[PATCH] hrtimers: fix reprogramming SMP race
[linux-2.6/kvm.git] / fs / splice.c
blob07f6556add0a9cf6e92494086abff1fd52e4379c
1 /*
2 * "splice": joining two ropes together by interweaving their strands.
4 * This is the "extended pipe" functionality, where a pipe is used as
5 * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6 * buffer that you can use to transfer data from one end to the other.
8 * The traditional unix read/write is extended with a "splice()" operation
9 * that transfers data buffers to or from a pipe buffer.
11 * Named by Larry McVoy, original implementation from Linus, extended by
12 * Jens to support splicing to files, network, direct splicing, etc and
13 * fixing lots of bugs.
15 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/pipe_fs_i.h>
24 #include <linux/mm_inline.h>
25 #include <linux/swap.h>
26 #include <linux/writeback.h>
27 #include <linux/buffer_head.h>
28 #include <linux/module.h>
29 #include <linux/syscalls.h>
30 #include <linux/uio.h>
32 struct partial_page {
33 unsigned int offset;
34 unsigned int len;
38 * Passed to splice_to_pipe
40 struct splice_pipe_desc {
41 struct page **pages; /* page map */
42 struct partial_page *partial; /* pages[] may not be contig */
43 int nr_pages; /* number of pages in map */
44 unsigned int flags; /* splice flags */
45 const struct pipe_buf_operations *ops;/* ops associated with output pipe */
49 * Attempt to steal a page from a pipe buffer. This should perhaps go into
50 * a vm helper function, it's already simplified quite a bit by the
51 * addition of remove_mapping(). If success is returned, the caller may
52 * attempt to reuse this page for another destination.
54 static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
55 struct pipe_buffer *buf)
57 struct page *page = buf->page;
58 struct address_space *mapping;
60 lock_page(page);
62 mapping = page_mapping(page);
63 if (mapping) {
64 WARN_ON(!PageUptodate(page));
67 * At least for ext2 with nobh option, we need to wait on
68 * writeback completing on this page, since we'll remove it
69 * from the pagecache. Otherwise truncate wont wait on the
70 * page, allowing the disk blocks to be reused by someone else
71 * before we actually wrote our data to them. fs corruption
72 * ensues.
74 wait_on_page_writeback(page);
76 if (PagePrivate(page))
77 try_to_release_page(page, GFP_KERNEL);
80 * If we succeeded in removing the mapping, set LRU flag
81 * and return good.
83 if (remove_mapping(mapping, page)) {
84 buf->flags |= PIPE_BUF_FLAG_LRU;
85 return 0;
90 * Raced with truncate or failed to remove page from current
91 * address space, unlock and return failure.
93 unlock_page(page);
94 return 1;
97 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
98 struct pipe_buffer *buf)
100 page_cache_release(buf->page);
101 buf->flags &= ~PIPE_BUF_FLAG_LRU;
104 static int page_cache_pipe_buf_pin(struct pipe_inode_info *pipe,
105 struct pipe_buffer *buf)
107 struct page *page = buf->page;
108 int err;
110 if (!PageUptodate(page)) {
111 lock_page(page);
114 * Page got truncated/unhashed. This will cause a 0-byte
115 * splice, if this is the first page.
117 if (!page->mapping) {
118 err = -ENODATA;
119 goto error;
123 * Uh oh, read-error from disk.
125 if (!PageUptodate(page)) {
126 err = -EIO;
127 goto error;
131 * Page is ok afterall, we are done.
133 unlock_page(page);
136 return 0;
137 error:
138 unlock_page(page);
139 return err;
142 static const struct pipe_buf_operations page_cache_pipe_buf_ops = {
143 .can_merge = 0,
144 .map = generic_pipe_buf_map,
145 .unmap = generic_pipe_buf_unmap,
146 .pin = page_cache_pipe_buf_pin,
147 .release = page_cache_pipe_buf_release,
148 .steal = page_cache_pipe_buf_steal,
149 .get = generic_pipe_buf_get,
152 static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
153 struct pipe_buffer *buf)
155 if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
156 return 1;
158 buf->flags |= PIPE_BUF_FLAG_LRU;
159 return generic_pipe_buf_steal(pipe, buf);
162 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
163 .can_merge = 0,
164 .map = generic_pipe_buf_map,
165 .unmap = generic_pipe_buf_unmap,
166 .pin = generic_pipe_buf_pin,
167 .release = page_cache_pipe_buf_release,
168 .steal = user_page_pipe_buf_steal,
169 .get = generic_pipe_buf_get,
173 * Pipe output worker. This sets up our pipe format with the page cache
174 * pipe buffer operations. Otherwise very similar to the regular pipe_writev().
176 static ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
177 struct splice_pipe_desc *spd)
179 int ret, do_wakeup, page_nr;
181 ret = 0;
182 do_wakeup = 0;
183 page_nr = 0;
185 if (pipe->inode)
186 mutex_lock(&pipe->inode->i_mutex);
188 for (;;) {
189 if (!pipe->readers) {
190 send_sig(SIGPIPE, current, 0);
191 if (!ret)
192 ret = -EPIPE;
193 break;
196 if (pipe->nrbufs < PIPE_BUFFERS) {
197 int newbuf = (pipe->curbuf + pipe->nrbufs) & (PIPE_BUFFERS - 1);
198 struct pipe_buffer *buf = pipe->bufs + newbuf;
200 buf->page = spd->pages[page_nr];
201 buf->offset = spd->partial[page_nr].offset;
202 buf->len = spd->partial[page_nr].len;
203 buf->ops = spd->ops;
204 if (spd->flags & SPLICE_F_GIFT)
205 buf->flags |= PIPE_BUF_FLAG_GIFT;
207 pipe->nrbufs++;
208 page_nr++;
209 ret += buf->len;
211 if (pipe->inode)
212 do_wakeup = 1;
214 if (!--spd->nr_pages)
215 break;
216 if (pipe->nrbufs < PIPE_BUFFERS)
217 continue;
219 break;
222 if (spd->flags & SPLICE_F_NONBLOCK) {
223 if (!ret)
224 ret = -EAGAIN;
225 break;
228 if (signal_pending(current)) {
229 if (!ret)
230 ret = -ERESTARTSYS;
231 break;
234 if (do_wakeup) {
235 smp_mb();
236 if (waitqueue_active(&pipe->wait))
237 wake_up_interruptible_sync(&pipe->wait);
238 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
239 do_wakeup = 0;
242 pipe->waiting_writers++;
243 pipe_wait(pipe);
244 pipe->waiting_writers--;
247 if (pipe->inode)
248 mutex_unlock(&pipe->inode->i_mutex);
250 if (do_wakeup) {
251 smp_mb();
252 if (waitqueue_active(&pipe->wait))
253 wake_up_interruptible(&pipe->wait);
254 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
257 while (page_nr < spd->nr_pages)
258 page_cache_release(spd->pages[page_nr++]);
260 return ret;
263 static int
264 __generic_file_splice_read(struct file *in, loff_t *ppos,
265 struct pipe_inode_info *pipe, size_t len,
266 unsigned int flags)
268 struct address_space *mapping = in->f_mapping;
269 unsigned int loff, nr_pages;
270 struct page *pages[PIPE_BUFFERS];
271 struct partial_page partial[PIPE_BUFFERS];
272 struct page *page;
273 pgoff_t index, end_index;
274 loff_t isize;
275 size_t total_len;
276 int error, page_nr;
277 struct splice_pipe_desc spd = {
278 .pages = pages,
279 .partial = partial,
280 .flags = flags,
281 .ops = &page_cache_pipe_buf_ops,
284 index = *ppos >> PAGE_CACHE_SHIFT;
285 loff = *ppos & ~PAGE_CACHE_MASK;
286 nr_pages = (len + loff + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
288 if (nr_pages > PIPE_BUFFERS)
289 nr_pages = PIPE_BUFFERS;
292 * Initiate read-ahead on this page range. however, don't call into
293 * read-ahead if this is a non-zero offset (we are likely doing small
294 * chunk splice and the page is already there) for a single page.
296 if (!loff || nr_pages > 1)
297 page_cache_readahead(mapping, &in->f_ra, in, index, nr_pages);
300 * Now fill in the holes:
302 error = 0;
303 total_len = 0;
306 * Lookup the (hopefully) full range of pages we need.
308 spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, pages);
311 * If find_get_pages_contig() returned fewer pages than we needed,
312 * allocate the rest.
314 index += spd.nr_pages;
315 while (spd.nr_pages < nr_pages) {
317 * Page could be there, find_get_pages_contig() breaks on
318 * the first hole.
320 page = find_get_page(mapping, index);
321 if (!page) {
323 * Make sure the read-ahead engine is notified
324 * about this failure.
326 handle_ra_miss(mapping, &in->f_ra, index);
329 * page didn't exist, allocate one.
331 page = page_cache_alloc_cold(mapping);
332 if (!page)
333 break;
335 error = add_to_page_cache_lru(page, mapping, index,
336 GFP_KERNEL);
337 if (unlikely(error)) {
338 page_cache_release(page);
339 if (error == -EEXIST)
340 continue;
341 break;
344 * add_to_page_cache() locks the page, unlock it
345 * to avoid convoluting the logic below even more.
347 unlock_page(page);
350 pages[spd.nr_pages++] = page;
351 index++;
355 * Now loop over the map and see if we need to start IO on any
356 * pages, fill in the partial map, etc.
358 index = *ppos >> PAGE_CACHE_SHIFT;
359 nr_pages = spd.nr_pages;
360 spd.nr_pages = 0;
361 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
362 unsigned int this_len;
364 if (!len)
365 break;
368 * this_len is the max we'll use from this page
370 this_len = min_t(unsigned long, len, PAGE_CACHE_SIZE - loff);
371 page = pages[page_nr];
374 * If the page isn't uptodate, we may need to start io on it
376 if (!PageUptodate(page)) {
378 * If in nonblock mode then dont block on waiting
379 * for an in-flight io page
381 if (flags & SPLICE_F_NONBLOCK)
382 break;
384 lock_page(page);
387 * page was truncated, stop here. if this isn't the
388 * first page, we'll just complete what we already
389 * added
391 if (!page->mapping) {
392 unlock_page(page);
393 break;
396 * page was already under io and is now done, great
398 if (PageUptodate(page)) {
399 unlock_page(page);
400 goto fill_it;
404 * need to read in the page
406 error = mapping->a_ops->readpage(in, page);
407 if (unlikely(error)) {
409 * We really should re-lookup the page here,
410 * but it complicates things a lot. Instead
411 * lets just do what we already stored, and
412 * we'll get it the next time we are called.
414 if (error == AOP_TRUNCATED_PAGE)
415 error = 0;
417 break;
421 * i_size must be checked after ->readpage().
423 isize = i_size_read(mapping->host);
424 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
425 if (unlikely(!isize || index > end_index))
426 break;
429 * if this is the last page, see if we need to shrink
430 * the length and stop
432 if (end_index == index) {
433 loff = PAGE_CACHE_SIZE - (isize & ~PAGE_CACHE_MASK);
434 if (total_len + loff > isize)
435 break;
437 * force quit after adding this page
439 len = this_len;
440 this_len = min(this_len, loff);
441 loff = 0;
444 fill_it:
445 partial[page_nr].offset = loff;
446 partial[page_nr].len = this_len;
447 len -= this_len;
448 total_len += this_len;
449 loff = 0;
450 spd.nr_pages++;
451 index++;
455 * Release any pages at the end, if we quit early. 'i' is how far
456 * we got, 'nr_pages' is how many pages are in the map.
458 while (page_nr < nr_pages)
459 page_cache_release(pages[page_nr++]);
461 if (spd.nr_pages)
462 return splice_to_pipe(pipe, &spd);
464 return error;
468 * generic_file_splice_read - splice data from file to a pipe
469 * @in: file to splice from
470 * @pipe: pipe to splice to
471 * @len: number of bytes to splice
472 * @flags: splice modifier flags
474 * Will read pages from given file and fill them into a pipe.
476 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
477 struct pipe_inode_info *pipe, size_t len,
478 unsigned int flags)
480 ssize_t spliced;
481 int ret;
483 ret = 0;
484 spliced = 0;
486 while (len) {
487 ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
489 if (ret < 0)
490 break;
491 else if (!ret) {
492 if (spliced)
493 break;
494 if (flags & SPLICE_F_NONBLOCK) {
495 ret = -EAGAIN;
496 break;
500 *ppos += ret;
501 len -= ret;
502 spliced += ret;
505 if (spliced)
506 return spliced;
508 return ret;
511 EXPORT_SYMBOL(generic_file_splice_read);
514 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
515 * using sendpage(). Return the number of bytes sent.
517 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
518 struct pipe_buffer *buf, struct splice_desc *sd)
520 struct file *file = sd->file;
521 loff_t pos = sd->pos;
522 int ret, more;
524 ret = buf->ops->pin(pipe, buf);
525 if (!ret) {
526 more = (sd->flags & SPLICE_F_MORE) || sd->len < sd->total_len;
528 ret = file->f_op->sendpage(file, buf->page, buf->offset,
529 sd->len, &pos, more);
532 return ret;
536 * This is a little more tricky than the file -> pipe splicing. There are
537 * basically three cases:
539 * - Destination page already exists in the address space and there
540 * are users of it. For that case we have no other option that
541 * copying the data. Tough luck.
542 * - Destination page already exists in the address space, but there
543 * are no users of it. Make sure it's uptodate, then drop it. Fall
544 * through to last case.
545 * - Destination page does not exist, we can add the pipe page to
546 * the page cache and avoid the copy.
548 * If asked to move pages to the output file (SPLICE_F_MOVE is set in
549 * sd->flags), we attempt to migrate pages from the pipe to the output
550 * file address space page cache. This is possible if no one else has
551 * the pipe page referenced outside of the pipe and page cache. If
552 * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create
553 * a new page in the output file page cache and fill/dirty that.
555 static int pipe_to_file(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
556 struct splice_desc *sd)
558 struct file *file = sd->file;
559 struct address_space *mapping = file->f_mapping;
560 unsigned int offset, this_len;
561 struct page *page;
562 pgoff_t index;
563 int ret;
566 * make sure the data in this buffer is uptodate
568 ret = buf->ops->pin(pipe, buf);
569 if (unlikely(ret))
570 return ret;
572 index = sd->pos >> PAGE_CACHE_SHIFT;
573 offset = sd->pos & ~PAGE_CACHE_MASK;
575 this_len = sd->len;
576 if (this_len + offset > PAGE_CACHE_SIZE)
577 this_len = PAGE_CACHE_SIZE - offset;
579 find_page:
580 page = find_lock_page(mapping, index);
581 if (!page) {
582 ret = -ENOMEM;
583 page = page_cache_alloc_cold(mapping);
584 if (unlikely(!page))
585 goto out_ret;
588 * This will also lock the page
590 ret = add_to_page_cache_lru(page, mapping, index,
591 GFP_KERNEL);
592 if (unlikely(ret))
593 goto out;
596 ret = mapping->a_ops->prepare_write(file, page, offset, offset+this_len);
597 if (unlikely(ret)) {
598 loff_t isize = i_size_read(mapping->host);
600 if (ret != AOP_TRUNCATED_PAGE)
601 unlock_page(page);
602 page_cache_release(page);
603 if (ret == AOP_TRUNCATED_PAGE)
604 goto find_page;
607 * prepare_write() may have instantiated a few blocks
608 * outside i_size. Trim these off again.
610 if (sd->pos + this_len > isize)
611 vmtruncate(mapping->host, isize);
613 goto out_ret;
616 if (buf->page != page) {
618 * Careful, ->map() uses KM_USER0!
620 char *src = buf->ops->map(pipe, buf, 1);
621 char *dst = kmap_atomic(page, KM_USER1);
623 memcpy(dst + offset, src + buf->offset, this_len);
624 flush_dcache_page(page);
625 kunmap_atomic(dst, KM_USER1);
626 buf->ops->unmap(pipe, buf, src);
629 ret = mapping->a_ops->commit_write(file, page, offset, offset+this_len);
630 if (!ret) {
632 * Return the number of bytes written and mark page as
633 * accessed, we are now done!
635 ret = this_len;
636 mark_page_accessed(page);
637 balance_dirty_pages_ratelimited(mapping);
638 } else if (ret == AOP_TRUNCATED_PAGE) {
639 page_cache_release(page);
640 goto find_page;
642 out:
643 page_cache_release(page);
644 unlock_page(page);
645 out_ret:
646 return ret;
650 * Pipe input worker. Most of this logic works like a regular pipe, the
651 * key here is the 'actor' worker passed in that actually moves the data
652 * to the wanted destination. See pipe_to_file/pipe_to_sendpage above.
654 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe,
655 struct file *out, loff_t *ppos, size_t len,
656 unsigned int flags, splice_actor *actor)
658 int ret, do_wakeup, err;
659 struct splice_desc sd;
661 ret = 0;
662 do_wakeup = 0;
664 sd.total_len = len;
665 sd.flags = flags;
666 sd.file = out;
667 sd.pos = *ppos;
669 for (;;) {
670 if (pipe->nrbufs) {
671 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
672 const struct pipe_buf_operations *ops = buf->ops;
674 sd.len = buf->len;
675 if (sd.len > sd.total_len)
676 sd.len = sd.total_len;
678 err = actor(pipe, buf, &sd);
679 if (err <= 0) {
680 if (!ret && err != -ENODATA)
681 ret = err;
683 break;
686 ret += err;
687 buf->offset += err;
688 buf->len -= err;
690 sd.len -= err;
691 sd.pos += err;
692 sd.total_len -= err;
693 if (sd.len)
694 continue;
696 if (!buf->len) {
697 buf->ops = NULL;
698 ops->release(pipe, buf);
699 pipe->curbuf = (pipe->curbuf + 1) & (PIPE_BUFFERS - 1);
700 pipe->nrbufs--;
701 if (pipe->inode)
702 do_wakeup = 1;
705 if (!sd.total_len)
706 break;
709 if (pipe->nrbufs)
710 continue;
711 if (!pipe->writers)
712 break;
713 if (!pipe->waiting_writers) {
714 if (ret)
715 break;
718 if (flags & SPLICE_F_NONBLOCK) {
719 if (!ret)
720 ret = -EAGAIN;
721 break;
724 if (signal_pending(current)) {
725 if (!ret)
726 ret = -ERESTARTSYS;
727 break;
730 if (do_wakeup) {
731 smp_mb();
732 if (waitqueue_active(&pipe->wait))
733 wake_up_interruptible_sync(&pipe->wait);
734 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
735 do_wakeup = 0;
738 pipe_wait(pipe);
741 if (do_wakeup) {
742 smp_mb();
743 if (waitqueue_active(&pipe->wait))
744 wake_up_interruptible(&pipe->wait);
745 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
748 return ret;
750 EXPORT_SYMBOL(__splice_from_pipe);
752 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
753 loff_t *ppos, size_t len, unsigned int flags,
754 splice_actor *actor)
756 ssize_t ret;
757 struct inode *inode = out->f_mapping->host;
760 * The actor worker might be calling ->prepare_write and
761 * ->commit_write. Most of the time, these expect i_mutex to
762 * be held. Since this may result in an ABBA deadlock with
763 * pipe->inode, we have to order lock acquiry here.
765 inode_double_lock(inode, pipe->inode);
766 ret = __splice_from_pipe(pipe, out, ppos, len, flags, actor);
767 inode_double_unlock(inode, pipe->inode);
769 return ret;
773 * generic_file_splice_write_nolock - generic_file_splice_write without mutexes
774 * @pipe: pipe info
775 * @out: file to write to
776 * @len: number of bytes to splice
777 * @flags: splice modifier flags
779 * Will either move or copy pages (determined by @flags options) from
780 * the given pipe inode to the given file. The caller is responsible
781 * for acquiring i_mutex on both inodes.
784 ssize_t
785 generic_file_splice_write_nolock(struct pipe_inode_info *pipe, struct file *out,
786 loff_t *ppos, size_t len, unsigned int flags)
788 struct address_space *mapping = out->f_mapping;
789 struct inode *inode = mapping->host;
790 ssize_t ret;
791 int err;
793 err = remove_suid(out->f_path.dentry);
794 if (unlikely(err))
795 return err;
797 ret = __splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_file);
798 if (ret > 0) {
799 *ppos += ret;
802 * If file or inode is SYNC and we actually wrote some data,
803 * sync it.
805 if (unlikely((out->f_flags & O_SYNC) || IS_SYNC(inode))) {
806 err = generic_osync_inode(inode, mapping,
807 OSYNC_METADATA|OSYNC_DATA);
809 if (err)
810 ret = err;
814 return ret;
817 EXPORT_SYMBOL(generic_file_splice_write_nolock);
820 * generic_file_splice_write - splice data from a pipe to a file
821 * @pipe: pipe info
822 * @out: file to write to
823 * @len: number of bytes to splice
824 * @flags: splice modifier flags
826 * Will either move or copy pages (determined by @flags options) from
827 * the given pipe inode to the given file.
830 ssize_t
831 generic_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
832 loff_t *ppos, size_t len, unsigned int flags)
834 struct address_space *mapping = out->f_mapping;
835 struct inode *inode = mapping->host;
836 ssize_t ret;
837 int err;
839 err = should_remove_suid(out->f_path.dentry);
840 if (unlikely(err)) {
841 mutex_lock(&inode->i_mutex);
842 err = __remove_suid(out->f_path.dentry, err);
843 mutex_unlock(&inode->i_mutex);
844 if (err)
845 return err;
848 ret = splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_file);
849 if (ret > 0) {
850 *ppos += ret;
853 * If file or inode is SYNC and we actually wrote some data,
854 * sync it.
856 if (unlikely((out->f_flags & O_SYNC) || IS_SYNC(inode))) {
857 mutex_lock(&inode->i_mutex);
858 err = generic_osync_inode(inode, mapping,
859 OSYNC_METADATA|OSYNC_DATA);
860 mutex_unlock(&inode->i_mutex);
862 if (err)
863 ret = err;
867 return ret;
870 EXPORT_SYMBOL(generic_file_splice_write);
873 * generic_splice_sendpage - splice data from a pipe to a socket
874 * @inode: pipe inode
875 * @out: socket to write to
876 * @len: number of bytes to splice
877 * @flags: splice modifier flags
879 * Will send @len bytes from the pipe to a network socket. No data copying
880 * is involved.
883 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
884 loff_t *ppos, size_t len, unsigned int flags)
886 return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
889 EXPORT_SYMBOL(generic_splice_sendpage);
892 * Attempt to initiate a splice from pipe to file.
894 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
895 loff_t *ppos, size_t len, unsigned int flags)
897 int ret;
899 if (unlikely(!out->f_op || !out->f_op->splice_write))
900 return -EINVAL;
902 if (unlikely(!(out->f_mode & FMODE_WRITE)))
903 return -EBADF;
905 ret = rw_verify_area(WRITE, out, ppos, len);
906 if (unlikely(ret < 0))
907 return ret;
909 return out->f_op->splice_write(pipe, out, ppos, len, flags);
913 * Attempt to initiate a splice from a file to a pipe.
915 static long do_splice_to(struct file *in, loff_t *ppos,
916 struct pipe_inode_info *pipe, size_t len,
917 unsigned int flags)
919 loff_t isize, left;
920 int ret;
922 if (unlikely(!in->f_op || !in->f_op->splice_read))
923 return -EINVAL;
925 if (unlikely(!(in->f_mode & FMODE_READ)))
926 return -EBADF;
928 ret = rw_verify_area(READ, in, ppos, len);
929 if (unlikely(ret < 0))
930 return ret;
932 isize = i_size_read(in->f_mapping->host);
933 if (unlikely(*ppos >= isize))
934 return 0;
936 left = isize - *ppos;
937 if (unlikely(left < len))
938 len = left;
940 return in->f_op->splice_read(in, ppos, pipe, len, flags);
943 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
944 size_t len, unsigned int flags)
946 struct pipe_inode_info *pipe;
947 long ret, bytes;
948 loff_t out_off;
949 umode_t i_mode;
950 int i;
953 * We require the input being a regular file, as we don't want to
954 * randomly drop data for eg socket -> socket splicing. Use the
955 * piped splicing for that!
957 i_mode = in->f_path.dentry->d_inode->i_mode;
958 if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
959 return -EINVAL;
962 * neither in nor out is a pipe, setup an internal pipe attached to
963 * 'out' and transfer the wanted data from 'in' to 'out' through that
965 pipe = current->splice_pipe;
966 if (unlikely(!pipe)) {
967 pipe = alloc_pipe_info(NULL);
968 if (!pipe)
969 return -ENOMEM;
972 * We don't have an immediate reader, but we'll read the stuff
973 * out of the pipe right after the splice_to_pipe(). So set
974 * PIPE_READERS appropriately.
976 pipe->readers = 1;
978 current->splice_pipe = pipe;
982 * Do the splice.
984 ret = 0;
985 bytes = 0;
986 out_off = 0;
988 while (len) {
989 size_t read_len, max_read_len;
992 * Do at most PIPE_BUFFERS pages worth of transfer:
994 max_read_len = min(len, (size_t)(PIPE_BUFFERS*PAGE_SIZE));
996 ret = do_splice_to(in, ppos, pipe, max_read_len, flags);
997 if (unlikely(ret < 0))
998 goto out_release;
1000 read_len = ret;
1003 * NOTE: nonblocking mode only applies to the input. We
1004 * must not do the output in nonblocking mode as then we
1005 * could get stuck data in the internal pipe:
1007 ret = do_splice_from(pipe, out, &out_off, read_len,
1008 flags & ~SPLICE_F_NONBLOCK);
1009 if (unlikely(ret < 0))
1010 goto out_release;
1012 bytes += ret;
1013 len -= ret;
1016 * In nonblocking mode, if we got back a short read then
1017 * that was due to either an IO error or due to the
1018 * pagecache entry not being there. In the IO error case
1019 * the _next_ splice attempt will produce a clean IO error
1020 * return value (not a short read), so in both cases it's
1021 * correct to break out of the loop here:
1023 if ((flags & SPLICE_F_NONBLOCK) && (read_len < max_read_len))
1024 break;
1027 pipe->nrbufs = pipe->curbuf = 0;
1029 return bytes;
1031 out_release:
1033 * If we did an incomplete transfer we must release
1034 * the pipe buffers in question:
1036 for (i = 0; i < PIPE_BUFFERS; i++) {
1037 struct pipe_buffer *buf = pipe->bufs + i;
1039 if (buf->ops) {
1040 buf->ops->release(pipe, buf);
1041 buf->ops = NULL;
1044 pipe->nrbufs = pipe->curbuf = 0;
1047 * If we transferred some data, return the number of bytes:
1049 if (bytes > 0)
1050 return bytes;
1052 return ret;
1055 EXPORT_SYMBOL(do_splice_direct);
1058 * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same
1059 * location, so checking ->i_pipe is not enough to verify that this is a
1060 * pipe.
1062 static inline struct pipe_inode_info *pipe_info(struct inode *inode)
1064 if (S_ISFIFO(inode->i_mode))
1065 return inode->i_pipe;
1067 return NULL;
1071 * Determine where to splice to/from.
1073 static long do_splice(struct file *in, loff_t __user *off_in,
1074 struct file *out, loff_t __user *off_out,
1075 size_t len, unsigned int flags)
1077 struct pipe_inode_info *pipe;
1078 loff_t offset, *off;
1079 long ret;
1081 pipe = pipe_info(in->f_path.dentry->d_inode);
1082 if (pipe) {
1083 if (off_in)
1084 return -ESPIPE;
1085 if (off_out) {
1086 if (out->f_op->llseek == no_llseek)
1087 return -EINVAL;
1088 if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1089 return -EFAULT;
1090 off = &offset;
1091 } else
1092 off = &out->f_pos;
1094 ret = do_splice_from(pipe, out, off, len, flags);
1096 if (off_out && copy_to_user(off_out, off, sizeof(loff_t)))
1097 ret = -EFAULT;
1099 return ret;
1102 pipe = pipe_info(out->f_path.dentry->d_inode);
1103 if (pipe) {
1104 if (off_out)
1105 return -ESPIPE;
1106 if (off_in) {
1107 if (in->f_op->llseek == no_llseek)
1108 return -EINVAL;
1109 if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1110 return -EFAULT;
1111 off = &offset;
1112 } else
1113 off = &in->f_pos;
1115 ret = do_splice_to(in, off, pipe, len, flags);
1117 if (off_in && copy_to_user(off_in, off, sizeof(loff_t)))
1118 ret = -EFAULT;
1120 return ret;
1123 return -EINVAL;
1127 * Map an iov into an array of pages and offset/length tupples. With the
1128 * partial_page structure, we can map several non-contiguous ranges into
1129 * our ones pages[] map instead of splitting that operation into pieces.
1130 * Could easily be exported as a generic helper for other users, in which
1131 * case one would probably want to add a 'max_nr_pages' parameter as well.
1133 static int get_iovec_page_array(const struct iovec __user *iov,
1134 unsigned int nr_vecs, struct page **pages,
1135 struct partial_page *partial, int aligned)
1137 int buffers = 0, error = 0;
1140 * It's ok to take the mmap_sem for reading, even
1141 * across a "get_user()".
1143 down_read(&current->mm->mmap_sem);
1145 while (nr_vecs) {
1146 unsigned long off, npages;
1147 void __user *base;
1148 size_t len;
1149 int i;
1152 * Get user address base and length for this iovec.
1154 error = get_user(base, &iov->iov_base);
1155 if (unlikely(error))
1156 break;
1157 error = get_user(len, &iov->iov_len);
1158 if (unlikely(error))
1159 break;
1162 * Sanity check this iovec. 0 read succeeds.
1164 if (unlikely(!len))
1165 break;
1166 error = -EFAULT;
1167 if (unlikely(!base))
1168 break;
1171 * Get this base offset and number of pages, then map
1172 * in the user pages.
1174 off = (unsigned long) base & ~PAGE_MASK;
1177 * If asked for alignment, the offset must be zero and the
1178 * length a multiple of the PAGE_SIZE.
1180 error = -EINVAL;
1181 if (aligned && (off || len & ~PAGE_MASK))
1182 break;
1184 npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1185 if (npages > PIPE_BUFFERS - buffers)
1186 npages = PIPE_BUFFERS - buffers;
1188 error = get_user_pages(current, current->mm,
1189 (unsigned long) base, npages, 0, 0,
1190 &pages[buffers], NULL);
1192 if (unlikely(error <= 0))
1193 break;
1196 * Fill this contiguous range into the partial page map.
1198 for (i = 0; i < error; i++) {
1199 const int plen = min_t(size_t, len, PAGE_SIZE - off);
1201 partial[buffers].offset = off;
1202 partial[buffers].len = plen;
1204 off = 0;
1205 len -= plen;
1206 buffers++;
1210 * We didn't complete this iov, stop here since it probably
1211 * means we have to move some of this into a pipe to
1212 * be able to continue.
1214 if (len)
1215 break;
1218 * Don't continue if we mapped fewer pages than we asked for,
1219 * or if we mapped the max number of pages that we have
1220 * room for.
1222 if (error < npages || buffers == PIPE_BUFFERS)
1223 break;
1225 nr_vecs--;
1226 iov++;
1229 up_read(&current->mm->mmap_sem);
1231 if (buffers)
1232 return buffers;
1234 return error;
1238 * vmsplice splices a user address range into a pipe. It can be thought of
1239 * as splice-from-memory, where the regular splice is splice-from-file (or
1240 * to file). In both cases the output is a pipe, naturally.
1242 * Note that vmsplice only supports splicing _from_ user memory to a pipe,
1243 * not the other way around. Splicing from user memory is a simple operation
1244 * that can be supported without any funky alignment restrictions or nasty
1245 * vm tricks. We simply map in the user memory and fill them into a pipe.
1246 * The reverse isn't quite as easy, though. There are two possible solutions
1247 * for that:
1249 * - memcpy() the data internally, at which point we might as well just
1250 * do a regular read() on the buffer anyway.
1251 * - Lots of nasty vm tricks, that are neither fast nor flexible (it
1252 * has restriction limitations on both ends of the pipe).
1254 * Alas, it isn't here.
1257 static long do_vmsplice(struct file *file, const struct iovec __user *iov,
1258 unsigned long nr_segs, unsigned int flags)
1260 struct pipe_inode_info *pipe;
1261 struct page *pages[PIPE_BUFFERS];
1262 struct partial_page partial[PIPE_BUFFERS];
1263 struct splice_pipe_desc spd = {
1264 .pages = pages,
1265 .partial = partial,
1266 .flags = flags,
1267 .ops = &user_page_pipe_buf_ops,
1270 pipe = pipe_info(file->f_path.dentry->d_inode);
1271 if (!pipe)
1272 return -EBADF;
1273 if (unlikely(nr_segs > UIO_MAXIOV))
1274 return -EINVAL;
1275 else if (unlikely(!nr_segs))
1276 return 0;
1278 spd.nr_pages = get_iovec_page_array(iov, nr_segs, pages, partial,
1279 flags & SPLICE_F_GIFT);
1280 if (spd.nr_pages <= 0)
1281 return spd.nr_pages;
1283 return splice_to_pipe(pipe, &spd);
1286 asmlinkage long sys_vmsplice(int fd, const struct iovec __user *iov,
1287 unsigned long nr_segs, unsigned int flags)
1289 struct file *file;
1290 long error;
1291 int fput;
1293 error = -EBADF;
1294 file = fget_light(fd, &fput);
1295 if (file) {
1296 if (file->f_mode & FMODE_WRITE)
1297 error = do_vmsplice(file, iov, nr_segs, flags);
1299 fput_light(file, fput);
1302 return error;
1305 asmlinkage long sys_splice(int fd_in, loff_t __user *off_in,
1306 int fd_out, loff_t __user *off_out,
1307 size_t len, unsigned int flags)
1309 long error;
1310 struct file *in, *out;
1311 int fput_in, fput_out;
1313 if (unlikely(!len))
1314 return 0;
1316 error = -EBADF;
1317 in = fget_light(fd_in, &fput_in);
1318 if (in) {
1319 if (in->f_mode & FMODE_READ) {
1320 out = fget_light(fd_out, &fput_out);
1321 if (out) {
1322 if (out->f_mode & FMODE_WRITE)
1323 error = do_splice(in, off_in,
1324 out, off_out,
1325 len, flags);
1326 fput_light(out, fput_out);
1330 fput_light(in, fput_in);
1333 return error;
1337 * Make sure there's data to read. Wait for input if we can, otherwise
1338 * return an appropriate error.
1340 static int link_ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1342 int ret;
1345 * Check ->nrbufs without the inode lock first. This function
1346 * is speculative anyways, so missing one is ok.
1348 if (pipe->nrbufs)
1349 return 0;
1351 ret = 0;
1352 mutex_lock(&pipe->inode->i_mutex);
1354 while (!pipe->nrbufs) {
1355 if (signal_pending(current)) {
1356 ret = -ERESTARTSYS;
1357 break;
1359 if (!pipe->writers)
1360 break;
1361 if (!pipe->waiting_writers) {
1362 if (flags & SPLICE_F_NONBLOCK) {
1363 ret = -EAGAIN;
1364 break;
1367 pipe_wait(pipe);
1370 mutex_unlock(&pipe->inode->i_mutex);
1371 return ret;
1375 * Make sure there's writeable room. Wait for room if we can, otherwise
1376 * return an appropriate error.
1378 static int link_opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1380 int ret;
1383 * Check ->nrbufs without the inode lock first. This function
1384 * is speculative anyways, so missing one is ok.
1386 if (pipe->nrbufs < PIPE_BUFFERS)
1387 return 0;
1389 ret = 0;
1390 mutex_lock(&pipe->inode->i_mutex);
1392 while (pipe->nrbufs >= PIPE_BUFFERS) {
1393 if (!pipe->readers) {
1394 send_sig(SIGPIPE, current, 0);
1395 ret = -EPIPE;
1396 break;
1398 if (flags & SPLICE_F_NONBLOCK) {
1399 ret = -EAGAIN;
1400 break;
1402 if (signal_pending(current)) {
1403 ret = -ERESTARTSYS;
1404 break;
1406 pipe->waiting_writers++;
1407 pipe_wait(pipe);
1408 pipe->waiting_writers--;
1411 mutex_unlock(&pipe->inode->i_mutex);
1412 return ret;
1416 * Link contents of ipipe to opipe.
1418 static int link_pipe(struct pipe_inode_info *ipipe,
1419 struct pipe_inode_info *opipe,
1420 size_t len, unsigned int flags)
1422 struct pipe_buffer *ibuf, *obuf;
1423 int ret = 0, i = 0, nbuf;
1426 * Potential ABBA deadlock, work around it by ordering lock
1427 * grabbing by inode address. Otherwise two different processes
1428 * could deadlock (one doing tee from A -> B, the other from B -> A).
1430 inode_double_lock(ipipe->inode, opipe->inode);
1432 do {
1433 if (!opipe->readers) {
1434 send_sig(SIGPIPE, current, 0);
1435 if (!ret)
1436 ret = -EPIPE;
1437 break;
1441 * If we have iterated all input buffers or ran out of
1442 * output room, break.
1444 if (i >= ipipe->nrbufs || opipe->nrbufs >= PIPE_BUFFERS)
1445 break;
1447 ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (PIPE_BUFFERS - 1));
1448 nbuf = (opipe->curbuf + opipe->nrbufs) & (PIPE_BUFFERS - 1);
1451 * Get a reference to this pipe buffer,
1452 * so we can copy the contents over.
1454 ibuf->ops->get(ipipe, ibuf);
1456 obuf = opipe->bufs + nbuf;
1457 *obuf = *ibuf;
1460 * Don't inherit the gift flag, we need to
1461 * prevent multiple steals of this page.
1463 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1465 if (obuf->len > len)
1466 obuf->len = len;
1468 opipe->nrbufs++;
1469 ret += obuf->len;
1470 len -= obuf->len;
1471 i++;
1472 } while (len);
1474 inode_double_unlock(ipipe->inode, opipe->inode);
1477 * If we put data in the output pipe, wakeup any potential readers.
1479 if (ret > 0) {
1480 smp_mb();
1481 if (waitqueue_active(&opipe->wait))
1482 wake_up_interruptible(&opipe->wait);
1483 kill_fasync(&opipe->fasync_readers, SIGIO, POLL_IN);
1486 return ret;
1490 * This is a tee(1) implementation that works on pipes. It doesn't copy
1491 * any data, it simply references the 'in' pages on the 'out' pipe.
1492 * The 'flags' used are the SPLICE_F_* variants, currently the only
1493 * applicable one is SPLICE_F_NONBLOCK.
1495 static long do_tee(struct file *in, struct file *out, size_t len,
1496 unsigned int flags)
1498 struct pipe_inode_info *ipipe = pipe_info(in->f_path.dentry->d_inode);
1499 struct pipe_inode_info *opipe = pipe_info(out->f_path.dentry->d_inode);
1500 int ret = -EINVAL;
1503 * Duplicate the contents of ipipe to opipe without actually
1504 * copying the data.
1506 if (ipipe && opipe && ipipe != opipe) {
1508 * Keep going, unless we encounter an error. The ipipe/opipe
1509 * ordering doesn't really matter.
1511 ret = link_ipipe_prep(ipipe, flags);
1512 if (!ret) {
1513 ret = link_opipe_prep(opipe, flags);
1514 if (!ret) {
1515 ret = link_pipe(ipipe, opipe, len, flags);
1516 if (!ret && (flags & SPLICE_F_NONBLOCK))
1517 ret = -EAGAIN;
1522 return ret;
1525 asmlinkage long sys_tee(int fdin, int fdout, size_t len, unsigned int flags)
1527 struct file *in;
1528 int error, fput_in;
1530 if (unlikely(!len))
1531 return 0;
1533 error = -EBADF;
1534 in = fget_light(fdin, &fput_in);
1535 if (in) {
1536 if (in->f_mode & FMODE_READ) {
1537 int fput_out;
1538 struct file *out = fget_light(fdout, &fput_out);
1540 if (out) {
1541 if (out->f_mode & FMODE_WRITE)
1542 error = do_tee(in, out, len, flags);
1543 fput_light(out, fput_out);
1546 fput_light(in, fput_in);
1549 return error;