[PATCH] lockdep: better lock debugging
[linux-2.6/kvm.git] / kernel / sched.c
blob48c1faa60a676061c3d365b417b2db9fcd82b041
1 /*
2 * kernel/sched.c
4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
21 #include <linux/mm.h>
22 #include <linux/module.h>
23 #include <linux/nmi.h>
24 #include <linux/init.h>
25 #include <asm/uaccess.h>
26 #include <linux/highmem.h>
27 #include <linux/smp_lock.h>
28 #include <asm/mmu_context.h>
29 #include <linux/interrupt.h>
30 #include <linux/capability.h>
31 #include <linux/completion.h>
32 #include <linux/kernel_stat.h>
33 #include <linux/debug_locks.h>
34 #include <linux/security.h>
35 #include <linux/notifier.h>
36 #include <linux/profile.h>
37 #include <linux/suspend.h>
38 #include <linux/vmalloc.h>
39 #include <linux/blkdev.h>
40 #include <linux/delay.h>
41 #include <linux/smp.h>
42 #include <linux/threads.h>
43 #include <linux/timer.h>
44 #include <linux/rcupdate.h>
45 #include <linux/cpu.h>
46 #include <linux/cpuset.h>
47 #include <linux/percpu.h>
48 #include <linux/kthread.h>
49 #include <linux/seq_file.h>
50 #include <linux/syscalls.h>
51 #include <linux/times.h>
52 #include <linux/acct.h>
53 #include <linux/kprobes.h>
54 #include <asm/tlb.h>
56 #include <asm/unistd.h>
59 * Convert user-nice values [ -20 ... 0 ... 19 ]
60 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
61 * and back.
63 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
64 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
65 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
68 * 'User priority' is the nice value converted to something we
69 * can work with better when scaling various scheduler parameters,
70 * it's a [ 0 ... 39 ] range.
72 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
73 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
74 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
77 * Some helpers for converting nanosecond timing to jiffy resolution
79 #define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
80 #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
83 * These are the 'tuning knobs' of the scheduler:
85 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
86 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
87 * Timeslices get refilled after they expire.
89 #define MIN_TIMESLICE max(5 * HZ / 1000, 1)
90 #define DEF_TIMESLICE (100 * HZ / 1000)
91 #define ON_RUNQUEUE_WEIGHT 30
92 #define CHILD_PENALTY 95
93 #define PARENT_PENALTY 100
94 #define EXIT_WEIGHT 3
95 #define PRIO_BONUS_RATIO 25
96 #define MAX_BONUS (MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
97 #define INTERACTIVE_DELTA 2
98 #define MAX_SLEEP_AVG (DEF_TIMESLICE * MAX_BONUS)
99 #define STARVATION_LIMIT (MAX_SLEEP_AVG)
100 #define NS_MAX_SLEEP_AVG (JIFFIES_TO_NS(MAX_SLEEP_AVG))
103 * If a task is 'interactive' then we reinsert it in the active
104 * array after it has expired its current timeslice. (it will not
105 * continue to run immediately, it will still roundrobin with
106 * other interactive tasks.)
108 * This part scales the interactivity limit depending on niceness.
110 * We scale it linearly, offset by the INTERACTIVE_DELTA delta.
111 * Here are a few examples of different nice levels:
113 * TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
114 * TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
115 * TASK_INTERACTIVE( 0): [1,1,1,1,0,0,0,0,0,0,0]
116 * TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
117 * TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
119 * (the X axis represents the possible -5 ... 0 ... +5 dynamic
120 * priority range a task can explore, a value of '1' means the
121 * task is rated interactive.)
123 * Ie. nice +19 tasks can never get 'interactive' enough to be
124 * reinserted into the active array. And only heavily CPU-hog nice -20
125 * tasks will be expired. Default nice 0 tasks are somewhere between,
126 * it takes some effort for them to get interactive, but it's not
127 * too hard.
130 #define CURRENT_BONUS(p) \
131 (NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
132 MAX_SLEEP_AVG)
134 #define GRANULARITY (10 * HZ / 1000 ? : 1)
136 #ifdef CONFIG_SMP
137 #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
138 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
139 num_online_cpus())
140 #else
141 #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
142 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
143 #endif
145 #define SCALE(v1,v1_max,v2_max) \
146 (v1) * (v2_max) / (v1_max)
148 #define DELTA(p) \
149 (SCALE(TASK_NICE(p) + 20, 40, MAX_BONUS) - 20 * MAX_BONUS / 40 + \
150 INTERACTIVE_DELTA)
152 #define TASK_INTERACTIVE(p) \
153 ((p)->prio <= (p)->static_prio - DELTA(p))
155 #define INTERACTIVE_SLEEP(p) \
156 (JIFFIES_TO_NS(MAX_SLEEP_AVG * \
157 (MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))
159 #define TASK_PREEMPTS_CURR(p, rq) \
160 ((p)->prio < (rq)->curr->prio)
163 * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
164 * to time slice values: [800ms ... 100ms ... 5ms]
166 * The higher a thread's priority, the bigger timeslices
167 * it gets during one round of execution. But even the lowest
168 * priority thread gets MIN_TIMESLICE worth of execution time.
171 #define SCALE_PRIO(x, prio) \
172 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
174 static unsigned int static_prio_timeslice(int static_prio)
176 if (static_prio < NICE_TO_PRIO(0))
177 return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
178 else
179 return SCALE_PRIO(DEF_TIMESLICE, static_prio);
182 static inline unsigned int task_timeslice(task_t *p)
184 return static_prio_timeslice(p->static_prio);
187 #define task_hot(p, now, sd) ((long long) ((now) - (p)->last_ran) \
188 < (long long) (sd)->cache_hot_time)
191 * These are the runqueue data structures:
194 typedef struct runqueue runqueue_t;
196 struct prio_array {
197 unsigned int nr_active;
198 DECLARE_BITMAP(bitmap, MAX_PRIO+1); /* include 1 bit for delimiter */
199 struct list_head queue[MAX_PRIO];
203 * This is the main, per-CPU runqueue data structure.
205 * Locking rule: those places that want to lock multiple runqueues
206 * (such as the load balancing or the thread migration code), lock
207 * acquire operations must be ordered by ascending &runqueue.
209 struct runqueue {
210 spinlock_t lock;
213 * nr_running and cpu_load should be in the same cacheline because
214 * remote CPUs use both these fields when doing load calculation.
216 unsigned long nr_running;
217 unsigned long raw_weighted_load;
218 #ifdef CONFIG_SMP
219 unsigned long cpu_load[3];
220 #endif
221 unsigned long long nr_switches;
224 * This is part of a global counter where only the total sum
225 * over all CPUs matters. A task can increase this counter on
226 * one CPU and if it got migrated afterwards it may decrease
227 * it on another CPU. Always updated under the runqueue lock:
229 unsigned long nr_uninterruptible;
231 unsigned long expired_timestamp;
232 unsigned long long timestamp_last_tick;
233 task_t *curr, *idle;
234 struct mm_struct *prev_mm;
235 prio_array_t *active, *expired, arrays[2];
236 int best_expired_prio;
237 atomic_t nr_iowait;
239 #ifdef CONFIG_SMP
240 struct sched_domain *sd;
242 /* For active balancing */
243 int active_balance;
244 int push_cpu;
246 task_t *migration_thread;
247 struct list_head migration_queue;
248 #endif
250 #ifdef CONFIG_SCHEDSTATS
251 /* latency stats */
252 struct sched_info rq_sched_info;
254 /* sys_sched_yield() stats */
255 unsigned long yld_exp_empty;
256 unsigned long yld_act_empty;
257 unsigned long yld_both_empty;
258 unsigned long yld_cnt;
260 /* schedule() stats */
261 unsigned long sched_switch;
262 unsigned long sched_cnt;
263 unsigned long sched_goidle;
265 /* try_to_wake_up() stats */
266 unsigned long ttwu_cnt;
267 unsigned long ttwu_local;
268 #endif
271 static DEFINE_PER_CPU(struct runqueue, runqueues);
274 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
275 * See detach_destroy_domains: synchronize_sched for details.
277 * The domain tree of any CPU may only be accessed from within
278 * preempt-disabled sections.
280 #define for_each_domain(cpu, domain) \
281 for (domain = rcu_dereference(cpu_rq(cpu)->sd); domain; domain = domain->parent)
283 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
284 #define this_rq() (&__get_cpu_var(runqueues))
285 #define task_rq(p) cpu_rq(task_cpu(p))
286 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
288 #ifndef prepare_arch_switch
289 # define prepare_arch_switch(next) do { } while (0)
290 #endif
291 #ifndef finish_arch_switch
292 # define finish_arch_switch(prev) do { } while (0)
293 #endif
295 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
296 static inline int task_running(runqueue_t *rq, task_t *p)
298 return rq->curr == p;
301 static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
305 static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
307 #ifdef CONFIG_DEBUG_SPINLOCK
308 /* this is a valid case when another task releases the spinlock */
309 rq->lock.owner = current;
310 #endif
311 spin_unlock_irq(&rq->lock);
314 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
315 static inline int task_running(runqueue_t *rq, task_t *p)
317 #ifdef CONFIG_SMP
318 return p->oncpu;
319 #else
320 return rq->curr == p;
321 #endif
324 static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
326 #ifdef CONFIG_SMP
328 * We can optimise this out completely for !SMP, because the
329 * SMP rebalancing from interrupt is the only thing that cares
330 * here.
332 next->oncpu = 1;
333 #endif
334 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
335 spin_unlock_irq(&rq->lock);
336 #else
337 spin_unlock(&rq->lock);
338 #endif
341 static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
343 #ifdef CONFIG_SMP
345 * After ->oncpu is cleared, the task can be moved to a different CPU.
346 * We must ensure this doesn't happen until the switch is completely
347 * finished.
349 smp_wmb();
350 prev->oncpu = 0;
351 #endif
352 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
353 local_irq_enable();
354 #endif
356 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
359 * __task_rq_lock - lock the runqueue a given task resides on.
360 * Must be called interrupts disabled.
362 static inline runqueue_t *__task_rq_lock(task_t *p)
363 __acquires(rq->lock)
365 struct runqueue *rq;
367 repeat_lock_task:
368 rq = task_rq(p);
369 spin_lock(&rq->lock);
370 if (unlikely(rq != task_rq(p))) {
371 spin_unlock(&rq->lock);
372 goto repeat_lock_task;
374 return rq;
378 * task_rq_lock - lock the runqueue a given task resides on and disable
379 * interrupts. Note the ordering: we can safely lookup the task_rq without
380 * explicitly disabling preemption.
382 static runqueue_t *task_rq_lock(task_t *p, unsigned long *flags)
383 __acquires(rq->lock)
385 struct runqueue *rq;
387 repeat_lock_task:
388 local_irq_save(*flags);
389 rq = task_rq(p);
390 spin_lock(&rq->lock);
391 if (unlikely(rq != task_rq(p))) {
392 spin_unlock_irqrestore(&rq->lock, *flags);
393 goto repeat_lock_task;
395 return rq;
398 static inline void __task_rq_unlock(runqueue_t *rq)
399 __releases(rq->lock)
401 spin_unlock(&rq->lock);
404 static inline void task_rq_unlock(runqueue_t *rq, unsigned long *flags)
405 __releases(rq->lock)
407 spin_unlock_irqrestore(&rq->lock, *flags);
410 #ifdef CONFIG_SCHEDSTATS
412 * bump this up when changing the output format or the meaning of an existing
413 * format, so that tools can adapt (or abort)
415 #define SCHEDSTAT_VERSION 12
417 static int show_schedstat(struct seq_file *seq, void *v)
419 int cpu;
421 seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION);
422 seq_printf(seq, "timestamp %lu\n", jiffies);
423 for_each_online_cpu(cpu) {
424 runqueue_t *rq = cpu_rq(cpu);
425 #ifdef CONFIG_SMP
426 struct sched_domain *sd;
427 int dcnt = 0;
428 #endif
430 /* runqueue-specific stats */
431 seq_printf(seq,
432 "cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu",
433 cpu, rq->yld_both_empty,
434 rq->yld_act_empty, rq->yld_exp_empty, rq->yld_cnt,
435 rq->sched_switch, rq->sched_cnt, rq->sched_goidle,
436 rq->ttwu_cnt, rq->ttwu_local,
437 rq->rq_sched_info.cpu_time,
438 rq->rq_sched_info.run_delay, rq->rq_sched_info.pcnt);
440 seq_printf(seq, "\n");
442 #ifdef CONFIG_SMP
443 /* domain-specific stats */
444 preempt_disable();
445 for_each_domain(cpu, sd) {
446 enum idle_type itype;
447 char mask_str[NR_CPUS];
449 cpumask_scnprintf(mask_str, NR_CPUS, sd->span);
450 seq_printf(seq, "domain%d %s", dcnt++, mask_str);
451 for (itype = SCHED_IDLE; itype < MAX_IDLE_TYPES;
452 itype++) {
453 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu",
454 sd->lb_cnt[itype],
455 sd->lb_balanced[itype],
456 sd->lb_failed[itype],
457 sd->lb_imbalance[itype],
458 sd->lb_gained[itype],
459 sd->lb_hot_gained[itype],
460 sd->lb_nobusyq[itype],
461 sd->lb_nobusyg[itype]);
463 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu\n",
464 sd->alb_cnt, sd->alb_failed, sd->alb_pushed,
465 sd->sbe_cnt, sd->sbe_balanced, sd->sbe_pushed,
466 sd->sbf_cnt, sd->sbf_balanced, sd->sbf_pushed,
467 sd->ttwu_wake_remote, sd->ttwu_move_affine, sd->ttwu_move_balance);
469 preempt_enable();
470 #endif
472 return 0;
475 static int schedstat_open(struct inode *inode, struct file *file)
477 unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32);
478 char *buf = kmalloc(size, GFP_KERNEL);
479 struct seq_file *m;
480 int res;
482 if (!buf)
483 return -ENOMEM;
484 res = single_open(file, show_schedstat, NULL);
485 if (!res) {
486 m = file->private_data;
487 m->buf = buf;
488 m->size = size;
489 } else
490 kfree(buf);
491 return res;
494 struct file_operations proc_schedstat_operations = {
495 .open = schedstat_open,
496 .read = seq_read,
497 .llseek = seq_lseek,
498 .release = single_release,
501 # define schedstat_inc(rq, field) do { (rq)->field++; } while (0)
502 # define schedstat_add(rq, field, amt) do { (rq)->field += (amt); } while (0)
503 #else /* !CONFIG_SCHEDSTATS */
504 # define schedstat_inc(rq, field) do { } while (0)
505 # define schedstat_add(rq, field, amt) do { } while (0)
506 #endif
509 * rq_lock - lock a given runqueue and disable interrupts.
511 static inline runqueue_t *this_rq_lock(void)
512 __acquires(rq->lock)
514 runqueue_t *rq;
516 local_irq_disable();
517 rq = this_rq();
518 spin_lock(&rq->lock);
520 return rq;
523 #ifdef CONFIG_SCHEDSTATS
525 * Called when a process is dequeued from the active array and given
526 * the cpu. We should note that with the exception of interactive
527 * tasks, the expired queue will become the active queue after the active
528 * queue is empty, without explicitly dequeuing and requeuing tasks in the
529 * expired queue. (Interactive tasks may be requeued directly to the
530 * active queue, thus delaying tasks in the expired queue from running;
531 * see scheduler_tick()).
533 * This function is only called from sched_info_arrive(), rather than
534 * dequeue_task(). Even though a task may be queued and dequeued multiple
535 * times as it is shuffled about, we're really interested in knowing how
536 * long it was from the *first* time it was queued to the time that it
537 * finally hit a cpu.
539 static inline void sched_info_dequeued(task_t *t)
541 t->sched_info.last_queued = 0;
545 * Called when a task finally hits the cpu. We can now calculate how
546 * long it was waiting to run. We also note when it began so that we
547 * can keep stats on how long its timeslice is.
549 static void sched_info_arrive(task_t *t)
551 unsigned long now = jiffies, diff = 0;
552 struct runqueue *rq = task_rq(t);
554 if (t->sched_info.last_queued)
555 diff = now - t->sched_info.last_queued;
556 sched_info_dequeued(t);
557 t->sched_info.run_delay += diff;
558 t->sched_info.last_arrival = now;
559 t->sched_info.pcnt++;
561 if (!rq)
562 return;
564 rq->rq_sched_info.run_delay += diff;
565 rq->rq_sched_info.pcnt++;
569 * Called when a process is queued into either the active or expired
570 * array. The time is noted and later used to determine how long we
571 * had to wait for us to reach the cpu. Since the expired queue will
572 * become the active queue after active queue is empty, without dequeuing
573 * and requeuing any tasks, we are interested in queuing to either. It
574 * is unusual but not impossible for tasks to be dequeued and immediately
575 * requeued in the same or another array: this can happen in sched_yield(),
576 * set_user_nice(), and even load_balance() as it moves tasks from runqueue
577 * to runqueue.
579 * This function is only called from enqueue_task(), but also only updates
580 * the timestamp if it is already not set. It's assumed that
581 * sched_info_dequeued() will clear that stamp when appropriate.
583 static inline void sched_info_queued(task_t *t)
585 if (!t->sched_info.last_queued)
586 t->sched_info.last_queued = jiffies;
590 * Called when a process ceases being the active-running process, either
591 * voluntarily or involuntarily. Now we can calculate how long we ran.
593 static inline void sched_info_depart(task_t *t)
595 struct runqueue *rq = task_rq(t);
596 unsigned long diff = jiffies - t->sched_info.last_arrival;
598 t->sched_info.cpu_time += diff;
600 if (rq)
601 rq->rq_sched_info.cpu_time += diff;
605 * Called when tasks are switched involuntarily due, typically, to expiring
606 * their time slice. (This may also be called when switching to or from
607 * the idle task.) We are only called when prev != next.
609 static inline void sched_info_switch(task_t *prev, task_t *next)
611 struct runqueue *rq = task_rq(prev);
614 * prev now departs the cpu. It's not interesting to record
615 * stats about how efficient we were at scheduling the idle
616 * process, however.
618 if (prev != rq->idle)
619 sched_info_depart(prev);
621 if (next != rq->idle)
622 sched_info_arrive(next);
624 #else
625 #define sched_info_queued(t) do { } while (0)
626 #define sched_info_switch(t, next) do { } while (0)
627 #endif /* CONFIG_SCHEDSTATS */
630 * Adding/removing a task to/from a priority array:
632 static void dequeue_task(struct task_struct *p, prio_array_t *array)
634 array->nr_active--;
635 list_del(&p->run_list);
636 if (list_empty(array->queue + p->prio))
637 __clear_bit(p->prio, array->bitmap);
640 static void enqueue_task(struct task_struct *p, prio_array_t *array)
642 sched_info_queued(p);
643 list_add_tail(&p->run_list, array->queue + p->prio);
644 __set_bit(p->prio, array->bitmap);
645 array->nr_active++;
646 p->array = array;
650 * Put task to the end of the run list without the overhead of dequeue
651 * followed by enqueue.
653 static void requeue_task(struct task_struct *p, prio_array_t *array)
655 list_move_tail(&p->run_list, array->queue + p->prio);
658 static inline void enqueue_task_head(struct task_struct *p, prio_array_t *array)
660 list_add(&p->run_list, array->queue + p->prio);
661 __set_bit(p->prio, array->bitmap);
662 array->nr_active++;
663 p->array = array;
667 * __normal_prio - return the priority that is based on the static
668 * priority but is modified by bonuses/penalties.
670 * We scale the actual sleep average [0 .... MAX_SLEEP_AVG]
671 * into the -5 ... 0 ... +5 bonus/penalty range.
673 * We use 25% of the full 0...39 priority range so that:
675 * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
676 * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
678 * Both properties are important to certain workloads.
681 static inline int __normal_prio(task_t *p)
683 int bonus, prio;
685 bonus = CURRENT_BONUS(p) - MAX_BONUS / 2;
687 prio = p->static_prio - bonus;
688 if (prio < MAX_RT_PRIO)
689 prio = MAX_RT_PRIO;
690 if (prio > MAX_PRIO-1)
691 prio = MAX_PRIO-1;
692 return prio;
696 * To aid in avoiding the subversion of "niceness" due to uneven distribution
697 * of tasks with abnormal "nice" values across CPUs the contribution that
698 * each task makes to its run queue's load is weighted according to its
699 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
700 * scaled version of the new time slice allocation that they receive on time
701 * slice expiry etc.
705 * Assume: static_prio_timeslice(NICE_TO_PRIO(0)) == DEF_TIMESLICE
706 * If static_prio_timeslice() is ever changed to break this assumption then
707 * this code will need modification
709 #define TIME_SLICE_NICE_ZERO DEF_TIMESLICE
710 #define LOAD_WEIGHT(lp) \
711 (((lp) * SCHED_LOAD_SCALE) / TIME_SLICE_NICE_ZERO)
712 #define PRIO_TO_LOAD_WEIGHT(prio) \
713 LOAD_WEIGHT(static_prio_timeslice(prio))
714 #define RTPRIO_TO_LOAD_WEIGHT(rp) \
715 (PRIO_TO_LOAD_WEIGHT(MAX_RT_PRIO) + LOAD_WEIGHT(rp))
717 static void set_load_weight(task_t *p)
719 if (has_rt_policy(p)) {
720 #ifdef CONFIG_SMP
721 if (p == task_rq(p)->migration_thread)
723 * The migration thread does the actual balancing.
724 * Giving its load any weight will skew balancing
725 * adversely.
727 p->load_weight = 0;
728 else
729 #endif
730 p->load_weight = RTPRIO_TO_LOAD_WEIGHT(p->rt_priority);
731 } else
732 p->load_weight = PRIO_TO_LOAD_WEIGHT(p->static_prio);
735 static inline void inc_raw_weighted_load(runqueue_t *rq, const task_t *p)
737 rq->raw_weighted_load += p->load_weight;
740 static inline void dec_raw_weighted_load(runqueue_t *rq, const task_t *p)
742 rq->raw_weighted_load -= p->load_weight;
745 static inline void inc_nr_running(task_t *p, runqueue_t *rq)
747 rq->nr_running++;
748 inc_raw_weighted_load(rq, p);
751 static inline void dec_nr_running(task_t *p, runqueue_t *rq)
753 rq->nr_running--;
754 dec_raw_weighted_load(rq, p);
758 * Calculate the expected normal priority: i.e. priority
759 * without taking RT-inheritance into account. Might be
760 * boosted by interactivity modifiers. Changes upon fork,
761 * setprio syscalls, and whenever the interactivity
762 * estimator recalculates.
764 static inline int normal_prio(task_t *p)
766 int prio;
768 if (has_rt_policy(p))
769 prio = MAX_RT_PRIO-1 - p->rt_priority;
770 else
771 prio = __normal_prio(p);
772 return prio;
776 * Calculate the current priority, i.e. the priority
777 * taken into account by the scheduler. This value might
778 * be boosted by RT tasks, or might be boosted by
779 * interactivity modifiers. Will be RT if the task got
780 * RT-boosted. If not then it returns p->normal_prio.
782 static int effective_prio(task_t *p)
784 p->normal_prio = normal_prio(p);
786 * If we are RT tasks or we were boosted to RT priority,
787 * keep the priority unchanged. Otherwise, update priority
788 * to the normal priority:
790 if (!rt_prio(p->prio))
791 return p->normal_prio;
792 return p->prio;
796 * __activate_task - move a task to the runqueue.
798 static void __activate_task(task_t *p, runqueue_t *rq)
800 prio_array_t *target = rq->active;
802 if (batch_task(p))
803 target = rq->expired;
804 enqueue_task(p, target);
805 inc_nr_running(p, rq);
809 * __activate_idle_task - move idle task to the _front_ of runqueue.
811 static inline void __activate_idle_task(task_t *p, runqueue_t *rq)
813 enqueue_task_head(p, rq->active);
814 inc_nr_running(p, rq);
818 * Recalculate p->normal_prio and p->prio after having slept,
819 * updating the sleep-average too:
821 static int recalc_task_prio(task_t *p, unsigned long long now)
823 /* Caller must always ensure 'now >= p->timestamp' */
824 unsigned long sleep_time = now - p->timestamp;
826 if (batch_task(p))
827 sleep_time = 0;
829 if (likely(sleep_time > 0)) {
831 * This ceiling is set to the lowest priority that would allow
832 * a task to be reinserted into the active array on timeslice
833 * completion.
835 unsigned long ceiling = INTERACTIVE_SLEEP(p);
837 if (p->mm && sleep_time > ceiling && p->sleep_avg < ceiling) {
839 * Prevents user tasks from achieving best priority
840 * with one single large enough sleep.
842 p->sleep_avg = ceiling;
844 * Using INTERACTIVE_SLEEP() as a ceiling places a
845 * nice(0) task 1ms sleep away from promotion, and
846 * gives it 700ms to round-robin with no chance of
847 * being demoted. This is more than generous, so
848 * mark this sleep as non-interactive to prevent the
849 * on-runqueue bonus logic from intervening should
850 * this task not receive cpu immediately.
852 p->sleep_type = SLEEP_NONINTERACTIVE;
853 } else {
855 * Tasks waking from uninterruptible sleep are
856 * limited in their sleep_avg rise as they
857 * are likely to be waiting on I/O
859 if (p->sleep_type == SLEEP_NONINTERACTIVE && p->mm) {
860 if (p->sleep_avg >= ceiling)
861 sleep_time = 0;
862 else if (p->sleep_avg + sleep_time >=
863 ceiling) {
864 p->sleep_avg = ceiling;
865 sleep_time = 0;
870 * This code gives a bonus to interactive tasks.
872 * The boost works by updating the 'average sleep time'
873 * value here, based on ->timestamp. The more time a
874 * task spends sleeping, the higher the average gets -
875 * and the higher the priority boost gets as well.
877 p->sleep_avg += sleep_time;
880 if (p->sleep_avg > NS_MAX_SLEEP_AVG)
881 p->sleep_avg = NS_MAX_SLEEP_AVG;
884 return effective_prio(p);
888 * activate_task - move a task to the runqueue and do priority recalculation
890 * Update all the scheduling statistics stuff. (sleep average
891 * calculation, priority modifiers, etc.)
893 static void activate_task(task_t *p, runqueue_t *rq, int local)
895 unsigned long long now;
897 now = sched_clock();
898 #ifdef CONFIG_SMP
899 if (!local) {
900 /* Compensate for drifting sched_clock */
901 runqueue_t *this_rq = this_rq();
902 now = (now - this_rq->timestamp_last_tick)
903 + rq->timestamp_last_tick;
905 #endif
907 if (!rt_task(p))
908 p->prio = recalc_task_prio(p, now);
911 * This checks to make sure it's not an uninterruptible task
912 * that is now waking up.
914 if (p->sleep_type == SLEEP_NORMAL) {
916 * Tasks which were woken up by interrupts (ie. hw events)
917 * are most likely of interactive nature. So we give them
918 * the credit of extending their sleep time to the period
919 * of time they spend on the runqueue, waiting for execution
920 * on a CPU, first time around:
922 if (in_interrupt())
923 p->sleep_type = SLEEP_INTERRUPTED;
924 else {
926 * Normal first-time wakeups get a credit too for
927 * on-runqueue time, but it will be weighted down:
929 p->sleep_type = SLEEP_INTERACTIVE;
932 p->timestamp = now;
934 __activate_task(p, rq);
938 * deactivate_task - remove a task from the runqueue.
940 static void deactivate_task(struct task_struct *p, runqueue_t *rq)
942 dec_nr_running(p, rq);
943 dequeue_task(p, p->array);
944 p->array = NULL;
948 * resched_task - mark a task 'to be rescheduled now'.
950 * On UP this means the setting of the need_resched flag, on SMP it
951 * might also involve a cross-CPU call to trigger the scheduler on
952 * the target CPU.
954 #ifdef CONFIG_SMP
956 #ifndef tsk_is_polling
957 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
958 #endif
960 static void resched_task(task_t *p)
962 int cpu;
964 assert_spin_locked(&task_rq(p)->lock);
966 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
967 return;
969 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
971 cpu = task_cpu(p);
972 if (cpu == smp_processor_id())
973 return;
975 /* NEED_RESCHED must be visible before we test polling */
976 smp_mb();
977 if (!tsk_is_polling(p))
978 smp_send_reschedule(cpu);
980 #else
981 static inline void resched_task(task_t *p)
983 assert_spin_locked(&task_rq(p)->lock);
984 set_tsk_need_resched(p);
986 #endif
989 * task_curr - is this task currently executing on a CPU?
990 * @p: the task in question.
992 inline int task_curr(const task_t *p)
994 return cpu_curr(task_cpu(p)) == p;
997 /* Used instead of source_load when we know the type == 0 */
998 unsigned long weighted_cpuload(const int cpu)
1000 return cpu_rq(cpu)->raw_weighted_load;
1003 #ifdef CONFIG_SMP
1004 typedef struct {
1005 struct list_head list;
1007 task_t *task;
1008 int dest_cpu;
1010 struct completion done;
1011 } migration_req_t;
1014 * The task's runqueue lock must be held.
1015 * Returns true if you have to wait for migration thread.
1017 static int migrate_task(task_t *p, int dest_cpu, migration_req_t *req)
1019 runqueue_t *rq = task_rq(p);
1022 * If the task is not on a runqueue (and not running), then
1023 * it is sufficient to simply update the task's cpu field.
1025 if (!p->array && !task_running(rq, p)) {
1026 set_task_cpu(p, dest_cpu);
1027 return 0;
1030 init_completion(&req->done);
1031 req->task = p;
1032 req->dest_cpu = dest_cpu;
1033 list_add(&req->list, &rq->migration_queue);
1034 return 1;
1038 * wait_task_inactive - wait for a thread to unschedule.
1040 * The caller must ensure that the task *will* unschedule sometime soon,
1041 * else this function might spin for a *long* time. This function can't
1042 * be called with interrupts off, or it may introduce deadlock with
1043 * smp_call_function() if an IPI is sent by the same process we are
1044 * waiting to become inactive.
1046 void wait_task_inactive(task_t *p)
1048 unsigned long flags;
1049 runqueue_t *rq;
1050 int preempted;
1052 repeat:
1053 rq = task_rq_lock(p, &flags);
1054 /* Must be off runqueue entirely, not preempted. */
1055 if (unlikely(p->array || task_running(rq, p))) {
1056 /* If it's preempted, we yield. It could be a while. */
1057 preempted = !task_running(rq, p);
1058 task_rq_unlock(rq, &flags);
1059 cpu_relax();
1060 if (preempted)
1061 yield();
1062 goto repeat;
1064 task_rq_unlock(rq, &flags);
1067 /***
1068 * kick_process - kick a running thread to enter/exit the kernel
1069 * @p: the to-be-kicked thread
1071 * Cause a process which is running on another CPU to enter
1072 * kernel-mode, without any delay. (to get signals handled.)
1074 * NOTE: this function doesnt have to take the runqueue lock,
1075 * because all it wants to ensure is that the remote task enters
1076 * the kernel. If the IPI races and the task has been migrated
1077 * to another CPU then no harm is done and the purpose has been
1078 * achieved as well.
1080 void kick_process(task_t *p)
1082 int cpu;
1084 preempt_disable();
1085 cpu = task_cpu(p);
1086 if ((cpu != smp_processor_id()) && task_curr(p))
1087 smp_send_reschedule(cpu);
1088 preempt_enable();
1092 * Return a low guess at the load of a migration-source cpu weighted
1093 * according to the scheduling class and "nice" value.
1095 * We want to under-estimate the load of migration sources, to
1096 * balance conservatively.
1098 static inline unsigned long source_load(int cpu, int type)
1100 runqueue_t *rq = cpu_rq(cpu);
1102 if (type == 0)
1103 return rq->raw_weighted_load;
1105 return min(rq->cpu_load[type-1], rq->raw_weighted_load);
1109 * Return a high guess at the load of a migration-target cpu weighted
1110 * according to the scheduling class and "nice" value.
1112 static inline unsigned long target_load(int cpu, int type)
1114 runqueue_t *rq = cpu_rq(cpu);
1116 if (type == 0)
1117 return rq->raw_weighted_load;
1119 return max(rq->cpu_load[type-1], rq->raw_weighted_load);
1123 * Return the average load per task on the cpu's run queue
1125 static inline unsigned long cpu_avg_load_per_task(int cpu)
1127 runqueue_t *rq = cpu_rq(cpu);
1128 unsigned long n = rq->nr_running;
1130 return n ? rq->raw_weighted_load / n : SCHED_LOAD_SCALE;
1134 * find_idlest_group finds and returns the least busy CPU group within the
1135 * domain.
1137 static struct sched_group *
1138 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1140 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1141 unsigned long min_load = ULONG_MAX, this_load = 0;
1142 int load_idx = sd->forkexec_idx;
1143 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1145 do {
1146 unsigned long load, avg_load;
1147 int local_group;
1148 int i;
1150 /* Skip over this group if it has no CPUs allowed */
1151 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1152 goto nextgroup;
1154 local_group = cpu_isset(this_cpu, group->cpumask);
1156 /* Tally up the load of all CPUs in the group */
1157 avg_load = 0;
1159 for_each_cpu_mask(i, group->cpumask) {
1160 /* Bias balancing toward cpus of our domain */
1161 if (local_group)
1162 load = source_load(i, load_idx);
1163 else
1164 load = target_load(i, load_idx);
1166 avg_load += load;
1169 /* Adjust by relative CPU power of the group */
1170 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1172 if (local_group) {
1173 this_load = avg_load;
1174 this = group;
1175 } else if (avg_load < min_load) {
1176 min_load = avg_load;
1177 idlest = group;
1179 nextgroup:
1180 group = group->next;
1181 } while (group != sd->groups);
1183 if (!idlest || 100*this_load < imbalance*min_load)
1184 return NULL;
1185 return idlest;
1189 * find_idlest_queue - find the idlest runqueue among the cpus in group.
1191 static int
1192 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1194 cpumask_t tmp;
1195 unsigned long load, min_load = ULONG_MAX;
1196 int idlest = -1;
1197 int i;
1199 /* Traverse only the allowed CPUs */
1200 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1202 for_each_cpu_mask(i, tmp) {
1203 load = weighted_cpuload(i);
1205 if (load < min_load || (load == min_load && i == this_cpu)) {
1206 min_load = load;
1207 idlest = i;
1211 return idlest;
1215 * sched_balance_self: balance the current task (running on cpu) in domains
1216 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1217 * SD_BALANCE_EXEC.
1219 * Balance, ie. select the least loaded group.
1221 * Returns the target CPU number, or the same CPU if no balancing is needed.
1223 * preempt must be disabled.
1225 static int sched_balance_self(int cpu, int flag)
1227 struct task_struct *t = current;
1228 struct sched_domain *tmp, *sd = NULL;
1230 for_each_domain(cpu, tmp) {
1232 * If power savings logic is enabled for a domain, stop there.
1234 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1235 break;
1236 if (tmp->flags & flag)
1237 sd = tmp;
1240 while (sd) {
1241 cpumask_t span;
1242 struct sched_group *group;
1243 int new_cpu;
1244 int weight;
1246 span = sd->span;
1247 group = find_idlest_group(sd, t, cpu);
1248 if (!group)
1249 goto nextlevel;
1251 new_cpu = find_idlest_cpu(group, t, cpu);
1252 if (new_cpu == -1 || new_cpu == cpu)
1253 goto nextlevel;
1255 /* Now try balancing at a lower domain level */
1256 cpu = new_cpu;
1257 nextlevel:
1258 sd = NULL;
1259 weight = cpus_weight(span);
1260 for_each_domain(cpu, tmp) {
1261 if (weight <= cpus_weight(tmp->span))
1262 break;
1263 if (tmp->flags & flag)
1264 sd = tmp;
1266 /* while loop will break here if sd == NULL */
1269 return cpu;
1272 #endif /* CONFIG_SMP */
1275 * wake_idle() will wake a task on an idle cpu if task->cpu is
1276 * not idle and an idle cpu is available. The span of cpus to
1277 * search starts with cpus closest then further out as needed,
1278 * so we always favor a closer, idle cpu.
1280 * Returns the CPU we should wake onto.
1282 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1283 static int wake_idle(int cpu, task_t *p)
1285 cpumask_t tmp;
1286 struct sched_domain *sd;
1287 int i;
1289 if (idle_cpu(cpu))
1290 return cpu;
1292 for_each_domain(cpu, sd) {
1293 if (sd->flags & SD_WAKE_IDLE) {
1294 cpus_and(tmp, sd->span, p->cpus_allowed);
1295 for_each_cpu_mask(i, tmp) {
1296 if (idle_cpu(i))
1297 return i;
1300 else
1301 break;
1303 return cpu;
1305 #else
1306 static inline int wake_idle(int cpu, task_t *p)
1308 return cpu;
1310 #endif
1312 /***
1313 * try_to_wake_up - wake up a thread
1314 * @p: the to-be-woken-up thread
1315 * @state: the mask of task states that can be woken
1316 * @sync: do a synchronous wakeup?
1318 * Put it on the run-queue if it's not already there. The "current"
1319 * thread is always on the run-queue (except when the actual
1320 * re-schedule is in progress), and as such you're allowed to do
1321 * the simpler "current->state = TASK_RUNNING" to mark yourself
1322 * runnable without the overhead of this.
1324 * returns failure only if the task is already active.
1326 static int try_to_wake_up(task_t *p, unsigned int state, int sync)
1328 int cpu, this_cpu, success = 0;
1329 unsigned long flags;
1330 long old_state;
1331 runqueue_t *rq;
1332 #ifdef CONFIG_SMP
1333 unsigned long load, this_load;
1334 struct sched_domain *sd, *this_sd = NULL;
1335 int new_cpu;
1336 #endif
1338 rq = task_rq_lock(p, &flags);
1339 old_state = p->state;
1340 if (!(old_state & state))
1341 goto out;
1343 if (p->array)
1344 goto out_running;
1346 cpu = task_cpu(p);
1347 this_cpu = smp_processor_id();
1349 #ifdef CONFIG_SMP
1350 if (unlikely(task_running(rq, p)))
1351 goto out_activate;
1353 new_cpu = cpu;
1355 schedstat_inc(rq, ttwu_cnt);
1356 if (cpu == this_cpu) {
1357 schedstat_inc(rq, ttwu_local);
1358 goto out_set_cpu;
1361 for_each_domain(this_cpu, sd) {
1362 if (cpu_isset(cpu, sd->span)) {
1363 schedstat_inc(sd, ttwu_wake_remote);
1364 this_sd = sd;
1365 break;
1369 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1370 goto out_set_cpu;
1373 * Check for affine wakeup and passive balancing possibilities.
1375 if (this_sd) {
1376 int idx = this_sd->wake_idx;
1377 unsigned int imbalance;
1379 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1381 load = source_load(cpu, idx);
1382 this_load = target_load(this_cpu, idx);
1384 new_cpu = this_cpu; /* Wake to this CPU if we can */
1386 if (this_sd->flags & SD_WAKE_AFFINE) {
1387 unsigned long tl = this_load;
1388 unsigned long tl_per_task = cpu_avg_load_per_task(this_cpu);
1391 * If sync wakeup then subtract the (maximum possible)
1392 * effect of the currently running task from the load
1393 * of the current CPU:
1395 if (sync)
1396 tl -= current->load_weight;
1398 if ((tl <= load &&
1399 tl + target_load(cpu, idx) <= tl_per_task) ||
1400 100*(tl + p->load_weight) <= imbalance*load) {
1402 * This domain has SD_WAKE_AFFINE and
1403 * p is cache cold in this domain, and
1404 * there is no bad imbalance.
1406 schedstat_inc(this_sd, ttwu_move_affine);
1407 goto out_set_cpu;
1412 * Start passive balancing when half the imbalance_pct
1413 * limit is reached.
1415 if (this_sd->flags & SD_WAKE_BALANCE) {
1416 if (imbalance*this_load <= 100*load) {
1417 schedstat_inc(this_sd, ttwu_move_balance);
1418 goto out_set_cpu;
1423 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1424 out_set_cpu:
1425 new_cpu = wake_idle(new_cpu, p);
1426 if (new_cpu != cpu) {
1427 set_task_cpu(p, new_cpu);
1428 task_rq_unlock(rq, &flags);
1429 /* might preempt at this point */
1430 rq = task_rq_lock(p, &flags);
1431 old_state = p->state;
1432 if (!(old_state & state))
1433 goto out;
1434 if (p->array)
1435 goto out_running;
1437 this_cpu = smp_processor_id();
1438 cpu = task_cpu(p);
1441 out_activate:
1442 #endif /* CONFIG_SMP */
1443 if (old_state == TASK_UNINTERRUPTIBLE) {
1444 rq->nr_uninterruptible--;
1446 * Tasks on involuntary sleep don't earn
1447 * sleep_avg beyond just interactive state.
1449 p->sleep_type = SLEEP_NONINTERACTIVE;
1450 } else
1453 * Tasks that have marked their sleep as noninteractive get
1454 * woken up with their sleep average not weighted in an
1455 * interactive way.
1457 if (old_state & TASK_NONINTERACTIVE)
1458 p->sleep_type = SLEEP_NONINTERACTIVE;
1461 activate_task(p, rq, cpu == this_cpu);
1463 * Sync wakeups (i.e. those types of wakeups where the waker
1464 * has indicated that it will leave the CPU in short order)
1465 * don't trigger a preemption, if the woken up task will run on
1466 * this cpu. (in this case the 'I will reschedule' promise of
1467 * the waker guarantees that the freshly woken up task is going
1468 * to be considered on this CPU.)
1470 if (!sync || cpu != this_cpu) {
1471 if (TASK_PREEMPTS_CURR(p, rq))
1472 resched_task(rq->curr);
1474 success = 1;
1476 out_running:
1477 p->state = TASK_RUNNING;
1478 out:
1479 task_rq_unlock(rq, &flags);
1481 return success;
1484 int fastcall wake_up_process(task_t *p)
1486 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1487 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1490 EXPORT_SYMBOL(wake_up_process);
1492 int fastcall wake_up_state(task_t *p, unsigned int state)
1494 return try_to_wake_up(p, state, 0);
1498 * Perform scheduler related setup for a newly forked process p.
1499 * p is forked by current.
1501 void fastcall sched_fork(task_t *p, int clone_flags)
1503 int cpu = get_cpu();
1505 #ifdef CONFIG_SMP
1506 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1507 #endif
1508 set_task_cpu(p, cpu);
1511 * We mark the process as running here, but have not actually
1512 * inserted it onto the runqueue yet. This guarantees that
1513 * nobody will actually run it, and a signal or other external
1514 * event cannot wake it up and insert it on the runqueue either.
1516 p->state = TASK_RUNNING;
1519 * Make sure we do not leak PI boosting priority to the child:
1521 p->prio = current->normal_prio;
1523 INIT_LIST_HEAD(&p->run_list);
1524 p->array = NULL;
1525 #ifdef CONFIG_SCHEDSTATS
1526 memset(&p->sched_info, 0, sizeof(p->sched_info));
1527 #endif
1528 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1529 p->oncpu = 0;
1530 #endif
1531 #ifdef CONFIG_PREEMPT
1532 /* Want to start with kernel preemption disabled. */
1533 task_thread_info(p)->preempt_count = 1;
1534 #endif
1536 * Share the timeslice between parent and child, thus the
1537 * total amount of pending timeslices in the system doesn't change,
1538 * resulting in more scheduling fairness.
1540 local_irq_disable();
1541 p->time_slice = (current->time_slice + 1) >> 1;
1543 * The remainder of the first timeslice might be recovered by
1544 * the parent if the child exits early enough.
1546 p->first_time_slice = 1;
1547 current->time_slice >>= 1;
1548 p->timestamp = sched_clock();
1549 if (unlikely(!current->time_slice)) {
1551 * This case is rare, it happens when the parent has only
1552 * a single jiffy left from its timeslice. Taking the
1553 * runqueue lock is not a problem.
1555 current->time_slice = 1;
1556 scheduler_tick();
1558 local_irq_enable();
1559 put_cpu();
1563 * wake_up_new_task - wake up a newly created task for the first time.
1565 * This function will do some initial scheduler statistics housekeeping
1566 * that must be done for every newly created context, then puts the task
1567 * on the runqueue and wakes it.
1569 void fastcall wake_up_new_task(task_t *p, unsigned long clone_flags)
1571 unsigned long flags;
1572 int this_cpu, cpu;
1573 runqueue_t *rq, *this_rq;
1575 rq = task_rq_lock(p, &flags);
1576 BUG_ON(p->state != TASK_RUNNING);
1577 this_cpu = smp_processor_id();
1578 cpu = task_cpu(p);
1581 * We decrease the sleep average of forking parents
1582 * and children as well, to keep max-interactive tasks
1583 * from forking tasks that are max-interactive. The parent
1584 * (current) is done further down, under its lock.
1586 p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) *
1587 CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1589 p->prio = effective_prio(p);
1591 if (likely(cpu == this_cpu)) {
1592 if (!(clone_flags & CLONE_VM)) {
1594 * The VM isn't cloned, so we're in a good position to
1595 * do child-runs-first in anticipation of an exec. This
1596 * usually avoids a lot of COW overhead.
1598 if (unlikely(!current->array))
1599 __activate_task(p, rq);
1600 else {
1601 p->prio = current->prio;
1602 p->normal_prio = current->normal_prio;
1603 list_add_tail(&p->run_list, &current->run_list);
1604 p->array = current->array;
1605 p->array->nr_active++;
1606 inc_nr_running(p, rq);
1608 set_need_resched();
1609 } else
1610 /* Run child last */
1611 __activate_task(p, rq);
1613 * We skip the following code due to cpu == this_cpu
1615 * task_rq_unlock(rq, &flags);
1616 * this_rq = task_rq_lock(current, &flags);
1618 this_rq = rq;
1619 } else {
1620 this_rq = cpu_rq(this_cpu);
1623 * Not the local CPU - must adjust timestamp. This should
1624 * get optimised away in the !CONFIG_SMP case.
1626 p->timestamp = (p->timestamp - this_rq->timestamp_last_tick)
1627 + rq->timestamp_last_tick;
1628 __activate_task(p, rq);
1629 if (TASK_PREEMPTS_CURR(p, rq))
1630 resched_task(rq->curr);
1633 * Parent and child are on different CPUs, now get the
1634 * parent runqueue to update the parent's ->sleep_avg:
1636 task_rq_unlock(rq, &flags);
1637 this_rq = task_rq_lock(current, &flags);
1639 current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) *
1640 PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1641 task_rq_unlock(this_rq, &flags);
1645 * Potentially available exiting-child timeslices are
1646 * retrieved here - this way the parent does not get
1647 * penalized for creating too many threads.
1649 * (this cannot be used to 'generate' timeslices
1650 * artificially, because any timeslice recovered here
1651 * was given away by the parent in the first place.)
1653 void fastcall sched_exit(task_t *p)
1655 unsigned long flags;
1656 runqueue_t *rq;
1659 * If the child was a (relative-) CPU hog then decrease
1660 * the sleep_avg of the parent as well.
1662 rq = task_rq_lock(p->parent, &flags);
1663 if (p->first_time_slice && task_cpu(p) == task_cpu(p->parent)) {
1664 p->parent->time_slice += p->time_slice;
1665 if (unlikely(p->parent->time_slice > task_timeslice(p)))
1666 p->parent->time_slice = task_timeslice(p);
1668 if (p->sleep_avg < p->parent->sleep_avg)
1669 p->parent->sleep_avg = p->parent->sleep_avg /
1670 (EXIT_WEIGHT + 1) * EXIT_WEIGHT + p->sleep_avg /
1671 (EXIT_WEIGHT + 1);
1672 task_rq_unlock(rq, &flags);
1676 * prepare_task_switch - prepare to switch tasks
1677 * @rq: the runqueue preparing to switch
1678 * @next: the task we are going to switch to.
1680 * This is called with the rq lock held and interrupts off. It must
1681 * be paired with a subsequent finish_task_switch after the context
1682 * switch.
1684 * prepare_task_switch sets up locking and calls architecture specific
1685 * hooks.
1687 static inline void prepare_task_switch(runqueue_t *rq, task_t *next)
1689 prepare_lock_switch(rq, next);
1690 prepare_arch_switch(next);
1694 * finish_task_switch - clean up after a task-switch
1695 * @rq: runqueue associated with task-switch
1696 * @prev: the thread we just switched away from.
1698 * finish_task_switch must be called after the context switch, paired
1699 * with a prepare_task_switch call before the context switch.
1700 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1701 * and do any other architecture-specific cleanup actions.
1703 * Note that we may have delayed dropping an mm in context_switch(). If
1704 * so, we finish that here outside of the runqueue lock. (Doing it
1705 * with the lock held can cause deadlocks; see schedule() for
1706 * details.)
1708 static inline void finish_task_switch(runqueue_t *rq, task_t *prev)
1709 __releases(rq->lock)
1711 struct mm_struct *mm = rq->prev_mm;
1712 unsigned long prev_task_flags;
1714 rq->prev_mm = NULL;
1717 * A task struct has one reference for the use as "current".
1718 * If a task dies, then it sets EXIT_ZOMBIE in tsk->exit_state and
1719 * calls schedule one last time. The schedule call will never return,
1720 * and the scheduled task must drop that reference.
1721 * The test for EXIT_ZOMBIE must occur while the runqueue locks are
1722 * still held, otherwise prev could be scheduled on another cpu, die
1723 * there before we look at prev->state, and then the reference would
1724 * be dropped twice.
1725 * Manfred Spraul <manfred@colorfullife.com>
1727 prev_task_flags = prev->flags;
1728 finish_arch_switch(prev);
1729 finish_lock_switch(rq, prev);
1730 if (mm)
1731 mmdrop(mm);
1732 if (unlikely(prev_task_flags & PF_DEAD)) {
1734 * Remove function-return probe instances associated with this
1735 * task and put them back on the free list.
1737 kprobe_flush_task(prev);
1738 put_task_struct(prev);
1743 * schedule_tail - first thing a freshly forked thread must call.
1744 * @prev: the thread we just switched away from.
1746 asmlinkage void schedule_tail(task_t *prev)
1747 __releases(rq->lock)
1749 runqueue_t *rq = this_rq();
1750 finish_task_switch(rq, prev);
1751 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1752 /* In this case, finish_task_switch does not reenable preemption */
1753 preempt_enable();
1754 #endif
1755 if (current->set_child_tid)
1756 put_user(current->pid, current->set_child_tid);
1760 * context_switch - switch to the new MM and the new
1761 * thread's register state.
1763 static inline
1764 task_t * context_switch(runqueue_t *rq, task_t *prev, task_t *next)
1766 struct mm_struct *mm = next->mm;
1767 struct mm_struct *oldmm = prev->active_mm;
1769 if (unlikely(!mm)) {
1770 next->active_mm = oldmm;
1771 atomic_inc(&oldmm->mm_count);
1772 enter_lazy_tlb(oldmm, next);
1773 } else
1774 switch_mm(oldmm, mm, next);
1776 if (unlikely(!prev->mm)) {
1777 prev->active_mm = NULL;
1778 WARN_ON(rq->prev_mm);
1779 rq->prev_mm = oldmm;
1782 /* Here we just switch the register state and the stack. */
1783 switch_to(prev, next, prev);
1785 return prev;
1789 * nr_running, nr_uninterruptible and nr_context_switches:
1791 * externally visible scheduler statistics: current number of runnable
1792 * threads, current number of uninterruptible-sleeping threads, total
1793 * number of context switches performed since bootup.
1795 unsigned long nr_running(void)
1797 unsigned long i, sum = 0;
1799 for_each_online_cpu(i)
1800 sum += cpu_rq(i)->nr_running;
1802 return sum;
1805 unsigned long nr_uninterruptible(void)
1807 unsigned long i, sum = 0;
1809 for_each_possible_cpu(i)
1810 sum += cpu_rq(i)->nr_uninterruptible;
1813 * Since we read the counters lockless, it might be slightly
1814 * inaccurate. Do not allow it to go below zero though:
1816 if (unlikely((long)sum < 0))
1817 sum = 0;
1819 return sum;
1822 unsigned long long nr_context_switches(void)
1824 int i;
1825 unsigned long long sum = 0;
1827 for_each_possible_cpu(i)
1828 sum += cpu_rq(i)->nr_switches;
1830 return sum;
1833 unsigned long nr_iowait(void)
1835 unsigned long i, sum = 0;
1837 for_each_possible_cpu(i)
1838 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1840 return sum;
1843 unsigned long nr_active(void)
1845 unsigned long i, running = 0, uninterruptible = 0;
1847 for_each_online_cpu(i) {
1848 running += cpu_rq(i)->nr_running;
1849 uninterruptible += cpu_rq(i)->nr_uninterruptible;
1852 if (unlikely((long)uninterruptible < 0))
1853 uninterruptible = 0;
1855 return running + uninterruptible;
1858 #ifdef CONFIG_SMP
1861 * double_rq_lock - safely lock two runqueues
1863 * Note this does not disable interrupts like task_rq_lock,
1864 * you need to do so manually before calling.
1866 static void double_rq_lock(runqueue_t *rq1, runqueue_t *rq2)
1867 __acquires(rq1->lock)
1868 __acquires(rq2->lock)
1870 if (rq1 == rq2) {
1871 spin_lock(&rq1->lock);
1872 __acquire(rq2->lock); /* Fake it out ;) */
1873 } else {
1874 if (rq1 < rq2) {
1875 spin_lock(&rq1->lock);
1876 spin_lock(&rq2->lock);
1877 } else {
1878 spin_lock(&rq2->lock);
1879 spin_lock(&rq1->lock);
1885 * double_rq_unlock - safely unlock two runqueues
1887 * Note this does not restore interrupts like task_rq_unlock,
1888 * you need to do so manually after calling.
1890 static void double_rq_unlock(runqueue_t *rq1, runqueue_t *rq2)
1891 __releases(rq1->lock)
1892 __releases(rq2->lock)
1894 spin_unlock(&rq1->lock);
1895 if (rq1 != rq2)
1896 spin_unlock(&rq2->lock);
1897 else
1898 __release(rq2->lock);
1902 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1904 static void double_lock_balance(runqueue_t *this_rq, runqueue_t *busiest)
1905 __releases(this_rq->lock)
1906 __acquires(busiest->lock)
1907 __acquires(this_rq->lock)
1909 if (unlikely(!spin_trylock(&busiest->lock))) {
1910 if (busiest < this_rq) {
1911 spin_unlock(&this_rq->lock);
1912 spin_lock(&busiest->lock);
1913 spin_lock(&this_rq->lock);
1914 } else
1915 spin_lock(&busiest->lock);
1920 * If dest_cpu is allowed for this process, migrate the task to it.
1921 * This is accomplished by forcing the cpu_allowed mask to only
1922 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1923 * the cpu_allowed mask is restored.
1925 static void sched_migrate_task(task_t *p, int dest_cpu)
1927 migration_req_t req;
1928 runqueue_t *rq;
1929 unsigned long flags;
1931 rq = task_rq_lock(p, &flags);
1932 if (!cpu_isset(dest_cpu, p->cpus_allowed)
1933 || unlikely(cpu_is_offline(dest_cpu)))
1934 goto out;
1936 /* force the process onto the specified CPU */
1937 if (migrate_task(p, dest_cpu, &req)) {
1938 /* Need to wait for migration thread (might exit: take ref). */
1939 struct task_struct *mt = rq->migration_thread;
1940 get_task_struct(mt);
1941 task_rq_unlock(rq, &flags);
1942 wake_up_process(mt);
1943 put_task_struct(mt);
1944 wait_for_completion(&req.done);
1945 return;
1947 out:
1948 task_rq_unlock(rq, &flags);
1952 * sched_exec - execve() is a valuable balancing opportunity, because at
1953 * this point the task has the smallest effective memory and cache footprint.
1955 void sched_exec(void)
1957 int new_cpu, this_cpu = get_cpu();
1958 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1959 put_cpu();
1960 if (new_cpu != this_cpu)
1961 sched_migrate_task(current, new_cpu);
1965 * pull_task - move a task from a remote runqueue to the local runqueue.
1966 * Both runqueues must be locked.
1968 static
1969 void pull_task(runqueue_t *src_rq, prio_array_t *src_array, task_t *p,
1970 runqueue_t *this_rq, prio_array_t *this_array, int this_cpu)
1972 dequeue_task(p, src_array);
1973 dec_nr_running(p, src_rq);
1974 set_task_cpu(p, this_cpu);
1975 inc_nr_running(p, this_rq);
1976 enqueue_task(p, this_array);
1977 p->timestamp = (p->timestamp - src_rq->timestamp_last_tick)
1978 + this_rq->timestamp_last_tick;
1980 * Note that idle threads have a prio of MAX_PRIO, for this test
1981 * to be always true for them.
1983 if (TASK_PREEMPTS_CURR(p, this_rq))
1984 resched_task(this_rq->curr);
1988 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
1990 static
1991 int can_migrate_task(task_t *p, runqueue_t *rq, int this_cpu,
1992 struct sched_domain *sd, enum idle_type idle,
1993 int *all_pinned)
1996 * We do not migrate tasks that are:
1997 * 1) running (obviously), or
1998 * 2) cannot be migrated to this CPU due to cpus_allowed, or
1999 * 3) are cache-hot on their current CPU.
2001 if (!cpu_isset(this_cpu, p->cpus_allowed))
2002 return 0;
2003 *all_pinned = 0;
2005 if (task_running(rq, p))
2006 return 0;
2009 * Aggressive migration if:
2010 * 1) task is cache cold, or
2011 * 2) too many balance attempts have failed.
2014 if (sd->nr_balance_failed > sd->cache_nice_tries)
2015 return 1;
2017 if (task_hot(p, rq->timestamp_last_tick, sd))
2018 return 0;
2019 return 1;
2022 #define rq_best_prio(rq) min((rq)->curr->prio, (rq)->best_expired_prio)
2024 * move_tasks tries to move up to max_nr_move tasks and max_load_move weighted
2025 * load from busiest to this_rq, as part of a balancing operation within
2026 * "domain". Returns the number of tasks moved.
2028 * Called with both runqueues locked.
2030 static int move_tasks(runqueue_t *this_rq, int this_cpu, runqueue_t *busiest,
2031 unsigned long max_nr_move, unsigned long max_load_move,
2032 struct sched_domain *sd, enum idle_type idle,
2033 int *all_pinned)
2035 prio_array_t *array, *dst_array;
2036 struct list_head *head, *curr;
2037 int idx, pulled = 0, pinned = 0, this_best_prio, busiest_best_prio;
2038 int busiest_best_prio_seen;
2039 int skip_for_load; /* skip the task based on weighted load issues */
2040 long rem_load_move;
2041 task_t *tmp;
2043 if (max_nr_move == 0 || max_load_move == 0)
2044 goto out;
2046 rem_load_move = max_load_move;
2047 pinned = 1;
2048 this_best_prio = rq_best_prio(this_rq);
2049 busiest_best_prio = rq_best_prio(busiest);
2051 * Enable handling of the case where there is more than one task
2052 * with the best priority. If the current running task is one
2053 * of those with prio==busiest_best_prio we know it won't be moved
2054 * and therefore it's safe to override the skip (based on load) of
2055 * any task we find with that prio.
2057 busiest_best_prio_seen = busiest_best_prio == busiest->curr->prio;
2060 * We first consider expired tasks. Those will likely not be
2061 * executed in the near future, and they are most likely to
2062 * be cache-cold, thus switching CPUs has the least effect
2063 * on them.
2065 if (busiest->expired->nr_active) {
2066 array = busiest->expired;
2067 dst_array = this_rq->expired;
2068 } else {
2069 array = busiest->active;
2070 dst_array = this_rq->active;
2073 new_array:
2074 /* Start searching at priority 0: */
2075 idx = 0;
2076 skip_bitmap:
2077 if (!idx)
2078 idx = sched_find_first_bit(array->bitmap);
2079 else
2080 idx = find_next_bit(array->bitmap, MAX_PRIO, idx);
2081 if (idx >= MAX_PRIO) {
2082 if (array == busiest->expired && busiest->active->nr_active) {
2083 array = busiest->active;
2084 dst_array = this_rq->active;
2085 goto new_array;
2087 goto out;
2090 head = array->queue + idx;
2091 curr = head->prev;
2092 skip_queue:
2093 tmp = list_entry(curr, task_t, run_list);
2095 curr = curr->prev;
2098 * To help distribute high priority tasks accross CPUs we don't
2099 * skip a task if it will be the highest priority task (i.e. smallest
2100 * prio value) on its new queue regardless of its load weight
2102 skip_for_load = tmp->load_weight > rem_load_move;
2103 if (skip_for_load && idx < this_best_prio)
2104 skip_for_load = !busiest_best_prio_seen && idx == busiest_best_prio;
2105 if (skip_for_load ||
2106 !can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) {
2107 busiest_best_prio_seen |= idx == busiest_best_prio;
2108 if (curr != head)
2109 goto skip_queue;
2110 idx++;
2111 goto skip_bitmap;
2114 #ifdef CONFIG_SCHEDSTATS
2115 if (task_hot(tmp, busiest->timestamp_last_tick, sd))
2116 schedstat_inc(sd, lb_hot_gained[idle]);
2117 #endif
2119 pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu);
2120 pulled++;
2121 rem_load_move -= tmp->load_weight;
2124 * We only want to steal up to the prescribed number of tasks
2125 * and the prescribed amount of weighted load.
2127 if (pulled < max_nr_move && rem_load_move > 0) {
2128 if (idx < this_best_prio)
2129 this_best_prio = idx;
2130 if (curr != head)
2131 goto skip_queue;
2132 idx++;
2133 goto skip_bitmap;
2135 out:
2137 * Right now, this is the only place pull_task() is called,
2138 * so we can safely collect pull_task() stats here rather than
2139 * inside pull_task().
2141 schedstat_add(sd, lb_gained[idle], pulled);
2143 if (all_pinned)
2144 *all_pinned = pinned;
2145 return pulled;
2149 * find_busiest_group finds and returns the busiest CPU group within the
2150 * domain. It calculates and returns the amount of weighted load which should be
2151 * moved to restore balance via the imbalance parameter.
2153 static struct sched_group *
2154 find_busiest_group(struct sched_domain *sd, int this_cpu,
2155 unsigned long *imbalance, enum idle_type idle, int *sd_idle)
2157 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2158 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2159 unsigned long max_pull;
2160 unsigned long busiest_load_per_task, busiest_nr_running;
2161 unsigned long this_load_per_task, this_nr_running;
2162 int load_idx;
2163 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2164 int power_savings_balance = 1;
2165 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2166 unsigned long min_nr_running = ULONG_MAX;
2167 struct sched_group *group_min = NULL, *group_leader = NULL;
2168 #endif
2170 max_load = this_load = total_load = total_pwr = 0;
2171 busiest_load_per_task = busiest_nr_running = 0;
2172 this_load_per_task = this_nr_running = 0;
2173 if (idle == NOT_IDLE)
2174 load_idx = sd->busy_idx;
2175 else if (idle == NEWLY_IDLE)
2176 load_idx = sd->newidle_idx;
2177 else
2178 load_idx = sd->idle_idx;
2180 do {
2181 unsigned long load, group_capacity;
2182 int local_group;
2183 int i;
2184 unsigned long sum_nr_running, sum_weighted_load;
2186 local_group = cpu_isset(this_cpu, group->cpumask);
2188 /* Tally up the load of all CPUs in the group */
2189 sum_weighted_load = sum_nr_running = avg_load = 0;
2191 for_each_cpu_mask(i, group->cpumask) {
2192 runqueue_t *rq = cpu_rq(i);
2194 if (*sd_idle && !idle_cpu(i))
2195 *sd_idle = 0;
2197 /* Bias balancing toward cpus of our domain */
2198 if (local_group)
2199 load = target_load(i, load_idx);
2200 else
2201 load = source_load(i, load_idx);
2203 avg_load += load;
2204 sum_nr_running += rq->nr_running;
2205 sum_weighted_load += rq->raw_weighted_load;
2208 total_load += avg_load;
2209 total_pwr += group->cpu_power;
2211 /* Adjust by relative CPU power of the group */
2212 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
2214 group_capacity = group->cpu_power / SCHED_LOAD_SCALE;
2216 if (local_group) {
2217 this_load = avg_load;
2218 this = group;
2219 this_nr_running = sum_nr_running;
2220 this_load_per_task = sum_weighted_load;
2221 } else if (avg_load > max_load &&
2222 sum_nr_running > group_capacity) {
2223 max_load = avg_load;
2224 busiest = group;
2225 busiest_nr_running = sum_nr_running;
2226 busiest_load_per_task = sum_weighted_load;
2229 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2231 * Busy processors will not participate in power savings
2232 * balance.
2234 if (idle == NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2235 goto group_next;
2238 * If the local group is idle or completely loaded
2239 * no need to do power savings balance at this domain
2241 if (local_group && (this_nr_running >= group_capacity ||
2242 !this_nr_running))
2243 power_savings_balance = 0;
2246 * If a group is already running at full capacity or idle,
2247 * don't include that group in power savings calculations
2249 if (!power_savings_balance || sum_nr_running >= group_capacity
2250 || !sum_nr_running)
2251 goto group_next;
2254 * Calculate the group which has the least non-idle load.
2255 * This is the group from where we need to pick up the load
2256 * for saving power
2258 if ((sum_nr_running < min_nr_running) ||
2259 (sum_nr_running == min_nr_running &&
2260 first_cpu(group->cpumask) <
2261 first_cpu(group_min->cpumask))) {
2262 group_min = group;
2263 min_nr_running = sum_nr_running;
2264 min_load_per_task = sum_weighted_load /
2265 sum_nr_running;
2269 * Calculate the group which is almost near its
2270 * capacity but still has some space to pick up some load
2271 * from other group and save more power
2273 if (sum_nr_running <= group_capacity - 1)
2274 if (sum_nr_running > leader_nr_running ||
2275 (sum_nr_running == leader_nr_running &&
2276 first_cpu(group->cpumask) >
2277 first_cpu(group_leader->cpumask))) {
2278 group_leader = group;
2279 leader_nr_running = sum_nr_running;
2282 group_next:
2283 #endif
2284 group = group->next;
2285 } while (group != sd->groups);
2287 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
2288 goto out_balanced;
2290 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2292 if (this_load >= avg_load ||
2293 100*max_load <= sd->imbalance_pct*this_load)
2294 goto out_balanced;
2296 busiest_load_per_task /= busiest_nr_running;
2298 * We're trying to get all the cpus to the average_load, so we don't
2299 * want to push ourselves above the average load, nor do we wish to
2300 * reduce the max loaded cpu below the average load, as either of these
2301 * actions would just result in more rebalancing later, and ping-pong
2302 * tasks around. Thus we look for the minimum possible imbalance.
2303 * Negative imbalances (*we* are more loaded than anyone else) will
2304 * be counted as no imbalance for these purposes -- we can't fix that
2305 * by pulling tasks to us. Be careful of negative numbers as they'll
2306 * appear as very large values with unsigned longs.
2308 if (max_load <= busiest_load_per_task)
2309 goto out_balanced;
2312 * In the presence of smp nice balancing, certain scenarios can have
2313 * max load less than avg load(as we skip the groups at or below
2314 * its cpu_power, while calculating max_load..)
2316 if (max_load < avg_load) {
2317 *imbalance = 0;
2318 goto small_imbalance;
2321 /* Don't want to pull so many tasks that a group would go idle */
2322 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2324 /* How much load to actually move to equalise the imbalance */
2325 *imbalance = min(max_pull * busiest->cpu_power,
2326 (avg_load - this_load) * this->cpu_power)
2327 / SCHED_LOAD_SCALE;
2330 * if *imbalance is less than the average load per runnable task
2331 * there is no gaurantee that any tasks will be moved so we'll have
2332 * a think about bumping its value to force at least one task to be
2333 * moved
2335 if (*imbalance < busiest_load_per_task) {
2336 unsigned long pwr_now, pwr_move;
2337 unsigned long tmp;
2338 unsigned int imbn;
2340 small_imbalance:
2341 pwr_move = pwr_now = 0;
2342 imbn = 2;
2343 if (this_nr_running) {
2344 this_load_per_task /= this_nr_running;
2345 if (busiest_load_per_task > this_load_per_task)
2346 imbn = 1;
2347 } else
2348 this_load_per_task = SCHED_LOAD_SCALE;
2350 if (max_load - this_load >= busiest_load_per_task * imbn) {
2351 *imbalance = busiest_load_per_task;
2352 return busiest;
2356 * OK, we don't have enough imbalance to justify moving tasks,
2357 * however we may be able to increase total CPU power used by
2358 * moving them.
2361 pwr_now += busiest->cpu_power *
2362 min(busiest_load_per_task, max_load);
2363 pwr_now += this->cpu_power *
2364 min(this_load_per_task, this_load);
2365 pwr_now /= SCHED_LOAD_SCALE;
2367 /* Amount of load we'd subtract */
2368 tmp = busiest_load_per_task*SCHED_LOAD_SCALE/busiest->cpu_power;
2369 if (max_load > tmp)
2370 pwr_move += busiest->cpu_power *
2371 min(busiest_load_per_task, max_load - tmp);
2373 /* Amount of load we'd add */
2374 if (max_load*busiest->cpu_power <
2375 busiest_load_per_task*SCHED_LOAD_SCALE)
2376 tmp = max_load*busiest->cpu_power/this->cpu_power;
2377 else
2378 tmp = busiest_load_per_task*SCHED_LOAD_SCALE/this->cpu_power;
2379 pwr_move += this->cpu_power*min(this_load_per_task, this_load + tmp);
2380 pwr_move /= SCHED_LOAD_SCALE;
2382 /* Move if we gain throughput */
2383 if (pwr_move <= pwr_now)
2384 goto out_balanced;
2386 *imbalance = busiest_load_per_task;
2389 return busiest;
2391 out_balanced:
2392 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2393 if (idle == NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2394 goto ret;
2396 if (this == group_leader && group_leader != group_min) {
2397 *imbalance = min_load_per_task;
2398 return group_min;
2400 ret:
2401 #endif
2402 *imbalance = 0;
2403 return NULL;
2407 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2409 static runqueue_t *find_busiest_queue(struct sched_group *group,
2410 enum idle_type idle, unsigned long imbalance)
2412 unsigned long max_load = 0;
2413 runqueue_t *busiest = NULL, *rqi;
2414 int i;
2416 for_each_cpu_mask(i, group->cpumask) {
2417 rqi = cpu_rq(i);
2419 if (rqi->nr_running == 1 && rqi->raw_weighted_load > imbalance)
2420 continue;
2422 if (rqi->raw_weighted_load > max_load) {
2423 max_load = rqi->raw_weighted_load;
2424 busiest = rqi;
2428 return busiest;
2432 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2433 * so long as it is large enough.
2435 #define MAX_PINNED_INTERVAL 512
2437 #define minus_1_or_zero(n) ((n) > 0 ? (n) - 1 : 0)
2439 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2440 * tasks if there is an imbalance.
2442 * Called with this_rq unlocked.
2444 static int load_balance(int this_cpu, runqueue_t *this_rq,
2445 struct sched_domain *sd, enum idle_type idle)
2447 struct sched_group *group;
2448 runqueue_t *busiest;
2449 unsigned long imbalance;
2450 int nr_moved, all_pinned = 0;
2451 int active_balance = 0;
2452 int sd_idle = 0;
2454 if (idle != NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2455 !sched_smt_power_savings)
2456 sd_idle = 1;
2458 schedstat_inc(sd, lb_cnt[idle]);
2460 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle);
2461 if (!group) {
2462 schedstat_inc(sd, lb_nobusyg[idle]);
2463 goto out_balanced;
2466 busiest = find_busiest_queue(group, idle, imbalance);
2467 if (!busiest) {
2468 schedstat_inc(sd, lb_nobusyq[idle]);
2469 goto out_balanced;
2472 BUG_ON(busiest == this_rq);
2474 schedstat_add(sd, lb_imbalance[idle], imbalance);
2476 nr_moved = 0;
2477 if (busiest->nr_running > 1) {
2479 * Attempt to move tasks. If find_busiest_group has found
2480 * an imbalance but busiest->nr_running <= 1, the group is
2481 * still unbalanced. nr_moved simply stays zero, so it is
2482 * correctly treated as an imbalance.
2484 double_rq_lock(this_rq, busiest);
2485 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2486 minus_1_or_zero(busiest->nr_running),
2487 imbalance, sd, idle, &all_pinned);
2488 double_rq_unlock(this_rq, busiest);
2490 /* All tasks on this runqueue were pinned by CPU affinity */
2491 if (unlikely(all_pinned))
2492 goto out_balanced;
2495 if (!nr_moved) {
2496 schedstat_inc(sd, lb_failed[idle]);
2497 sd->nr_balance_failed++;
2499 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
2501 spin_lock(&busiest->lock);
2503 /* don't kick the migration_thread, if the curr
2504 * task on busiest cpu can't be moved to this_cpu
2506 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2507 spin_unlock(&busiest->lock);
2508 all_pinned = 1;
2509 goto out_one_pinned;
2512 if (!busiest->active_balance) {
2513 busiest->active_balance = 1;
2514 busiest->push_cpu = this_cpu;
2515 active_balance = 1;
2517 spin_unlock(&busiest->lock);
2518 if (active_balance)
2519 wake_up_process(busiest->migration_thread);
2522 * We've kicked active balancing, reset the failure
2523 * counter.
2525 sd->nr_balance_failed = sd->cache_nice_tries+1;
2527 } else
2528 sd->nr_balance_failed = 0;
2530 if (likely(!active_balance)) {
2531 /* We were unbalanced, so reset the balancing interval */
2532 sd->balance_interval = sd->min_interval;
2533 } else {
2535 * If we've begun active balancing, start to back off. This
2536 * case may not be covered by the all_pinned logic if there
2537 * is only 1 task on the busy runqueue (because we don't call
2538 * move_tasks).
2540 if (sd->balance_interval < sd->max_interval)
2541 sd->balance_interval *= 2;
2544 if (!nr_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2545 !sched_smt_power_savings)
2546 return -1;
2547 return nr_moved;
2549 out_balanced:
2550 schedstat_inc(sd, lb_balanced[idle]);
2552 sd->nr_balance_failed = 0;
2554 out_one_pinned:
2555 /* tune up the balancing interval */
2556 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2557 (sd->balance_interval < sd->max_interval))
2558 sd->balance_interval *= 2;
2560 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER && !sched_smt_power_savings)
2561 return -1;
2562 return 0;
2566 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2567 * tasks if there is an imbalance.
2569 * Called from schedule when this_rq is about to become idle (NEWLY_IDLE).
2570 * this_rq is locked.
2572 static int load_balance_newidle(int this_cpu, runqueue_t *this_rq,
2573 struct sched_domain *sd)
2575 struct sched_group *group;
2576 runqueue_t *busiest = NULL;
2577 unsigned long imbalance;
2578 int nr_moved = 0;
2579 int sd_idle = 0;
2581 if (sd->flags & SD_SHARE_CPUPOWER && !sched_smt_power_savings)
2582 sd_idle = 1;
2584 schedstat_inc(sd, lb_cnt[NEWLY_IDLE]);
2585 group = find_busiest_group(sd, this_cpu, &imbalance, NEWLY_IDLE, &sd_idle);
2586 if (!group) {
2587 schedstat_inc(sd, lb_nobusyg[NEWLY_IDLE]);
2588 goto out_balanced;
2591 busiest = find_busiest_queue(group, NEWLY_IDLE, imbalance);
2592 if (!busiest) {
2593 schedstat_inc(sd, lb_nobusyq[NEWLY_IDLE]);
2594 goto out_balanced;
2597 BUG_ON(busiest == this_rq);
2599 schedstat_add(sd, lb_imbalance[NEWLY_IDLE], imbalance);
2601 nr_moved = 0;
2602 if (busiest->nr_running > 1) {
2603 /* Attempt to move tasks */
2604 double_lock_balance(this_rq, busiest);
2605 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2606 minus_1_or_zero(busiest->nr_running),
2607 imbalance, sd, NEWLY_IDLE, NULL);
2608 spin_unlock(&busiest->lock);
2611 if (!nr_moved) {
2612 schedstat_inc(sd, lb_failed[NEWLY_IDLE]);
2613 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2614 return -1;
2615 } else
2616 sd->nr_balance_failed = 0;
2618 return nr_moved;
2620 out_balanced:
2621 schedstat_inc(sd, lb_balanced[NEWLY_IDLE]);
2622 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER && !sched_smt_power_savings)
2623 return -1;
2624 sd->nr_balance_failed = 0;
2625 return 0;
2629 * idle_balance is called by schedule() if this_cpu is about to become
2630 * idle. Attempts to pull tasks from other CPUs.
2632 static void idle_balance(int this_cpu, runqueue_t *this_rq)
2634 struct sched_domain *sd;
2636 for_each_domain(this_cpu, sd) {
2637 if (sd->flags & SD_BALANCE_NEWIDLE) {
2638 if (load_balance_newidle(this_cpu, this_rq, sd)) {
2639 /* We've pulled tasks over so stop searching */
2640 break;
2647 * active_load_balance is run by migration threads. It pushes running tasks
2648 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2649 * running on each physical CPU where possible, and avoids physical /
2650 * logical imbalances.
2652 * Called with busiest_rq locked.
2654 static void active_load_balance(runqueue_t *busiest_rq, int busiest_cpu)
2656 struct sched_domain *sd;
2657 runqueue_t *target_rq;
2658 int target_cpu = busiest_rq->push_cpu;
2660 if (busiest_rq->nr_running <= 1)
2661 /* no task to move */
2662 return;
2664 target_rq = cpu_rq(target_cpu);
2667 * This condition is "impossible", if it occurs
2668 * we need to fix it. Originally reported by
2669 * Bjorn Helgaas on a 128-cpu setup.
2671 BUG_ON(busiest_rq == target_rq);
2673 /* move a task from busiest_rq to target_rq */
2674 double_lock_balance(busiest_rq, target_rq);
2676 /* Search for an sd spanning us and the target CPU. */
2677 for_each_domain(target_cpu, sd) {
2678 if ((sd->flags & SD_LOAD_BALANCE) &&
2679 cpu_isset(busiest_cpu, sd->span))
2680 break;
2683 if (unlikely(sd == NULL))
2684 goto out;
2686 schedstat_inc(sd, alb_cnt);
2688 if (move_tasks(target_rq, target_cpu, busiest_rq, 1,
2689 RTPRIO_TO_LOAD_WEIGHT(100), sd, SCHED_IDLE, NULL))
2690 schedstat_inc(sd, alb_pushed);
2691 else
2692 schedstat_inc(sd, alb_failed);
2693 out:
2694 spin_unlock(&target_rq->lock);
2698 * rebalance_tick will get called every timer tick, on every CPU.
2700 * It checks each scheduling domain to see if it is due to be balanced,
2701 * and initiates a balancing operation if so.
2703 * Balancing parameters are set up in arch_init_sched_domains.
2706 /* Don't have all balancing operations going off at once */
2707 #define CPU_OFFSET(cpu) (HZ * cpu / NR_CPUS)
2709 static void rebalance_tick(int this_cpu, runqueue_t *this_rq,
2710 enum idle_type idle)
2712 unsigned long old_load, this_load;
2713 unsigned long j = jiffies + CPU_OFFSET(this_cpu);
2714 struct sched_domain *sd;
2715 int i;
2717 this_load = this_rq->raw_weighted_load;
2718 /* Update our load */
2719 for (i = 0; i < 3; i++) {
2720 unsigned long new_load = this_load;
2721 int scale = 1 << i;
2722 old_load = this_rq->cpu_load[i];
2724 * Round up the averaging division if load is increasing. This
2725 * prevents us from getting stuck on 9 if the load is 10, for
2726 * example.
2728 if (new_load > old_load)
2729 new_load += scale-1;
2730 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) / scale;
2733 for_each_domain(this_cpu, sd) {
2734 unsigned long interval;
2736 if (!(sd->flags & SD_LOAD_BALANCE))
2737 continue;
2739 interval = sd->balance_interval;
2740 if (idle != SCHED_IDLE)
2741 interval *= sd->busy_factor;
2743 /* scale ms to jiffies */
2744 interval = msecs_to_jiffies(interval);
2745 if (unlikely(!interval))
2746 interval = 1;
2748 if (j - sd->last_balance >= interval) {
2749 if (load_balance(this_cpu, this_rq, sd, idle)) {
2751 * We've pulled tasks over so either we're no
2752 * longer idle, or one of our SMT siblings is
2753 * not idle.
2755 idle = NOT_IDLE;
2757 sd->last_balance += interval;
2761 #else
2763 * on UP we do not need to balance between CPUs:
2765 static inline void rebalance_tick(int cpu, runqueue_t *rq, enum idle_type idle)
2768 static inline void idle_balance(int cpu, runqueue_t *rq)
2771 #endif
2773 static inline int wake_priority_sleeper(runqueue_t *rq)
2775 int ret = 0;
2776 #ifdef CONFIG_SCHED_SMT
2777 spin_lock(&rq->lock);
2779 * If an SMT sibling task has been put to sleep for priority
2780 * reasons reschedule the idle task to see if it can now run.
2782 if (rq->nr_running) {
2783 resched_task(rq->idle);
2784 ret = 1;
2786 spin_unlock(&rq->lock);
2787 #endif
2788 return ret;
2791 DEFINE_PER_CPU(struct kernel_stat, kstat);
2793 EXPORT_PER_CPU_SYMBOL(kstat);
2796 * This is called on clock ticks and on context switches.
2797 * Bank in p->sched_time the ns elapsed since the last tick or switch.
2799 static inline void update_cpu_clock(task_t *p, runqueue_t *rq,
2800 unsigned long long now)
2802 unsigned long long last = max(p->timestamp, rq->timestamp_last_tick);
2803 p->sched_time += now - last;
2807 * Return current->sched_time plus any more ns on the sched_clock
2808 * that have not yet been banked.
2810 unsigned long long current_sched_time(const task_t *tsk)
2812 unsigned long long ns;
2813 unsigned long flags;
2814 local_irq_save(flags);
2815 ns = max(tsk->timestamp, task_rq(tsk)->timestamp_last_tick);
2816 ns = tsk->sched_time + (sched_clock() - ns);
2817 local_irq_restore(flags);
2818 return ns;
2822 * We place interactive tasks back into the active array, if possible.
2824 * To guarantee that this does not starve expired tasks we ignore the
2825 * interactivity of a task if the first expired task had to wait more
2826 * than a 'reasonable' amount of time. This deadline timeout is
2827 * load-dependent, as the frequency of array switched decreases with
2828 * increasing number of running tasks. We also ignore the interactivity
2829 * if a better static_prio task has expired:
2831 #define EXPIRED_STARVING(rq) \
2832 ((STARVATION_LIMIT && ((rq)->expired_timestamp && \
2833 (jiffies - (rq)->expired_timestamp >= \
2834 STARVATION_LIMIT * ((rq)->nr_running) + 1))) || \
2835 ((rq)->curr->static_prio > (rq)->best_expired_prio))
2838 * Account user cpu time to a process.
2839 * @p: the process that the cpu time gets accounted to
2840 * @hardirq_offset: the offset to subtract from hardirq_count()
2841 * @cputime: the cpu time spent in user space since the last update
2843 void account_user_time(struct task_struct *p, cputime_t cputime)
2845 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2846 cputime64_t tmp;
2848 p->utime = cputime_add(p->utime, cputime);
2850 /* Add user time to cpustat. */
2851 tmp = cputime_to_cputime64(cputime);
2852 if (TASK_NICE(p) > 0)
2853 cpustat->nice = cputime64_add(cpustat->nice, tmp);
2854 else
2855 cpustat->user = cputime64_add(cpustat->user, tmp);
2859 * Account system cpu time to a process.
2860 * @p: the process that the cpu time gets accounted to
2861 * @hardirq_offset: the offset to subtract from hardirq_count()
2862 * @cputime: the cpu time spent in kernel space since the last update
2864 void account_system_time(struct task_struct *p, int hardirq_offset,
2865 cputime_t cputime)
2867 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2868 runqueue_t *rq = this_rq();
2869 cputime64_t tmp;
2871 p->stime = cputime_add(p->stime, cputime);
2873 /* Add system time to cpustat. */
2874 tmp = cputime_to_cputime64(cputime);
2875 if (hardirq_count() - hardirq_offset)
2876 cpustat->irq = cputime64_add(cpustat->irq, tmp);
2877 else if (softirq_count())
2878 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
2879 else if (p != rq->idle)
2880 cpustat->system = cputime64_add(cpustat->system, tmp);
2881 else if (atomic_read(&rq->nr_iowait) > 0)
2882 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2883 else
2884 cpustat->idle = cputime64_add(cpustat->idle, tmp);
2885 /* Account for system time used */
2886 acct_update_integrals(p);
2890 * Account for involuntary wait time.
2891 * @p: the process from which the cpu time has been stolen
2892 * @steal: the cpu time spent in involuntary wait
2894 void account_steal_time(struct task_struct *p, cputime_t steal)
2896 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2897 cputime64_t tmp = cputime_to_cputime64(steal);
2898 runqueue_t *rq = this_rq();
2900 if (p == rq->idle) {
2901 p->stime = cputime_add(p->stime, steal);
2902 if (atomic_read(&rq->nr_iowait) > 0)
2903 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2904 else
2905 cpustat->idle = cputime64_add(cpustat->idle, tmp);
2906 } else
2907 cpustat->steal = cputime64_add(cpustat->steal, tmp);
2911 * This function gets called by the timer code, with HZ frequency.
2912 * We call it with interrupts disabled.
2914 * It also gets called by the fork code, when changing the parent's
2915 * timeslices.
2917 void scheduler_tick(void)
2919 int cpu = smp_processor_id();
2920 runqueue_t *rq = this_rq();
2921 task_t *p = current;
2922 unsigned long long now = sched_clock();
2924 update_cpu_clock(p, rq, now);
2926 rq->timestamp_last_tick = now;
2928 if (p == rq->idle) {
2929 if (wake_priority_sleeper(rq))
2930 goto out;
2931 rebalance_tick(cpu, rq, SCHED_IDLE);
2932 return;
2935 /* Task might have expired already, but not scheduled off yet */
2936 if (p->array != rq->active) {
2937 set_tsk_need_resched(p);
2938 goto out;
2940 spin_lock(&rq->lock);
2942 * The task was running during this tick - update the
2943 * time slice counter. Note: we do not update a thread's
2944 * priority until it either goes to sleep or uses up its
2945 * timeslice. This makes it possible for interactive tasks
2946 * to use up their timeslices at their highest priority levels.
2948 if (rt_task(p)) {
2950 * RR tasks need a special form of timeslice management.
2951 * FIFO tasks have no timeslices.
2953 if ((p->policy == SCHED_RR) && !--p->time_slice) {
2954 p->time_slice = task_timeslice(p);
2955 p->first_time_slice = 0;
2956 set_tsk_need_resched(p);
2958 /* put it at the end of the queue: */
2959 requeue_task(p, rq->active);
2961 goto out_unlock;
2963 if (!--p->time_slice) {
2964 dequeue_task(p, rq->active);
2965 set_tsk_need_resched(p);
2966 p->prio = effective_prio(p);
2967 p->time_slice = task_timeslice(p);
2968 p->first_time_slice = 0;
2970 if (!rq->expired_timestamp)
2971 rq->expired_timestamp = jiffies;
2972 if (!TASK_INTERACTIVE(p) || EXPIRED_STARVING(rq)) {
2973 enqueue_task(p, rq->expired);
2974 if (p->static_prio < rq->best_expired_prio)
2975 rq->best_expired_prio = p->static_prio;
2976 } else
2977 enqueue_task(p, rq->active);
2978 } else {
2980 * Prevent a too long timeslice allowing a task to monopolize
2981 * the CPU. We do this by splitting up the timeslice into
2982 * smaller pieces.
2984 * Note: this does not mean the task's timeslices expire or
2985 * get lost in any way, they just might be preempted by
2986 * another task of equal priority. (one with higher
2987 * priority would have preempted this task already.) We
2988 * requeue this task to the end of the list on this priority
2989 * level, which is in essence a round-robin of tasks with
2990 * equal priority.
2992 * This only applies to tasks in the interactive
2993 * delta range with at least TIMESLICE_GRANULARITY to requeue.
2995 if (TASK_INTERACTIVE(p) && !((task_timeslice(p) -
2996 p->time_slice) % TIMESLICE_GRANULARITY(p)) &&
2997 (p->time_slice >= TIMESLICE_GRANULARITY(p)) &&
2998 (p->array == rq->active)) {
3000 requeue_task(p, rq->active);
3001 set_tsk_need_resched(p);
3004 out_unlock:
3005 spin_unlock(&rq->lock);
3006 out:
3007 rebalance_tick(cpu, rq, NOT_IDLE);
3010 #ifdef CONFIG_SCHED_SMT
3011 static inline void wakeup_busy_runqueue(runqueue_t *rq)
3013 /* If an SMT runqueue is sleeping due to priority reasons wake it up */
3014 if (rq->curr == rq->idle && rq->nr_running)
3015 resched_task(rq->idle);
3019 * Called with interrupt disabled and this_rq's runqueue locked.
3021 static void wake_sleeping_dependent(int this_cpu)
3023 struct sched_domain *tmp, *sd = NULL;
3024 int i;
3026 for_each_domain(this_cpu, tmp) {
3027 if (tmp->flags & SD_SHARE_CPUPOWER) {
3028 sd = tmp;
3029 break;
3033 if (!sd)
3034 return;
3036 for_each_cpu_mask(i, sd->span) {
3037 runqueue_t *smt_rq = cpu_rq(i);
3039 if (i == this_cpu)
3040 continue;
3041 if (unlikely(!spin_trylock(&smt_rq->lock)))
3042 continue;
3044 wakeup_busy_runqueue(smt_rq);
3045 spin_unlock(&smt_rq->lock);
3050 * number of 'lost' timeslices this task wont be able to fully
3051 * utilize, if another task runs on a sibling. This models the
3052 * slowdown effect of other tasks running on siblings:
3054 static inline unsigned long smt_slice(task_t *p, struct sched_domain *sd)
3056 return p->time_slice * (100 - sd->per_cpu_gain) / 100;
3060 * To minimise lock contention and not have to drop this_rq's runlock we only
3061 * trylock the sibling runqueues and bypass those runqueues if we fail to
3062 * acquire their lock. As we only trylock the normal locking order does not
3063 * need to be obeyed.
3065 static int dependent_sleeper(int this_cpu, runqueue_t *this_rq, task_t *p)
3067 struct sched_domain *tmp, *sd = NULL;
3068 int ret = 0, i;
3070 /* kernel/rt threads do not participate in dependent sleeping */
3071 if (!p->mm || rt_task(p))
3072 return 0;
3074 for_each_domain(this_cpu, tmp) {
3075 if (tmp->flags & SD_SHARE_CPUPOWER) {
3076 sd = tmp;
3077 break;
3081 if (!sd)
3082 return 0;
3084 for_each_cpu_mask(i, sd->span) {
3085 runqueue_t *smt_rq;
3086 task_t *smt_curr;
3088 if (i == this_cpu)
3089 continue;
3091 smt_rq = cpu_rq(i);
3092 if (unlikely(!spin_trylock(&smt_rq->lock)))
3093 continue;
3095 smt_curr = smt_rq->curr;
3097 if (!smt_curr->mm)
3098 goto unlock;
3101 * If a user task with lower static priority than the
3102 * running task on the SMT sibling is trying to schedule,
3103 * delay it till there is proportionately less timeslice
3104 * left of the sibling task to prevent a lower priority
3105 * task from using an unfair proportion of the
3106 * physical cpu's resources. -ck
3108 if (rt_task(smt_curr)) {
3110 * With real time tasks we run non-rt tasks only
3111 * per_cpu_gain% of the time.
3113 if ((jiffies % DEF_TIMESLICE) >
3114 (sd->per_cpu_gain * DEF_TIMESLICE / 100))
3115 ret = 1;
3116 } else {
3117 if (smt_curr->static_prio < p->static_prio &&
3118 !TASK_PREEMPTS_CURR(p, smt_rq) &&
3119 smt_slice(smt_curr, sd) > task_timeslice(p))
3120 ret = 1;
3122 unlock:
3123 spin_unlock(&smt_rq->lock);
3125 return ret;
3127 #else
3128 static inline void wake_sleeping_dependent(int this_cpu)
3132 static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq,
3133 task_t *p)
3135 return 0;
3137 #endif
3139 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3141 void fastcall add_preempt_count(int val)
3144 * Underflow?
3146 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3147 return;
3148 preempt_count() += val;
3150 * Spinlock count overflowing soon?
3152 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= PREEMPT_MASK-10);
3154 EXPORT_SYMBOL(add_preempt_count);
3156 void fastcall sub_preempt_count(int val)
3159 * Underflow?
3161 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3162 return;
3164 * Is the spinlock portion underflowing?
3166 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3167 !(preempt_count() & PREEMPT_MASK)))
3168 return;
3170 preempt_count() -= val;
3172 EXPORT_SYMBOL(sub_preempt_count);
3174 #endif
3176 static inline int interactive_sleep(enum sleep_type sleep_type)
3178 return (sleep_type == SLEEP_INTERACTIVE ||
3179 sleep_type == SLEEP_INTERRUPTED);
3183 * schedule() is the main scheduler function.
3185 asmlinkage void __sched schedule(void)
3187 long *switch_count;
3188 task_t *prev, *next;
3189 runqueue_t *rq;
3190 prio_array_t *array;
3191 struct list_head *queue;
3192 unsigned long long now;
3193 unsigned long run_time;
3194 int cpu, idx, new_prio;
3197 * Test if we are atomic. Since do_exit() needs to call into
3198 * schedule() atomically, we ignore that path for now.
3199 * Otherwise, whine if we are scheduling when we should not be.
3201 if (unlikely(in_atomic() && !current->exit_state)) {
3202 printk(KERN_ERR "BUG: scheduling while atomic: "
3203 "%s/0x%08x/%d\n",
3204 current->comm, preempt_count(), current->pid);
3205 dump_stack();
3207 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3209 need_resched:
3210 preempt_disable();
3211 prev = current;
3212 release_kernel_lock(prev);
3213 need_resched_nonpreemptible:
3214 rq = this_rq();
3217 * The idle thread is not allowed to schedule!
3218 * Remove this check after it has been exercised a bit.
3220 if (unlikely(prev == rq->idle) && prev->state != TASK_RUNNING) {
3221 printk(KERN_ERR "bad: scheduling from the idle thread!\n");
3222 dump_stack();
3225 schedstat_inc(rq, sched_cnt);
3226 now = sched_clock();
3227 if (likely((long long)(now - prev->timestamp) < NS_MAX_SLEEP_AVG)) {
3228 run_time = now - prev->timestamp;
3229 if (unlikely((long long)(now - prev->timestamp) < 0))
3230 run_time = 0;
3231 } else
3232 run_time = NS_MAX_SLEEP_AVG;
3235 * Tasks charged proportionately less run_time at high sleep_avg to
3236 * delay them losing their interactive status
3238 run_time /= (CURRENT_BONUS(prev) ? : 1);
3240 spin_lock_irq(&rq->lock);
3242 if (unlikely(prev->flags & PF_DEAD))
3243 prev->state = EXIT_DEAD;
3245 switch_count = &prev->nivcsw;
3246 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3247 switch_count = &prev->nvcsw;
3248 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
3249 unlikely(signal_pending(prev))))
3250 prev->state = TASK_RUNNING;
3251 else {
3252 if (prev->state == TASK_UNINTERRUPTIBLE)
3253 rq->nr_uninterruptible++;
3254 deactivate_task(prev, rq);
3258 cpu = smp_processor_id();
3259 if (unlikely(!rq->nr_running)) {
3260 idle_balance(cpu, rq);
3261 if (!rq->nr_running) {
3262 next = rq->idle;
3263 rq->expired_timestamp = 0;
3264 wake_sleeping_dependent(cpu);
3265 goto switch_tasks;
3269 array = rq->active;
3270 if (unlikely(!array->nr_active)) {
3272 * Switch the active and expired arrays.
3274 schedstat_inc(rq, sched_switch);
3275 rq->active = rq->expired;
3276 rq->expired = array;
3277 array = rq->active;
3278 rq->expired_timestamp = 0;
3279 rq->best_expired_prio = MAX_PRIO;
3282 idx = sched_find_first_bit(array->bitmap);
3283 queue = array->queue + idx;
3284 next = list_entry(queue->next, task_t, run_list);
3286 if (!rt_task(next) && interactive_sleep(next->sleep_type)) {
3287 unsigned long long delta = now - next->timestamp;
3288 if (unlikely((long long)(now - next->timestamp) < 0))
3289 delta = 0;
3291 if (next->sleep_type == SLEEP_INTERACTIVE)
3292 delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128;
3294 array = next->array;
3295 new_prio = recalc_task_prio(next, next->timestamp + delta);
3297 if (unlikely(next->prio != new_prio)) {
3298 dequeue_task(next, array);
3299 next->prio = new_prio;
3300 enqueue_task(next, array);
3303 next->sleep_type = SLEEP_NORMAL;
3304 if (dependent_sleeper(cpu, rq, next))
3305 next = rq->idle;
3306 switch_tasks:
3307 if (next == rq->idle)
3308 schedstat_inc(rq, sched_goidle);
3309 prefetch(next);
3310 prefetch_stack(next);
3311 clear_tsk_need_resched(prev);
3312 rcu_qsctr_inc(task_cpu(prev));
3314 update_cpu_clock(prev, rq, now);
3316 prev->sleep_avg -= run_time;
3317 if ((long)prev->sleep_avg <= 0)
3318 prev->sleep_avg = 0;
3319 prev->timestamp = prev->last_ran = now;
3321 sched_info_switch(prev, next);
3322 if (likely(prev != next)) {
3323 next->timestamp = now;
3324 rq->nr_switches++;
3325 rq->curr = next;
3326 ++*switch_count;
3328 prepare_task_switch(rq, next);
3329 prev = context_switch(rq, prev, next);
3330 barrier();
3332 * this_rq must be evaluated again because prev may have moved
3333 * CPUs since it called schedule(), thus the 'rq' on its stack
3334 * frame will be invalid.
3336 finish_task_switch(this_rq(), prev);
3337 } else
3338 spin_unlock_irq(&rq->lock);
3340 prev = current;
3341 if (unlikely(reacquire_kernel_lock(prev) < 0))
3342 goto need_resched_nonpreemptible;
3343 preempt_enable_no_resched();
3344 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3345 goto need_resched;
3348 EXPORT_SYMBOL(schedule);
3350 #ifdef CONFIG_PREEMPT
3352 * this is is the entry point to schedule() from in-kernel preemption
3353 * off of preempt_enable. Kernel preemptions off return from interrupt
3354 * occur there and call schedule directly.
3356 asmlinkage void __sched preempt_schedule(void)
3358 struct thread_info *ti = current_thread_info();
3359 #ifdef CONFIG_PREEMPT_BKL
3360 struct task_struct *task = current;
3361 int saved_lock_depth;
3362 #endif
3364 * If there is a non-zero preempt_count or interrupts are disabled,
3365 * we do not want to preempt the current task. Just return..
3367 if (unlikely(ti->preempt_count || irqs_disabled()))
3368 return;
3370 need_resched:
3371 add_preempt_count(PREEMPT_ACTIVE);
3373 * We keep the big kernel semaphore locked, but we
3374 * clear ->lock_depth so that schedule() doesnt
3375 * auto-release the semaphore:
3377 #ifdef CONFIG_PREEMPT_BKL
3378 saved_lock_depth = task->lock_depth;
3379 task->lock_depth = -1;
3380 #endif
3381 schedule();
3382 #ifdef CONFIG_PREEMPT_BKL
3383 task->lock_depth = saved_lock_depth;
3384 #endif
3385 sub_preempt_count(PREEMPT_ACTIVE);
3387 /* we could miss a preemption opportunity between schedule and now */
3388 barrier();
3389 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3390 goto need_resched;
3393 EXPORT_SYMBOL(preempt_schedule);
3396 * this is is the entry point to schedule() from kernel preemption
3397 * off of irq context.
3398 * Note, that this is called and return with irqs disabled. This will
3399 * protect us against recursive calling from irq.
3401 asmlinkage void __sched preempt_schedule_irq(void)
3403 struct thread_info *ti = current_thread_info();
3404 #ifdef CONFIG_PREEMPT_BKL
3405 struct task_struct *task = current;
3406 int saved_lock_depth;
3407 #endif
3408 /* Catch callers which need to be fixed*/
3409 BUG_ON(ti->preempt_count || !irqs_disabled());
3411 need_resched:
3412 add_preempt_count(PREEMPT_ACTIVE);
3414 * We keep the big kernel semaphore locked, but we
3415 * clear ->lock_depth so that schedule() doesnt
3416 * auto-release the semaphore:
3418 #ifdef CONFIG_PREEMPT_BKL
3419 saved_lock_depth = task->lock_depth;
3420 task->lock_depth = -1;
3421 #endif
3422 local_irq_enable();
3423 schedule();
3424 local_irq_disable();
3425 #ifdef CONFIG_PREEMPT_BKL
3426 task->lock_depth = saved_lock_depth;
3427 #endif
3428 sub_preempt_count(PREEMPT_ACTIVE);
3430 /* we could miss a preemption opportunity between schedule and now */
3431 barrier();
3432 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3433 goto need_resched;
3436 #endif /* CONFIG_PREEMPT */
3438 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3439 void *key)
3441 task_t *p = curr->private;
3442 return try_to_wake_up(p, mode, sync);
3445 EXPORT_SYMBOL(default_wake_function);
3448 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3449 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3450 * number) then we wake all the non-exclusive tasks and one exclusive task.
3452 * There are circumstances in which we can try to wake a task which has already
3453 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3454 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3456 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3457 int nr_exclusive, int sync, void *key)
3459 struct list_head *tmp, *next;
3461 list_for_each_safe(tmp, next, &q->task_list) {
3462 wait_queue_t *curr;
3463 unsigned flags;
3464 curr = list_entry(tmp, wait_queue_t, task_list);
3465 flags = curr->flags;
3466 if (curr->func(curr, mode, sync, key) &&
3467 (flags & WQ_FLAG_EXCLUSIVE) &&
3468 !--nr_exclusive)
3469 break;
3474 * __wake_up - wake up threads blocked on a waitqueue.
3475 * @q: the waitqueue
3476 * @mode: which threads
3477 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3478 * @key: is directly passed to the wakeup function
3480 void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
3481 int nr_exclusive, void *key)
3483 unsigned long flags;
3485 spin_lock_irqsave(&q->lock, flags);
3486 __wake_up_common(q, mode, nr_exclusive, 0, key);
3487 spin_unlock_irqrestore(&q->lock, flags);
3490 EXPORT_SYMBOL(__wake_up);
3493 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3495 void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3497 __wake_up_common(q, mode, 1, 0, NULL);
3501 * __wake_up_sync - wake up threads blocked on a waitqueue.
3502 * @q: the waitqueue
3503 * @mode: which threads
3504 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3506 * The sync wakeup differs that the waker knows that it will schedule
3507 * away soon, so while the target thread will be woken up, it will not
3508 * be migrated to another CPU - ie. the two threads are 'synchronized'
3509 * with each other. This can prevent needless bouncing between CPUs.
3511 * On UP it can prevent extra preemption.
3513 void fastcall
3514 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3516 unsigned long flags;
3517 int sync = 1;
3519 if (unlikely(!q))
3520 return;
3522 if (unlikely(!nr_exclusive))
3523 sync = 0;
3525 spin_lock_irqsave(&q->lock, flags);
3526 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3527 spin_unlock_irqrestore(&q->lock, flags);
3529 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3531 void fastcall complete(struct completion *x)
3533 unsigned long flags;
3535 spin_lock_irqsave(&x->wait.lock, flags);
3536 x->done++;
3537 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3538 1, 0, NULL);
3539 spin_unlock_irqrestore(&x->wait.lock, flags);
3541 EXPORT_SYMBOL(complete);
3543 void fastcall complete_all(struct completion *x)
3545 unsigned long flags;
3547 spin_lock_irqsave(&x->wait.lock, flags);
3548 x->done += UINT_MAX/2;
3549 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3550 0, 0, NULL);
3551 spin_unlock_irqrestore(&x->wait.lock, flags);
3553 EXPORT_SYMBOL(complete_all);
3555 void fastcall __sched wait_for_completion(struct completion *x)
3557 might_sleep();
3558 spin_lock_irq(&x->wait.lock);
3559 if (!x->done) {
3560 DECLARE_WAITQUEUE(wait, current);
3562 wait.flags |= WQ_FLAG_EXCLUSIVE;
3563 __add_wait_queue_tail(&x->wait, &wait);
3564 do {
3565 __set_current_state(TASK_UNINTERRUPTIBLE);
3566 spin_unlock_irq(&x->wait.lock);
3567 schedule();
3568 spin_lock_irq(&x->wait.lock);
3569 } while (!x->done);
3570 __remove_wait_queue(&x->wait, &wait);
3572 x->done--;
3573 spin_unlock_irq(&x->wait.lock);
3575 EXPORT_SYMBOL(wait_for_completion);
3577 unsigned long fastcall __sched
3578 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3580 might_sleep();
3582 spin_lock_irq(&x->wait.lock);
3583 if (!x->done) {
3584 DECLARE_WAITQUEUE(wait, current);
3586 wait.flags |= WQ_FLAG_EXCLUSIVE;
3587 __add_wait_queue_tail(&x->wait, &wait);
3588 do {
3589 __set_current_state(TASK_UNINTERRUPTIBLE);
3590 spin_unlock_irq(&x->wait.lock);
3591 timeout = schedule_timeout(timeout);
3592 spin_lock_irq(&x->wait.lock);
3593 if (!timeout) {
3594 __remove_wait_queue(&x->wait, &wait);
3595 goto out;
3597 } while (!x->done);
3598 __remove_wait_queue(&x->wait, &wait);
3600 x->done--;
3601 out:
3602 spin_unlock_irq(&x->wait.lock);
3603 return timeout;
3605 EXPORT_SYMBOL(wait_for_completion_timeout);
3607 int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3609 int ret = 0;
3611 might_sleep();
3613 spin_lock_irq(&x->wait.lock);
3614 if (!x->done) {
3615 DECLARE_WAITQUEUE(wait, current);
3617 wait.flags |= WQ_FLAG_EXCLUSIVE;
3618 __add_wait_queue_tail(&x->wait, &wait);
3619 do {
3620 if (signal_pending(current)) {
3621 ret = -ERESTARTSYS;
3622 __remove_wait_queue(&x->wait, &wait);
3623 goto out;
3625 __set_current_state(TASK_INTERRUPTIBLE);
3626 spin_unlock_irq(&x->wait.lock);
3627 schedule();
3628 spin_lock_irq(&x->wait.lock);
3629 } while (!x->done);
3630 __remove_wait_queue(&x->wait, &wait);
3632 x->done--;
3633 out:
3634 spin_unlock_irq(&x->wait.lock);
3636 return ret;
3638 EXPORT_SYMBOL(wait_for_completion_interruptible);
3640 unsigned long fastcall __sched
3641 wait_for_completion_interruptible_timeout(struct completion *x,
3642 unsigned long timeout)
3644 might_sleep();
3646 spin_lock_irq(&x->wait.lock);
3647 if (!x->done) {
3648 DECLARE_WAITQUEUE(wait, current);
3650 wait.flags |= WQ_FLAG_EXCLUSIVE;
3651 __add_wait_queue_tail(&x->wait, &wait);
3652 do {
3653 if (signal_pending(current)) {
3654 timeout = -ERESTARTSYS;
3655 __remove_wait_queue(&x->wait, &wait);
3656 goto out;
3658 __set_current_state(TASK_INTERRUPTIBLE);
3659 spin_unlock_irq(&x->wait.lock);
3660 timeout = schedule_timeout(timeout);
3661 spin_lock_irq(&x->wait.lock);
3662 if (!timeout) {
3663 __remove_wait_queue(&x->wait, &wait);
3664 goto out;
3666 } while (!x->done);
3667 __remove_wait_queue(&x->wait, &wait);
3669 x->done--;
3670 out:
3671 spin_unlock_irq(&x->wait.lock);
3672 return timeout;
3674 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3677 #define SLEEP_ON_VAR \
3678 unsigned long flags; \
3679 wait_queue_t wait; \
3680 init_waitqueue_entry(&wait, current);
3682 #define SLEEP_ON_HEAD \
3683 spin_lock_irqsave(&q->lock,flags); \
3684 __add_wait_queue(q, &wait); \
3685 spin_unlock(&q->lock);
3687 #define SLEEP_ON_TAIL \
3688 spin_lock_irq(&q->lock); \
3689 __remove_wait_queue(q, &wait); \
3690 spin_unlock_irqrestore(&q->lock, flags);
3692 void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
3694 SLEEP_ON_VAR
3696 current->state = TASK_INTERRUPTIBLE;
3698 SLEEP_ON_HEAD
3699 schedule();
3700 SLEEP_ON_TAIL
3703 EXPORT_SYMBOL(interruptible_sleep_on);
3705 long fastcall __sched
3706 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3708 SLEEP_ON_VAR
3710 current->state = TASK_INTERRUPTIBLE;
3712 SLEEP_ON_HEAD
3713 timeout = schedule_timeout(timeout);
3714 SLEEP_ON_TAIL
3716 return timeout;
3719 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3721 void fastcall __sched sleep_on(wait_queue_head_t *q)
3723 SLEEP_ON_VAR
3725 current->state = TASK_UNINTERRUPTIBLE;
3727 SLEEP_ON_HEAD
3728 schedule();
3729 SLEEP_ON_TAIL
3732 EXPORT_SYMBOL(sleep_on);
3734 long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3736 SLEEP_ON_VAR
3738 current->state = TASK_UNINTERRUPTIBLE;
3740 SLEEP_ON_HEAD
3741 timeout = schedule_timeout(timeout);
3742 SLEEP_ON_TAIL
3744 return timeout;
3747 EXPORT_SYMBOL(sleep_on_timeout);
3749 #ifdef CONFIG_RT_MUTEXES
3752 * rt_mutex_setprio - set the current priority of a task
3753 * @p: task
3754 * @prio: prio value (kernel-internal form)
3756 * This function changes the 'effective' priority of a task. It does
3757 * not touch ->normal_prio like __setscheduler().
3759 * Used by the rt_mutex code to implement priority inheritance logic.
3761 void rt_mutex_setprio(task_t *p, int prio)
3763 unsigned long flags;
3764 prio_array_t *array;
3765 runqueue_t *rq;
3766 int oldprio;
3768 BUG_ON(prio < 0 || prio > MAX_PRIO);
3770 rq = task_rq_lock(p, &flags);
3772 oldprio = p->prio;
3773 array = p->array;
3774 if (array)
3775 dequeue_task(p, array);
3776 p->prio = prio;
3778 if (array) {
3780 * If changing to an RT priority then queue it
3781 * in the active array!
3783 if (rt_task(p))
3784 array = rq->active;
3785 enqueue_task(p, array);
3787 * Reschedule if we are currently running on this runqueue and
3788 * our priority decreased, or if we are not currently running on
3789 * this runqueue and our priority is higher than the current's
3791 if (task_running(rq, p)) {
3792 if (p->prio > oldprio)
3793 resched_task(rq->curr);
3794 } else if (TASK_PREEMPTS_CURR(p, rq))
3795 resched_task(rq->curr);
3797 task_rq_unlock(rq, &flags);
3800 #endif
3802 void set_user_nice(task_t *p, long nice)
3804 unsigned long flags;
3805 prio_array_t *array;
3806 runqueue_t *rq;
3807 int old_prio, delta;
3809 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3810 return;
3812 * We have to be careful, if called from sys_setpriority(),
3813 * the task might be in the middle of scheduling on another CPU.
3815 rq = task_rq_lock(p, &flags);
3817 * The RT priorities are set via sched_setscheduler(), but we still
3818 * allow the 'normal' nice value to be set - but as expected
3819 * it wont have any effect on scheduling until the task is
3820 * not SCHED_NORMAL/SCHED_BATCH:
3822 if (has_rt_policy(p)) {
3823 p->static_prio = NICE_TO_PRIO(nice);
3824 goto out_unlock;
3826 array = p->array;
3827 if (array) {
3828 dequeue_task(p, array);
3829 dec_raw_weighted_load(rq, p);
3832 p->static_prio = NICE_TO_PRIO(nice);
3833 set_load_weight(p);
3834 old_prio = p->prio;
3835 p->prio = effective_prio(p);
3836 delta = p->prio - old_prio;
3838 if (array) {
3839 enqueue_task(p, array);
3840 inc_raw_weighted_load(rq, p);
3842 * If the task increased its priority or is running and
3843 * lowered its priority, then reschedule its CPU:
3845 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3846 resched_task(rq->curr);
3848 out_unlock:
3849 task_rq_unlock(rq, &flags);
3851 EXPORT_SYMBOL(set_user_nice);
3854 * can_nice - check if a task can reduce its nice value
3855 * @p: task
3856 * @nice: nice value
3858 int can_nice(const task_t *p, const int nice)
3860 /* convert nice value [19,-20] to rlimit style value [1,40] */
3861 int nice_rlim = 20 - nice;
3862 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
3863 capable(CAP_SYS_NICE));
3866 #ifdef __ARCH_WANT_SYS_NICE
3869 * sys_nice - change the priority of the current process.
3870 * @increment: priority increment
3872 * sys_setpriority is a more generic, but much slower function that
3873 * does similar things.
3875 asmlinkage long sys_nice(int increment)
3877 int retval;
3878 long nice;
3881 * Setpriority might change our priority at the same moment.
3882 * We don't have to worry. Conceptually one call occurs first
3883 * and we have a single winner.
3885 if (increment < -40)
3886 increment = -40;
3887 if (increment > 40)
3888 increment = 40;
3890 nice = PRIO_TO_NICE(current->static_prio) + increment;
3891 if (nice < -20)
3892 nice = -20;
3893 if (nice > 19)
3894 nice = 19;
3896 if (increment < 0 && !can_nice(current, nice))
3897 return -EPERM;
3899 retval = security_task_setnice(current, nice);
3900 if (retval)
3901 return retval;
3903 set_user_nice(current, nice);
3904 return 0;
3907 #endif
3910 * task_prio - return the priority value of a given task.
3911 * @p: the task in question.
3913 * This is the priority value as seen by users in /proc.
3914 * RT tasks are offset by -200. Normal tasks are centered
3915 * around 0, value goes from -16 to +15.
3917 int task_prio(const task_t *p)
3919 return p->prio - MAX_RT_PRIO;
3923 * task_nice - return the nice value of a given task.
3924 * @p: the task in question.
3926 int task_nice(const task_t *p)
3928 return TASK_NICE(p);
3930 EXPORT_SYMBOL_GPL(task_nice);
3933 * idle_cpu - is a given cpu idle currently?
3934 * @cpu: the processor in question.
3936 int idle_cpu(int cpu)
3938 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
3942 * idle_task - return the idle task for a given cpu.
3943 * @cpu: the processor in question.
3945 task_t *idle_task(int cpu)
3947 return cpu_rq(cpu)->idle;
3951 * find_process_by_pid - find a process with a matching PID value.
3952 * @pid: the pid in question.
3954 static inline task_t *find_process_by_pid(pid_t pid)
3956 return pid ? find_task_by_pid(pid) : current;
3959 /* Actually do priority change: must hold rq lock. */
3960 static void __setscheduler(struct task_struct *p, int policy, int prio)
3962 BUG_ON(p->array);
3963 p->policy = policy;
3964 p->rt_priority = prio;
3965 p->normal_prio = normal_prio(p);
3966 /* we are holding p->pi_lock already */
3967 p->prio = rt_mutex_getprio(p);
3969 * SCHED_BATCH tasks are treated as perpetual CPU hogs:
3971 if (policy == SCHED_BATCH)
3972 p->sleep_avg = 0;
3973 set_load_weight(p);
3977 * sched_setscheduler - change the scheduling policy and/or RT priority of
3978 * a thread.
3979 * @p: the task in question.
3980 * @policy: new policy.
3981 * @param: structure containing the new RT priority.
3983 int sched_setscheduler(struct task_struct *p, int policy,
3984 struct sched_param *param)
3986 int retval;
3987 int oldprio, oldpolicy = -1;
3988 prio_array_t *array;
3989 unsigned long flags;
3990 runqueue_t *rq;
3992 /* may grab non-irq protected spin_locks */
3993 BUG_ON(in_interrupt());
3994 recheck:
3995 /* double check policy once rq lock held */
3996 if (policy < 0)
3997 policy = oldpolicy = p->policy;
3998 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
3999 policy != SCHED_NORMAL && policy != SCHED_BATCH)
4000 return -EINVAL;
4002 * Valid priorities for SCHED_FIFO and SCHED_RR are
4003 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL and
4004 * SCHED_BATCH is 0.
4006 if (param->sched_priority < 0 ||
4007 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4008 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4009 return -EINVAL;
4010 if ((policy == SCHED_NORMAL || policy == SCHED_BATCH)
4011 != (param->sched_priority == 0))
4012 return -EINVAL;
4015 * Allow unprivileged RT tasks to decrease priority:
4017 if (!capable(CAP_SYS_NICE)) {
4019 * can't change policy, except between SCHED_NORMAL
4020 * and SCHED_BATCH:
4022 if (((policy != SCHED_NORMAL && p->policy != SCHED_BATCH) &&
4023 (policy != SCHED_BATCH && p->policy != SCHED_NORMAL)) &&
4024 !p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
4025 return -EPERM;
4026 /* can't increase priority */
4027 if ((policy != SCHED_NORMAL && policy != SCHED_BATCH) &&
4028 param->sched_priority > p->rt_priority &&
4029 param->sched_priority >
4030 p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
4031 return -EPERM;
4032 /* can't change other user's priorities */
4033 if ((current->euid != p->euid) &&
4034 (current->euid != p->uid))
4035 return -EPERM;
4038 retval = security_task_setscheduler(p, policy, param);
4039 if (retval)
4040 return retval;
4042 * make sure no PI-waiters arrive (or leave) while we are
4043 * changing the priority of the task:
4045 spin_lock_irqsave(&p->pi_lock, flags);
4047 * To be able to change p->policy safely, the apropriate
4048 * runqueue lock must be held.
4050 rq = __task_rq_lock(p);
4051 /* recheck policy now with rq lock held */
4052 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4053 policy = oldpolicy = -1;
4054 __task_rq_unlock(rq);
4055 spin_unlock_irqrestore(&p->pi_lock, flags);
4056 goto recheck;
4058 array = p->array;
4059 if (array)
4060 deactivate_task(p, rq);
4061 oldprio = p->prio;
4062 __setscheduler(p, policy, param->sched_priority);
4063 if (array) {
4064 __activate_task(p, rq);
4066 * Reschedule if we are currently running on this runqueue and
4067 * our priority decreased, or if we are not currently running on
4068 * this runqueue and our priority is higher than the current's
4070 if (task_running(rq, p)) {
4071 if (p->prio > oldprio)
4072 resched_task(rq->curr);
4073 } else if (TASK_PREEMPTS_CURR(p, rq))
4074 resched_task(rq->curr);
4076 __task_rq_unlock(rq);
4077 spin_unlock_irqrestore(&p->pi_lock, flags);
4079 rt_mutex_adjust_pi(p);
4081 return 0;
4083 EXPORT_SYMBOL_GPL(sched_setscheduler);
4085 static int
4086 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4088 int retval;
4089 struct sched_param lparam;
4090 struct task_struct *p;
4092 if (!param || pid < 0)
4093 return -EINVAL;
4094 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4095 return -EFAULT;
4096 read_lock_irq(&tasklist_lock);
4097 p = find_process_by_pid(pid);
4098 if (!p) {
4099 read_unlock_irq(&tasklist_lock);
4100 return -ESRCH;
4102 get_task_struct(p);
4103 read_unlock_irq(&tasklist_lock);
4104 retval = sched_setscheduler(p, policy, &lparam);
4105 put_task_struct(p);
4106 return retval;
4110 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4111 * @pid: the pid in question.
4112 * @policy: new policy.
4113 * @param: structure containing the new RT priority.
4115 asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
4116 struct sched_param __user *param)
4118 /* negative values for policy are not valid */
4119 if (policy < 0)
4120 return -EINVAL;
4122 return do_sched_setscheduler(pid, policy, param);
4126 * sys_sched_setparam - set/change the RT priority of a thread
4127 * @pid: the pid in question.
4128 * @param: structure containing the new RT priority.
4130 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4132 return do_sched_setscheduler(pid, -1, param);
4136 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4137 * @pid: the pid in question.
4139 asmlinkage long sys_sched_getscheduler(pid_t pid)
4141 int retval = -EINVAL;
4142 task_t *p;
4144 if (pid < 0)
4145 goto out_nounlock;
4147 retval = -ESRCH;
4148 read_lock(&tasklist_lock);
4149 p = find_process_by_pid(pid);
4150 if (p) {
4151 retval = security_task_getscheduler(p);
4152 if (!retval)
4153 retval = p->policy;
4155 read_unlock(&tasklist_lock);
4157 out_nounlock:
4158 return retval;
4162 * sys_sched_getscheduler - get the RT priority of a thread
4163 * @pid: the pid in question.
4164 * @param: structure containing the RT priority.
4166 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4168 struct sched_param lp;
4169 int retval = -EINVAL;
4170 task_t *p;
4172 if (!param || pid < 0)
4173 goto out_nounlock;
4175 read_lock(&tasklist_lock);
4176 p = find_process_by_pid(pid);
4177 retval = -ESRCH;
4178 if (!p)
4179 goto out_unlock;
4181 retval = security_task_getscheduler(p);
4182 if (retval)
4183 goto out_unlock;
4185 lp.sched_priority = p->rt_priority;
4186 read_unlock(&tasklist_lock);
4189 * This one might sleep, we cannot do it with a spinlock held ...
4191 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4193 out_nounlock:
4194 return retval;
4196 out_unlock:
4197 read_unlock(&tasklist_lock);
4198 return retval;
4201 long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4203 task_t *p;
4204 int retval;
4205 cpumask_t cpus_allowed;
4207 lock_cpu_hotplug();
4208 read_lock(&tasklist_lock);
4210 p = find_process_by_pid(pid);
4211 if (!p) {
4212 read_unlock(&tasklist_lock);
4213 unlock_cpu_hotplug();
4214 return -ESRCH;
4218 * It is not safe to call set_cpus_allowed with the
4219 * tasklist_lock held. We will bump the task_struct's
4220 * usage count and then drop tasklist_lock.
4222 get_task_struct(p);
4223 read_unlock(&tasklist_lock);
4225 retval = -EPERM;
4226 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4227 !capable(CAP_SYS_NICE))
4228 goto out_unlock;
4230 retval = security_task_setscheduler(p, 0, NULL);
4231 if (retval)
4232 goto out_unlock;
4234 cpus_allowed = cpuset_cpus_allowed(p);
4235 cpus_and(new_mask, new_mask, cpus_allowed);
4236 retval = set_cpus_allowed(p, new_mask);
4238 out_unlock:
4239 put_task_struct(p);
4240 unlock_cpu_hotplug();
4241 return retval;
4244 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4245 cpumask_t *new_mask)
4247 if (len < sizeof(cpumask_t)) {
4248 memset(new_mask, 0, sizeof(cpumask_t));
4249 } else if (len > sizeof(cpumask_t)) {
4250 len = sizeof(cpumask_t);
4252 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4256 * sys_sched_setaffinity - set the cpu affinity of a process
4257 * @pid: pid of the process
4258 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4259 * @user_mask_ptr: user-space pointer to the new cpu mask
4261 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4262 unsigned long __user *user_mask_ptr)
4264 cpumask_t new_mask;
4265 int retval;
4267 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4268 if (retval)
4269 return retval;
4271 return sched_setaffinity(pid, new_mask);
4275 * Represents all cpu's present in the system
4276 * In systems capable of hotplug, this map could dynamically grow
4277 * as new cpu's are detected in the system via any platform specific
4278 * method, such as ACPI for e.g.
4281 cpumask_t cpu_present_map __read_mostly;
4282 EXPORT_SYMBOL(cpu_present_map);
4284 #ifndef CONFIG_SMP
4285 cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4286 cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4287 #endif
4289 long sched_getaffinity(pid_t pid, cpumask_t *mask)
4291 int retval;
4292 task_t *p;
4294 lock_cpu_hotplug();
4295 read_lock(&tasklist_lock);
4297 retval = -ESRCH;
4298 p = find_process_by_pid(pid);
4299 if (!p)
4300 goto out_unlock;
4302 retval = security_task_getscheduler(p);
4303 if (retval)
4304 goto out_unlock;
4306 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
4308 out_unlock:
4309 read_unlock(&tasklist_lock);
4310 unlock_cpu_hotplug();
4311 if (retval)
4312 return retval;
4314 return 0;
4318 * sys_sched_getaffinity - get the cpu affinity of a process
4319 * @pid: pid of the process
4320 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4321 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4323 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4324 unsigned long __user *user_mask_ptr)
4326 int ret;
4327 cpumask_t mask;
4329 if (len < sizeof(cpumask_t))
4330 return -EINVAL;
4332 ret = sched_getaffinity(pid, &mask);
4333 if (ret < 0)
4334 return ret;
4336 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4337 return -EFAULT;
4339 return sizeof(cpumask_t);
4343 * sys_sched_yield - yield the current processor to other threads.
4345 * this function yields the current CPU by moving the calling thread
4346 * to the expired array. If there are no other threads running on this
4347 * CPU then this function will return.
4349 asmlinkage long sys_sched_yield(void)
4351 runqueue_t *rq = this_rq_lock();
4352 prio_array_t *array = current->array;
4353 prio_array_t *target = rq->expired;
4355 schedstat_inc(rq, yld_cnt);
4357 * We implement yielding by moving the task into the expired
4358 * queue.
4360 * (special rule: RT tasks will just roundrobin in the active
4361 * array.)
4363 if (rt_task(current))
4364 target = rq->active;
4366 if (array->nr_active == 1) {
4367 schedstat_inc(rq, yld_act_empty);
4368 if (!rq->expired->nr_active)
4369 schedstat_inc(rq, yld_both_empty);
4370 } else if (!rq->expired->nr_active)
4371 schedstat_inc(rq, yld_exp_empty);
4373 if (array != target) {
4374 dequeue_task(current, array);
4375 enqueue_task(current, target);
4376 } else
4378 * requeue_task is cheaper so perform that if possible.
4380 requeue_task(current, array);
4383 * Since we are going to call schedule() anyway, there's
4384 * no need to preempt or enable interrupts:
4386 __release(rq->lock);
4387 _raw_spin_unlock(&rq->lock);
4388 preempt_enable_no_resched();
4390 schedule();
4392 return 0;
4395 static inline int __resched_legal(void)
4397 if (unlikely(preempt_count()))
4398 return 0;
4399 if (unlikely(system_state != SYSTEM_RUNNING))
4400 return 0;
4401 return 1;
4404 static void __cond_resched(void)
4406 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4407 __might_sleep(__FILE__, __LINE__);
4408 #endif
4410 * The BKS might be reacquired before we have dropped
4411 * PREEMPT_ACTIVE, which could trigger a second
4412 * cond_resched() call.
4414 do {
4415 add_preempt_count(PREEMPT_ACTIVE);
4416 schedule();
4417 sub_preempt_count(PREEMPT_ACTIVE);
4418 } while (need_resched());
4421 int __sched cond_resched(void)
4423 if (need_resched() && __resched_legal()) {
4424 __cond_resched();
4425 return 1;
4427 return 0;
4429 EXPORT_SYMBOL(cond_resched);
4432 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4433 * call schedule, and on return reacquire the lock.
4435 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4436 * operations here to prevent schedule() from being called twice (once via
4437 * spin_unlock(), once by hand).
4439 int cond_resched_lock(spinlock_t *lock)
4441 int ret = 0;
4443 if (need_lockbreak(lock)) {
4444 spin_unlock(lock);
4445 cpu_relax();
4446 ret = 1;
4447 spin_lock(lock);
4449 if (need_resched() && __resched_legal()) {
4450 _raw_spin_unlock(lock);
4451 preempt_enable_no_resched();
4452 __cond_resched();
4453 ret = 1;
4454 spin_lock(lock);
4456 return ret;
4458 EXPORT_SYMBOL(cond_resched_lock);
4460 int __sched cond_resched_softirq(void)
4462 BUG_ON(!in_softirq());
4464 if (need_resched() && __resched_legal()) {
4465 __local_bh_enable();
4466 __cond_resched();
4467 local_bh_disable();
4468 return 1;
4470 return 0;
4472 EXPORT_SYMBOL(cond_resched_softirq);
4475 * yield - yield the current processor to other threads.
4477 * this is a shortcut for kernel-space yielding - it marks the
4478 * thread runnable and calls sys_sched_yield().
4480 void __sched yield(void)
4482 set_current_state(TASK_RUNNING);
4483 sys_sched_yield();
4486 EXPORT_SYMBOL(yield);
4489 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4490 * that process accounting knows that this is a task in IO wait state.
4492 * But don't do that if it is a deliberate, throttling IO wait (this task
4493 * has set its backing_dev_info: the queue against which it should throttle)
4495 void __sched io_schedule(void)
4497 struct runqueue *rq = &__raw_get_cpu_var(runqueues);
4499 atomic_inc(&rq->nr_iowait);
4500 schedule();
4501 atomic_dec(&rq->nr_iowait);
4504 EXPORT_SYMBOL(io_schedule);
4506 long __sched io_schedule_timeout(long timeout)
4508 struct runqueue *rq = &__raw_get_cpu_var(runqueues);
4509 long ret;
4511 atomic_inc(&rq->nr_iowait);
4512 ret = schedule_timeout(timeout);
4513 atomic_dec(&rq->nr_iowait);
4514 return ret;
4518 * sys_sched_get_priority_max - return maximum RT priority.
4519 * @policy: scheduling class.
4521 * this syscall returns the maximum rt_priority that can be used
4522 * by a given scheduling class.
4524 asmlinkage long sys_sched_get_priority_max(int policy)
4526 int ret = -EINVAL;
4528 switch (policy) {
4529 case SCHED_FIFO:
4530 case SCHED_RR:
4531 ret = MAX_USER_RT_PRIO-1;
4532 break;
4533 case SCHED_NORMAL:
4534 case SCHED_BATCH:
4535 ret = 0;
4536 break;
4538 return ret;
4542 * sys_sched_get_priority_min - return minimum RT priority.
4543 * @policy: scheduling class.
4545 * this syscall returns the minimum rt_priority that can be used
4546 * by a given scheduling class.
4548 asmlinkage long sys_sched_get_priority_min(int policy)
4550 int ret = -EINVAL;
4552 switch (policy) {
4553 case SCHED_FIFO:
4554 case SCHED_RR:
4555 ret = 1;
4556 break;
4557 case SCHED_NORMAL:
4558 case SCHED_BATCH:
4559 ret = 0;
4561 return ret;
4565 * sys_sched_rr_get_interval - return the default timeslice of a process.
4566 * @pid: pid of the process.
4567 * @interval: userspace pointer to the timeslice value.
4569 * this syscall writes the default timeslice value of a given process
4570 * into the user-space timespec buffer. A value of '0' means infinity.
4572 asmlinkage
4573 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4575 int retval = -EINVAL;
4576 struct timespec t;
4577 task_t *p;
4579 if (pid < 0)
4580 goto out_nounlock;
4582 retval = -ESRCH;
4583 read_lock(&tasklist_lock);
4584 p = find_process_by_pid(pid);
4585 if (!p)
4586 goto out_unlock;
4588 retval = security_task_getscheduler(p);
4589 if (retval)
4590 goto out_unlock;
4592 jiffies_to_timespec(p->policy == SCHED_FIFO ?
4593 0 : task_timeslice(p), &t);
4594 read_unlock(&tasklist_lock);
4595 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4596 out_nounlock:
4597 return retval;
4598 out_unlock:
4599 read_unlock(&tasklist_lock);
4600 return retval;
4603 static inline struct task_struct *eldest_child(struct task_struct *p)
4605 if (list_empty(&p->children)) return NULL;
4606 return list_entry(p->children.next,struct task_struct,sibling);
4609 static inline struct task_struct *older_sibling(struct task_struct *p)
4611 if (p->sibling.prev==&p->parent->children) return NULL;
4612 return list_entry(p->sibling.prev,struct task_struct,sibling);
4615 static inline struct task_struct *younger_sibling(struct task_struct *p)
4617 if (p->sibling.next==&p->parent->children) return NULL;
4618 return list_entry(p->sibling.next,struct task_struct,sibling);
4621 static void show_task(task_t *p)
4623 task_t *relative;
4624 unsigned state;
4625 unsigned long free = 0;
4626 static const char *stat_nam[] = { "R", "S", "D", "T", "t", "Z", "X" };
4628 printk("%-13.13s ", p->comm);
4629 state = p->state ? __ffs(p->state) + 1 : 0;
4630 if (state < ARRAY_SIZE(stat_nam))
4631 printk(stat_nam[state]);
4632 else
4633 printk("?");
4634 #if (BITS_PER_LONG == 32)
4635 if (state == TASK_RUNNING)
4636 printk(" running ");
4637 else
4638 printk(" %08lX ", thread_saved_pc(p));
4639 #else
4640 if (state == TASK_RUNNING)
4641 printk(" running task ");
4642 else
4643 printk(" %016lx ", thread_saved_pc(p));
4644 #endif
4645 #ifdef CONFIG_DEBUG_STACK_USAGE
4647 unsigned long *n = end_of_stack(p);
4648 while (!*n)
4649 n++;
4650 free = (unsigned long)n - (unsigned long)end_of_stack(p);
4652 #endif
4653 printk("%5lu %5d %6d ", free, p->pid, p->parent->pid);
4654 if ((relative = eldest_child(p)))
4655 printk("%5d ", relative->pid);
4656 else
4657 printk(" ");
4658 if ((relative = younger_sibling(p)))
4659 printk("%7d", relative->pid);
4660 else
4661 printk(" ");
4662 if ((relative = older_sibling(p)))
4663 printk(" %5d", relative->pid);
4664 else
4665 printk(" ");
4666 if (!p->mm)
4667 printk(" (L-TLB)\n");
4668 else
4669 printk(" (NOTLB)\n");
4671 if (state != TASK_RUNNING)
4672 show_stack(p, NULL);
4675 void show_state(void)
4677 task_t *g, *p;
4679 #if (BITS_PER_LONG == 32)
4680 printk("\n"
4681 " sibling\n");
4682 printk(" task PC pid father child younger older\n");
4683 #else
4684 printk("\n"
4685 " sibling\n");
4686 printk(" task PC pid father child younger older\n");
4687 #endif
4688 read_lock(&tasklist_lock);
4689 do_each_thread(g, p) {
4691 * reset the NMI-timeout, listing all files on a slow
4692 * console might take alot of time:
4694 touch_nmi_watchdog();
4695 show_task(p);
4696 } while_each_thread(g, p);
4698 read_unlock(&tasklist_lock);
4699 debug_show_all_locks();
4703 * init_idle - set up an idle thread for a given CPU
4704 * @idle: task in question
4705 * @cpu: cpu the idle task belongs to
4707 * NOTE: this function does not set the idle thread's NEED_RESCHED
4708 * flag, to make booting more robust.
4710 void __devinit init_idle(task_t *idle, int cpu)
4712 runqueue_t *rq = cpu_rq(cpu);
4713 unsigned long flags;
4715 idle->timestamp = sched_clock();
4716 idle->sleep_avg = 0;
4717 idle->array = NULL;
4718 idle->prio = idle->normal_prio = MAX_PRIO;
4719 idle->state = TASK_RUNNING;
4720 idle->cpus_allowed = cpumask_of_cpu(cpu);
4721 set_task_cpu(idle, cpu);
4723 spin_lock_irqsave(&rq->lock, flags);
4724 rq->curr = rq->idle = idle;
4725 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4726 idle->oncpu = 1;
4727 #endif
4728 spin_unlock_irqrestore(&rq->lock, flags);
4730 /* Set the preempt count _outside_ the spinlocks! */
4731 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4732 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
4733 #else
4734 task_thread_info(idle)->preempt_count = 0;
4735 #endif
4739 * In a system that switches off the HZ timer nohz_cpu_mask
4740 * indicates which cpus entered this state. This is used
4741 * in the rcu update to wait only for active cpus. For system
4742 * which do not switch off the HZ timer nohz_cpu_mask should
4743 * always be CPU_MASK_NONE.
4745 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4747 #ifdef CONFIG_SMP
4749 * This is how migration works:
4751 * 1) we queue a migration_req_t structure in the source CPU's
4752 * runqueue and wake up that CPU's migration thread.
4753 * 2) we down() the locked semaphore => thread blocks.
4754 * 3) migration thread wakes up (implicitly it forces the migrated
4755 * thread off the CPU)
4756 * 4) it gets the migration request and checks whether the migrated
4757 * task is still in the wrong runqueue.
4758 * 5) if it's in the wrong runqueue then the migration thread removes
4759 * it and puts it into the right queue.
4760 * 6) migration thread up()s the semaphore.
4761 * 7) we wake up and the migration is done.
4765 * Change a given task's CPU affinity. Migrate the thread to a
4766 * proper CPU and schedule it away if the CPU it's executing on
4767 * is removed from the allowed bitmask.
4769 * NOTE: the caller must have a valid reference to the task, the
4770 * task must not exit() & deallocate itself prematurely. The
4771 * call is not atomic; no spinlocks may be held.
4773 int set_cpus_allowed(task_t *p, cpumask_t new_mask)
4775 unsigned long flags;
4776 int ret = 0;
4777 migration_req_t req;
4778 runqueue_t *rq;
4780 rq = task_rq_lock(p, &flags);
4781 if (!cpus_intersects(new_mask, cpu_online_map)) {
4782 ret = -EINVAL;
4783 goto out;
4786 p->cpus_allowed = new_mask;
4787 /* Can the task run on the task's current CPU? If so, we're done */
4788 if (cpu_isset(task_cpu(p), new_mask))
4789 goto out;
4791 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4792 /* Need help from migration thread: drop lock and wait. */
4793 task_rq_unlock(rq, &flags);
4794 wake_up_process(rq->migration_thread);
4795 wait_for_completion(&req.done);
4796 tlb_migrate_finish(p->mm);
4797 return 0;
4799 out:
4800 task_rq_unlock(rq, &flags);
4801 return ret;
4804 EXPORT_SYMBOL_GPL(set_cpus_allowed);
4807 * Move (not current) task off this cpu, onto dest cpu. We're doing
4808 * this because either it can't run here any more (set_cpus_allowed()
4809 * away from this CPU, or CPU going down), or because we're
4810 * attempting to rebalance this task on exec (sched_exec).
4812 * So we race with normal scheduler movements, but that's OK, as long
4813 * as the task is no longer on this CPU.
4815 * Returns non-zero if task was successfully migrated.
4817 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4819 runqueue_t *rq_dest, *rq_src;
4820 int ret = 0;
4822 if (unlikely(cpu_is_offline(dest_cpu)))
4823 return ret;
4825 rq_src = cpu_rq(src_cpu);
4826 rq_dest = cpu_rq(dest_cpu);
4828 double_rq_lock(rq_src, rq_dest);
4829 /* Already moved. */
4830 if (task_cpu(p) != src_cpu)
4831 goto out;
4832 /* Affinity changed (again). */
4833 if (!cpu_isset(dest_cpu, p->cpus_allowed))
4834 goto out;
4836 set_task_cpu(p, dest_cpu);
4837 if (p->array) {
4839 * Sync timestamp with rq_dest's before activating.
4840 * The same thing could be achieved by doing this step
4841 * afterwards, and pretending it was a local activate.
4842 * This way is cleaner and logically correct.
4844 p->timestamp = p->timestamp - rq_src->timestamp_last_tick
4845 + rq_dest->timestamp_last_tick;
4846 deactivate_task(p, rq_src);
4847 activate_task(p, rq_dest, 0);
4848 if (TASK_PREEMPTS_CURR(p, rq_dest))
4849 resched_task(rq_dest->curr);
4851 ret = 1;
4852 out:
4853 double_rq_unlock(rq_src, rq_dest);
4854 return ret;
4858 * migration_thread - this is a highprio system thread that performs
4859 * thread migration by bumping thread off CPU then 'pushing' onto
4860 * another runqueue.
4862 static int migration_thread(void *data)
4864 runqueue_t *rq;
4865 int cpu = (long)data;
4867 rq = cpu_rq(cpu);
4868 BUG_ON(rq->migration_thread != current);
4870 set_current_state(TASK_INTERRUPTIBLE);
4871 while (!kthread_should_stop()) {
4872 struct list_head *head;
4873 migration_req_t *req;
4875 try_to_freeze();
4877 spin_lock_irq(&rq->lock);
4879 if (cpu_is_offline(cpu)) {
4880 spin_unlock_irq(&rq->lock);
4881 goto wait_to_die;
4884 if (rq->active_balance) {
4885 active_load_balance(rq, cpu);
4886 rq->active_balance = 0;
4889 head = &rq->migration_queue;
4891 if (list_empty(head)) {
4892 spin_unlock_irq(&rq->lock);
4893 schedule();
4894 set_current_state(TASK_INTERRUPTIBLE);
4895 continue;
4897 req = list_entry(head->next, migration_req_t, list);
4898 list_del_init(head->next);
4900 spin_unlock(&rq->lock);
4901 __migrate_task(req->task, cpu, req->dest_cpu);
4902 local_irq_enable();
4904 complete(&req->done);
4906 __set_current_state(TASK_RUNNING);
4907 return 0;
4909 wait_to_die:
4910 /* Wait for kthread_stop */
4911 set_current_state(TASK_INTERRUPTIBLE);
4912 while (!kthread_should_stop()) {
4913 schedule();
4914 set_current_state(TASK_INTERRUPTIBLE);
4916 __set_current_state(TASK_RUNNING);
4917 return 0;
4920 #ifdef CONFIG_HOTPLUG_CPU
4921 /* Figure out where task on dead CPU should go, use force if neccessary. */
4922 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *tsk)
4924 runqueue_t *rq;
4925 unsigned long flags;
4926 int dest_cpu;
4927 cpumask_t mask;
4929 restart:
4930 /* On same node? */
4931 mask = node_to_cpumask(cpu_to_node(dead_cpu));
4932 cpus_and(mask, mask, tsk->cpus_allowed);
4933 dest_cpu = any_online_cpu(mask);
4935 /* On any allowed CPU? */
4936 if (dest_cpu == NR_CPUS)
4937 dest_cpu = any_online_cpu(tsk->cpus_allowed);
4939 /* No more Mr. Nice Guy. */
4940 if (dest_cpu == NR_CPUS) {
4941 rq = task_rq_lock(tsk, &flags);
4942 cpus_setall(tsk->cpus_allowed);
4943 dest_cpu = any_online_cpu(tsk->cpus_allowed);
4944 task_rq_unlock(rq, &flags);
4947 * Don't tell them about moving exiting tasks or
4948 * kernel threads (both mm NULL), since they never
4949 * leave kernel.
4951 if (tsk->mm && printk_ratelimit())
4952 printk(KERN_INFO "process %d (%s) no "
4953 "longer affine to cpu%d\n",
4954 tsk->pid, tsk->comm, dead_cpu);
4956 if (!__migrate_task(tsk, dead_cpu, dest_cpu))
4957 goto restart;
4961 * While a dead CPU has no uninterruptible tasks queued at this point,
4962 * it might still have a nonzero ->nr_uninterruptible counter, because
4963 * for performance reasons the counter is not stricly tracking tasks to
4964 * their home CPUs. So we just add the counter to another CPU's counter,
4965 * to keep the global sum constant after CPU-down:
4967 static void migrate_nr_uninterruptible(runqueue_t *rq_src)
4969 runqueue_t *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
4970 unsigned long flags;
4972 local_irq_save(flags);
4973 double_rq_lock(rq_src, rq_dest);
4974 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
4975 rq_src->nr_uninterruptible = 0;
4976 double_rq_unlock(rq_src, rq_dest);
4977 local_irq_restore(flags);
4980 /* Run through task list and migrate tasks from the dead cpu. */
4981 static void migrate_live_tasks(int src_cpu)
4983 struct task_struct *tsk, *t;
4985 write_lock_irq(&tasklist_lock);
4987 do_each_thread(t, tsk) {
4988 if (tsk == current)
4989 continue;
4991 if (task_cpu(tsk) == src_cpu)
4992 move_task_off_dead_cpu(src_cpu, tsk);
4993 } while_each_thread(t, tsk);
4995 write_unlock_irq(&tasklist_lock);
4998 /* Schedules idle task to be the next runnable task on current CPU.
4999 * It does so by boosting its priority to highest possible and adding it to
5000 * the _front_ of runqueue. Used by CPU offline code.
5002 void sched_idle_next(void)
5004 int cpu = smp_processor_id();
5005 runqueue_t *rq = this_rq();
5006 struct task_struct *p = rq->idle;
5007 unsigned long flags;
5009 /* cpu has to be offline */
5010 BUG_ON(cpu_online(cpu));
5012 /* Strictly not necessary since rest of the CPUs are stopped by now
5013 * and interrupts disabled on current cpu.
5015 spin_lock_irqsave(&rq->lock, flags);
5017 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
5018 /* Add idle task to _front_ of it's priority queue */
5019 __activate_idle_task(p, rq);
5021 spin_unlock_irqrestore(&rq->lock, flags);
5024 /* Ensures that the idle task is using init_mm right before its cpu goes
5025 * offline.
5027 void idle_task_exit(void)
5029 struct mm_struct *mm = current->active_mm;
5031 BUG_ON(cpu_online(smp_processor_id()));
5033 if (mm != &init_mm)
5034 switch_mm(mm, &init_mm, current);
5035 mmdrop(mm);
5038 static void migrate_dead(unsigned int dead_cpu, task_t *tsk)
5040 struct runqueue *rq = cpu_rq(dead_cpu);
5042 /* Must be exiting, otherwise would be on tasklist. */
5043 BUG_ON(tsk->exit_state != EXIT_ZOMBIE && tsk->exit_state != EXIT_DEAD);
5045 /* Cannot have done final schedule yet: would have vanished. */
5046 BUG_ON(tsk->flags & PF_DEAD);
5048 get_task_struct(tsk);
5051 * Drop lock around migration; if someone else moves it,
5052 * that's OK. No task can be added to this CPU, so iteration is
5053 * fine.
5055 spin_unlock_irq(&rq->lock);
5056 move_task_off_dead_cpu(dead_cpu, tsk);
5057 spin_lock_irq(&rq->lock);
5059 put_task_struct(tsk);
5062 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5063 static void migrate_dead_tasks(unsigned int dead_cpu)
5065 unsigned arr, i;
5066 struct runqueue *rq = cpu_rq(dead_cpu);
5068 for (arr = 0; arr < 2; arr++) {
5069 for (i = 0; i < MAX_PRIO; i++) {
5070 struct list_head *list = &rq->arrays[arr].queue[i];
5071 while (!list_empty(list))
5072 migrate_dead(dead_cpu,
5073 list_entry(list->next, task_t,
5074 run_list));
5078 #endif /* CONFIG_HOTPLUG_CPU */
5081 * migration_call - callback that gets triggered when a CPU is added.
5082 * Here we can start up the necessary migration thread for the new CPU.
5084 static int __cpuinit migration_call(struct notifier_block *nfb,
5085 unsigned long action,
5086 void *hcpu)
5088 int cpu = (long)hcpu;
5089 struct task_struct *p;
5090 struct runqueue *rq;
5091 unsigned long flags;
5093 switch (action) {
5094 case CPU_UP_PREPARE:
5095 p = kthread_create(migration_thread, hcpu, "migration/%d",cpu);
5096 if (IS_ERR(p))
5097 return NOTIFY_BAD;
5098 p->flags |= PF_NOFREEZE;
5099 kthread_bind(p, cpu);
5100 /* Must be high prio: stop_machine expects to yield to it. */
5101 rq = task_rq_lock(p, &flags);
5102 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
5103 task_rq_unlock(rq, &flags);
5104 cpu_rq(cpu)->migration_thread = p;
5105 break;
5106 case CPU_ONLINE:
5107 /* Strictly unneccessary, as first user will wake it. */
5108 wake_up_process(cpu_rq(cpu)->migration_thread);
5109 break;
5110 #ifdef CONFIG_HOTPLUG_CPU
5111 case CPU_UP_CANCELED:
5112 if (!cpu_rq(cpu)->migration_thread)
5113 break;
5114 /* Unbind it from offline cpu so it can run. Fall thru. */
5115 kthread_bind(cpu_rq(cpu)->migration_thread,
5116 any_online_cpu(cpu_online_map));
5117 kthread_stop(cpu_rq(cpu)->migration_thread);
5118 cpu_rq(cpu)->migration_thread = NULL;
5119 break;
5120 case CPU_DEAD:
5121 migrate_live_tasks(cpu);
5122 rq = cpu_rq(cpu);
5123 kthread_stop(rq->migration_thread);
5124 rq->migration_thread = NULL;
5125 /* Idle task back to normal (off runqueue, low prio) */
5126 rq = task_rq_lock(rq->idle, &flags);
5127 deactivate_task(rq->idle, rq);
5128 rq->idle->static_prio = MAX_PRIO;
5129 __setscheduler(rq->idle, SCHED_NORMAL, 0);
5130 migrate_dead_tasks(cpu);
5131 task_rq_unlock(rq, &flags);
5132 migrate_nr_uninterruptible(rq);
5133 BUG_ON(rq->nr_running != 0);
5135 /* No need to migrate the tasks: it was best-effort if
5136 * they didn't do lock_cpu_hotplug(). Just wake up
5137 * the requestors. */
5138 spin_lock_irq(&rq->lock);
5139 while (!list_empty(&rq->migration_queue)) {
5140 migration_req_t *req;
5141 req = list_entry(rq->migration_queue.next,
5142 migration_req_t, list);
5143 list_del_init(&req->list);
5144 complete(&req->done);
5146 spin_unlock_irq(&rq->lock);
5147 break;
5148 #endif
5150 return NOTIFY_OK;
5153 /* Register at highest priority so that task migration (migrate_all_tasks)
5154 * happens before everything else.
5156 static struct notifier_block __cpuinitdata migration_notifier = {
5157 .notifier_call = migration_call,
5158 .priority = 10
5161 int __init migration_init(void)
5163 void *cpu = (void *)(long)smp_processor_id();
5164 /* Start one for boot CPU. */
5165 migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5166 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5167 register_cpu_notifier(&migration_notifier);
5168 return 0;
5170 #endif
5172 #ifdef CONFIG_SMP
5173 #undef SCHED_DOMAIN_DEBUG
5174 #ifdef SCHED_DOMAIN_DEBUG
5175 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5177 int level = 0;
5179 if (!sd) {
5180 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5181 return;
5184 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5186 do {
5187 int i;
5188 char str[NR_CPUS];
5189 struct sched_group *group = sd->groups;
5190 cpumask_t groupmask;
5192 cpumask_scnprintf(str, NR_CPUS, sd->span);
5193 cpus_clear(groupmask);
5195 printk(KERN_DEBUG);
5196 for (i = 0; i < level + 1; i++)
5197 printk(" ");
5198 printk("domain %d: ", level);
5200 if (!(sd->flags & SD_LOAD_BALANCE)) {
5201 printk("does not load-balance\n");
5202 if (sd->parent)
5203 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain has parent");
5204 break;
5207 printk("span %s\n", str);
5209 if (!cpu_isset(cpu, sd->span))
5210 printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
5211 if (!cpu_isset(cpu, group->cpumask))
5212 printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
5214 printk(KERN_DEBUG);
5215 for (i = 0; i < level + 2; i++)
5216 printk(" ");
5217 printk("groups:");
5218 do {
5219 if (!group) {
5220 printk("\n");
5221 printk(KERN_ERR "ERROR: group is NULL\n");
5222 break;
5225 if (!group->cpu_power) {
5226 printk("\n");
5227 printk(KERN_ERR "ERROR: domain->cpu_power not set\n");
5230 if (!cpus_weight(group->cpumask)) {
5231 printk("\n");
5232 printk(KERN_ERR "ERROR: empty group\n");
5235 if (cpus_intersects(groupmask, group->cpumask)) {
5236 printk("\n");
5237 printk(KERN_ERR "ERROR: repeated CPUs\n");
5240 cpus_or(groupmask, groupmask, group->cpumask);
5242 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5243 printk(" %s", str);
5245 group = group->next;
5246 } while (group != sd->groups);
5247 printk("\n");
5249 if (!cpus_equal(sd->span, groupmask))
5250 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5252 level++;
5253 sd = sd->parent;
5255 if (sd) {
5256 if (!cpus_subset(groupmask, sd->span))
5257 printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
5260 } while (sd);
5262 #else
5263 #define sched_domain_debug(sd, cpu) {}
5264 #endif
5266 static int sd_degenerate(struct sched_domain *sd)
5268 if (cpus_weight(sd->span) == 1)
5269 return 1;
5271 /* Following flags need at least 2 groups */
5272 if (sd->flags & (SD_LOAD_BALANCE |
5273 SD_BALANCE_NEWIDLE |
5274 SD_BALANCE_FORK |
5275 SD_BALANCE_EXEC)) {
5276 if (sd->groups != sd->groups->next)
5277 return 0;
5280 /* Following flags don't use groups */
5281 if (sd->flags & (SD_WAKE_IDLE |
5282 SD_WAKE_AFFINE |
5283 SD_WAKE_BALANCE))
5284 return 0;
5286 return 1;
5289 static int sd_parent_degenerate(struct sched_domain *sd,
5290 struct sched_domain *parent)
5292 unsigned long cflags = sd->flags, pflags = parent->flags;
5294 if (sd_degenerate(parent))
5295 return 1;
5297 if (!cpus_equal(sd->span, parent->span))
5298 return 0;
5300 /* Does parent contain flags not in child? */
5301 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5302 if (cflags & SD_WAKE_AFFINE)
5303 pflags &= ~SD_WAKE_BALANCE;
5304 /* Flags needing groups don't count if only 1 group in parent */
5305 if (parent->groups == parent->groups->next) {
5306 pflags &= ~(SD_LOAD_BALANCE |
5307 SD_BALANCE_NEWIDLE |
5308 SD_BALANCE_FORK |
5309 SD_BALANCE_EXEC);
5311 if (~cflags & pflags)
5312 return 0;
5314 return 1;
5318 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5319 * hold the hotplug lock.
5321 static void cpu_attach_domain(struct sched_domain *sd, int cpu)
5323 runqueue_t *rq = cpu_rq(cpu);
5324 struct sched_domain *tmp;
5326 /* Remove the sched domains which do not contribute to scheduling. */
5327 for (tmp = sd; tmp; tmp = tmp->parent) {
5328 struct sched_domain *parent = tmp->parent;
5329 if (!parent)
5330 break;
5331 if (sd_parent_degenerate(tmp, parent))
5332 tmp->parent = parent->parent;
5335 if (sd && sd_degenerate(sd))
5336 sd = sd->parent;
5338 sched_domain_debug(sd, cpu);
5340 rcu_assign_pointer(rq->sd, sd);
5343 /* cpus with isolated domains */
5344 static cpumask_t __devinitdata cpu_isolated_map = CPU_MASK_NONE;
5346 /* Setup the mask of cpus configured for isolated domains */
5347 static int __init isolated_cpu_setup(char *str)
5349 int ints[NR_CPUS], i;
5351 str = get_options(str, ARRAY_SIZE(ints), ints);
5352 cpus_clear(cpu_isolated_map);
5353 for (i = 1; i <= ints[0]; i++)
5354 if (ints[i] < NR_CPUS)
5355 cpu_set(ints[i], cpu_isolated_map);
5356 return 1;
5359 __setup ("isolcpus=", isolated_cpu_setup);
5362 * init_sched_build_groups takes an array of groups, the cpumask we wish
5363 * to span, and a pointer to a function which identifies what group a CPU
5364 * belongs to. The return value of group_fn must be a valid index into the
5365 * groups[] array, and must be >= 0 and < NR_CPUS (due to the fact that we
5366 * keep track of groups covered with a cpumask_t).
5368 * init_sched_build_groups will build a circular linked list of the groups
5369 * covered by the given span, and will set each group's ->cpumask correctly,
5370 * and ->cpu_power to 0.
5372 static void init_sched_build_groups(struct sched_group groups[], cpumask_t span,
5373 int (*group_fn)(int cpu))
5375 struct sched_group *first = NULL, *last = NULL;
5376 cpumask_t covered = CPU_MASK_NONE;
5377 int i;
5379 for_each_cpu_mask(i, span) {
5380 int group = group_fn(i);
5381 struct sched_group *sg = &groups[group];
5382 int j;
5384 if (cpu_isset(i, covered))
5385 continue;
5387 sg->cpumask = CPU_MASK_NONE;
5388 sg->cpu_power = 0;
5390 for_each_cpu_mask(j, span) {
5391 if (group_fn(j) != group)
5392 continue;
5394 cpu_set(j, covered);
5395 cpu_set(j, sg->cpumask);
5397 if (!first)
5398 first = sg;
5399 if (last)
5400 last->next = sg;
5401 last = sg;
5403 last->next = first;
5406 #define SD_NODES_PER_DOMAIN 16
5409 * Self-tuning task migration cost measurement between source and target CPUs.
5411 * This is done by measuring the cost of manipulating buffers of varying
5412 * sizes. For a given buffer-size here are the steps that are taken:
5414 * 1) the source CPU reads+dirties a shared buffer
5415 * 2) the target CPU reads+dirties the same shared buffer
5417 * We measure how long they take, in the following 4 scenarios:
5419 * - source: CPU1, target: CPU2 | cost1
5420 * - source: CPU2, target: CPU1 | cost2
5421 * - source: CPU1, target: CPU1 | cost3
5422 * - source: CPU2, target: CPU2 | cost4
5424 * We then calculate the cost3+cost4-cost1-cost2 difference - this is
5425 * the cost of migration.
5427 * We then start off from a small buffer-size and iterate up to larger
5428 * buffer sizes, in 5% steps - measuring each buffer-size separately, and
5429 * doing a maximum search for the cost. (The maximum cost for a migration
5430 * normally occurs when the working set size is around the effective cache
5431 * size.)
5433 #define SEARCH_SCOPE 2
5434 #define MIN_CACHE_SIZE (64*1024U)
5435 #define DEFAULT_CACHE_SIZE (5*1024*1024U)
5436 #define ITERATIONS 1
5437 #define SIZE_THRESH 130
5438 #define COST_THRESH 130
5441 * The migration cost is a function of 'domain distance'. Domain
5442 * distance is the number of steps a CPU has to iterate down its
5443 * domain tree to share a domain with the other CPU. The farther
5444 * two CPUs are from each other, the larger the distance gets.
5446 * Note that we use the distance only to cache measurement results,
5447 * the distance value is not used numerically otherwise. When two
5448 * CPUs have the same distance it is assumed that the migration
5449 * cost is the same. (this is a simplification but quite practical)
5451 #define MAX_DOMAIN_DISTANCE 32
5453 static unsigned long long migration_cost[MAX_DOMAIN_DISTANCE] =
5454 { [ 0 ... MAX_DOMAIN_DISTANCE-1 ] =
5456 * Architectures may override the migration cost and thus avoid
5457 * boot-time calibration. Unit is nanoseconds. Mostly useful for
5458 * virtualized hardware:
5460 #ifdef CONFIG_DEFAULT_MIGRATION_COST
5461 CONFIG_DEFAULT_MIGRATION_COST
5462 #else
5463 -1LL
5464 #endif
5468 * Allow override of migration cost - in units of microseconds.
5469 * E.g. migration_cost=1000,2000,3000 will set up a level-1 cost
5470 * of 1 msec, level-2 cost of 2 msecs and level3 cost of 3 msecs:
5472 static int __init migration_cost_setup(char *str)
5474 int ints[MAX_DOMAIN_DISTANCE+1], i;
5476 str = get_options(str, ARRAY_SIZE(ints), ints);
5478 printk("#ints: %d\n", ints[0]);
5479 for (i = 1; i <= ints[0]; i++) {
5480 migration_cost[i-1] = (unsigned long long)ints[i]*1000;
5481 printk("migration_cost[%d]: %Ld\n", i-1, migration_cost[i-1]);
5483 return 1;
5486 __setup ("migration_cost=", migration_cost_setup);
5489 * Global multiplier (divisor) for migration-cutoff values,
5490 * in percentiles. E.g. use a value of 150 to get 1.5 times
5491 * longer cache-hot cutoff times.
5493 * (We scale it from 100 to 128 to long long handling easier.)
5496 #define MIGRATION_FACTOR_SCALE 128
5498 static unsigned int migration_factor = MIGRATION_FACTOR_SCALE;
5500 static int __init setup_migration_factor(char *str)
5502 get_option(&str, &migration_factor);
5503 migration_factor = migration_factor * MIGRATION_FACTOR_SCALE / 100;
5504 return 1;
5507 __setup("migration_factor=", setup_migration_factor);
5510 * Estimated distance of two CPUs, measured via the number of domains
5511 * we have to pass for the two CPUs to be in the same span:
5513 static unsigned long domain_distance(int cpu1, int cpu2)
5515 unsigned long distance = 0;
5516 struct sched_domain *sd;
5518 for_each_domain(cpu1, sd) {
5519 WARN_ON(!cpu_isset(cpu1, sd->span));
5520 if (cpu_isset(cpu2, sd->span))
5521 return distance;
5522 distance++;
5524 if (distance >= MAX_DOMAIN_DISTANCE) {
5525 WARN_ON(1);
5526 distance = MAX_DOMAIN_DISTANCE-1;
5529 return distance;
5532 static unsigned int migration_debug;
5534 static int __init setup_migration_debug(char *str)
5536 get_option(&str, &migration_debug);
5537 return 1;
5540 __setup("migration_debug=", setup_migration_debug);
5543 * Maximum cache-size that the scheduler should try to measure.
5544 * Architectures with larger caches should tune this up during
5545 * bootup. Gets used in the domain-setup code (i.e. during SMP
5546 * bootup).
5548 unsigned int max_cache_size;
5550 static int __init setup_max_cache_size(char *str)
5552 get_option(&str, &max_cache_size);
5553 return 1;
5556 __setup("max_cache_size=", setup_max_cache_size);
5559 * Dirty a big buffer in a hard-to-predict (for the L2 cache) way. This
5560 * is the operation that is timed, so we try to generate unpredictable
5561 * cachemisses that still end up filling the L2 cache:
5563 static void touch_cache(void *__cache, unsigned long __size)
5565 unsigned long size = __size/sizeof(long), chunk1 = size/3,
5566 chunk2 = 2*size/3;
5567 unsigned long *cache = __cache;
5568 int i;
5570 for (i = 0; i < size/6; i += 8) {
5571 switch (i % 6) {
5572 case 0: cache[i]++;
5573 case 1: cache[size-1-i]++;
5574 case 2: cache[chunk1-i]++;
5575 case 3: cache[chunk1+i]++;
5576 case 4: cache[chunk2-i]++;
5577 case 5: cache[chunk2+i]++;
5583 * Measure the cache-cost of one task migration. Returns in units of nsec.
5585 static unsigned long long measure_one(void *cache, unsigned long size,
5586 int source, int target)
5588 cpumask_t mask, saved_mask;
5589 unsigned long long t0, t1, t2, t3, cost;
5591 saved_mask = current->cpus_allowed;
5594 * Flush source caches to RAM and invalidate them:
5596 sched_cacheflush();
5599 * Migrate to the source CPU:
5601 mask = cpumask_of_cpu(source);
5602 set_cpus_allowed(current, mask);
5603 WARN_ON(smp_processor_id() != source);
5606 * Dirty the working set:
5608 t0 = sched_clock();
5609 touch_cache(cache, size);
5610 t1 = sched_clock();
5613 * Migrate to the target CPU, dirty the L2 cache and access
5614 * the shared buffer. (which represents the working set
5615 * of a migrated task.)
5617 mask = cpumask_of_cpu(target);
5618 set_cpus_allowed(current, mask);
5619 WARN_ON(smp_processor_id() != target);
5621 t2 = sched_clock();
5622 touch_cache(cache, size);
5623 t3 = sched_clock();
5625 cost = t1-t0 + t3-t2;
5627 if (migration_debug >= 2)
5628 printk("[%d->%d]: %8Ld %8Ld %8Ld => %10Ld.\n",
5629 source, target, t1-t0, t1-t0, t3-t2, cost);
5631 * Flush target caches to RAM and invalidate them:
5633 sched_cacheflush();
5635 set_cpus_allowed(current, saved_mask);
5637 return cost;
5641 * Measure a series of task migrations and return the average
5642 * result. Since this code runs early during bootup the system
5643 * is 'undisturbed' and the average latency makes sense.
5645 * The algorithm in essence auto-detects the relevant cache-size,
5646 * so it will properly detect different cachesizes for different
5647 * cache-hierarchies, depending on how the CPUs are connected.
5649 * Architectures can prime the upper limit of the search range via
5650 * max_cache_size, otherwise the search range defaults to 20MB...64K.
5652 static unsigned long long
5653 measure_cost(int cpu1, int cpu2, void *cache, unsigned int size)
5655 unsigned long long cost1, cost2;
5656 int i;
5659 * Measure the migration cost of 'size' bytes, over an
5660 * average of 10 runs:
5662 * (We perturb the cache size by a small (0..4k)
5663 * value to compensate size/alignment related artifacts.
5664 * We also subtract the cost of the operation done on
5665 * the same CPU.)
5667 cost1 = 0;
5670 * dry run, to make sure we start off cache-cold on cpu1,
5671 * and to get any vmalloc pagefaults in advance:
5673 measure_one(cache, size, cpu1, cpu2);
5674 for (i = 0; i < ITERATIONS; i++)
5675 cost1 += measure_one(cache, size - i*1024, cpu1, cpu2);
5677 measure_one(cache, size, cpu2, cpu1);
5678 for (i = 0; i < ITERATIONS; i++)
5679 cost1 += measure_one(cache, size - i*1024, cpu2, cpu1);
5682 * (We measure the non-migrating [cached] cost on both
5683 * cpu1 and cpu2, to handle CPUs with different speeds)
5685 cost2 = 0;
5687 measure_one(cache, size, cpu1, cpu1);
5688 for (i = 0; i < ITERATIONS; i++)
5689 cost2 += measure_one(cache, size - i*1024, cpu1, cpu1);
5691 measure_one(cache, size, cpu2, cpu2);
5692 for (i = 0; i < ITERATIONS; i++)
5693 cost2 += measure_one(cache, size - i*1024, cpu2, cpu2);
5696 * Get the per-iteration migration cost:
5698 do_div(cost1, 2*ITERATIONS);
5699 do_div(cost2, 2*ITERATIONS);
5701 return cost1 - cost2;
5704 static unsigned long long measure_migration_cost(int cpu1, int cpu2)
5706 unsigned long long max_cost = 0, fluct = 0, avg_fluct = 0;
5707 unsigned int max_size, size, size_found = 0;
5708 long long cost = 0, prev_cost;
5709 void *cache;
5712 * Search from max_cache_size*5 down to 64K - the real relevant
5713 * cachesize has to lie somewhere inbetween.
5715 if (max_cache_size) {
5716 max_size = max(max_cache_size * SEARCH_SCOPE, MIN_CACHE_SIZE);
5717 size = max(max_cache_size / SEARCH_SCOPE, MIN_CACHE_SIZE);
5718 } else {
5720 * Since we have no estimation about the relevant
5721 * search range
5723 max_size = DEFAULT_CACHE_SIZE * SEARCH_SCOPE;
5724 size = MIN_CACHE_SIZE;
5727 if (!cpu_online(cpu1) || !cpu_online(cpu2)) {
5728 printk("cpu %d and %d not both online!\n", cpu1, cpu2);
5729 return 0;
5733 * Allocate the working set:
5735 cache = vmalloc(max_size);
5736 if (!cache) {
5737 printk("could not vmalloc %d bytes for cache!\n", 2*max_size);
5738 return 1000000; // return 1 msec on very small boxen
5741 while (size <= max_size) {
5742 prev_cost = cost;
5743 cost = measure_cost(cpu1, cpu2, cache, size);
5746 * Update the max:
5748 if (cost > 0) {
5749 if (max_cost < cost) {
5750 max_cost = cost;
5751 size_found = size;
5755 * Calculate average fluctuation, we use this to prevent
5756 * noise from triggering an early break out of the loop:
5758 fluct = abs(cost - prev_cost);
5759 avg_fluct = (avg_fluct + fluct)/2;
5761 if (migration_debug)
5762 printk("-> [%d][%d][%7d] %3ld.%ld [%3ld.%ld] (%ld): (%8Ld %8Ld)\n",
5763 cpu1, cpu2, size,
5764 (long)cost / 1000000,
5765 ((long)cost / 100000) % 10,
5766 (long)max_cost / 1000000,
5767 ((long)max_cost / 100000) % 10,
5768 domain_distance(cpu1, cpu2),
5769 cost, avg_fluct);
5772 * If we iterated at least 20% past the previous maximum,
5773 * and the cost has dropped by more than 20% already,
5774 * (taking fluctuations into account) then we assume to
5775 * have found the maximum and break out of the loop early:
5777 if (size_found && (size*100 > size_found*SIZE_THRESH))
5778 if (cost+avg_fluct <= 0 ||
5779 max_cost*100 > (cost+avg_fluct)*COST_THRESH) {
5781 if (migration_debug)
5782 printk("-> found max.\n");
5783 break;
5786 * Increase the cachesize in 10% steps:
5788 size = size * 10 / 9;
5791 if (migration_debug)
5792 printk("[%d][%d] working set size found: %d, cost: %Ld\n",
5793 cpu1, cpu2, size_found, max_cost);
5795 vfree(cache);
5798 * A task is considered 'cache cold' if at least 2 times
5799 * the worst-case cost of migration has passed.
5801 * (this limit is only listened to if the load-balancing
5802 * situation is 'nice' - if there is a large imbalance we
5803 * ignore it for the sake of CPU utilization and
5804 * processing fairness.)
5806 return 2 * max_cost * migration_factor / MIGRATION_FACTOR_SCALE;
5809 static void calibrate_migration_costs(const cpumask_t *cpu_map)
5811 int cpu1 = -1, cpu2 = -1, cpu, orig_cpu = raw_smp_processor_id();
5812 unsigned long j0, j1, distance, max_distance = 0;
5813 struct sched_domain *sd;
5815 j0 = jiffies;
5818 * First pass - calculate the cacheflush times:
5820 for_each_cpu_mask(cpu1, *cpu_map) {
5821 for_each_cpu_mask(cpu2, *cpu_map) {
5822 if (cpu1 == cpu2)
5823 continue;
5824 distance = domain_distance(cpu1, cpu2);
5825 max_distance = max(max_distance, distance);
5827 * No result cached yet?
5829 if (migration_cost[distance] == -1LL)
5830 migration_cost[distance] =
5831 measure_migration_cost(cpu1, cpu2);
5835 * Second pass - update the sched domain hierarchy with
5836 * the new cache-hot-time estimations:
5838 for_each_cpu_mask(cpu, *cpu_map) {
5839 distance = 0;
5840 for_each_domain(cpu, sd) {
5841 sd->cache_hot_time = migration_cost[distance];
5842 distance++;
5846 * Print the matrix:
5848 if (migration_debug)
5849 printk("migration: max_cache_size: %d, cpu: %d MHz:\n",
5850 max_cache_size,
5851 #ifdef CONFIG_X86
5852 cpu_khz/1000
5853 #else
5855 #endif
5857 if (system_state == SYSTEM_BOOTING) {
5858 printk("migration_cost=");
5859 for (distance = 0; distance <= max_distance; distance++) {
5860 if (distance)
5861 printk(",");
5862 printk("%ld", (long)migration_cost[distance] / 1000);
5864 printk("\n");
5866 j1 = jiffies;
5867 if (migration_debug)
5868 printk("migration: %ld seconds\n", (j1-j0)/HZ);
5871 * Move back to the original CPU. NUMA-Q gets confused
5872 * if we migrate to another quad during bootup.
5874 if (raw_smp_processor_id() != orig_cpu) {
5875 cpumask_t mask = cpumask_of_cpu(orig_cpu),
5876 saved_mask = current->cpus_allowed;
5878 set_cpus_allowed(current, mask);
5879 set_cpus_allowed(current, saved_mask);
5883 #ifdef CONFIG_NUMA
5886 * find_next_best_node - find the next node to include in a sched_domain
5887 * @node: node whose sched_domain we're building
5888 * @used_nodes: nodes already in the sched_domain
5890 * Find the next node to include in a given scheduling domain. Simply
5891 * finds the closest node not already in the @used_nodes map.
5893 * Should use nodemask_t.
5895 static int find_next_best_node(int node, unsigned long *used_nodes)
5897 int i, n, val, min_val, best_node = 0;
5899 min_val = INT_MAX;
5901 for (i = 0; i < MAX_NUMNODES; i++) {
5902 /* Start at @node */
5903 n = (node + i) % MAX_NUMNODES;
5905 if (!nr_cpus_node(n))
5906 continue;
5908 /* Skip already used nodes */
5909 if (test_bit(n, used_nodes))
5910 continue;
5912 /* Simple min distance search */
5913 val = node_distance(node, n);
5915 if (val < min_val) {
5916 min_val = val;
5917 best_node = n;
5921 set_bit(best_node, used_nodes);
5922 return best_node;
5926 * sched_domain_node_span - get a cpumask for a node's sched_domain
5927 * @node: node whose cpumask we're constructing
5928 * @size: number of nodes to include in this span
5930 * Given a node, construct a good cpumask for its sched_domain to span. It
5931 * should be one that prevents unnecessary balancing, but also spreads tasks
5932 * out optimally.
5934 static cpumask_t sched_domain_node_span(int node)
5936 int i;
5937 cpumask_t span, nodemask;
5938 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
5940 cpus_clear(span);
5941 bitmap_zero(used_nodes, MAX_NUMNODES);
5943 nodemask = node_to_cpumask(node);
5944 cpus_or(span, span, nodemask);
5945 set_bit(node, used_nodes);
5947 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5948 int next_node = find_next_best_node(node, used_nodes);
5949 nodemask = node_to_cpumask(next_node);
5950 cpus_or(span, span, nodemask);
5953 return span;
5955 #endif
5957 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
5959 * At the moment, CONFIG_SCHED_SMT is never defined, but leave it in so we
5960 * can switch it on easily if needed.
5962 #ifdef CONFIG_SCHED_SMT
5963 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
5964 static struct sched_group sched_group_cpus[NR_CPUS];
5965 static int cpu_to_cpu_group(int cpu)
5967 return cpu;
5969 #endif
5971 #ifdef CONFIG_SCHED_MC
5972 static DEFINE_PER_CPU(struct sched_domain, core_domains);
5973 static struct sched_group *sched_group_core_bycpu[NR_CPUS];
5974 #endif
5976 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
5977 static int cpu_to_core_group(int cpu)
5979 return first_cpu(cpu_sibling_map[cpu]);
5981 #elif defined(CONFIG_SCHED_MC)
5982 static int cpu_to_core_group(int cpu)
5984 return cpu;
5986 #endif
5988 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
5989 static struct sched_group *sched_group_phys_bycpu[NR_CPUS];
5990 static int cpu_to_phys_group(int cpu)
5992 #if defined(CONFIG_SCHED_MC)
5993 cpumask_t mask = cpu_coregroup_map(cpu);
5994 return first_cpu(mask);
5995 #elif defined(CONFIG_SCHED_SMT)
5996 return first_cpu(cpu_sibling_map[cpu]);
5997 #else
5998 return cpu;
5999 #endif
6002 #ifdef CONFIG_NUMA
6004 * The init_sched_build_groups can't handle what we want to do with node
6005 * groups, so roll our own. Now each node has its own list of groups which
6006 * gets dynamically allocated.
6008 static DEFINE_PER_CPU(struct sched_domain, node_domains);
6009 static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
6011 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6012 static struct sched_group *sched_group_allnodes_bycpu[NR_CPUS];
6014 static int cpu_to_allnodes_group(int cpu)
6016 return cpu_to_node(cpu);
6018 static void init_numa_sched_groups_power(struct sched_group *group_head)
6020 struct sched_group *sg = group_head;
6021 int j;
6023 if (!sg)
6024 return;
6025 next_sg:
6026 for_each_cpu_mask(j, sg->cpumask) {
6027 struct sched_domain *sd;
6029 sd = &per_cpu(phys_domains, j);
6030 if (j != first_cpu(sd->groups->cpumask)) {
6032 * Only add "power" once for each
6033 * physical package.
6035 continue;
6038 sg->cpu_power += sd->groups->cpu_power;
6040 sg = sg->next;
6041 if (sg != group_head)
6042 goto next_sg;
6044 #endif
6046 /* Free memory allocated for various sched_group structures */
6047 static void free_sched_groups(const cpumask_t *cpu_map)
6049 int cpu;
6050 #ifdef CONFIG_NUMA
6051 int i;
6053 for_each_cpu_mask(cpu, *cpu_map) {
6054 struct sched_group *sched_group_allnodes
6055 = sched_group_allnodes_bycpu[cpu];
6056 struct sched_group **sched_group_nodes
6057 = sched_group_nodes_bycpu[cpu];
6059 if (sched_group_allnodes) {
6060 kfree(sched_group_allnodes);
6061 sched_group_allnodes_bycpu[cpu] = NULL;
6064 if (!sched_group_nodes)
6065 continue;
6067 for (i = 0; i < MAX_NUMNODES; i++) {
6068 cpumask_t nodemask = node_to_cpumask(i);
6069 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6071 cpus_and(nodemask, nodemask, *cpu_map);
6072 if (cpus_empty(nodemask))
6073 continue;
6075 if (sg == NULL)
6076 continue;
6077 sg = sg->next;
6078 next_sg:
6079 oldsg = sg;
6080 sg = sg->next;
6081 kfree(oldsg);
6082 if (oldsg != sched_group_nodes[i])
6083 goto next_sg;
6085 kfree(sched_group_nodes);
6086 sched_group_nodes_bycpu[cpu] = NULL;
6088 #endif
6089 for_each_cpu_mask(cpu, *cpu_map) {
6090 if (sched_group_phys_bycpu[cpu]) {
6091 kfree(sched_group_phys_bycpu[cpu]);
6092 sched_group_phys_bycpu[cpu] = NULL;
6094 #ifdef CONFIG_SCHED_MC
6095 if (sched_group_core_bycpu[cpu]) {
6096 kfree(sched_group_core_bycpu[cpu]);
6097 sched_group_core_bycpu[cpu] = NULL;
6099 #endif
6104 * Build sched domains for a given set of cpus and attach the sched domains
6105 * to the individual cpus
6107 static int build_sched_domains(const cpumask_t *cpu_map)
6109 int i;
6110 struct sched_group *sched_group_phys = NULL;
6111 #ifdef CONFIG_SCHED_MC
6112 struct sched_group *sched_group_core = NULL;
6113 #endif
6114 #ifdef CONFIG_NUMA
6115 struct sched_group **sched_group_nodes = NULL;
6116 struct sched_group *sched_group_allnodes = NULL;
6119 * Allocate the per-node list of sched groups
6121 sched_group_nodes = kzalloc(sizeof(struct sched_group*)*MAX_NUMNODES,
6122 GFP_KERNEL);
6123 if (!sched_group_nodes) {
6124 printk(KERN_WARNING "Can not alloc sched group node list\n");
6125 return -ENOMEM;
6127 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6128 #endif
6131 * Set up domains for cpus specified by the cpu_map.
6133 for_each_cpu_mask(i, *cpu_map) {
6134 int group;
6135 struct sched_domain *sd = NULL, *p;
6136 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6138 cpus_and(nodemask, nodemask, *cpu_map);
6140 #ifdef CONFIG_NUMA
6141 if (cpus_weight(*cpu_map)
6142 > SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
6143 if (!sched_group_allnodes) {
6144 sched_group_allnodes
6145 = kmalloc(sizeof(struct sched_group)
6146 * MAX_NUMNODES,
6147 GFP_KERNEL);
6148 if (!sched_group_allnodes) {
6149 printk(KERN_WARNING
6150 "Can not alloc allnodes sched group\n");
6151 goto error;
6153 sched_group_allnodes_bycpu[i]
6154 = sched_group_allnodes;
6156 sd = &per_cpu(allnodes_domains, i);
6157 *sd = SD_ALLNODES_INIT;
6158 sd->span = *cpu_map;
6159 group = cpu_to_allnodes_group(i);
6160 sd->groups = &sched_group_allnodes[group];
6161 p = sd;
6162 } else
6163 p = NULL;
6165 sd = &per_cpu(node_domains, i);
6166 *sd = SD_NODE_INIT;
6167 sd->span = sched_domain_node_span(cpu_to_node(i));
6168 sd->parent = p;
6169 cpus_and(sd->span, sd->span, *cpu_map);
6170 #endif
6172 if (!sched_group_phys) {
6173 sched_group_phys
6174 = kmalloc(sizeof(struct sched_group) * NR_CPUS,
6175 GFP_KERNEL);
6176 if (!sched_group_phys) {
6177 printk (KERN_WARNING "Can not alloc phys sched"
6178 "group\n");
6179 goto error;
6181 sched_group_phys_bycpu[i] = sched_group_phys;
6184 p = sd;
6185 sd = &per_cpu(phys_domains, i);
6186 group = cpu_to_phys_group(i);
6187 *sd = SD_CPU_INIT;
6188 sd->span = nodemask;
6189 sd->parent = p;
6190 sd->groups = &sched_group_phys[group];
6192 #ifdef CONFIG_SCHED_MC
6193 if (!sched_group_core) {
6194 sched_group_core
6195 = kmalloc(sizeof(struct sched_group) * NR_CPUS,
6196 GFP_KERNEL);
6197 if (!sched_group_core) {
6198 printk (KERN_WARNING "Can not alloc core sched"
6199 "group\n");
6200 goto error;
6202 sched_group_core_bycpu[i] = sched_group_core;
6205 p = sd;
6206 sd = &per_cpu(core_domains, i);
6207 group = cpu_to_core_group(i);
6208 *sd = SD_MC_INIT;
6209 sd->span = cpu_coregroup_map(i);
6210 cpus_and(sd->span, sd->span, *cpu_map);
6211 sd->parent = p;
6212 sd->groups = &sched_group_core[group];
6213 #endif
6215 #ifdef CONFIG_SCHED_SMT
6216 p = sd;
6217 sd = &per_cpu(cpu_domains, i);
6218 group = cpu_to_cpu_group(i);
6219 *sd = SD_SIBLING_INIT;
6220 sd->span = cpu_sibling_map[i];
6221 cpus_and(sd->span, sd->span, *cpu_map);
6222 sd->parent = p;
6223 sd->groups = &sched_group_cpus[group];
6224 #endif
6227 #ifdef CONFIG_SCHED_SMT
6228 /* Set up CPU (sibling) groups */
6229 for_each_cpu_mask(i, *cpu_map) {
6230 cpumask_t this_sibling_map = cpu_sibling_map[i];
6231 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
6232 if (i != first_cpu(this_sibling_map))
6233 continue;
6235 init_sched_build_groups(sched_group_cpus, this_sibling_map,
6236 &cpu_to_cpu_group);
6238 #endif
6240 #ifdef CONFIG_SCHED_MC
6241 /* Set up multi-core groups */
6242 for_each_cpu_mask(i, *cpu_map) {
6243 cpumask_t this_core_map = cpu_coregroup_map(i);
6244 cpus_and(this_core_map, this_core_map, *cpu_map);
6245 if (i != first_cpu(this_core_map))
6246 continue;
6247 init_sched_build_groups(sched_group_core, this_core_map,
6248 &cpu_to_core_group);
6250 #endif
6253 /* Set up physical groups */
6254 for (i = 0; i < MAX_NUMNODES; i++) {
6255 cpumask_t nodemask = node_to_cpumask(i);
6257 cpus_and(nodemask, nodemask, *cpu_map);
6258 if (cpus_empty(nodemask))
6259 continue;
6261 init_sched_build_groups(sched_group_phys, nodemask,
6262 &cpu_to_phys_group);
6265 #ifdef CONFIG_NUMA
6266 /* Set up node groups */
6267 if (sched_group_allnodes)
6268 init_sched_build_groups(sched_group_allnodes, *cpu_map,
6269 &cpu_to_allnodes_group);
6271 for (i = 0; i < MAX_NUMNODES; i++) {
6272 /* Set up node groups */
6273 struct sched_group *sg, *prev;
6274 cpumask_t nodemask = node_to_cpumask(i);
6275 cpumask_t domainspan;
6276 cpumask_t covered = CPU_MASK_NONE;
6277 int j;
6279 cpus_and(nodemask, nodemask, *cpu_map);
6280 if (cpus_empty(nodemask)) {
6281 sched_group_nodes[i] = NULL;
6282 continue;
6285 domainspan = sched_domain_node_span(i);
6286 cpus_and(domainspan, domainspan, *cpu_map);
6288 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6289 if (!sg) {
6290 printk(KERN_WARNING "Can not alloc domain group for "
6291 "node %d\n", i);
6292 goto error;
6294 sched_group_nodes[i] = sg;
6295 for_each_cpu_mask(j, nodemask) {
6296 struct sched_domain *sd;
6297 sd = &per_cpu(node_domains, j);
6298 sd->groups = sg;
6300 sg->cpu_power = 0;
6301 sg->cpumask = nodemask;
6302 sg->next = sg;
6303 cpus_or(covered, covered, nodemask);
6304 prev = sg;
6306 for (j = 0; j < MAX_NUMNODES; j++) {
6307 cpumask_t tmp, notcovered;
6308 int n = (i + j) % MAX_NUMNODES;
6310 cpus_complement(notcovered, covered);
6311 cpus_and(tmp, notcovered, *cpu_map);
6312 cpus_and(tmp, tmp, domainspan);
6313 if (cpus_empty(tmp))
6314 break;
6316 nodemask = node_to_cpumask(n);
6317 cpus_and(tmp, tmp, nodemask);
6318 if (cpus_empty(tmp))
6319 continue;
6321 sg = kmalloc_node(sizeof(struct sched_group),
6322 GFP_KERNEL, i);
6323 if (!sg) {
6324 printk(KERN_WARNING
6325 "Can not alloc domain group for node %d\n", j);
6326 goto error;
6328 sg->cpu_power = 0;
6329 sg->cpumask = tmp;
6330 sg->next = prev->next;
6331 cpus_or(covered, covered, tmp);
6332 prev->next = sg;
6333 prev = sg;
6336 #endif
6338 /* Calculate CPU power for physical packages and nodes */
6339 #ifdef CONFIG_SCHED_SMT
6340 for_each_cpu_mask(i, *cpu_map) {
6341 struct sched_domain *sd;
6342 sd = &per_cpu(cpu_domains, i);
6343 sd->groups->cpu_power = SCHED_LOAD_SCALE;
6345 #endif
6346 #ifdef CONFIG_SCHED_MC
6347 for_each_cpu_mask(i, *cpu_map) {
6348 int power;
6349 struct sched_domain *sd;
6350 sd = &per_cpu(core_domains, i);
6351 if (sched_smt_power_savings)
6352 power = SCHED_LOAD_SCALE * cpus_weight(sd->groups->cpumask);
6353 else
6354 power = SCHED_LOAD_SCALE + (cpus_weight(sd->groups->cpumask)-1)
6355 * SCHED_LOAD_SCALE / 10;
6356 sd->groups->cpu_power = power;
6358 #endif
6360 for_each_cpu_mask(i, *cpu_map) {
6361 struct sched_domain *sd;
6362 #ifdef CONFIG_SCHED_MC
6363 sd = &per_cpu(phys_domains, i);
6364 if (i != first_cpu(sd->groups->cpumask))
6365 continue;
6367 sd->groups->cpu_power = 0;
6368 if (sched_mc_power_savings || sched_smt_power_savings) {
6369 int j;
6371 for_each_cpu_mask(j, sd->groups->cpumask) {
6372 struct sched_domain *sd1;
6373 sd1 = &per_cpu(core_domains, j);
6375 * for each core we will add once
6376 * to the group in physical domain
6378 if (j != first_cpu(sd1->groups->cpumask))
6379 continue;
6381 if (sched_smt_power_savings)
6382 sd->groups->cpu_power += sd1->groups->cpu_power;
6383 else
6384 sd->groups->cpu_power += SCHED_LOAD_SCALE;
6386 } else
6388 * This has to be < 2 * SCHED_LOAD_SCALE
6389 * Lets keep it SCHED_LOAD_SCALE, so that
6390 * while calculating NUMA group's cpu_power
6391 * we can simply do
6392 * numa_group->cpu_power += phys_group->cpu_power;
6394 * See "only add power once for each physical pkg"
6395 * comment below
6397 sd->groups->cpu_power = SCHED_LOAD_SCALE;
6398 #else
6399 int power;
6400 sd = &per_cpu(phys_domains, i);
6401 if (sched_smt_power_savings)
6402 power = SCHED_LOAD_SCALE * cpus_weight(sd->groups->cpumask);
6403 else
6404 power = SCHED_LOAD_SCALE;
6405 sd->groups->cpu_power = power;
6406 #endif
6409 #ifdef CONFIG_NUMA
6410 for (i = 0; i < MAX_NUMNODES; i++)
6411 init_numa_sched_groups_power(sched_group_nodes[i]);
6413 init_numa_sched_groups_power(sched_group_allnodes);
6414 #endif
6416 /* Attach the domains */
6417 for_each_cpu_mask(i, *cpu_map) {
6418 struct sched_domain *sd;
6419 #ifdef CONFIG_SCHED_SMT
6420 sd = &per_cpu(cpu_domains, i);
6421 #elif defined(CONFIG_SCHED_MC)
6422 sd = &per_cpu(core_domains, i);
6423 #else
6424 sd = &per_cpu(phys_domains, i);
6425 #endif
6426 cpu_attach_domain(sd, i);
6429 * Tune cache-hot values:
6431 calibrate_migration_costs(cpu_map);
6433 return 0;
6435 error:
6436 free_sched_groups(cpu_map);
6437 return -ENOMEM;
6440 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6442 static int arch_init_sched_domains(const cpumask_t *cpu_map)
6444 cpumask_t cpu_default_map;
6445 int err;
6448 * Setup mask for cpus without special case scheduling requirements.
6449 * For now this just excludes isolated cpus, but could be used to
6450 * exclude other special cases in the future.
6452 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
6454 err = build_sched_domains(&cpu_default_map);
6456 return err;
6459 static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
6461 free_sched_groups(cpu_map);
6465 * Detach sched domains from a group of cpus specified in cpu_map
6466 * These cpus will now be attached to the NULL domain
6468 static void detach_destroy_domains(const cpumask_t *cpu_map)
6470 int i;
6472 for_each_cpu_mask(i, *cpu_map)
6473 cpu_attach_domain(NULL, i);
6474 synchronize_sched();
6475 arch_destroy_sched_domains(cpu_map);
6479 * Partition sched domains as specified by the cpumasks below.
6480 * This attaches all cpus from the cpumasks to the NULL domain,
6481 * waits for a RCU quiescent period, recalculates sched
6482 * domain information and then attaches them back to the
6483 * correct sched domains
6484 * Call with hotplug lock held
6486 int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
6488 cpumask_t change_map;
6489 int err = 0;
6491 cpus_and(*partition1, *partition1, cpu_online_map);
6492 cpus_and(*partition2, *partition2, cpu_online_map);
6493 cpus_or(change_map, *partition1, *partition2);
6495 /* Detach sched domains from all of the affected cpus */
6496 detach_destroy_domains(&change_map);
6497 if (!cpus_empty(*partition1))
6498 err = build_sched_domains(partition1);
6499 if (!err && !cpus_empty(*partition2))
6500 err = build_sched_domains(partition2);
6502 return err;
6505 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6506 int arch_reinit_sched_domains(void)
6508 int err;
6510 lock_cpu_hotplug();
6511 detach_destroy_domains(&cpu_online_map);
6512 err = arch_init_sched_domains(&cpu_online_map);
6513 unlock_cpu_hotplug();
6515 return err;
6518 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6520 int ret;
6522 if (buf[0] != '0' && buf[0] != '1')
6523 return -EINVAL;
6525 if (smt)
6526 sched_smt_power_savings = (buf[0] == '1');
6527 else
6528 sched_mc_power_savings = (buf[0] == '1');
6530 ret = arch_reinit_sched_domains();
6532 return ret ? ret : count;
6535 int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6537 int err = 0;
6538 #ifdef CONFIG_SCHED_SMT
6539 if (smt_capable())
6540 err = sysfs_create_file(&cls->kset.kobj,
6541 &attr_sched_smt_power_savings.attr);
6542 #endif
6543 #ifdef CONFIG_SCHED_MC
6544 if (!err && mc_capable())
6545 err = sysfs_create_file(&cls->kset.kobj,
6546 &attr_sched_mc_power_savings.attr);
6547 #endif
6548 return err;
6550 #endif
6552 #ifdef CONFIG_SCHED_MC
6553 static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6555 return sprintf(page, "%u\n", sched_mc_power_savings);
6557 static ssize_t sched_mc_power_savings_store(struct sys_device *dev, const char *buf, size_t count)
6559 return sched_power_savings_store(buf, count, 0);
6561 SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6562 sched_mc_power_savings_store);
6563 #endif
6565 #ifdef CONFIG_SCHED_SMT
6566 static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6568 return sprintf(page, "%u\n", sched_smt_power_savings);
6570 static ssize_t sched_smt_power_savings_store(struct sys_device *dev, const char *buf, size_t count)
6572 return sched_power_savings_store(buf, count, 1);
6574 SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6575 sched_smt_power_savings_store);
6576 #endif
6579 #ifdef CONFIG_HOTPLUG_CPU
6581 * Force a reinitialization of the sched domains hierarchy. The domains
6582 * and groups cannot be updated in place without racing with the balancing
6583 * code, so we temporarily attach all running cpus to the NULL domain
6584 * which will prevent rebalancing while the sched domains are recalculated.
6586 static int update_sched_domains(struct notifier_block *nfb,
6587 unsigned long action, void *hcpu)
6589 switch (action) {
6590 case CPU_UP_PREPARE:
6591 case CPU_DOWN_PREPARE:
6592 detach_destroy_domains(&cpu_online_map);
6593 return NOTIFY_OK;
6595 case CPU_UP_CANCELED:
6596 case CPU_DOWN_FAILED:
6597 case CPU_ONLINE:
6598 case CPU_DEAD:
6600 * Fall through and re-initialise the domains.
6602 break;
6603 default:
6604 return NOTIFY_DONE;
6607 /* The hotplug lock is already held by cpu_up/cpu_down */
6608 arch_init_sched_domains(&cpu_online_map);
6610 return NOTIFY_OK;
6612 #endif
6614 void __init sched_init_smp(void)
6616 lock_cpu_hotplug();
6617 arch_init_sched_domains(&cpu_online_map);
6618 unlock_cpu_hotplug();
6619 /* XXX: Theoretical race here - CPU may be hotplugged now */
6620 hotcpu_notifier(update_sched_domains, 0);
6622 #else
6623 void __init sched_init_smp(void)
6626 #endif /* CONFIG_SMP */
6628 int in_sched_functions(unsigned long addr)
6630 /* Linker adds these: start and end of __sched functions */
6631 extern char __sched_text_start[], __sched_text_end[];
6632 return in_lock_functions(addr) ||
6633 (addr >= (unsigned long)__sched_text_start
6634 && addr < (unsigned long)__sched_text_end);
6637 void __init sched_init(void)
6639 runqueue_t *rq;
6640 int i, j, k;
6642 for_each_possible_cpu(i) {
6643 prio_array_t *array;
6645 rq = cpu_rq(i);
6646 spin_lock_init(&rq->lock);
6647 rq->nr_running = 0;
6648 rq->active = rq->arrays;
6649 rq->expired = rq->arrays + 1;
6650 rq->best_expired_prio = MAX_PRIO;
6652 #ifdef CONFIG_SMP
6653 rq->sd = NULL;
6654 for (j = 1; j < 3; j++)
6655 rq->cpu_load[j] = 0;
6656 rq->active_balance = 0;
6657 rq->push_cpu = 0;
6658 rq->migration_thread = NULL;
6659 INIT_LIST_HEAD(&rq->migration_queue);
6660 #endif
6661 atomic_set(&rq->nr_iowait, 0);
6663 for (j = 0; j < 2; j++) {
6664 array = rq->arrays + j;
6665 for (k = 0; k < MAX_PRIO; k++) {
6666 INIT_LIST_HEAD(array->queue + k);
6667 __clear_bit(k, array->bitmap);
6669 // delimiter for bitsearch
6670 __set_bit(MAX_PRIO, array->bitmap);
6674 set_load_weight(&init_task);
6676 * The boot idle thread does lazy MMU switching as well:
6678 atomic_inc(&init_mm.mm_count);
6679 enter_lazy_tlb(&init_mm, current);
6682 * Make us the idle thread. Technically, schedule() should not be
6683 * called from this thread, however somewhere below it might be,
6684 * but because we are the idle thread, we just pick up running again
6685 * when this runqueue becomes "idle".
6687 init_idle(current, smp_processor_id());
6690 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6691 void __might_sleep(char *file, int line)
6693 #if defined(in_atomic)
6694 static unsigned long prev_jiffy; /* ratelimiting */
6696 if ((in_atomic() || irqs_disabled()) &&
6697 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6698 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6699 return;
6700 prev_jiffy = jiffies;
6701 printk(KERN_ERR "BUG: sleeping function called from invalid"
6702 " context at %s:%d\n", file, line);
6703 printk("in_atomic():%d, irqs_disabled():%d\n",
6704 in_atomic(), irqs_disabled());
6705 dump_stack();
6707 #endif
6709 EXPORT_SYMBOL(__might_sleep);
6710 #endif
6712 #ifdef CONFIG_MAGIC_SYSRQ
6713 void normalize_rt_tasks(void)
6715 struct task_struct *p;
6716 prio_array_t *array;
6717 unsigned long flags;
6718 runqueue_t *rq;
6720 read_lock_irq(&tasklist_lock);
6721 for_each_process(p) {
6722 if (!rt_task(p))
6723 continue;
6725 spin_lock_irqsave(&p->pi_lock, flags);
6726 rq = __task_rq_lock(p);
6728 array = p->array;
6729 if (array)
6730 deactivate_task(p, task_rq(p));
6731 __setscheduler(p, SCHED_NORMAL, 0);
6732 if (array) {
6733 __activate_task(p, task_rq(p));
6734 resched_task(rq->curr);
6737 __task_rq_unlock(rq);
6738 spin_unlock_irqrestore(&p->pi_lock, flags);
6740 read_unlock_irq(&tasklist_lock);
6743 #endif /* CONFIG_MAGIC_SYSRQ */
6745 #ifdef CONFIG_IA64
6747 * These functions are only useful for the IA64 MCA handling.
6749 * They can only be called when the whole system has been
6750 * stopped - every CPU needs to be quiescent, and no scheduling
6751 * activity can take place. Using them for anything else would
6752 * be a serious bug, and as a result, they aren't even visible
6753 * under any other configuration.
6757 * curr_task - return the current task for a given cpu.
6758 * @cpu: the processor in question.
6760 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6762 task_t *curr_task(int cpu)
6764 return cpu_curr(cpu);
6768 * set_curr_task - set the current task for a given cpu.
6769 * @cpu: the processor in question.
6770 * @p: the task pointer to set.
6772 * Description: This function must only be used when non-maskable interrupts
6773 * are serviced on a separate stack. It allows the architecture to switch the
6774 * notion of the current task on a cpu in a non-blocking manner. This function
6775 * must be called with all CPU's synchronized, and interrupts disabled, the
6776 * and caller must save the original value of the current task (see
6777 * curr_task() above) and restore that value before reenabling interrupts and
6778 * re-starting the system.
6780 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6782 void set_curr_task(int cpu, task_t *p)
6784 cpu_curr(cpu) = p;
6787 #endif