));
640 kfree(n);
641 return 0;
644 write_unlock_bh(&tbl->lock);
645 return -ENOENT;
648 static int pneigh_ifdown(struct neigh_table *tbl, struct net_device *dev)
650 struct pneigh_entry *n, **np;
651 u32 h;
653 for (h = 0; h <= PNEIGH_HASHMASK; h++) {
654 np = &tbl->phash_buckets[h];
655 while ((n = *np) != NULL) {
656 if (!dev || n->dev == dev) {
657 *np = n->next;
658 if (tbl->pdestructor)
659 tbl->pdestructor(n);
660 if (n->dev)
661 dev_put(n->dev);
662 release_net(pneigh_net(n));
663 kfree(n);
664 continue;
666 np = &n->next;
669 return -ENOENT;
672 static void neigh_parms_destroy(struct neigh_parms *parms);
674 static inline void neigh_parms_put(struct neigh_parms *parms)
676 if (atomic_dec_and_test(&parms->refcnt))
677 neigh_parms_destroy(parms);
680 static void neigh_destroy_rcu(struct rcu_head *head)
682 struct neighbour *neigh = container_of(head, struct neighbour, rcu);
684 kmem_cache_free(neigh->tbl->kmem_cachep, neigh);
687 * neighbour must already be out of the table;
690 void neigh_destroy(struct neighbour *neigh)
692 NEIGH_CACHE_STAT_INC(neigh->tbl, destroys);
694 if (!neigh->dead) {
695 printk(KERN_WARNING
696 "Destroying alive neighbour %p\n", neigh);
697 dump_stack();
698 return;
701 if (neigh_del_timer(neigh))
702 printk(KERN_WARNING "Impossible event.\n");
704 skb_queue_purge(&neigh->arp_queue);
706 dev_put(neigh->dev);
707 neigh_parms_put(neigh->parms);
709 NEIGH_PRINTK2("neigh %p is destroyed.\n", neigh);
711 atomic_dec(&neigh->tbl->entries);
712 call_rcu(&neigh->rcu, neigh_destroy_rcu);
714 EXPORT_SYMBOL(neigh_destroy);
716 /* Neighbour state is suspicious;
717 disable fast path.
719 Called with write_locked neigh.
721 static void neigh_suspect(struct neighbour *neigh)
723 NEIGH_PRINTK2("neigh %p is suspected.\n", neigh);
725 neigh->output = neigh->ops->output;
728 /* Neighbour state is OK;
729 enable fast path.
731 Called with write_locked neigh.
733 static void neigh_connect(struct neighbour *neigh)
735 NEIGH_PRINTK2("neigh %p is connected.\n", neigh);
737 neigh->output = neigh->ops->connected_output;
740 static void neigh_periodic_work(struct work_struct *work)
742 struct neigh_table *tbl = container_of(work, struct neigh_table, gc_work.work);
743 struct neighbour *n;
744 struct neighbour __rcu **np;
745 unsigned int i;
746 struct neigh_hash_table *nht;
748 NEIGH_CACHE_STAT_INC(tbl, periodic_gc_runs);
750 write_lock_bh(&tbl->lock);
751 nht = rcu_dereference_protected(tbl->nht,
752 lockdep_is_held(&tbl->lock));
755 * periodically recompute ReachableTime from random function
758 if (time_after(jiffies, tbl->last_rand + 300 * HZ)) {
759 struct neigh_parms *p;
760 tbl->last_rand = jiffies;
761 for (p = &tbl->parms; p; p = p->next)
762 p->reachable_time =
763 neigh_rand_reach_time(p->base_reachable_time);
766 for (i = 0 ; i < (1 << nht->hash_shift); i++) {
767 np = &nht->hash_buckets[i];
769 while ((n = rcu_dereference_protected(*np,
770 lockdep_is_held(&tbl->lock))) != NULL) {
771 unsigned int state;
773 write_lock(&n->lock);
775 state = n->nud_state;
776 if (state & (NUD_PERMANENT | NUD_IN_TIMER)) {
777 write_unlock(&n->lock);
778 goto next_elt;
781 if (time_before(n->used, n->confirmed))
782 n->used = n->confirmed;
784 if (atomic_read(&n->refcnt) == 1 &&
785 (state == NUD_FAILED ||
786 time_after(jiffies, n->used + n->parms->gc_staletime))) {
787 *np = n->next;
788 n->dead = 1;
789 write_unlock(&n->lock);
790 neigh_cleanup_and_release(n);
791 continue;
793 write_unlock(&n->lock);
795 next_elt:
796 np = &n->next;
799 * It's fine to release lock here, even if hash table
800 * grows while we are preempted.
802 write_unlock_bh(&tbl->lock);
803 cond_resched();
804 write_lock_bh(&tbl->lock);
806 /* Cycle through all hash buckets every base_reachable_time/2 ticks.
807 * ARP entry timeouts range from 1/2 base_reachable_time to 3/2
808 * base_reachable_time.
810 schedule_delayed_work(&tbl->gc_work,
811 tbl->parms.base_reachable_time >> 1);
812 write_unlock_bh(&tbl->lock);
815 static __inline__ int neigh_max_probes(struct neighbour *n)
817 struct neigh_parms *p = n->parms;
818 return (n->nud_state & NUD_PROBE) ?
819 p->ucast_probes :
820 p->ucast_probes + p->app_probes + p->mcast_probes;
823 static void neigh_invalidate(struct neighbour *neigh)
824 __releases(neigh->lock)
825 __acquires(neigh->lock)
827 struct sk_buff *skb;
829 NEIGH_CACHE_STAT_INC(neigh->tbl, res_failed);
830 NEIGH_PRINTK2("neigh %p is failed.\n", neigh);
831 neigh->updated = jiffies;
833 /* It is very thin place. report_unreachable is very complicated
834 routine. Particularly, it can hit the same neighbour entry!
836 So that, we try to be accurate and avoid dead loop. --ANK
838 while (neigh->nud_state == NUD_FAILED &&
839 (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) {
840 write_unlock(&neigh->lock);
841 neigh->ops->error_report(neigh, skb);
842 write_lock(&neigh->lock);
844 skb_queue_purge(&neigh->arp_queue);
847 static void neigh_probe(struct neighbour *neigh)
848 __releases(neigh->lock)
850 struct sk_buff *skb = skb_peek(&neigh->arp_queue);
851 /* keep skb alive even if arp_queue overflows */
852 if (skb)
853 skb = skb_copy(skb, GFP_ATOMIC);
854 write_unlock(&neigh->lock);
855 neigh->ops->solicit(neigh, skb);
856 atomic_inc(&neigh->probes);
857 kfree_skb(skb);
860 /* Called when a timer expires for a neighbour entry. */
862 static void neigh_timer_handler(unsigned long arg)
864 unsigned long now, next;
865 struct neighbour *neigh = (struct neighbour *)arg;
866 unsigned state;
867 int notify = 0;
869 write_lock(&neigh->lock);
871 state = neigh->nud_state;
872 now = jiffies;
873 next = now + HZ;
875 if (!(state & NUD_IN_TIMER)) {
876 #ifndef CONFIG_SMP
877 printk(KERN_WARNING "neigh: timer & !nud_in_timer\n");
878 #endif
879 goto out;
882 if (state & NUD_REACHABLE) {
883 if (time_before_eq(now,
884 neigh->confirmed + neigh->parms->reachable_time)) {
885 NEIGH_PRINTK2("neigh %p is still alive.\n", neigh);
886 next = neigh->confirmed + neigh->parms->reachable_time;
887 } else if (time_before_eq(now,
888 neigh->used + neigh->parms->delay_probe_time)) {
889 NEIGH_PRINTK2("neigh %p is delayed.\n", neigh);
890 neigh->nud_state = NUD_DELAY;
891 neigh->updated = jiffies;
892 neigh_suspect(neigh);
893 next = now + neigh->parms->delay_probe_time;
894 } else {
895 NEIGH_PRINTK2("neigh %p is suspected.\n", neigh);
896 neigh->nud_state = NUD_STALE;
897 neigh->updated = jiffies;
898 neigh_suspect(neigh);
899 notify = 1;
901 } else if (state & NUD_DELAY) {
902 if (time_before_eq(now,
903 neigh->confirmed + neigh->parms->delay_probe_time)) {
904 NEIGH_PRINTK2("neigh %p is now reachable.\n", neigh);
905 neigh->nud_state = NUD_REACHABLE;
906 neigh->updated = jiffies;
907 neigh_connect(neigh);
908 notify = 1;
909 next = neigh->confirmed + neigh->parms->reachable_time;
910 } else {
911 NEIGH_PRINTK2("neigh %p is probed.\n", neigh);
912 neigh->nud_state = NUD_PROBE;
913 neigh->updated = jiffies;
914 atomic_set(&neigh->probes, 0);
915 next = now + neigh->parms->retrans_time;
917 } else {
918 /* NUD_PROBE|NUD_INCOMPLETE */
919 next = now + neigh->parms->retrans_time;
922 if ((neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) &&
923 atomic_read(&neigh->probes) >= neigh_max_probes(neigh)) {
924 neigh->nud_state = NUD_FAILED;
925 notify = 1;
926 neigh_invalidate(neigh);
929 if (neigh->nud_state & NUD_IN_TIMER) {
930 if (time_before(next, jiffies + HZ/2))
931 next = jiffies + HZ/2;
932 if (!mod_timer(&neigh->timer, next))
933 neigh_hold(neigh);
935 if (neigh->nud_state & (NUD_INCOMPLETE | NUD_PROBE)) {
936 neigh_probe(neigh);
937 } else {
938 out:
939 write_unlock(&neigh->lock);
942 if (notify)
943 neigh_update_notify(neigh);
945 neigh_release(neigh);
948 int __neigh_event_send(struct neighbour *neigh, struct sk_buff *skb)
950 int rc;
951 bool immediate_probe = false;
953 write_lock_bh(&neigh->lock);
955 rc = 0;
956 if (neigh->nud_state & (NUD_CONNECTED | NUD_DELAY | NUD_PROBE))
957 goto out_unlock_bh;
959 if (!(neigh->nud_state & (NUD_STALE | NUD_INCOMPLETE))) {
960 if (neigh->parms->mcast_probes + neigh->parms->app_probes) {
961 unsigned long next, now = jiffies;
963 atomic_set(&neigh->probes, neigh->parms->ucast_probes);
964 neigh->nud_state = NUD_INCOMPLETE;
965 neigh->updated = now;
966 next = now + max(neigh->parms->retrans_time, HZ/2);
967 neigh_add_timer(neigh, next);
968 immediate_probe = true;
969 } else {
970 neigh->nud_state = NUD_FAILED;
971 neigh->updated = jiffies;
972 write_unlock_bh(&neigh->lock);
974 kfree_skb(skb);
975 return 1;
977 } else if (neigh->nud_state & NUD_STALE) {
978 NEIGH_PRINTK2("neigh %p is delayed.\n", neigh);
979 neigh->nud_state = NUD_DELAY;
980 neigh->updated = jiffies;
981 neigh_add_timer(neigh,
982 jiffies + neigh->parms->delay_probe_time);
985 if (neigh->nud_state == NUD_INCOMPLETE) {
986 if (skb) {
987 if (skb_queue_len(&neigh->arp_queue) >=
988 neigh->parms->queue_len) {
989 struct sk_buff *buff;
990 buff = __skb_dequeue(&neigh->arp_queue);
991 kfree_skb(buff);
992 NEIGH_CACHE_STAT_INC(neigh->tbl, unres_discards);
994 skb_dst_force(skb);
995 __skb_queue_tail(&neigh->arp_queue, skb);
997 rc = 1;
999 out_unlock_bh:
1000 if (immediate_probe)
1001 neigh_probe(neigh);
1002 else
1003 write_unlock(&neigh->lock);
1004 local_bh_enable();
1005 return rc;
1007 EXPORT_SYMBOL(__neigh_event_send);
1009 static void neigh_update_hhs(struct neighbour *neigh)
1011 struct hh_cache *hh;
1012 void (*update)(struct hh_cache*, const struct net_device*, const unsigned char *)
1013 = NULL;
1015 if (neigh->dev->header_ops)
1016 update = neigh->dev->header_ops->cache_update;
1018 if (update) {
1019 hh = &neigh->hh;
1020 if (hh->hh_len) {
1021 write_seqlock_bh(&hh->hh_lock);
1022 update(hh, neigh->dev, neigh->ha);
1023 write_sequnlock_bh(&hh->hh_lock);
1030 /* Generic update routine.
1031 -- lladdr is new lladdr or NULL, if it is not supplied.
1032 -- new is new state.
1033 -- flags
1034 NEIGH_UPDATE_F_OVERRIDE allows to override existing lladdr,
1035 if it is different.
1036 NEIGH_UPDATE_F_WEAK_OVERRIDE will suspect existing "connected"
1037 lladdr instead of overriding it
1038 if it is different.
1039 It also allows to retain current state
1040 if lladdr is unchanged.
1041 NEIGH_UPDATE_F_ADMIN means that the change is administrative.
1043 NEIGH_UPDATE_F_OVERRIDE_ISROUTER allows to override existing
1044 NTF_ROUTER flag.
1045 NEIGH_UPDATE_F_ISROUTER indicates if the neighbour is known as
1046 a router.
1048 Caller MUST hold reference count on the entry.
1051 int neigh_update(struct neighbour *neigh, const u8 *lladdr, u8 new,
1052 u32 flags)
1054 u8 old;
1055 int err;
1056 int notify = 0;
1057 struct net_device *dev;
1058 int update_isrouter = 0;
1060 write_lock_bh(&neigh->lock);
1062 dev = neigh->dev;
1063 old = neigh->nud_state;
1064 err = -EPERM;
1066 if (!(flags & NEIGH_UPDATE_F_ADMIN) &&
1067 (old & (NUD_NOARP | NUD_PERMANENT)))
1068 goto out;
1070 if (!(new & NUD_VALID)) {
1071 neigh_del_timer(neigh);
1072 if (old & NUD_CONNECTED)
1073 neigh_suspect(neigh);
1074 neigh->nud_state = new;
1075 err = 0;
1076 notify = old & NUD_VALID;
1077 if ((old & (NUD_INCOMPLETE | NUD_PROBE)) &&
1078 (new & NUD_FAILED)) {
1079 neigh_invalidate(neigh);
1080 notify = 1;
1082 goto out;
1085 /* Compare new lladdr with cached one */
1086 if (!dev->addr_len) {
1087 /* First case: device needs no address. */
1088 lladdr = neigh->ha;
1089 } else if (lladdr) {
1090 /* The second case: if something is already cached
1091 and a new address is proposed:
1092 - compare new & old
1093 - if they are different, check override flag
1095 if ((old & NUD_VALID) &&
1096 !memcmp(lladdr, neigh->ha, dev->addr_len))
1097 lladdr = neigh->ha;
1098 } else {
1099 /* No address is supplied; if we know something,
1100 use it, otherwise discard the request.
1102 err = -EINVAL;
1103 if (!(old & NUD_VALID))
1104 goto out;
1105 lladdr = neigh->ha;
1108 if (new & NUD_CONNECTED)
1109 neigh->confirmed = jiffies;
1110 neigh->updated = jiffies;
1112 /* If entry was valid and address is not changed,
1113 do not change entry state, if new one is STALE.
1115 err = 0;
1116 update_isrouter = flags & NEIGH_UPDATE_F_OVERRIDE_ISROUTER;
1117 if (old & NUD_VALID) {
1118 if (lladdr != neigh->ha && !(flags & NEIGH_UPDATE_F_OVERRIDE)) {
1119 update_isrouter = 0;
1120 if ((flags & NEIGH_UPDATE_F_WEAK_OVERRIDE) &&
1121 (old & NUD_CONNECTED)) {
1122 lladdr = neigh->ha;
1123 new = NUD_STALE;
1124 } else
1125 goto out;
1126 } else {
1127 if (lladdr == neigh->ha && new == NUD_STALE &&
1128 ((flags & NEIGH_UPDATE_F_WEAK_OVERRIDE) ||
1129 (old & NUD_CONNECTED))
1131 new = old;
1135 if (new != old) {
1136 neigh_del_timer(neigh);
1137 if (new & NUD_IN_TIMER)
1138 neigh_add_timer(neigh, (jiffies +
1139 ((new & NUD_REACHABLE) ?
1140 neigh->parms->reachable_time :
1141 0)));
1142 neigh->nud_state = new;
1145 if (lladdr != neigh->ha) {
1146 write_seqlock(&neigh->ha_lock);
1147 memcpy(&neigh->ha, lladdr, dev->addr_len);
1148 write_sequnlock(&neigh->ha_lock);
1149 neigh_update_hhs(neigh);
1150 if (!(new & NUD_CONNECTED))
1151 neigh->confirmed = jiffies -
1152 (neigh->parms->base_reachable_time << 1);
1153 notify = 1;
1155 if (new == old)
1156 goto out;
1157 if (new & NUD_CONNECTED)
1158 neigh_connect(neigh);
1159 else
1160 neigh_suspect(neigh);
1161 if (!(old & NUD_VALID)) {
1162 struct sk_buff *skb;
1164 /* Again: avoid dead loop if something went wrong */
1166 while (neigh->nud_state & NUD_VALID &&
1167 (skb = __skb_dequeue(&neigh->arp_queue)) != NULL) {
1168 struct dst_entry *dst = skb_dst(skb);
1169 struct neighbour *n2, *n1 = neigh;
1170 write_unlock_bh(&neigh->lock);
1172 rcu_read_lock();
1173 /* On shaper/eql skb->dst->neighbour != neigh :( */
1174 if (dst && (n2 = dst_get_neighbour(dst)) != NULL)
1175 n1 = n2;
1176 n1->output(n1, skb);
1177 rcu_read_unlock();
1179 write_lock_bh(&neigh->lock);
1181 skb_queue_purge(&neigh->arp_queue);
1183 out:
1184 if (update_isrouter) {
1185 neigh->flags = (flags & NEIGH_UPDATE_F_ISROUTER) ?
1186 (neigh->flags | NTF_ROUTER) :
1187 (neigh->flags & ~NTF_ROUTER);
1189 write_unlock_bh(&neigh->lock);
1191 if (notify)
1192 neigh_update_notify(neigh);
1194 return err;
1196 EXPORT_SYMBOL(neigh_update);
1198 struct neighbour *neigh_event_ns(struct neigh_table *tbl,
1199 u8 *lladdr, void *saddr,
1200 struct net_device *dev)
1202 struct neighbour *neigh = __neigh_lookup(tbl, saddr, dev,
1203 lladdr || !dev->addr_len);
1204 if (neigh)
1205 neigh_update(neigh, lladdr, NUD_STALE,
1206 NEIGH_UPDATE_F_OVERRIDE);
1207 return neigh;
1209 EXPORT_SYMBOL(neigh_event_ns);
1211 /* called with read_lock_bh(&n->lock); */
1212 static void neigh_hh_init(struct neighbour *n, struct dst_entry *dst)
1214 struct net_device *dev = dst->dev;
1215 __be16 prot = dst->ops->protocol;
1216 struct hh_cache *hh = &n->hh;
1218 write_lock_bh(&n->lock);
1220 /* Only one thread can come in here and initialize the
1221 * hh_cache entry.
1223 if (!hh->hh_len)
1224 dev->header_ops->cache(n, hh, prot);
1226 write_unlock_bh(&n->lock);
1229 /* This function can be used in contexts, where only old dev_queue_xmit
1230 * worked, f.e. if you want to override normal output path (eql, shaper),
1231 * but resolution is not made yet.
1234 int neigh_compat_output(struct neighbour *neigh, struct sk_buff *skb)
1236 struct net_device *dev = skb->dev;
1238 __skb_pull(skb, skb_network_offset(skb));
1240 if (dev_hard_header(skb, dev, ntohs(skb->protocol), NULL, NULL,
1241 skb->len) < 0 &&
1242 dev->header_ops->rebuild(skb))
1243 return 0;
1245 return dev_queue_xmit(skb);
1247 EXPORT_SYMBOL(neigh_compat_output);
1249 /* Slow and careful. */
1251 int neigh_resolve_output(struct neighbour *neigh, struct sk_buff *skb)
1253 struct dst_entry *dst = skb_dst(skb);
1254 int rc = 0;
1256 if (!dst)
1257 goto discard;
1259 __skb_pull(skb, skb_network_offset(skb));
1261 if (!neigh_event_send(neigh, skb)) {
1262 int err;
1263 struct net_device *dev = neigh->dev;
1264 unsigned int seq;
1266 if (dev->header_ops->cache && !neigh->hh.hh_len)
1267 neigh_hh_init(neigh, dst);
1269 do {
1270 seq = read_seqbegin(&neigh->ha_lock);
1271 err = dev_hard_header(skb, dev, ntohs(skb->protocol),
1272 neigh->ha, NULL, skb->len);
1273 } while (read_seqretry(&neigh->ha_lock, seq));
1275 if (err >= 0)
1276 rc = dev_queue_xmit(skb);
1277 else
1278 goto out_kfree_skb;
1280 out:
1281 return rc;
1282 discard:
1283 NEIGH_PRINTK1("neigh_resolve_output: dst=%p neigh=%p\n",
1284 dst, neigh);
1285 out_kfree_skb:
1286 rc = -EINVAL;
1287 kfree_skb(skb);
1288 goto out;
1290 EXPORT_SYMBOL(neigh_resolve_output);
1292 /* As fast as possible without hh cache */
1294 int neigh_connected_output(struct neighbour *neigh, struct sk_buff *skb)
1296 struct net_device *dev = neigh->dev;
1297 unsigned int seq;
1298 int err;
1300 __skb_pull(skb, skb_network_offset(skb));
1302 do {
1303 seq = read_seqbegin(&neigh->ha_lock);
1304 err = dev_hard_header(skb, dev, ntohs(skb->protocol),
1305 neigh->ha, NULL, skb->len);
1306 } while (read_seqretry(&neigh->ha_lock, seq));
1308 if (err >= 0)
1309 err = dev_queue_xmit(skb);
1310 else {
1311 err = -EINVAL;
1312 kfree_skb(skb);
1314 return err;
1316 EXPORT_SYMBOL(neigh_connected_output);
1318 int neigh_direct_output(struct neighbour *neigh, struct sk_buff *skb)
1320 return dev_queue_xmit(skb);
1322 EXPORT_SYMBOL(neigh_direct_output);
1324 static void neigh_proxy_process(unsigned long arg)
1326 struct neigh_table *tbl = (struct neigh_table *)arg;
1327 long sched_next = 0;
1328 unsigned long now = jiffies;
1329 struct sk_buff *skb, *n;
1331 spin_lock(&tbl->proxy_queue.lock);
1333 skb_queue_walk_safe(&tbl->proxy_queue, skb, n) {
1334 long tdif = NEIGH_CB(skb)->sched_next - now;
1336 if (tdif <= 0) {
1337 struct net_device *dev = skb->dev;
1339 __skb_unlink(skb, &tbl->proxy_queue);
1340 if (tbl->proxy_redo && netif_running(dev)) {
1341 rcu_read_lock();
1342 tbl->proxy_redo(skb);
1343 rcu_read_unlock();
1344 } else {
1345 kfree_skb(skb);
1348 dev_put(dev);
1349 } else if (!sched_next || tdif < sched_next)
1350 sched_next = tdif;
1352 del_timer(&tbl->proxy_timer);
1353 if (sched_next)
1354 mod_timer(&tbl->proxy_timer, jiffies + sched_next);
1355 spin_unlock(&tbl->proxy_queue.lock);
1358 void pneigh_enqueue(struct neigh_table *tbl, struct neigh_parms *p,
1359 struct sk_buff *skb)
1361 unsigned long now = jiffies;
1362 unsigned long sched_next = now + (net_random() % p->proxy_delay);
1364 if (tbl->proxy_queue.qlen > p->proxy_qlen) {
1365 kfree_skb(skb);
1366 return;
1369 NEIGH_CB(skb)->sched_next = sched_next;
1370 NEIGH_CB(skb)->flags |= LOCALLY_ENQUEUED;
1372 spin_lock(&tbl->proxy_queue.lock);
1373 if (del_timer(&tbl->proxy_timer)) {
1374 if (time_before(tbl->proxy_timer.expires, sched_next))
1375 sched_next = tbl->proxy_timer.expires;
1377 skb_dst_drop(skb);
1378 dev_hold(skb->dev);
1379 __skb_queue_tail(&tbl->proxy_queue, skb);
1380 mod_timer(&tbl->proxy_timer, sched_next);
1381 spin_unlock(&tbl->proxy_queue.lock);
1383 EXPORT_SYMBOL(pneigh_enqueue);
1385 static inline struct neigh_parms *lookup_neigh_parms(struct neigh_table *tbl,
1386 struct net *net, int ifindex)
1388 struct neigh_parms *p;
1390 for (p = &tbl->parms; p; p = p->next) {
1391 if ((p->dev && p->dev->ifindex == ifindex && net_eq(neigh_parms_net(p), net)) ||
1392 (!p->dev && !ifindex))
1393 return p;
1396 return NULL;
1399 struct neigh_parms *neigh_parms_alloc(struct net_device *dev,
1400 struct neigh_table *tbl)
1402 struct neigh_parms *p, *ref;
1403 struct net *net = dev_net(dev);
1404 const struct net_device_ops *ops = dev->netdev_ops;
1406 ref = lookup_neigh_parms(tbl, net, 0);
1407 if (!ref)
1408 return NULL;
1410 p = kmemdup(ref, sizeof(*p), GFP_KERNEL);
1411 if (p) {
1412 p->tbl = tbl;
1413 atomic_set(&p->refcnt, 1);
1414 p->reachable_time =
1415 neigh_rand_reach_time(p->base_reachable_time);
1417 if (ops->ndo_neigh_setup && ops->ndo_neigh_setup(dev, p)) {
1418 kfree(p);
1419 return NULL;
1422 dev_hold(dev);
1423 p->dev = dev;
1424 write_pnet(&p->net, hold_net(net));
1425 p->sysctl_table = NULL;
1426 write_lock_bh(&tbl->lock);
1427 p->next = tbl->parms.next;
1428 tbl->parms.next = p;
1429 write_unlock_bh(&tbl->lock);
1431 return p;
1433 EXPORT_SYMBOL(neigh_parms_alloc);
1435 static void neigh_rcu_free_parms(struct rcu_head *head)
1437 struct neigh_parms *parms =
1438 container_of(head, struct neigh_parms, rcu_head);
1440 neigh_parms_put(parms);
1443 void neigh_parms_release(struct neigh_table *tbl, struct neigh_parms *parms)
1445 struct neigh_parms **p;
1447 if (!parms || parms == &tbl->parms)
1448 return;
1449 write_lock_bh(&tbl->lock);
1450 for (p = &tbl->parms.next; *p; p = &(*p)->next) {
1451 if (*p == parms) {
1452 *p = parms->next;
1453 parms->dead = 1;
1454 write_unlock_bh(&tbl->lock);
1455 if (parms->dev)
1456 dev_put(parms->dev);
1457 call_rcu(&parms->rcu_head, neigh_rcu_free_parms);
1458 return;
1461 write_unlock_bh(&tbl->lock);
1462 NEIGH_PRINTK1("neigh_parms_release: not found\n");
1464 EXPORT_SYMBOL(neigh_parms_release);
1466 static void neigh_parms_destroy(struct neigh_parms *parms)
1468 release_net(neigh_parms_net(parms));
1469 kfree(parms);
1472 static struct lock_class_key neigh_table_proxy_queue_class;
1474 void neigh_table_init_no_netlink(struct neigh_table *tbl)
1476 unsigned long now = jiffies;
1477 unsigned long phsize;
1479 write_pnet(&tbl->parms.net, &init_net);
1480 atomic_set(&tbl->parms.refcnt, 1);
1481 tbl->parms.reachable_time =
1482 neigh_rand_reach_time(tbl->parms.base_reachable_time);
1484 if (!tbl->kmem_cachep)
1485 tbl->kmem_cachep =
1486 kmem_cache_create(tbl->id, tbl->entry_size, 0,
1487 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
1488 NULL);
1489 tbl->stats = alloc_percpu(struct neigh_statistics);
1490 if (!tbl->stats)
1491 panic("cannot create neighbour cache statistics");
1493 #ifdef CONFIG_PROC_FS
1494 if (!proc_create_data(tbl->id, 0, init_net.proc_net_stat,
1495 &neigh_stat_seq_fops, tbl))
1496 panic("cannot create neighbour proc dir entry");
1497 #endif
1499 RCU_INIT_POINTER(tbl->nht, neigh_hash_alloc(3));
1501 phsize = (PNEIGH_HASHMASK + 1) * sizeof(struct pneigh_entry *);
1502 tbl->phash_buckets = kzalloc(phsize, GFP_KERNEL);
1504 if (!tbl->nht || !tbl->phash_buckets)
1505 panic("cannot allocate neighbour cache hashes");
1507 rwlock_init(&tbl->lock);
1508 INIT_DELAYED_WORK_DEFERRABLE(&tbl->gc_work, neigh_periodic_work);
1509 schedule_delayed_work(&tbl->gc_work, tbl->parms.reachable_time);
1510 setup_timer(&tbl->proxy_timer, neigh_proxy_process, (unsigned long)tbl);
1511 skb_queue_head_init_class(&tbl->proxy_queue,
1512 &neigh_table_proxy_queue_class);
1514 tbl->last_flush = now;
1515 tbl->last_rand = now + tbl->parms.reachable_time * 20;
1517 EXPORT_SYMBOL(neigh_table_init_no_netlink);
1519 void neigh_table_init(struct neigh_table *tbl)
1521 struct neigh_table *tmp;
1523 neigh_table_init_no_netlink(tbl);
1524 write_lock(&neigh_tbl_lock);
1525 for (tmp = neigh_tables; tmp; tmp = tmp->next) {
1526 if (tmp->family == tbl->family)
1527 break;
1529 tbl->next = neigh_tables;
1530 neigh_tables = tbl;
1531 write_unlock(&neigh_tbl_lock);
1533 if (unlikely(tmp)) {
1534 printk(KERN_ERR "NEIGH: Registering multiple tables for "
1535 "family %d\n", tbl->family);
1536 dump_stack();
1539 EXPORT_SYMBOL(neigh_table_init);
1541 int neigh_table_clear(struct neigh_table *tbl)
1543 struct neigh_table **tp;
1545 /* It is not clean... Fix it to unload IPv6 module safely */
1546 cancel_delayed_work_sync(&tbl->gc_work);
1547 del_timer_sync(&tbl->proxy_timer);
1548 pneigh_queue_purge(&tbl->proxy_queue);
1549 neigh_ifdown(tbl, NULL);
1550 if (atomic_read(&tbl->entries))
1551 printk(KERN_CRIT "neighbour leakage\n");
1552 write_lock(&neigh_tbl_lock);
1553 for (tp = &neigh_tables; *tp; tp = &(*tp)->next) {
1554 if (*tp == tbl) {
1555 *tp = tbl->next;
1556 break;
1559 write_unlock(&neigh_tbl_lock);
1561 call_rcu(&rcu_dereference_protected(tbl->nht, 1)->rcu,
1562 neigh_hash_free_rcu);
1563 tbl->nht = NULL;
1565 kfree(tbl->phash_buckets);
1566 tbl->phash_buckets = NULL;
1568 remove_proc_entry(tbl->id, init_net.proc_net_stat);
1570 free_percpu(tbl->stats);
1571 tbl->stats = NULL;
1573 kmem_cache_destroy(tbl->kmem_cachep);
1574 tbl->kmem_cachep = NULL;
1576 return 0;
1578 EXPORT_SYMBOL(neigh_table_clear);
1580 static int neigh_delete(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
1582 struct net *net = sock_net(skb->sk);
1583 struct ndmsg *ndm;
1584 struct nlattr *dst_attr;
1585 struct neigh_table *tbl;
1586 struct net_device *dev = NULL;
1587 int err = -EINVAL;
1589 ASSERT_RTNL();
1590 if (nlmsg_len(nlh) < sizeof(*ndm))
1591 goto out;
1593 dst_attr = nlmsg_find_attr(nlh, sizeof(*ndm), NDA_DST);
1594 if (dst_attr == NULL)
1595 goto out;
1597 ndm = nlmsg_data(nlh);
1598 if (ndm->ndm_ifindex) {
1599 dev = __dev_get_by_index(net, ndm->ndm_ifindex);
1600 if (dev == NULL) {
1601 err = -ENODEV;
1602 goto out;
1606 read_lock(&neigh_tbl_lock);
1607 for (tbl = neigh_tables; tbl; tbl = tbl->next) {
1608 struct neighbour *neigh;
1610 if (tbl->family != ndm->ndm_family)
1611 continue;
1612 read_unlock(&neigh_tbl_lock);
1614 if (nla_len(dst_attr) < tbl->key_len)
1615 goto out;
1617 if (ndm->ndm_flags & NTF_PROXY) {
1618 err = pneigh_delete(tbl, net, nla_data(dst_attr), dev);
1619 goto out;
1622 if (dev == NULL)
1623 goto out;
1625 neigh = neigh_lookup(tbl, nla_data(dst_attr), dev);
1626 if (neigh == NULL) {
1627 err = -ENOENT;
1628 goto out;
1631 err = neigh_update(neigh, NULL, NUD_FAILED,
1632 NEIGH_UPDATE_F_OVERRIDE |
1633 NEIGH_UPDATE_F_ADMIN);
1634 neigh_release(neigh);
1635 goto out;
1637 read_unlock(&neigh_tbl_lock);
1638 err = -EAFNOSUPPORT;
1640 out:
1641 return err;
1644 static int neigh_add(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
1646 struct net *net = sock_net(skb->sk);
1647 struct ndmsg *ndm;
1648 struct nlattr *tb[NDA_MAX+1];
1649 struct neigh_table *tbl;
1650 struct net_device *dev = NULL;
1651 int err;
1653 ASSERT_RTNL();
1654 err = nlmsg_parse(nlh, sizeof(*ndm), tb, NDA_MAX, NULL);
1655 if (err < 0)
1656 goto out;
1658 err = -EINVAL;
1659 if (tb[NDA_DST] == NULL)
1660 goto out;
1662 ndm = nlmsg_data(nlh);
1663 if (ndm->ndm_ifindex) {
1664 dev = __dev_get_by_index(net, ndm->ndm_ifindex);
1665 if (dev == NULL) {
1666 err = -ENODEV;
1667 goto out;
1670 if (tb[NDA_LLADDR] && nla_len(tb[NDA_LLADDR]) < dev->addr_len)
1671 goto out;
1674 read_lock(&neigh_tbl_lock);
1675 for (tbl = neigh_tables; tbl; tbl = tbl->next) {
1676 int flags = NEIGH_UPDATE_F_ADMIN | NEIGH_UPDATE_F_OVERRIDE;
1677 struct neighbour *neigh;
1678 void *dst, *lladdr;
1680 if (tbl->family != ndm->ndm_family)
1681 continue;
1682 read_unlock(&neigh_tbl_lock);
1684 if (nla_len(tb[NDA_DST]) < tbl->key_len)
1685 goto out;
1686 dst = nla_data(tb[NDA_DST]);
1687 lladdr = tb[NDA_LLADDR] ? nla_data(tb[NDA_LLADDR]) : NULL;
1689 if (ndm->ndm_flags & NTF_PROXY) {
1690 struct pneigh_entry *pn;
1692 err = -ENOBUFS;
1693 pn = pneigh_lookup(tbl, net, dst, dev, 1);
1694 if (pn) {
1695 pn->flags = ndm->ndm_flags;
1696 err = 0;
1698 goto out;
1701 if (dev == NULL)
1702 goto out;
1704 neigh = neigh_lookup(tbl, dst, dev);
1705 if (neigh == NULL) {
1706 if (!(nlh->nlmsg_flags & NLM_F_CREATE)) {
1707 err = -ENOENT;
1708 goto out;
1711 neigh = __neigh_lookup_errno(tbl, dst, dev);
1712 if (IS_ERR(neigh)) {
1713 err = PTR_ERR(neigh);
1714 goto out;
1716 } else {
1717 if (nlh->nlmsg_flags & NLM_F_EXCL) {
1718 err = -EEXIST;
1719 neigh_release(neigh);
1720 goto out;
1723 if (!(nlh->nlmsg_flags & NLM_F_REPLACE))
1724 flags &= ~NEIGH_UPDATE_F_OVERRIDE;
1727 if (ndm->ndm_flags & NTF_USE) {
1728 neigh_event_send(neigh, NULL);
1729 err = 0;
1730 } else
1731 err = neigh_update(neigh, lladdr, ndm->ndm_state, flags);
1732 neigh_release(neigh);
1733 goto out;
1736 read_unlock(&neigh_tbl_lock);
1737 err = -EAFNOSUPPORT;
1738 out:
1739 return err;
1742 static int neightbl_fill_parms(struct sk_buff *skb, struct neigh_parms *parms)
1744 struct nlattr *nest;
1746 nest = nla_nest_start(skb, NDTA_PARMS);
1747 if (nest == NULL)
1748 return -ENOBUFS;
1750 if (parms->dev)
1751 NLA_PUT_U32(skb, NDTPA_IFINDEX, parms->dev->ifindex);
1753 NLA_PUT_U32(skb, NDTPA_REFCNT, atomic_read(&parms->refcnt));
1754 NLA_PUT_U32(skb, NDTPA_QUEUE_LEN, parms->queue_len);
1755 NLA_PUT_U32(skb, NDTPA_PROXY_QLEN, parms->proxy_qlen);
1756 NLA_PUT_U32(skb, NDTPA_APP_PROBES, parms->app_probes);
1757 NLA_PUT_U32(skb, NDTPA_UCAST_PROBES, parms->ucast_probes);
1758 NLA_PUT_U32(skb, NDTPA_MCAST_PROBES, parms->mcast_probes);
1759 NLA_PUT_MSECS(skb, NDTPA_REACHABLE_TIME, parms->reachable_time);
1760 NLA_PUT_MSECS(skb, NDTPA_BASE_REACHABLE_TIME,
1761 parms->base_reachable_time);
1762 NLA_PUT_MSECS(skb, NDTPA_GC_STALETIME, parms->gc_staletime);
1763 NLA_PUT_MSECS(skb, NDTPA_DELAY_PROBE_TIME, parms->delay_probe_time);
1764 NLA_PUT_MSECS(skb, NDTPA_RETRANS_TIME, parms->retrans_time);
1765 NLA_PUT_MSECS(skb, NDTPA_ANYCAST_DELAY, parms->anycast_delay);
1766 NLA_PUT_MSECS(skb, NDTPA_PROXY_DELAY, parms->proxy_delay);
1767 NLA_PUT_MSECS(skb, NDTPA_LOCKTIME, parms->locktime);
1769 return nla_nest_end(skb, nest);
1771 nla_put_failure:
1772 nla_nest_cancel(skb, nest);
1773 return -EMSGSIZE;
1776 static int neightbl_fill_info(struct sk_buff *skb, struct neigh_table *tbl,
1777 u32 pid, u32 seq, int type, int flags)
1779 struct nlmsghdr *nlh;
1780 struct ndtmsg *ndtmsg;
1782 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags);
1783 if (nlh == NULL)
1784 return -EMSGSIZE;
1786 ndtmsg = nlmsg_data(nlh);
1788 read_lock_bh(&tbl->lock);
1789 ndtmsg->ndtm_family = tbl->family;
1790 ndtmsg->ndtm_pad1 = 0;
1791 ndtmsg->ndtm_pad2 = 0;
1793 NLA_PUT_STRING(skb, NDTA_NAME, tbl->id);
1794 NLA_PUT_MSECS(skb, NDTA_GC_INTERVAL, tbl->gc_interval);
1795 NLA_PUT_U32(skb, NDTA_THRESH1, tbl->gc_thresh1);
1796 NLA_PUT_U32(skb, NDTA_THRESH2, tbl->gc_thresh2);
1797 NLA_PUT_U32(skb, NDTA_THRESH3, tbl->gc_thresh3);
1800 unsigned long now = jiffies;
1801 unsigned int flush_delta = now - tbl->last_flush;
1802 unsigned int rand_delta = now - tbl->last_rand;
1803 struct neigh_hash_table *nht;
1804 struct ndt_config ndc = {
1805 .ndtc_key_len = tbl->key_len,
1806 .ndtc_entry_size = tbl->entry_size,
1807 .ndtc_entries = atomic_read(&tbl->entries),
1808 .ndtc_last_flush = jiffies_to_msecs(flush_delta),
1809 .ndtc_last_rand = jiffies_to_msecs(rand_delta),
1810 .ndtc_proxy_qlen = tbl->proxy_queue.qlen,
1813 rcu_read_lock_bh();
1814 nht = rcu_dereference_bh(tbl->nht);
1815 ndc.ndtc_hash_rnd = nht->hash_rnd;
1816 ndc.ndtc_hash_mask = ((1 << nht->hash_shift) - 1);
1817 rcu_read_unlock_bh();
1819 NLA_PUT(skb, NDTA_CONFIG, sizeof(ndc), &ndc);
1823 int cpu;
1824 struct ndt_stats ndst;
1826 memset(&ndst, 0, sizeof(ndst));
1828 for_each_possible_cpu(cpu) {
1829 struct neigh_statistics *st;
1831 st = per_cpu_ptr(tbl->stats, cpu);
1832 ndst.ndts_allocs += st->allocs;
1833 ndst.ndts_destroys += st->destroys;
1834 ndst.ndts_hash_grows += st->hash_grows;
1835 ndst.ndts_res_failed += st->res_failed;
1836 ndst.ndts_lookups += st->lookups;
1837 ndst.ndts_hits += st->hits;
1838 ndst.ndts_rcv_probes_mcast += st->rcv_probes_mcast;
1839 ndst.ndts_rcv_probes_ucast += st->rcv_probes_ucast;
1840 ndst.ndts_periodic_gc_runs += st->periodic_gc_runs;
1841 ndst.ndts_forced_gc_runs += st->forced_gc_runs;
1844 NLA_PUT(skb, NDTA_STATS, sizeof(ndst), &ndst);
1847 BUG_ON(tbl->parms.dev);
1848 if (neightbl_fill_parms(skb, &tbl->parms) < 0)
1849 goto nla_put_failure;
1851 read_unlock_bh(&tbl->lock);
1852 return nlmsg_end(skb, nlh);
1854 nla_put_failure:
1855 read_unlock_bh(&tbl->lock);
1856 nlmsg_cancel(skb, nlh);
1857 return -EMSGSIZE;
1860 static int neightbl_fill_param_info(struct sk_buff *skb,
1861 struct neigh_table *tbl,
1862 struct neigh_parms *parms,
1863 u32 pid, u32 seq, int type,
1864 unsigned int flags)
1866 struct ndtmsg *ndtmsg;
1867 struct nlmsghdr *nlh;
1869 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndtmsg), flags);
1870 if (nlh == NULL)
1871 return -EMSGSIZE;
1873 ndtmsg = nlmsg_data(nlh);
1875 read_lock_bh(&tbl->lock);
1876 ndtmsg->ndtm_family = tbl->family;
1877 ndtmsg->ndtm_pad1 = 0;
1878 ndtmsg->ndtm_pad2 = 0;
1880 if (nla_put_string(skb, NDTA_NAME, tbl->id) < 0 ||
1881 neightbl_fill_parms(skb, parms) < 0)
1882 goto errout;
1884 read_unlock_bh(&tbl->lock);
1885 return nlmsg_end(skb, nlh);
1886 errout:
1887 read_unlock_bh(&tbl->lock);
1888 nlmsg_cancel(skb, nlh);
1889 return -EMSGSIZE;
1892 static const struct nla_policy nl_neightbl_policy[NDTA_MAX+1] = {
1893 [NDTA_NAME] = { .type = NLA_STRING },
1894 [NDTA_THRESH1] = { .type = NLA_U32 },
1895 [NDTA_THRESH2] = { .type = NLA_U32 },
1896 [NDTA_THRESH3] = { .type = NLA_U32 },
1897 [NDTA_GC_INTERVAL] = { .type = NLA_U64 },
1898 [NDTA_PARMS] = { .type = NLA_NESTED },
1901 static const struct nla_policy nl_ntbl_parm_policy[NDTPA_MAX+1] = {
1902 [NDTPA_IFINDEX] = { .type = NLA_U32 },
1903 [NDTPA_QUEUE_LEN] = { .type = NLA_U32 },
1904 [NDTPA_PROXY_QLEN] = { .type = NLA_U32 },
1905 [NDTPA_APP_PROBES] = { .type = NLA_U32 },
1906 [NDTPA_UCAST_PROBES] = { .type = NLA_U32 },
1907 [NDTPA_MCAST_PROBES] = { .type = NLA_U32 },
1908 [NDTPA_BASE_REACHABLE_TIME] = { .type = NLA_U64 },
1909 [NDTPA_GC_STALETIME] = { .type = NLA_U64 },
1910 [NDTPA_DELAY_PROBE_TIME] = { .type = NLA_U64 },
1911 [NDTPA_RETRANS_TIME] = { .type = NLA_U64 },
1912 [NDTPA_ANYCAST_DELAY] = { .type = NLA_U64 },
1913 [NDTPA_PROXY_DELAY] = { .type = NLA_U64 },
1914 [NDTPA_LOCKTIME] = { .type = NLA_U64 },
1917 static int neightbl_set(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
1919 struct net *net = sock_net(skb->sk);
1920 struct neigh_table *tbl;
1921 struct ndtmsg *ndtmsg;
1922 struct nlattr *tb[NDTA_MAX+1];
1923 int err;
1925 err = nlmsg_parse(nlh, sizeof(*ndtmsg), tb, NDTA_MAX,
1926 nl_neightbl_policy);
1927 if (err < 0)
1928 goto errout;
1930 if (tb[NDTA_NAME] == NULL) {
1931 err = -EINVAL;
1932 goto errout;
1935 ndtmsg = nlmsg_data(nlh);
1936 read_lock(&neigh_tbl_lock);
1937 for (tbl = neigh_tables; tbl; tbl = tbl->next) {
1938 if (ndtmsg->ndtm_family && tbl->family != ndtmsg->ndtm_family)
1939 continue;
1941 if (nla_strcmp(tb[NDTA_NAME], tbl->id) == 0)
1942 break;
1945 if (tbl == NULL) {
1946 err = -ENOENT;
1947 goto errout_locked;
1951 * We acquire tbl->lock to be nice to the periodic timers and
1952 * make sure they always see a consistent set of values.
1954 write_lock_bh(&tbl->lock);
1956 if (tb[NDTA_PARMS]) {
1957 struct nlattr *tbp[NDTPA_MAX+1];
1958 struct neigh_parms *p;
1959 int i, ifindex = 0;
1961 err = nla_parse_nested(tbp, NDTPA_MAX, tb[NDTA_PARMS],
1962 nl_ntbl_parm_policy);
1963 if (err < 0)
1964 goto errout_tbl_lock;
1966 if (tbp[NDTPA_IFINDEX])
1967 ifindex = nla_get_u32(tbp[NDTPA_IFINDEX]);
1969 p = lookup_neigh_parms(tbl, net, ifindex);
1970 if (p == NULL) {
1971 err = -ENOENT;
1972 goto errout_tbl_lock;
1975 for (i = 1; i <= NDTPA_MAX; i++) {
1976 if (tbp[i] == NULL)
1977 continue;
1979 switch (i) {
1980 case NDTPA_QUEUE_LEN:
1981 p->queue_len = nla_get_u32(tbp[i]);
1982 break;
1983 case NDTPA_PROXY_QLEN:
1984 p->proxy_qlen = nla_get_u32(tbp[i]);
1985 break;
1986 case NDTPA_APP_PROBES:
1987 p->app_probes = nla_get_u32(tbp[i]);
1988 break;
1989 case NDTPA_UCAST_PROBES:
1990 p->ucast_probes = nla_get_u32(tbp[i]);
1991 break;
1992 case NDTPA_MCAST_PROBES:
1993 p->mcast_probes = nla_get_u32(tbp[i]);
1994 break;
1995 case NDTPA_BASE_REACHABLE_TIME:
1996 p->base_reachable_time = nla_get_msecs(tbp[i]);
1997 break;
1998 case NDTPA_GC_STALETIME:
1999 p->gc_staletime = nla_get_msecs(tbp[i]);
2000 break;
2001 case NDTPA_DELAY_PROBE_TIME:
2002 p->delay_probe_time = nla_get_msecs(tbp[i]);
2003 break;
2004 case NDTPA_RETRANS_TIME:
2005 p->retrans_time = nla_get_msecs(tbp[i]);
2006 break;
2007 case NDTPA_ANYCAST_DELAY:
2008 p->anycast_delay = nla_get_msecs(tbp[i]);
2009 break;
2010 case NDTPA_PROXY_DELAY:
2011 p->proxy_delay = nla_get_msecs(tbp[i]);
2012 break;
2013 case NDTPA_LOCKTIME:
2014 p->locktime = nla_get_msecs(tbp[i]);
2015 break;
2020 if (tb[NDTA_THRESH1])
2021 tbl->gc_thresh1 = nla_get_u32(tb[NDTA_THRESH1]);
2023 if (tb[NDTA_THRESH2])
2024 tbl->gc_thresh2 = nla_get_u32(tb[NDTA_THRESH2]);
2026 if (tb[NDTA_THRESH3])
2027 tbl->gc_thresh3 = nla_get_u32(tb[NDTA_THRESH3]);
2029 if (tb[NDTA_GC_INTERVAL])
2030 tbl->gc_interval = nla_get_msecs(tb[NDTA_GC_INTERVAL]);
2032 err = 0;
2034 errout_tbl_lock:
2035 write_unlock_bh(&tbl->lock);
2036 errout_locked:
2037 read_unlock(&neigh_tbl_lock);
2038 errout:
2039 return err;
2042 static int neightbl_dump_info(struct sk_buff *skb, struct netlink_callback *cb)
2044 struct net *net = sock_net(skb->sk);
2045 int family, tidx, nidx = 0;
2046 int tbl_skip = cb->args[0];
2047 int neigh_skip = cb->args[1];
2048 struct neigh_table *tbl;
2050 family = ((struct rtgenmsg *) nlmsg_data(cb->nlh))->rtgen_family;
2052 read_lock(&neigh_tbl_lock);
2053 for (tbl = neigh_tables, tidx = 0; tbl; tbl = tbl->next, tidx++) {
2054 struct neigh_parms *p;
2056 if (tidx < tbl_skip || (family && tbl->family != family))
2057 continue;
2059 if (neightbl_fill_info(skb, tbl, NETLINK_CB(cb->skb).pid,
2060 cb->nlh->nlmsg_seq, RTM_NEWNEIGHTBL,
2061 NLM_F_MULTI) <= 0)
2062 break;
2064 for (nidx = 0, p = tbl->parms.next; p; p = p->next) {
2065 if (!net_eq(neigh_parms_net(p), net))
2066 continue;
2068 if (nidx < neigh_skip)
2069 goto next;
2071 if (neightbl_fill_param_info(skb, tbl, p,
2072 NETLINK_CB(cb->skb).pid,
2073 cb->nlh->nlmsg_seq,
2074 RTM_NEWNEIGHTBL,
2075 NLM_F_MULTI) <= 0)
2076 goto out;
2077 next:
2078 nidx++;
2081 neigh_skip = 0;
2083 out:
2084 read_unlock(&neigh_tbl_lock);
2085 cb->args[0] = tidx;
2086 cb->args[1] = nidx;
2088 return skb->len;
2091 static int neigh_fill_info(struct sk_buff *skb, struct neighbour *neigh,
2092 u32 pid, u32 seq, int type, unsigned int flags)
2094 unsigned long now = jiffies;
2095 struct nda_cacheinfo ci;
2096 struct nlmsghdr *nlh;
2097 struct ndmsg *ndm;
2099 nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndm), flags);
2100 if (nlh == NULL)
2101 return -EMSGSIZE;
2103 ndm = nlmsg_data(nlh);
2104 ndm->ndm_family = neigh->ops->family;
2105 ndm->ndm_pad1 = 0;
2106 ndm->ndm_pad2 = 0;
2107 ndm->ndm_flags = neigh->flags;
2108 ndm->ndm_type = neigh->type;
2109 ndm->ndm_ifindex = neigh->dev->ifindex;
2111 NLA_PUT(skb, NDA_DST, neigh->tbl->key_len, neigh->primary_key);
2113 read_lock_bh(&neigh->lock);
2114 ndm->ndm_state = neigh->nud_state;
2115 if (neigh->nud_state & NUD_VALID) {
2116 char haddr[MAX_ADDR_LEN];
2118 neigh_ha_snapshot(haddr, neigh, neigh->dev);
2119 if (nla_put(skb, NDA_LLADDR, neigh->dev->addr_len, haddr) < 0) {
2120 read_unlock_bh(&neigh->lock);
2121 goto nla_put_failure;
2125 ci.ndm_used = jiffies_to_clock_t(now - neigh->used);
2126 ci.ndm_confirmed = jiffies_to_clock_t(now - neigh->confirmed);
2127 ci.ndm_updated = jiffies_to_clock_t(now - neigh->updated);
2128 ci.ndm_refcnt = atomic_read(&neigh->refcnt) - 1;
2129 read_unlock_bh(&neigh->lock);
2131 NLA_PUT_U32(skb, NDA_PROBES, atomic_read(&neigh->probes));
2132 NLA_PUT(skb, NDA_CACHEINFO, sizeof(ci), &ci);
2134 return nlmsg_end(skb, nlh);
2136 nla_put_failure:
2137 nlmsg_cancel(skb, nlh);
2138 return -EMSGSIZE;
2141 static void neigh_update_notify(struct neighbour *neigh)
2143 call_netevent_notifiers(NETEVENT_NEIGH_UPDATE, neigh);
2144 __neigh_notify(neigh, RTM_NEWNEIGH, 0);
2147 static int neigh_dump_table(struct neigh_table *tbl, struct sk_buff *skb,
2148 struct netlink_callback *cb)
2150 struct net *net = sock_net(skb->sk);
2151 struct neighbour *n;
2152 int rc, h, s_h = cb->args[1];
2153 int idx, s_idx = idx = cb->args[2];
2154 struct neigh_hash_table *nht;
2156 rcu_read_lock_bh();
2157 nht = rcu_dereference_bh(tbl->nht);
2159 for (h = 0; h < (1 << nht->hash_shift); h++) {
2160 if (h < s_h)
2161 continue;
2162 if (h > s_h)
2163 s_idx = 0;
2164 for (n = rcu_dereference_bh(nht->hash_buckets[h]), idx = 0;
2165 n != NULL;
2166 n = rcu_dereference_bh(n->next)) {
2167 if (!net_eq(dev_net(n->dev), net))
2168 continue;
2169 if (idx < s_idx)
2170 goto next;
2171 if (neigh_fill_info(skb, n, NETLINK_CB(cb->skb).pid,
2172 cb->nlh->nlmsg_seq,
2173 RTM_NEWNEIGH,
2174 NLM_F_MULTI) <= 0) {
2175 rc = -1;
2176 goto out;
2178 next:
2179 idx++;
2182 rc = skb->len;
2183 out:
2184 rcu_read_unlock_bh();
2185 cb->args[1] = h;
2186 cb->args[2] = idx;
2187 return rc;
2190 static int neigh_dump_info(struct sk_buff *skb, struct netlink_callback *cb)
2192 struct neigh_table *tbl;
2193 int t, family, s_t;
2195 read_lock(&neigh_tbl_lock);
2196 family = ((struct rtgenmsg *) nlmsg_data(cb->nlh))->rtgen_family;
2197 s_t = cb->args[0];
2199 for (tbl = neigh_tables, t = 0; tbl; tbl = tbl->next, t++) {
2200 if (t < s_t || (family && tbl->family != family))
2201 continue;
2202 if (t > s_t)
2203 memset(&cb->args[1], 0, sizeof(cb->args) -
2204 sizeof(cb->args[0]));
2205 if (neigh_dump_table(tbl, skb, cb) < 0)
2206 break;
2208 read_unlock(&neigh_tbl_lock);
2210 cb->args[0] = t;
2211 return skb->len;
2214 void neigh_for_each(struct neigh_table *tbl, void (*cb)(struct neighbour *, void *), void *cookie)
2216 int chain;
2217 struct neigh_hash_table *nht;
2219 rcu_read_lock_bh();
2220 nht = rcu_dereference_bh(tbl->nht);
2222 read_lock(&tbl->lock); /* avoid resizes */
2223 for (chain = 0; chain < (1 << nht->hash_shift); chain++) {
2224 struct neighbour *n;
2226 for (n = rcu_dereference_bh(nht->hash_buckets[chain]);
2227 n != NULL;
2228 n = rcu_dereference_bh(n->next))
2229 cb(n, cookie);
2231 read_unlock(&tbl->lock);
2232 rcu_read_unlock_bh();
2234 EXPORT_SYMBOL(neigh_for_each);
2236 /* The tbl->lock must be held as a writer and BH disabled. */
2237 void __neigh_for_each_release(struct neigh_table *tbl,
2238 int (*cb)(struct neighbour *))
2240 int chain;
2241 struct neigh_hash_table *nht;
2243 nht = rcu_dereference_protected(tbl->nht,
2244 lockdep_is_held(&tbl->lock));
2245 for (chain = 0; chain < (1 << nht->hash_shift); chain++) {
2246 struct neighbour *n;
2247 struct neighbour __rcu **np;
2249 np = &nht->hash_buckets[chain];
2250 while ((n = rcu_dereference_protected(*np,
2251 lockdep_is_held(&tbl->lock))) != NULL) {
2252 int release;
2254 write_lock(&n->lock);
2255 release = cb(n);
2256 if (release) {
2257 rcu_assign_pointer(*np,
2258 rcu_dereference_protected(n->next,
2259 lockdep_is_held(&tbl->lock)));
2260 n->dead = 1;
2261 } else
2262 np = &n->next;
2263 write_unlock(&n->lock);
2264 if (release)
2265 neigh_cleanup_and_release(n);
2269 EXPORT_SYMBOL(__neigh_for_each_release);
2271 #ifdef CONFIG_PROC_FS
2273 static struct neighbour *neigh_get_first(struct seq_file *seq)
2275 struct neigh_seq_state *state = seq->private;
2276 struct net *net = seq_file_net(seq);
2277 struct neigh_hash_table *nht = state->nht;
2278 struct neighbour *n = NULL;
2279 int bucket = state->bucket;
2281 state->flags &= ~NEIGH_SEQ_IS_PNEIGH;
2282 for (bucket = 0; bucket < (1 << nht->hash_shift); bucket++) {
2283 n = rcu_dereference_bh(nht->hash_buckets[bucket]);
2285 while (n) {
2286 if (!net_eq(dev_net(n->dev), net))
2287 goto next;
2288 if (state->neigh_sub_iter) {
2289 loff_t fakep = 0;
2290 void *v;
2292 v = state->neigh_sub_iter(state, n, &fakep);
2293 if (!v)
2294 goto next;
2296 if (!(state->flags & NEIGH_SEQ_SKIP_NOARP))
2297 break;
2298 if (n->nud_state & ~NUD_NOARP)
2299 break;
2300 next:
2301 n = rcu_dereference_bh(n->next);
2304 if (n)
2305 break;
2307 state->bucket = bucket;
2309 return n;
2312 static struct neighbour *neigh_get_next(struct seq_file *seq,
2313 struct neighbour *n,
2314 loff_t *pos)
2316 struct neigh_seq_state *state = seq->private;
2317 struct net *net = seq_file_net(seq);
2318 struct neigh_hash_table *nht = state->nht;
2320 if (state->neigh_sub_iter) {
2321 void *v = state->neigh_sub_iter(state, n, pos);
2322 if (v)
2323 return n;
2325 n = rcu_dereference_bh(n->next);
2327 while (1) {
2328 while (n) {
2329 if (!net_eq(dev_net(n->dev), net))
2330 goto next;
2331 if (state->neigh_sub_iter) {
2332 void *v = state->neigh_sub_iter(state, n, pos);
2333 if (v)
2334 return n;
2335 goto next;
2337 if (!(state->flags & NEIGH_SEQ_SKIP_NOARP))
2338 break;
2340 if (n->nud_state & ~NUD_NOARP)
2341 break;
2342 next:
2343 n = rcu_dereference_bh(n->next);
2346 if (n)
2347 break;
2349 if (++state->bucket >= (1 << nht->hash_shift))
2350 break;
2352 n = rcu_dereference_bh(nht->hash_buckets[state->bucket]);
2355 if (n && pos)
2356 --(*pos);
2357 return n;
2360 static struct neighbour *neigh_get_idx(struct seq_file *seq, loff_t *pos)
2362 struct neighbour *n = neigh_get_first(seq);
2364 if (n) {
2365 --(*pos);
2366 while (*pos) {
2367 n = neigh_get_next(seq, n, pos);
2368 if (!n)
2369 break;
2372 return *pos ? NULL : n;
2375 static struct pneigh_entry *pneigh_get_first(struct seq_file *seq)
2377 struct neigh_seq_state *state = seq->private;
2378 struct net *net = seq_file_net(seq);
2379 struct neigh_table *tbl = state->tbl;
2380 struct pneigh_entry *pn = NULL;
2381 int bucket = state->bucket;
2383 state->flags |= NEIGH_SEQ_IS_PNEIGH;
2384 for (bucket = 0; bucket <= PNEIGH_HASHMASK; bucket++) {
2385 pn = tbl->phash_buckets[bucket];
2386 while (pn && !net_eq(pneigh_net(pn), net))
2387 pn = pn->next;
2388 if (pn)
2389 break;
2391 state->bucket = bucket;
2393 return pn;
2396 static struct pneigh_entry *pneigh_get_next(struct seq_file *seq,
2397 struct pneigh_entry *pn,
2398 loff_t *pos)
2400 struct neigh_seq_state *state = seq->private;
2401 struct net *net = seq_file_net(seq);
2402 struct neigh_table *tbl = state->tbl;
2404 pn = pn->next;
2405 while (!pn) {
2406 if (++state->bucket > PNEIGH_HASHMASK)
2407 break;
2408 pn = tbl->phash_buckets[state->bucket];
2409 while (pn && !net_eq(pneigh_net(pn), net))
2410 pn = pn->next;
2411 if (pn)
2412 break;
2415 if (pn && pos)
2416 --(*pos);
2418 return pn;
2421 static struct pneigh_entry *pneigh_get_idx(struct seq_file *seq, loff_t *pos)
2423 struct pneigh_entry *pn = pneigh_get_first(seq);
2425 if (pn) {
2426 --(*pos);
2427 while (*pos) {
2428 pn = pneigh_get_next(seq, pn, pos);
2429 if (!pn)
2430 break;
2433 return *pos ? NULL : pn;
2436 static void *neigh_get_idx_any(struct seq_file *seq, loff_t *pos)
2438 struct neigh_seq_state *state = seq->private;
2439 void *rc;
2440 loff_t idxpos = *pos;
2442 rc = neigh_get_idx(seq, &idxpos);
2443 if (!rc && !(state->flags & NEIGH_SEQ_NEIGH_ONLY))
2444 rc = pneigh_get_idx(seq, &idxpos);
2446 return rc;
2449 void *neigh_seq_start(struct seq_file *seq, loff_t *pos, struct neigh_table *tbl, unsigned int neigh_seq_flags)
2450 __acquires(rcu_bh)
2452 struct neigh_seq_state *state = seq->private;
2454 state->tbl = tbl;
2455 state->bucket = 0;
2456 state->flags = (neigh_seq_flags & ~NEIGH_SEQ_IS_PNEIGH);
2458 rcu_read_lock_bh();
2459 state->nht = rcu_dereference_bh(tbl->nht);
2461 return *pos ? neigh_get_idx_any(seq, pos) : SEQ_START_TOKEN;
2463 EXPORT_SYMBOL(neigh_seq_start);
2465 void *neigh_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2467 struct neigh_seq_state *state;
2468 void *rc;
2470 if (v == SEQ_START_TOKEN) {
2471 rc = neigh_get_first(seq);
2472 goto out;
2475 state = seq->private;
2476 if (!(state->flags & NEIGH_SEQ_IS_PNEIGH)) {
2477 rc = neigh_get_next(seq, v, NULL);
2478 if (rc)
2479 goto out;
2480 if (!(state->flags & NEIGH_SEQ_NEIGH_ONLY))
2481 rc = pneigh_get_first(seq);
2482 } else {
2483 BUG_ON(state->flags & NEIGH_SEQ_NEIGH_ONLY);
2484 rc = pneigh_get_next(seq, v, NULL);
2486 out:
2487 ++(*pos);
2488 return rc;
2490 EXPORT_SYMBOL(neigh_seq_next);
2492 void neigh_seq_stop(struct seq_file *seq, void *v)
2493 __releases(rcu_bh)
2495 rcu_read_unlock_bh();
2497 EXPORT_SYMBOL(neigh_seq_stop);
2499 /* statistics via seq_file */
2501 static void *neigh_stat_seq_start(struct seq_file *seq, loff_t *pos)
2503 struct neigh_table *tbl = seq->private;
2504 int cpu;
2506 if (*pos == 0)
2507 return SEQ_START_TOKEN;
2509 for (cpu = *pos-1; cpu < nr_cpu_ids; ++cpu) {
2510 if (!cpu_possible(cpu))
2511 continue;
2512 *pos = cpu+1;
2513 return per_cpu_ptr(tbl->stats, cpu);
2515 return NULL;
2518 static void *neigh_stat_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2520 struct neigh_table *tbl = seq->private;
2521 int cpu;
2523 for (cpu = *pos; cpu < nr_cpu_ids; ++cpu) {
2524 if (!cpu_possible(cpu))
2525 continue;
2526 *pos = cpu+1;
2527 return per_cpu_ptr(tbl->stats, cpu);
2529 return NULL;
2532 static void neigh_stat_seq_stop(struct seq_file *seq, void *v)
2537 static int neigh_stat_seq_show(struct seq_file *seq, void *v)
2539 struct neigh_table *tbl = seq->private;
2540 struct neigh_statistics *st = v;
2542 if (v == SEQ_START_TOKEN) {
2543 seq_printf(seq, "entries allocs destroys hash_grows lookups hits res_failed rcv_probes_mcast rcv_probes_ucast periodic_gc_runs forced_gc_runs unresolved_discards\n");
2544 return 0;
2547 seq_printf(seq, "%08x %08lx %08lx %08lx %08lx %08lx %08lx "
2548 "%08lx %08lx %08lx %08lx %08lx\n",
2549 atomic_read(&tbl->entries),
2551 st->allocs,
2552 st->destroys,
2553 st->hash_grows,
2555 st->lookups,
2556 st->hits,
2558 st->res_failed,
2560 st->rcv_probes_mcast,
2561 st->rcv_probes_ucast,
2563 st->periodic_gc_runs,
2564 st->forced_gc_runs,
2565 st->unres_discards
2568 return 0;
2571 static const struct seq_operations neigh_stat_seq_ops = {
2572 .start = neigh_stat_seq_start,
2573 .next = neigh_stat_seq_next,
2574 .stop = neigh_stat_seq_stop,
2575 .show = neigh_stat_seq_show,
2578 static int neigh_stat_seq_open(struct inode *inode, struct file *file)
2580 int ret = seq_open(file, &neigh_stat_seq_ops);
2582 if (!ret) {
2583 struct seq_file *sf = file->private_data;
2584 sf->private = PDE(inode)->data;
2586 return ret;
2589 static const struct file_operations neigh_stat_seq_fops = {
2590 .owner = THIS_MODULE,
2591 .open = neigh_stat_seq_open,
2592 .read = seq_read,
2593 .llseek = seq_lseek,
2594 .release = seq_release,
2597 #endif /* CONFIG_PROC_FS */
2599 static inline size_t neigh_nlmsg_size(void)
2601 return NLMSG_ALIGN(sizeof(struct ndmsg))
2602 + nla_total_size(MAX_ADDR_LEN) /* NDA_DST */
2603 + nla_total_size(MAX_ADDR_LEN) /* NDA_LLADDR */
2604 + nla_total_size(sizeof(struct nda_cacheinfo))
2605 + nla_total_size(4); /* NDA_PROBES */
2608 static void __neigh_notify(struct neighbour *n, int type, int flags)
2610 struct net *net = dev_net(n->dev);
2611 struct sk_buff *skb;
2612 int err = -ENOBUFS;
2614 skb = nlmsg_new(neigh_nlmsg_size(), GFP_ATOMIC);
2615 if (skb == NULL)
2616 goto errout;
2618 err = neigh_fill_info(skb, n, 0, 0, type, flags);
2619 if (err < 0) {
2620 /* -EMSGSIZE implies BUG in neigh_nlmsg_size() */
2621 WARN_ON(err == -EMSGSIZE);
2622 kfree_skb(skb);
2623 goto errout;
2625 rtnl_notify(skb, net, 0, RTNLGRP_NEIGH, NULL, GFP_ATOMIC);
2626 return;
2627 errout:
2628 if (err < 0)
2629 rtnl_set_sk_err(net, RTNLGRP_NEIGH, err);
2632 #ifdef CONFIG_ARPD
2633 void neigh_app_ns(struct neighbour *n)
2635 __neigh_notify(n, RTM_GETNEIGH, NLM_F_REQUEST);
2637 EXPORT_SYMBOL(neigh_app_ns);
2638 #endif /* CONFIG_ARPD */
2640 #ifdef CONFIG_SYSCTL
2642 #define NEIGH_VARS_MAX 19
2644 static struct neigh_sysctl_table {
2645 struct ctl_table_header *sysctl_header;
2646 struct ctl_table neigh_vars[NEIGH_VARS_MAX];
2647 char *dev_name;
2648 } neigh_sysctl_template __read_mostly = {
2649 .neigh_vars = {
2651 .procname = "mcast_solicit",
2652 .maxlen = sizeof(int),
2653 .mode = 0644,
2654 .proc_handler = proc_dointvec,
2657 .procname = "ucast_solicit",
2658 .maxlen = sizeof(int),
2659 .mode = 0644,
2660 .proc_handler = proc_dointvec,
2663 .procname = "app_solicit",
2664 .maxlen = sizeof(int),
2665 .mode = 0644,
2666 .proc_handler = proc_dointvec,
2669 .procname = "retrans_time",
2670 .maxlen = sizeof(int),
2671 .mode = 0644,
2672 .proc_handler = proc_dointvec_userhz_jiffies,
2675 .procname = "base_reachable_time",
2676 .maxlen = sizeof(int),
2677 .mode = 0644,
2678 .proc_handler = proc_dointvec_jiffies,
2681 .procname = "delay_first_probe_time",
2682 .maxlen = sizeof(int),
2683 .mode = 0644,
2684 .proc_handler = proc_dointvec_jiffies,
2687 .procname = "gc_stale_time",
2688 .maxlen = sizeof(int),
2689 .mode = 0644,
2690 .proc_handler = proc_dointvec_jiffies,
2693 .procname = "unres_qlen",
2694 .maxlen = sizeof(int),
2695 .mode = 0644,
2696 .proc_handler = proc_dointvec,
2699 .procname = "proxy_qlen",
2700 .maxlen = sizeof(int),
2701 .mode = 0644,
2702 .proc_handler = proc_dointvec,
2705 .procname = "anycast_delay",
2706 .maxlen = sizeof(int),
2707 .mode = 0644,
2708 .proc_handler = proc_dointvec_userhz_jiffies,
2711 .procname = "proxy_delay",
2712 .maxlen = sizeof(int),
2713 .mode = 0644,
2714 .proc_handler = proc_dointvec_userhz_jiffies,
2717 .procname = "locktime",
2718 .maxlen = sizeof(int),
2719 .mode = 0644,
2720 .proc_handler = proc_dointvec_userhz_jiffies,
2723 .procname = "retrans_time_ms",
2724 .maxlen = sizeof(int),
2725 .mode = 0644,
2726 .proc_handler = proc_dointvec_ms_jiffies,
2729 .procname = "base_reachable_time_ms",
2730 .maxlen = sizeof(int),
2731 .mode = 0644,
2732 .proc_handler = proc_dointvec_ms_jiffies,
2735 .procname = "gc_interval",
2736 .maxlen = sizeof(int),
2737 .mode = 0644,
2738 .proc_handler = proc_dointvec_jiffies,
2741 .procname = "gc_thresh1",
2742 .maxlen = sizeof(int),
2743 .mode = 0644,
2744 .proc_handler = proc_dointvec,
2747 .procname = "gc_thresh2",
2748 .maxlen = sizeof(int),
2749 .mode = 0644,
2750 .proc_handler = proc_dointvec,
2753 .procname = "gc_thresh3",
2754 .maxlen = sizeof(int),
2755 .mode = 0644,
2756 .proc_handler = proc_dointvec,
2762 int neigh_sysctl_register(struct net_device *dev, struct neigh_parms *p,
2763 char *p_name, proc_handler *handler)
2765 struct neigh_sysctl_table *t;
2766 const char *dev_name_source = NULL;
2768 #define NEIGH_CTL_PATH_ROOT 0
2769 #define NEIGH_CTL_PATH_PROTO 1
2770 #define NEIGH_CTL_PATH_NEIGH 2
2771 #define NEIGH_CTL_PATH_DEV 3
2773 struct ctl_path neigh_path[] = {
2774 { .procname = "net", },
2775 { .procname = "proto", },
2776 { .procname = "neigh", },
2777 { .procname = "default", },
2778 { },
2781 t = kmemdup(&neigh_sysctl_template, sizeof(*t), GFP_KERNEL);
2782 if (!t)
2783 goto err;
2785 t->neigh_vars[0].data = &p->mcast_probes;
2786 t->neigh_vars[1].data = &p->ucast_probes;
2787 t->neigh_vars[2].data = &p->app_probes;
2788 t->neigh_vars[3].data = &p->retrans_time;
2789 t->neigh_vars[4].data = &p->base_reachable_time;
2790 t->neigh_vars[5].data = &p->delay_probe_time;
2791 t->neigh_vars[6].data = &p->gc_staletime;
2792 t->neigh_vars[7].data = &p->queue_len;
2793 t->neigh_vars[8].data = &p->proxy_qlen;
2794 t->neigh_vars[9].data = &p->anycast_delay;
2795 t->neigh_vars[10].data = &p->proxy_delay;
2796 t->neigh_vars[11].data = &p->locktime;
2797 t->neigh_vars[12].data = &p->retrans_time;
2798 t->neigh_vars[13].data = &p->base_reachable_time;
2800 if (dev) {
2801 dev_name_source = dev->name;
2802 /* Terminate the table early */
2803 memset(&t->neigh_vars[14], 0, sizeof(t->neigh_vars[14]));
2804 } else {
2805 dev_name_source = neigh_path[NEIGH_CTL_PATH_DEV].procname;
2806 t->neigh_vars[14].data = (int *)(p + 1);
2807 t->neigh_vars[15].data = (int *)(p + 1) + 1;
2808 t->neigh_vars[16].data = (int *)(p + 1) + 2;
2809 t->neigh_vars[17].data = (int *)(p + 1) + 3;
2813 if (handler) {
2814 /* RetransTime */
2815 t->neigh_vars[3].proc_handler = handler;
2816 t->neigh_vars[3].extra1 = dev;
2817 /* ReachableTime */
2818 t->neigh_vars[4].proc_handler = handler;
2819 t->neigh_vars[4].extra1 = dev;
2820 /* RetransTime (in milliseconds)*/
2821 t->neigh_vars[12].proc_handler = handler;
2822 t->neigh_vars[12].extra1 = dev;
2823 /* ReachableTime (in milliseconds) */
2824 t->neigh_vars[13].proc_handler = handler;
2825 t->neigh_vars[13].extra1 = dev;
2828 t->dev_name = kstrdup(dev_name_source, GFP_KERNEL);
2829 if (!t->dev_name)
2830 goto free;
2832 neigh_path[NEIGH_CTL_PATH_DEV].procname = t->dev_name;
2833 neigh_path[NEIGH_CTL_PATH_PROTO].procname = p_name;
2835 t->sysctl_header =
2836 register_net_sysctl_table(neigh_parms_net(p), neigh_path, t->neigh_vars);
2837 if (!t->sysctl_header)
2838 goto free_procname;
2840 p->sysctl_table = t;
2841 return 0;
2843 free_procname:
2844 kfree(t->dev_name);
2845 free:
2846 kfree(t);
2847 err:
2848 return -ENOBUFS;
2850 EXPORT_SYMBOL(neigh_sysctl_register);
2852 void neigh_sysctl_unregister(struct neigh_parms *p)
2854 if (p->sysctl_table) {
2855 struct neigh_sysctl_table *t = p->sysctl_table;
2856 p->sysctl_table = NULL;
2857 unregister_sysctl_table(t->sysctl_header);
2858 kfree(t->dev_name);
2859 kfree(t);
2862 EXPORT_SYMBOL(neigh_sysctl_unregister);
2864 #endif /* CONFIG_SYSCTL */
2866 static int __init neigh_init(void)
2868 rtnl_register(PF_UNSPEC, RTM_NEWNEIGH, neigh_add, NULL, NULL);
2869 rtnl_register(PF_UNSPEC, RTM_DELNEIGH, neigh_delete, NULL, NULL);
2870 rtnl_register(PF_UNSPEC, RTM_GETNEIGH, NULL, neigh_dump_info, NULL);
2872 rtnl_register(PF_UNSPEC, RTM_GETNEIGHTBL, NULL, neightbl_dump_info,
2873 NULL);
2874 rtnl_register(PF_UNSPEC, RTM_SETNEIGHTBL, neightbl_set, NULL, NULL);
2876 return 0;
2879 subsys_initcall(neigh_init);