[PATCH] slab: fix kernel-doc warnings
[linux-2.6/kvm.git] / mm / slab.c
blob5c2574989834a3580b981800bb7b3a2c428d67cc
1 /*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same intializations to
30 * kmem_cache_free.
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in struct kmem_cache and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
68 * Further notes from the original documentation:
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
76 * At present, each engine can be growing a cache. This should be blocked.
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
89 #include <linux/config.h>
90 #include <linux/slab.h>
91 #include <linux/mm.h>
92 #include <linux/swap.h>
93 #include <linux/cache.h>
94 #include <linux/interrupt.h>
95 #include <linux/init.h>
96 #include <linux/compiler.h>
97 #include <linux/seq_file.h>
98 #include <linux/notifier.h>
99 #include <linux/kallsyms.h>
100 #include <linux/cpu.h>
101 #include <linux/sysctl.h>
102 #include <linux/module.h>
103 #include <linux/rcupdate.h>
104 #include <linux/string.h>
105 #include <linux/nodemask.h>
106 #include <linux/mempolicy.h>
107 #include <linux/mutex.h>
109 #include <asm/uaccess.h>
110 #include <asm/cacheflush.h>
111 #include <asm/tlbflush.h>
112 #include <asm/page.h>
115 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
116 * SLAB_RED_ZONE & SLAB_POISON.
117 * 0 for faster, smaller code (especially in the critical paths).
119 * STATS - 1 to collect stats for /proc/slabinfo.
120 * 0 for faster, smaller code (especially in the critical paths).
122 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
125 #ifdef CONFIG_DEBUG_SLAB
126 #define DEBUG 1
127 #define STATS 1
128 #define FORCED_DEBUG 1
129 #else
130 #define DEBUG 0
131 #define STATS 0
132 #define FORCED_DEBUG 0
133 #endif
135 /* Shouldn't this be in a header file somewhere? */
136 #define BYTES_PER_WORD sizeof(void *)
138 #ifndef cache_line_size
139 #define cache_line_size() L1_CACHE_BYTES
140 #endif
142 #ifndef ARCH_KMALLOC_MINALIGN
144 * Enforce a minimum alignment for the kmalloc caches.
145 * Usually, the kmalloc caches are cache_line_size() aligned, except when
146 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
147 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
148 * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
149 * Note that this flag disables some debug features.
151 #define ARCH_KMALLOC_MINALIGN 0
152 #endif
154 #ifndef ARCH_SLAB_MINALIGN
156 * Enforce a minimum alignment for all caches.
157 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
158 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
159 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
160 * some debug features.
162 #define ARCH_SLAB_MINALIGN 0
163 #endif
165 #ifndef ARCH_KMALLOC_FLAGS
166 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
167 #endif
169 /* Legal flag mask for kmem_cache_create(). */
170 #if DEBUG
171 # define CREATE_MASK (SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
172 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
173 SLAB_NO_REAP | SLAB_CACHE_DMA | \
174 SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
175 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
176 SLAB_DESTROY_BY_RCU)
177 #else
178 # define CREATE_MASK (SLAB_HWCACHE_ALIGN | SLAB_NO_REAP | \
179 SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
180 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
181 SLAB_DESTROY_BY_RCU)
182 #endif
185 * kmem_bufctl_t:
187 * Bufctl's are used for linking objs within a slab
188 * linked offsets.
190 * This implementation relies on "struct page" for locating the cache &
191 * slab an object belongs to.
192 * This allows the bufctl structure to be small (one int), but limits
193 * the number of objects a slab (not a cache) can contain when off-slab
194 * bufctls are used. The limit is the size of the largest general cache
195 * that does not use off-slab slabs.
196 * For 32bit archs with 4 kB pages, is this 56.
197 * This is not serious, as it is only for large objects, when it is unwise
198 * to have too many per slab.
199 * Note: This limit can be raised by introducing a general cache whose size
200 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
203 typedef unsigned int kmem_bufctl_t;
204 #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
205 #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
206 #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-2)
208 /* Max number of objs-per-slab for caches which use off-slab slabs.
209 * Needed to avoid a possible looping condition in cache_grow().
211 static unsigned long offslab_limit;
214 * struct slab
216 * Manages the objs in a slab. Placed either at the beginning of mem allocated
217 * for a slab, or allocated from an general cache.
218 * Slabs are chained into three list: fully used, partial, fully free slabs.
220 struct slab {
221 struct list_head list;
222 unsigned long colouroff;
223 void *s_mem; /* including colour offset */
224 unsigned int inuse; /* num of objs active in slab */
225 kmem_bufctl_t free;
226 unsigned short nodeid;
230 * struct slab_rcu
232 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
233 * arrange for kmem_freepages to be called via RCU. This is useful if
234 * we need to approach a kernel structure obliquely, from its address
235 * obtained without the usual locking. We can lock the structure to
236 * stabilize it and check it's still at the given address, only if we
237 * can be sure that the memory has not been meanwhile reused for some
238 * other kind of object (which our subsystem's lock might corrupt).
240 * rcu_read_lock before reading the address, then rcu_read_unlock after
241 * taking the spinlock within the structure expected at that address.
243 * We assume struct slab_rcu can overlay struct slab when destroying.
245 struct slab_rcu {
246 struct rcu_head head;
247 struct kmem_cache *cachep;
248 void *addr;
252 * struct array_cache
254 * Purpose:
255 * - LIFO ordering, to hand out cache-warm objects from _alloc
256 * - reduce the number of linked list operations
257 * - reduce spinlock operations
259 * The limit is stored in the per-cpu structure to reduce the data cache
260 * footprint.
263 struct array_cache {
264 unsigned int avail;
265 unsigned int limit;
266 unsigned int batchcount;
267 unsigned int touched;
268 spinlock_t lock;
269 void *entry[0]; /*
270 * Must have this definition in here for the proper
271 * alignment of array_cache. Also simplifies accessing
272 * the entries.
273 * [0] is for gcc 2.95. It should really be [].
278 * bootstrap: The caches do not work without cpuarrays anymore, but the
279 * cpuarrays are allocated from the generic caches...
281 #define BOOT_CPUCACHE_ENTRIES 1
282 struct arraycache_init {
283 struct array_cache cache;
284 void *entries[BOOT_CPUCACHE_ENTRIES];
288 * The slab lists for all objects.
290 struct kmem_list3 {
291 struct list_head slabs_partial; /* partial list first, better asm code */
292 struct list_head slabs_full;
293 struct list_head slabs_free;
294 unsigned long free_objects;
295 unsigned long next_reap;
296 int free_touched;
297 unsigned int free_limit;
298 unsigned int colour_next; /* Per-node cache coloring */
299 spinlock_t list_lock;
300 struct array_cache *shared; /* shared per node */
301 struct array_cache **alien; /* on other nodes */
305 * Need this for bootstrapping a per node allocator.
307 #define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
308 struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
309 #define CACHE_CACHE 0
310 #define SIZE_AC 1
311 #define SIZE_L3 (1 + MAX_NUMNODES)
314 * This function must be completely optimized away if a constant is passed to
315 * it. Mostly the same as what is in linux/slab.h except it returns an index.
317 static __always_inline int index_of(const size_t size)
319 extern void __bad_size(void);
321 if (__builtin_constant_p(size)) {
322 int i = 0;
324 #define CACHE(x) \
325 if (size <=x) \
326 return i; \
327 else \
328 i++;
329 #include "linux/kmalloc_sizes.h"
330 #undef CACHE
331 __bad_size();
332 } else
333 __bad_size();
334 return 0;
337 #define INDEX_AC index_of(sizeof(struct arraycache_init))
338 #define INDEX_L3 index_of(sizeof(struct kmem_list3))
340 static void kmem_list3_init(struct kmem_list3 *parent)
342 INIT_LIST_HEAD(&parent->slabs_full);
343 INIT_LIST_HEAD(&parent->slabs_partial);
344 INIT_LIST_HEAD(&parent->slabs_free);
345 parent->shared = NULL;
346 parent->alien = NULL;
347 parent->colour_next = 0;
348 spin_lock_init(&parent->list_lock);
349 parent->free_objects = 0;
350 parent->free_touched = 0;
353 #define MAKE_LIST(cachep, listp, slab, nodeid) \
354 do { \
355 INIT_LIST_HEAD(listp); \
356 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
357 } while (0)
359 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
360 do { \
361 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
362 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
363 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
364 } while (0)
367 * struct kmem_cache
369 * manages a cache.
372 struct kmem_cache {
373 /* 1) per-cpu data, touched during every alloc/free */
374 struct array_cache *array[NR_CPUS];
375 /* 2) Cache tunables. Protected by cache_chain_mutex */
376 unsigned int batchcount;
377 unsigned int limit;
378 unsigned int shared;
380 unsigned int buffer_size;
381 /* 3) touched by every alloc & free from the backend */
382 struct kmem_list3 *nodelists[MAX_NUMNODES];
384 unsigned int flags; /* constant flags */
385 unsigned int num; /* # of objs per slab */
387 /* 4) cache_grow/shrink */
388 /* order of pgs per slab (2^n) */
389 unsigned int gfporder;
391 /* force GFP flags, e.g. GFP_DMA */
392 gfp_t gfpflags;
394 size_t colour; /* cache colouring range */
395 unsigned int colour_off; /* colour offset */
396 struct kmem_cache *slabp_cache;
397 unsigned int slab_size;
398 unsigned int dflags; /* dynamic flags */
400 /* constructor func */
401 void (*ctor) (void *, struct kmem_cache *, unsigned long);
403 /* de-constructor func */
404 void (*dtor) (void *, struct kmem_cache *, unsigned long);
406 /* 5) cache creation/removal */
407 const char *name;
408 struct list_head next;
410 /* 6) statistics */
411 #if STATS
412 unsigned long num_active;
413 unsigned long num_allocations;
414 unsigned long high_mark;
415 unsigned long grown;
416 unsigned long reaped;
417 unsigned long errors;
418 unsigned long max_freeable;
419 unsigned long node_allocs;
420 unsigned long node_frees;
421 atomic_t allochit;
422 atomic_t allocmiss;
423 atomic_t freehit;
424 atomic_t freemiss;
425 #endif
426 #if DEBUG
428 * If debugging is enabled, then the allocator can add additional
429 * fields and/or padding to every object. buffer_size contains the total
430 * object size including these internal fields, the following two
431 * variables contain the offset to the user object and its size.
433 int obj_offset;
434 int obj_size;
435 #endif
438 #define CFLGS_OFF_SLAB (0x80000000UL)
439 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
441 #define BATCHREFILL_LIMIT 16
443 * Optimization question: fewer reaps means less probability for unnessary
444 * cpucache drain/refill cycles.
446 * OTOH the cpuarrays can contain lots of objects,
447 * which could lock up otherwise freeable slabs.
449 #define REAPTIMEOUT_CPUC (2*HZ)
450 #define REAPTIMEOUT_LIST3 (4*HZ)
452 #if STATS
453 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
454 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
455 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
456 #define STATS_INC_GROWN(x) ((x)->grown++)
457 #define STATS_INC_REAPED(x) ((x)->reaped++)
458 #define STATS_SET_HIGH(x) \
459 do { \
460 if ((x)->num_active > (x)->high_mark) \
461 (x)->high_mark = (x)->num_active; \
462 } while (0)
463 #define STATS_INC_ERR(x) ((x)->errors++)
464 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
465 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
466 #define STATS_SET_FREEABLE(x, i) \
467 do { \
468 if ((x)->max_freeable < i) \
469 (x)->max_freeable = i; \
470 } while (0)
471 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
472 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
473 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
474 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
475 #else
476 #define STATS_INC_ACTIVE(x) do { } while (0)
477 #define STATS_DEC_ACTIVE(x) do { } while (0)
478 #define STATS_INC_ALLOCED(x) do { } while (0)
479 #define STATS_INC_GROWN(x) do { } while (0)
480 #define STATS_INC_REAPED(x) do { } while (0)
481 #define STATS_SET_HIGH(x) do { } while (0)
482 #define STATS_INC_ERR(x) do { } while (0)
483 #define STATS_INC_NODEALLOCS(x) do { } while (0)
484 #define STATS_INC_NODEFREES(x) do { } while (0)
485 #define STATS_SET_FREEABLE(x, i) do { } while (0)
486 #define STATS_INC_ALLOCHIT(x) do { } while (0)
487 #define STATS_INC_ALLOCMISS(x) do { } while (0)
488 #define STATS_INC_FREEHIT(x) do { } while (0)
489 #define STATS_INC_FREEMISS(x) do { } while (0)
490 #endif
492 #if DEBUG
494 * Magic nums for obj red zoning.
495 * Placed in the first word before and the first word after an obj.
497 #define RED_INACTIVE 0x5A2CF071UL /* when obj is inactive */
498 #define RED_ACTIVE 0x170FC2A5UL /* when obj is active */
500 /* ...and for poisoning */
501 #define POISON_INUSE 0x5a /* for use-uninitialised poisoning */
502 #define POISON_FREE 0x6b /* for use-after-free poisoning */
503 #define POISON_END 0xa5 /* end-byte of poisoning */
506 * memory layout of objects:
507 * 0 : objp
508 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
509 * the end of an object is aligned with the end of the real
510 * allocation. Catches writes behind the end of the allocation.
511 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
512 * redzone word.
513 * cachep->obj_offset: The real object.
514 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
515 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
516 * [BYTES_PER_WORD long]
518 static int obj_offset(struct kmem_cache *cachep)
520 return cachep->obj_offset;
523 static int obj_size(struct kmem_cache *cachep)
525 return cachep->obj_size;
528 static unsigned long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
530 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
531 return (unsigned long*) (objp+obj_offset(cachep)-BYTES_PER_WORD);
534 static unsigned long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
536 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
537 if (cachep->flags & SLAB_STORE_USER)
538 return (unsigned long *)(objp + cachep->buffer_size -
539 2 * BYTES_PER_WORD);
540 return (unsigned long *)(objp + cachep->buffer_size - BYTES_PER_WORD);
543 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
545 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
546 return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
549 #else
551 #define obj_offset(x) 0
552 #define obj_size(cachep) (cachep->buffer_size)
553 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long *)NULL;})
554 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long *)NULL;})
555 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
557 #endif
560 * Maximum size of an obj (in 2^order pages) and absolute limit for the gfp
561 * order.
563 #if defined(CONFIG_LARGE_ALLOCS)
564 #define MAX_OBJ_ORDER 13 /* up to 32Mb */
565 #define MAX_GFP_ORDER 13 /* up to 32Mb */
566 #elif defined(CONFIG_MMU)
567 #define MAX_OBJ_ORDER 5 /* 32 pages */
568 #define MAX_GFP_ORDER 5 /* 32 pages */
569 #else
570 #define MAX_OBJ_ORDER 8 /* up to 1Mb */
571 #define MAX_GFP_ORDER 8 /* up to 1Mb */
572 #endif
575 * Do not go above this order unless 0 objects fit into the slab.
577 #define BREAK_GFP_ORDER_HI 1
578 #define BREAK_GFP_ORDER_LO 0
579 static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
582 * Functions for storing/retrieving the cachep and or slab from the page
583 * allocator. These are used to find the slab an obj belongs to. With kfree(),
584 * these are used to find the cache which an obj belongs to.
586 static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
588 page->lru.next = (struct list_head *)cache;
591 static inline struct kmem_cache *page_get_cache(struct page *page)
593 return (struct kmem_cache *)page->lru.next;
596 static inline void page_set_slab(struct page *page, struct slab *slab)
598 page->lru.prev = (struct list_head *)slab;
601 static inline struct slab *page_get_slab(struct page *page)
603 return (struct slab *)page->lru.prev;
606 static inline struct kmem_cache *virt_to_cache(const void *obj)
608 struct page *page = virt_to_page(obj);
609 return page_get_cache(page);
612 static inline struct slab *virt_to_slab(const void *obj)
614 struct page *page = virt_to_page(obj);
615 return page_get_slab(page);
618 static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
619 unsigned int idx)
621 return slab->s_mem + cache->buffer_size * idx;
624 static inline unsigned int obj_to_index(struct kmem_cache *cache,
625 struct slab *slab, void *obj)
627 return (unsigned)(obj - slab->s_mem) / cache->buffer_size;
631 * These are the default caches for kmalloc. Custom caches can have other sizes.
633 struct cache_sizes malloc_sizes[] = {
634 #define CACHE(x) { .cs_size = (x) },
635 #include <linux/kmalloc_sizes.h>
636 CACHE(ULONG_MAX)
637 #undef CACHE
639 EXPORT_SYMBOL(malloc_sizes);
641 /* Must match cache_sizes above. Out of line to keep cache footprint low. */
642 struct cache_names {
643 char *name;
644 char *name_dma;
647 static struct cache_names __initdata cache_names[] = {
648 #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
649 #include <linux/kmalloc_sizes.h>
650 {NULL,}
651 #undef CACHE
654 static struct arraycache_init initarray_cache __initdata =
655 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
656 static struct arraycache_init initarray_generic =
657 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
659 /* internal cache of cache description objs */
660 static struct kmem_cache cache_cache = {
661 .batchcount = 1,
662 .limit = BOOT_CPUCACHE_ENTRIES,
663 .shared = 1,
664 .buffer_size = sizeof(struct kmem_cache),
665 .flags = SLAB_NO_REAP,
666 .name = "kmem_cache",
667 #if DEBUG
668 .obj_size = sizeof(struct kmem_cache),
669 #endif
672 /* Guard access to the cache-chain. */
673 static DEFINE_MUTEX(cache_chain_mutex);
674 static struct list_head cache_chain;
677 * vm_enough_memory() looks at this to determine how many slab-allocated pages
678 * are possibly freeable under pressure
680 * SLAB_RECLAIM_ACCOUNT turns this on per-slab
682 atomic_t slab_reclaim_pages;
685 * chicken and egg problem: delay the per-cpu array allocation
686 * until the general caches are up.
688 static enum {
689 NONE,
690 PARTIAL_AC,
691 PARTIAL_L3,
692 FULL
693 } g_cpucache_up;
695 static DEFINE_PER_CPU(struct work_struct, reap_work);
697 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
698 int node);
699 static void enable_cpucache(struct kmem_cache *cachep);
700 static void cache_reap(void *unused);
701 static int __node_shrink(struct kmem_cache *cachep, int node);
703 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
705 return cachep->array[smp_processor_id()];
708 static inline struct kmem_cache *__find_general_cachep(size_t size,
709 gfp_t gfpflags)
711 struct cache_sizes *csizep = malloc_sizes;
713 #if DEBUG
714 /* This happens if someone tries to call
715 * kmem_cache_create(), or __kmalloc(), before
716 * the generic caches are initialized.
718 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
719 #endif
720 while (size > csizep->cs_size)
721 csizep++;
724 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
725 * has cs_{dma,}cachep==NULL. Thus no special case
726 * for large kmalloc calls required.
728 if (unlikely(gfpflags & GFP_DMA))
729 return csizep->cs_dmacachep;
730 return csizep->cs_cachep;
733 struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
735 return __find_general_cachep(size, gfpflags);
737 EXPORT_SYMBOL(kmem_find_general_cachep);
739 static size_t slab_mgmt_size(size_t nr_objs, size_t align)
741 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
745 * Calculate the number of objects and left-over bytes for a given buffer size.
747 static void cache_estimate(unsigned long gfporder, size_t buffer_size,
748 size_t align, int flags, size_t *left_over,
749 unsigned int *num)
751 int nr_objs;
752 size_t mgmt_size;
753 size_t slab_size = PAGE_SIZE << gfporder;
756 * The slab management structure can be either off the slab or
757 * on it. For the latter case, the memory allocated for a
758 * slab is used for:
760 * - The struct slab
761 * - One kmem_bufctl_t for each object
762 * - Padding to respect alignment of @align
763 * - @buffer_size bytes for each object
765 * If the slab management structure is off the slab, then the
766 * alignment will already be calculated into the size. Because
767 * the slabs are all pages aligned, the objects will be at the
768 * correct alignment when allocated.
770 if (flags & CFLGS_OFF_SLAB) {
771 mgmt_size = 0;
772 nr_objs = slab_size / buffer_size;
774 if (nr_objs > SLAB_LIMIT)
775 nr_objs = SLAB_LIMIT;
776 } else {
778 * Ignore padding for the initial guess. The padding
779 * is at most @align-1 bytes, and @buffer_size is at
780 * least @align. In the worst case, this result will
781 * be one greater than the number of objects that fit
782 * into the memory allocation when taking the padding
783 * into account.
785 nr_objs = (slab_size - sizeof(struct slab)) /
786 (buffer_size + sizeof(kmem_bufctl_t));
789 * This calculated number will be either the right
790 * amount, or one greater than what we want.
792 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
793 > slab_size)
794 nr_objs--;
796 if (nr_objs > SLAB_LIMIT)
797 nr_objs = SLAB_LIMIT;
799 mgmt_size = slab_mgmt_size(nr_objs, align);
801 *num = nr_objs;
802 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
805 #define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
807 static void __slab_error(const char *function, struct kmem_cache *cachep,
808 char *msg)
810 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
811 function, cachep->name, msg);
812 dump_stack();
815 #ifdef CONFIG_NUMA
817 * Special reaping functions for NUMA systems called from cache_reap().
818 * These take care of doing round robin flushing of alien caches (containing
819 * objects freed on different nodes from which they were allocated) and the
820 * flushing of remote pcps by calling drain_node_pages.
822 static DEFINE_PER_CPU(unsigned long, reap_node);
824 static void init_reap_node(int cpu)
826 int node;
828 node = next_node(cpu_to_node(cpu), node_online_map);
829 if (node == MAX_NUMNODES)
830 node = 0;
832 __get_cpu_var(reap_node) = node;
835 static void next_reap_node(void)
837 int node = __get_cpu_var(reap_node);
840 * Also drain per cpu pages on remote zones
842 if (node != numa_node_id())
843 drain_node_pages(node);
845 node = next_node(node, node_online_map);
846 if (unlikely(node >= MAX_NUMNODES))
847 node = first_node(node_online_map);
848 __get_cpu_var(reap_node) = node;
851 #else
852 #define init_reap_node(cpu) do { } while (0)
853 #define next_reap_node(void) do { } while (0)
854 #endif
857 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
858 * via the workqueue/eventd.
859 * Add the CPU number into the expiration time to minimize the possibility of
860 * the CPUs getting into lockstep and contending for the global cache chain
861 * lock.
863 static void __devinit start_cpu_timer(int cpu)
865 struct work_struct *reap_work = &per_cpu(reap_work, cpu);
868 * When this gets called from do_initcalls via cpucache_init(),
869 * init_workqueues() has already run, so keventd will be setup
870 * at that time.
872 if (keventd_up() && reap_work->func == NULL) {
873 init_reap_node(cpu);
874 INIT_WORK(reap_work, cache_reap, NULL);
875 schedule_delayed_work_on(cpu, reap_work, HZ + 3 * cpu);
879 static struct array_cache *alloc_arraycache(int node, int entries,
880 int batchcount)
882 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
883 struct array_cache *nc = NULL;
885 nc = kmalloc_node(memsize, GFP_KERNEL, node);
886 if (nc) {
887 nc->avail = 0;
888 nc->limit = entries;
889 nc->batchcount = batchcount;
890 nc->touched = 0;
891 spin_lock_init(&nc->lock);
893 return nc;
896 #ifdef CONFIG_NUMA
897 static void *__cache_alloc_node(struct kmem_cache *, gfp_t, int);
899 static struct array_cache **alloc_alien_cache(int node, int limit)
901 struct array_cache **ac_ptr;
902 int memsize = sizeof(void *) * MAX_NUMNODES;
903 int i;
905 if (limit > 1)
906 limit = 12;
907 ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
908 if (ac_ptr) {
909 for_each_node(i) {
910 if (i == node || !node_online(i)) {
911 ac_ptr[i] = NULL;
912 continue;
914 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
915 if (!ac_ptr[i]) {
916 for (i--; i <= 0; i--)
917 kfree(ac_ptr[i]);
918 kfree(ac_ptr);
919 return NULL;
923 return ac_ptr;
926 static void free_alien_cache(struct array_cache **ac_ptr)
928 int i;
930 if (!ac_ptr)
931 return;
932 for_each_node(i)
933 kfree(ac_ptr[i]);
934 kfree(ac_ptr);
937 static void __drain_alien_cache(struct kmem_cache *cachep,
938 struct array_cache *ac, int node)
940 struct kmem_list3 *rl3 = cachep->nodelists[node];
942 if (ac->avail) {
943 spin_lock(&rl3->list_lock);
944 free_block(cachep, ac->entry, ac->avail, node);
945 ac->avail = 0;
946 spin_unlock(&rl3->list_lock);
951 * Called from cache_reap() to regularly drain alien caches round robin.
953 static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
955 int node = __get_cpu_var(reap_node);
957 if (l3->alien) {
958 struct array_cache *ac = l3->alien[node];
959 if (ac && ac->avail) {
960 spin_lock_irq(&ac->lock);
961 __drain_alien_cache(cachep, ac, node);
962 spin_unlock_irq(&ac->lock);
967 static void drain_alien_cache(struct kmem_cache *cachep,
968 struct array_cache **alien)
970 int i = 0;
971 struct array_cache *ac;
972 unsigned long flags;
974 for_each_online_node(i) {
975 ac = alien[i];
976 if (ac) {
977 spin_lock_irqsave(&ac->lock, flags);
978 __drain_alien_cache(cachep, ac, i);
979 spin_unlock_irqrestore(&ac->lock, flags);
983 #else
985 #define drain_alien_cache(cachep, alien) do { } while (0)
986 #define reap_alien(cachep, l3) do { } while (0)
988 static inline struct array_cache **alloc_alien_cache(int node, int limit)
990 return (struct array_cache **) 0x01020304ul;
993 static inline void free_alien_cache(struct array_cache **ac_ptr)
997 #endif
999 static int __devinit cpuup_callback(struct notifier_block *nfb,
1000 unsigned long action, void *hcpu)
1002 long cpu = (long)hcpu;
1003 struct kmem_cache *cachep;
1004 struct kmem_list3 *l3 = NULL;
1005 int node = cpu_to_node(cpu);
1006 int memsize = sizeof(struct kmem_list3);
1008 switch (action) {
1009 case CPU_UP_PREPARE:
1010 mutex_lock(&cache_chain_mutex);
1012 * We need to do this right in the beginning since
1013 * alloc_arraycache's are going to use this list.
1014 * kmalloc_node allows us to add the slab to the right
1015 * kmem_list3 and not this cpu's kmem_list3
1018 list_for_each_entry(cachep, &cache_chain, next) {
1020 * Set up the size64 kmemlist for cpu before we can
1021 * begin anything. Make sure some other cpu on this
1022 * node has not already allocated this
1024 if (!cachep->nodelists[node]) {
1025 l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1026 if (!l3)
1027 goto bad;
1028 kmem_list3_init(l3);
1029 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1030 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1033 * The l3s don't come and go as CPUs come and
1034 * go. cache_chain_mutex is sufficient
1035 * protection here.
1037 cachep->nodelists[node] = l3;
1040 spin_lock_irq(&cachep->nodelists[node]->list_lock);
1041 cachep->nodelists[node]->free_limit =
1042 (1 + nr_cpus_node(node)) *
1043 cachep->batchcount + cachep->num;
1044 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1048 * Now we can go ahead with allocating the shared arrays and
1049 * array caches
1051 list_for_each_entry(cachep, &cache_chain, next) {
1052 struct array_cache *nc;
1053 struct array_cache *shared;
1054 struct array_cache **alien;
1056 nc = alloc_arraycache(node, cachep->limit,
1057 cachep->batchcount);
1058 if (!nc)
1059 goto bad;
1060 shared = alloc_arraycache(node,
1061 cachep->shared * cachep->batchcount,
1062 0xbaadf00d);
1063 if (!shared)
1064 goto bad;
1066 alien = alloc_alien_cache(node, cachep->limit);
1067 if (!alien)
1068 goto bad;
1069 cachep->array[cpu] = nc;
1070 l3 = cachep->nodelists[node];
1071 BUG_ON(!l3);
1073 spin_lock_irq(&l3->list_lock);
1074 if (!l3->shared) {
1076 * We are serialised from CPU_DEAD or
1077 * CPU_UP_CANCELLED by the cpucontrol lock
1079 l3->shared = shared;
1080 shared = NULL;
1082 #ifdef CONFIG_NUMA
1083 if (!l3->alien) {
1084 l3->alien = alien;
1085 alien = NULL;
1087 #endif
1088 spin_unlock_irq(&l3->list_lock);
1089 kfree(shared);
1090 free_alien_cache(alien);
1092 mutex_unlock(&cache_chain_mutex);
1093 break;
1094 case CPU_ONLINE:
1095 start_cpu_timer(cpu);
1096 break;
1097 #ifdef CONFIG_HOTPLUG_CPU
1098 case CPU_DEAD:
1100 * Even if all the cpus of a node are down, we don't free the
1101 * kmem_list3 of any cache. This to avoid a race between
1102 * cpu_down, and a kmalloc allocation from another cpu for
1103 * memory from the node of the cpu going down. The list3
1104 * structure is usually allocated from kmem_cache_create() and
1105 * gets destroyed at kmem_cache_destroy().
1107 /* fall thru */
1108 case CPU_UP_CANCELED:
1109 mutex_lock(&cache_chain_mutex);
1110 list_for_each_entry(cachep, &cache_chain, next) {
1111 struct array_cache *nc;
1112 struct array_cache *shared;
1113 struct array_cache **alien;
1114 cpumask_t mask;
1116 mask = node_to_cpumask(node);
1117 /* cpu is dead; no one can alloc from it. */
1118 nc = cachep->array[cpu];
1119 cachep->array[cpu] = NULL;
1120 l3 = cachep->nodelists[node];
1122 if (!l3)
1123 goto free_array_cache;
1125 spin_lock_irq(&l3->list_lock);
1127 /* Free limit for this kmem_list3 */
1128 l3->free_limit -= cachep->batchcount;
1129 if (nc)
1130 free_block(cachep, nc->entry, nc->avail, node);
1132 if (!cpus_empty(mask)) {
1133 spin_unlock_irq(&l3->list_lock);
1134 goto free_array_cache;
1137 shared = l3->shared;
1138 if (shared) {
1139 free_block(cachep, l3->shared->entry,
1140 l3->shared->avail, node);
1141 l3->shared = NULL;
1144 alien = l3->alien;
1145 l3->alien = NULL;
1147 spin_unlock_irq(&l3->list_lock);
1149 kfree(shared);
1150 if (alien) {
1151 drain_alien_cache(cachep, alien);
1152 free_alien_cache(alien);
1154 free_array_cache:
1155 kfree(nc);
1158 * In the previous loop, all the objects were freed to
1159 * the respective cache's slabs, now we can go ahead and
1160 * shrink each nodelist to its limit.
1162 list_for_each_entry(cachep, &cache_chain, next) {
1163 l3 = cachep->nodelists[node];
1164 if (!l3)
1165 continue;
1166 spin_lock_irq(&l3->list_lock);
1167 /* free slabs belonging to this node */
1168 __node_shrink(cachep, node);
1169 spin_unlock_irq(&l3->list_lock);
1171 mutex_unlock(&cache_chain_mutex);
1172 break;
1173 #endif
1175 return NOTIFY_OK;
1176 bad:
1177 mutex_unlock(&cache_chain_mutex);
1178 return NOTIFY_BAD;
1181 static struct notifier_block cpucache_notifier = { &cpuup_callback, NULL, 0 };
1184 * swap the static kmem_list3 with kmalloced memory
1186 static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1187 int nodeid)
1189 struct kmem_list3 *ptr;
1191 BUG_ON(cachep->nodelists[nodeid] != list);
1192 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
1193 BUG_ON(!ptr);
1195 local_irq_disable();
1196 memcpy(ptr, list, sizeof(struct kmem_list3));
1197 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1198 cachep->nodelists[nodeid] = ptr;
1199 local_irq_enable();
1203 * Initialisation. Called after the page allocator have been initialised and
1204 * before smp_init().
1206 void __init kmem_cache_init(void)
1208 size_t left_over;
1209 struct cache_sizes *sizes;
1210 struct cache_names *names;
1211 int i;
1212 int order;
1214 for (i = 0; i < NUM_INIT_LISTS; i++) {
1215 kmem_list3_init(&initkmem_list3[i]);
1216 if (i < MAX_NUMNODES)
1217 cache_cache.nodelists[i] = NULL;
1221 * Fragmentation resistance on low memory - only use bigger
1222 * page orders on machines with more than 32MB of memory.
1224 if (num_physpages > (32 << 20) >> PAGE_SHIFT)
1225 slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1227 /* Bootstrap is tricky, because several objects are allocated
1228 * from caches that do not exist yet:
1229 * 1) initialize the cache_cache cache: it contains the struct
1230 * kmem_cache structures of all caches, except cache_cache itself:
1231 * cache_cache is statically allocated.
1232 * Initially an __init data area is used for the head array and the
1233 * kmem_list3 structures, it's replaced with a kmalloc allocated
1234 * array at the end of the bootstrap.
1235 * 2) Create the first kmalloc cache.
1236 * The struct kmem_cache for the new cache is allocated normally.
1237 * An __init data area is used for the head array.
1238 * 3) Create the remaining kmalloc caches, with minimally sized
1239 * head arrays.
1240 * 4) Replace the __init data head arrays for cache_cache and the first
1241 * kmalloc cache with kmalloc allocated arrays.
1242 * 5) Replace the __init data for kmem_list3 for cache_cache and
1243 * the other cache's with kmalloc allocated memory.
1244 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1247 /* 1) create the cache_cache */
1248 INIT_LIST_HEAD(&cache_chain);
1249 list_add(&cache_cache.next, &cache_chain);
1250 cache_cache.colour_off = cache_line_size();
1251 cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1252 cache_cache.nodelists[numa_node_id()] = &initkmem_list3[CACHE_CACHE];
1254 cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
1255 cache_line_size());
1257 for (order = 0; order < MAX_ORDER; order++) {
1258 cache_estimate(order, cache_cache.buffer_size,
1259 cache_line_size(), 0, &left_over, &cache_cache.num);
1260 if (cache_cache.num)
1261 break;
1263 if (!cache_cache.num)
1264 BUG();
1265 cache_cache.gfporder = order;
1266 cache_cache.colour = left_over / cache_cache.colour_off;
1267 cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1268 sizeof(struct slab), cache_line_size());
1270 /* 2+3) create the kmalloc caches */
1271 sizes = malloc_sizes;
1272 names = cache_names;
1275 * Initialize the caches that provide memory for the array cache and the
1276 * kmem_list3 structures first. Without this, further allocations will
1277 * bug.
1280 sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
1281 sizes[INDEX_AC].cs_size,
1282 ARCH_KMALLOC_MINALIGN,
1283 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1284 NULL, NULL);
1286 if (INDEX_AC != INDEX_L3) {
1287 sizes[INDEX_L3].cs_cachep =
1288 kmem_cache_create(names[INDEX_L3].name,
1289 sizes[INDEX_L3].cs_size,
1290 ARCH_KMALLOC_MINALIGN,
1291 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1292 NULL, NULL);
1295 while (sizes->cs_size != ULONG_MAX) {
1297 * For performance, all the general caches are L1 aligned.
1298 * This should be particularly beneficial on SMP boxes, as it
1299 * eliminates "false sharing".
1300 * Note for systems short on memory removing the alignment will
1301 * allow tighter packing of the smaller caches.
1303 if (!sizes->cs_cachep) {
1304 sizes->cs_cachep = kmem_cache_create(names->name,
1305 sizes->cs_size,
1306 ARCH_KMALLOC_MINALIGN,
1307 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1308 NULL, NULL);
1311 /* Inc off-slab bufctl limit until the ceiling is hit. */
1312 if (!(OFF_SLAB(sizes->cs_cachep))) {
1313 offslab_limit = sizes->cs_size - sizeof(struct slab);
1314 offslab_limit /= sizeof(kmem_bufctl_t);
1317 sizes->cs_dmacachep = kmem_cache_create(names->name_dma,
1318 sizes->cs_size,
1319 ARCH_KMALLOC_MINALIGN,
1320 ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1321 SLAB_PANIC,
1322 NULL, NULL);
1323 sizes++;
1324 names++;
1326 /* 4) Replace the bootstrap head arrays */
1328 void *ptr;
1330 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1332 local_irq_disable();
1333 BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1334 memcpy(ptr, cpu_cache_get(&cache_cache),
1335 sizeof(struct arraycache_init));
1336 cache_cache.array[smp_processor_id()] = ptr;
1337 local_irq_enable();
1339 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1341 local_irq_disable();
1342 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
1343 != &initarray_generic.cache);
1344 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
1345 sizeof(struct arraycache_init));
1346 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
1347 ptr;
1348 local_irq_enable();
1350 /* 5) Replace the bootstrap kmem_list3's */
1352 int node;
1353 /* Replace the static kmem_list3 structures for the boot cpu */
1354 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE],
1355 numa_node_id());
1357 for_each_online_node(node) {
1358 init_list(malloc_sizes[INDEX_AC].cs_cachep,
1359 &initkmem_list3[SIZE_AC + node], node);
1361 if (INDEX_AC != INDEX_L3) {
1362 init_list(malloc_sizes[INDEX_L3].cs_cachep,
1363 &initkmem_list3[SIZE_L3 + node],
1364 node);
1369 /* 6) resize the head arrays to their final sizes */
1371 struct kmem_cache *cachep;
1372 mutex_lock(&cache_chain_mutex);
1373 list_for_each_entry(cachep, &cache_chain, next)
1374 enable_cpucache(cachep);
1375 mutex_unlock(&cache_chain_mutex);
1378 /* Done! */
1379 g_cpucache_up = FULL;
1382 * Register a cpu startup notifier callback that initializes
1383 * cpu_cache_get for all new cpus
1385 register_cpu_notifier(&cpucache_notifier);
1388 * The reap timers are started later, with a module init call: That part
1389 * of the kernel is not yet operational.
1393 static int __init cpucache_init(void)
1395 int cpu;
1398 * Register the timers that return unneeded pages to the page allocator
1400 for_each_online_cpu(cpu)
1401 start_cpu_timer(cpu);
1402 return 0;
1404 __initcall(cpucache_init);
1407 * Interface to system's page allocator. No need to hold the cache-lock.
1409 * If we requested dmaable memory, we will get it. Even if we
1410 * did not request dmaable memory, we might get it, but that
1411 * would be relatively rare and ignorable.
1413 static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1415 struct page *page;
1416 void *addr;
1417 int i;
1419 flags |= cachep->gfpflags;
1420 page = alloc_pages_node(nodeid, flags, cachep->gfporder);
1421 if (!page)
1422 return NULL;
1423 addr = page_address(page);
1425 i = (1 << cachep->gfporder);
1426 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1427 atomic_add(i, &slab_reclaim_pages);
1428 add_page_state(nr_slab, i);
1429 while (i--) {
1430 __SetPageSlab(page);
1431 page++;
1433 return addr;
1437 * Interface to system's page release.
1439 static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1441 unsigned long i = (1 << cachep->gfporder);
1442 struct page *page = virt_to_page(addr);
1443 const unsigned long nr_freed = i;
1445 while (i--) {
1446 BUG_ON(!PageSlab(page));
1447 __ClearPageSlab(page);
1448 page++;
1450 sub_page_state(nr_slab, nr_freed);
1451 if (current->reclaim_state)
1452 current->reclaim_state->reclaimed_slab += nr_freed;
1453 free_pages((unsigned long)addr, cachep->gfporder);
1454 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1455 atomic_sub(1 << cachep->gfporder, &slab_reclaim_pages);
1458 static void kmem_rcu_free(struct rcu_head *head)
1460 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1461 struct kmem_cache *cachep = slab_rcu->cachep;
1463 kmem_freepages(cachep, slab_rcu->addr);
1464 if (OFF_SLAB(cachep))
1465 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1468 #if DEBUG
1470 #ifdef CONFIG_DEBUG_PAGEALLOC
1471 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1472 unsigned long caller)
1474 int size = obj_size(cachep);
1476 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1478 if (size < 5 * sizeof(unsigned long))
1479 return;
1481 *addr++ = 0x12345678;
1482 *addr++ = caller;
1483 *addr++ = smp_processor_id();
1484 size -= 3 * sizeof(unsigned long);
1486 unsigned long *sptr = &caller;
1487 unsigned long svalue;
1489 while (!kstack_end(sptr)) {
1490 svalue = *sptr++;
1491 if (kernel_text_address(svalue)) {
1492 *addr++ = svalue;
1493 size -= sizeof(unsigned long);
1494 if (size <= sizeof(unsigned long))
1495 break;
1500 *addr++ = 0x87654321;
1502 #endif
1504 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1506 int size = obj_size(cachep);
1507 addr = &((char *)addr)[obj_offset(cachep)];
1509 memset(addr, val, size);
1510 *(unsigned char *)(addr + size - 1) = POISON_END;
1513 static void dump_line(char *data, int offset, int limit)
1515 int i;
1516 printk(KERN_ERR "%03x:", offset);
1517 for (i = 0; i < limit; i++)
1518 printk(" %02x", (unsigned char)data[offset + i]);
1519 printk("\n");
1521 #endif
1523 #if DEBUG
1525 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1527 int i, size;
1528 char *realobj;
1530 if (cachep->flags & SLAB_RED_ZONE) {
1531 printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n",
1532 *dbg_redzone1(cachep, objp),
1533 *dbg_redzone2(cachep, objp));
1536 if (cachep->flags & SLAB_STORE_USER) {
1537 printk(KERN_ERR "Last user: [<%p>]",
1538 *dbg_userword(cachep, objp));
1539 print_symbol("(%s)",
1540 (unsigned long)*dbg_userword(cachep, objp));
1541 printk("\n");
1543 realobj = (char *)objp + obj_offset(cachep);
1544 size = obj_size(cachep);
1545 for (i = 0; i < size && lines; i += 16, lines--) {
1546 int limit;
1547 limit = 16;
1548 if (i + limit > size)
1549 limit = size - i;
1550 dump_line(realobj, i, limit);
1554 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1556 char *realobj;
1557 int size, i;
1558 int lines = 0;
1560 realobj = (char *)objp + obj_offset(cachep);
1561 size = obj_size(cachep);
1563 for (i = 0; i < size; i++) {
1564 char exp = POISON_FREE;
1565 if (i == size - 1)
1566 exp = POISON_END;
1567 if (realobj[i] != exp) {
1568 int limit;
1569 /* Mismatch ! */
1570 /* Print header */
1571 if (lines == 0) {
1572 printk(KERN_ERR
1573 "Slab corruption: start=%p, len=%d\n",
1574 realobj, size);
1575 print_objinfo(cachep, objp, 0);
1577 /* Hexdump the affected line */
1578 i = (i / 16) * 16;
1579 limit = 16;
1580 if (i + limit > size)
1581 limit = size - i;
1582 dump_line(realobj, i, limit);
1583 i += 16;
1584 lines++;
1585 /* Limit to 5 lines */
1586 if (lines > 5)
1587 break;
1590 if (lines != 0) {
1591 /* Print some data about the neighboring objects, if they
1592 * exist:
1594 struct slab *slabp = virt_to_slab(objp);
1595 unsigned int objnr;
1597 objnr = obj_to_index(cachep, slabp, objp);
1598 if (objnr) {
1599 objp = index_to_obj(cachep, slabp, objnr - 1);
1600 realobj = (char *)objp + obj_offset(cachep);
1601 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
1602 realobj, size);
1603 print_objinfo(cachep, objp, 2);
1605 if (objnr + 1 < cachep->num) {
1606 objp = index_to_obj(cachep, slabp, objnr + 1);
1607 realobj = (char *)objp + obj_offset(cachep);
1608 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
1609 realobj, size);
1610 print_objinfo(cachep, objp, 2);
1614 #endif
1616 #if DEBUG
1618 * slab_destroy_objs - destroy a slab and its objects
1619 * @cachep: cache pointer being destroyed
1620 * @slabp: slab pointer being destroyed
1622 * Call the registered destructor for each object in a slab that is being
1623 * destroyed.
1625 static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1627 int i;
1628 for (i = 0; i < cachep->num; i++) {
1629 void *objp = index_to_obj(cachep, slabp, i);
1631 if (cachep->flags & SLAB_POISON) {
1632 #ifdef CONFIG_DEBUG_PAGEALLOC
1633 if (cachep->buffer_size % PAGE_SIZE == 0 &&
1634 OFF_SLAB(cachep))
1635 kernel_map_pages(virt_to_page(objp),
1636 cachep->buffer_size / PAGE_SIZE, 1);
1637 else
1638 check_poison_obj(cachep, objp);
1639 #else
1640 check_poison_obj(cachep, objp);
1641 #endif
1643 if (cachep->flags & SLAB_RED_ZONE) {
1644 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1645 slab_error(cachep, "start of a freed object "
1646 "was overwritten");
1647 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1648 slab_error(cachep, "end of a freed object "
1649 "was overwritten");
1651 if (cachep->dtor && !(cachep->flags & SLAB_POISON))
1652 (cachep->dtor) (objp + obj_offset(cachep), cachep, 0);
1655 #else
1656 static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1658 if (cachep->dtor) {
1659 int i;
1660 for (i = 0; i < cachep->num; i++) {
1661 void *objp = index_to_obj(cachep, slabp, i);
1662 (cachep->dtor) (objp, cachep, 0);
1666 #endif
1669 * slab_destroy - destroy and release all objects in a slab
1670 * @cachep: cache pointer being destroyed
1671 * @slabp: slab pointer being destroyed
1673 * Destroy all the objs in a slab, and release the mem back to the system.
1674 * Before calling the slab must have been unlinked from the cache. The
1675 * cache-lock is not held/needed.
1677 static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
1679 void *addr = slabp->s_mem - slabp->colouroff;
1681 slab_destroy_objs(cachep, slabp);
1682 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1683 struct slab_rcu *slab_rcu;
1685 slab_rcu = (struct slab_rcu *)slabp;
1686 slab_rcu->cachep = cachep;
1687 slab_rcu->addr = addr;
1688 call_rcu(&slab_rcu->head, kmem_rcu_free);
1689 } else {
1690 kmem_freepages(cachep, addr);
1691 if (OFF_SLAB(cachep))
1692 kmem_cache_free(cachep->slabp_cache, slabp);
1697 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1698 * size of kmem_list3.
1700 static void set_up_list3s(struct kmem_cache *cachep, int index)
1702 int node;
1704 for_each_online_node(node) {
1705 cachep->nodelists[node] = &initkmem_list3[index + node];
1706 cachep->nodelists[node]->next_reap = jiffies +
1707 REAPTIMEOUT_LIST3 +
1708 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1713 * calculate_slab_order - calculate size (page order) of slabs
1714 * @cachep: pointer to the cache that is being created
1715 * @size: size of objects to be created in this cache.
1716 * @align: required alignment for the objects.
1717 * @flags: slab allocation flags
1719 * Also calculates the number of objects per slab.
1721 * This could be made much more intelligent. For now, try to avoid using
1722 * high order pages for slabs. When the gfp() functions are more friendly
1723 * towards high-order requests, this should be changed.
1725 static size_t calculate_slab_order(struct kmem_cache *cachep,
1726 size_t size, size_t align, unsigned long flags)
1728 size_t left_over = 0;
1729 int gfporder;
1731 for (gfporder = 0; gfporder <= MAX_GFP_ORDER; gfporder++) {
1732 unsigned int num;
1733 size_t remainder;
1735 cache_estimate(gfporder, size, align, flags, &remainder, &num);
1736 if (!num)
1737 continue;
1739 /* More than offslab_limit objects will cause problems */
1740 if ((flags & CFLGS_OFF_SLAB) && num > offslab_limit)
1741 break;
1743 /* Found something acceptable - save it away */
1744 cachep->num = num;
1745 cachep->gfporder = gfporder;
1746 left_over = remainder;
1749 * A VFS-reclaimable slab tends to have most allocations
1750 * as GFP_NOFS and we really don't want to have to be allocating
1751 * higher-order pages when we are unable to shrink dcache.
1753 if (flags & SLAB_RECLAIM_ACCOUNT)
1754 break;
1757 * Large number of objects is good, but very large slabs are
1758 * currently bad for the gfp()s.
1760 if (gfporder >= slab_break_gfp_order)
1761 break;
1764 * Acceptable internal fragmentation?
1766 if (left_over * 8 <= (PAGE_SIZE << gfporder))
1767 break;
1769 return left_over;
1772 static void setup_cpu_cache(struct kmem_cache *cachep)
1774 if (g_cpucache_up == FULL) {
1775 enable_cpucache(cachep);
1776 return;
1778 if (g_cpucache_up == NONE) {
1780 * Note: the first kmem_cache_create must create the cache
1781 * that's used by kmalloc(24), otherwise the creation of
1782 * further caches will BUG().
1784 cachep->array[smp_processor_id()] = &initarray_generic.cache;
1787 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
1788 * the first cache, then we need to set up all its list3s,
1789 * otherwise the creation of further caches will BUG().
1791 set_up_list3s(cachep, SIZE_AC);
1792 if (INDEX_AC == INDEX_L3)
1793 g_cpucache_up = PARTIAL_L3;
1794 else
1795 g_cpucache_up = PARTIAL_AC;
1796 } else {
1797 cachep->array[smp_processor_id()] =
1798 kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
1800 if (g_cpucache_up == PARTIAL_AC) {
1801 set_up_list3s(cachep, SIZE_L3);
1802 g_cpucache_up = PARTIAL_L3;
1803 } else {
1804 int node;
1805 for_each_online_node(node) {
1806 cachep->nodelists[node] =
1807 kmalloc_node(sizeof(struct kmem_list3),
1808 GFP_KERNEL, node);
1809 BUG_ON(!cachep->nodelists[node]);
1810 kmem_list3_init(cachep->nodelists[node]);
1814 cachep->nodelists[numa_node_id()]->next_reap =
1815 jiffies + REAPTIMEOUT_LIST3 +
1816 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1818 cpu_cache_get(cachep)->avail = 0;
1819 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1820 cpu_cache_get(cachep)->batchcount = 1;
1821 cpu_cache_get(cachep)->touched = 0;
1822 cachep->batchcount = 1;
1823 cachep->limit = BOOT_CPUCACHE_ENTRIES;
1827 * kmem_cache_create - Create a cache.
1828 * @name: A string which is used in /proc/slabinfo to identify this cache.
1829 * @size: The size of objects to be created in this cache.
1830 * @align: The required alignment for the objects.
1831 * @flags: SLAB flags
1832 * @ctor: A constructor for the objects.
1833 * @dtor: A destructor for the objects.
1835 * Returns a ptr to the cache on success, NULL on failure.
1836 * Cannot be called within a int, but can be interrupted.
1837 * The @ctor is run when new pages are allocated by the cache
1838 * and the @dtor is run before the pages are handed back.
1840 * @name must be valid until the cache is destroyed. This implies that
1841 * the module calling this has to destroy the cache before getting unloaded.
1843 * The flags are
1845 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
1846 * to catch references to uninitialised memory.
1848 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
1849 * for buffer overruns.
1851 * %SLAB_NO_REAP - Don't automatically reap this cache when we're under
1852 * memory pressure.
1854 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
1855 * cacheline. This can be beneficial if you're counting cycles as closely
1856 * as davem.
1858 struct kmem_cache *
1859 kmem_cache_create (const char *name, size_t size, size_t align,
1860 unsigned long flags,
1861 void (*ctor)(void*, struct kmem_cache *, unsigned long),
1862 void (*dtor)(void*, struct kmem_cache *, unsigned long))
1864 size_t left_over, slab_size, ralign;
1865 struct kmem_cache *cachep = NULL;
1866 struct list_head *p;
1869 * Sanity checks... these are all serious usage bugs.
1871 if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
1872 (size > (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || (dtor && !ctor)) {
1873 printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__,
1874 name);
1875 BUG();
1879 * Prevent CPUs from coming and going.
1880 * lock_cpu_hotplug() nests outside cache_chain_mutex
1882 lock_cpu_hotplug();
1884 mutex_lock(&cache_chain_mutex);
1886 list_for_each(p, &cache_chain) {
1887 struct kmem_cache *pc = list_entry(p, struct kmem_cache, next);
1888 mm_segment_t old_fs = get_fs();
1889 char tmp;
1890 int res;
1893 * This happens when the module gets unloaded and doesn't
1894 * destroy its slab cache and no-one else reuses the vmalloc
1895 * area of the module. Print a warning.
1897 set_fs(KERNEL_DS);
1898 res = __get_user(tmp, pc->name);
1899 set_fs(old_fs);
1900 if (res) {
1901 printk("SLAB: cache with size %d has lost its name\n",
1902 pc->buffer_size);
1903 continue;
1906 if (!strcmp(pc->name, name)) {
1907 printk("kmem_cache_create: duplicate cache %s\n", name);
1908 dump_stack();
1909 goto oops;
1913 #if DEBUG
1914 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
1915 if ((flags & SLAB_DEBUG_INITIAL) && !ctor) {
1916 /* No constructor, but inital state check requested */
1917 printk(KERN_ERR "%s: No con, but init state check "
1918 "requested - %s\n", __FUNCTION__, name);
1919 flags &= ~SLAB_DEBUG_INITIAL;
1921 #if FORCED_DEBUG
1923 * Enable redzoning and last user accounting, except for caches with
1924 * large objects, if the increased size would increase the object size
1925 * above the next power of two: caches with object sizes just above a
1926 * power of two have a significant amount of internal fragmentation.
1928 if (size < 4096 || fls(size - 1) == fls(size-1 + 3 * BYTES_PER_WORD))
1929 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1930 if (!(flags & SLAB_DESTROY_BY_RCU))
1931 flags |= SLAB_POISON;
1932 #endif
1933 if (flags & SLAB_DESTROY_BY_RCU)
1934 BUG_ON(flags & SLAB_POISON);
1935 #endif
1936 if (flags & SLAB_DESTROY_BY_RCU)
1937 BUG_ON(dtor);
1940 * Always checks flags, a caller might be expecting debug support which
1941 * isn't available.
1943 if (flags & ~CREATE_MASK)
1944 BUG();
1947 * Check that size is in terms of words. This is needed to avoid
1948 * unaligned accesses for some archs when redzoning is used, and makes
1949 * sure any on-slab bufctl's are also correctly aligned.
1951 if (size & (BYTES_PER_WORD - 1)) {
1952 size += (BYTES_PER_WORD - 1);
1953 size &= ~(BYTES_PER_WORD - 1);
1956 /* calculate the final buffer alignment: */
1958 /* 1) arch recommendation: can be overridden for debug */
1959 if (flags & SLAB_HWCACHE_ALIGN) {
1961 * Default alignment: as specified by the arch code. Except if
1962 * an object is really small, then squeeze multiple objects into
1963 * one cacheline.
1965 ralign = cache_line_size();
1966 while (size <= ralign / 2)
1967 ralign /= 2;
1968 } else {
1969 ralign = BYTES_PER_WORD;
1971 /* 2) arch mandated alignment: disables debug if necessary */
1972 if (ralign < ARCH_SLAB_MINALIGN) {
1973 ralign = ARCH_SLAB_MINALIGN;
1974 if (ralign > BYTES_PER_WORD)
1975 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
1977 /* 3) caller mandated alignment: disables debug if necessary */
1978 if (ralign < align) {
1979 ralign = align;
1980 if (ralign > BYTES_PER_WORD)
1981 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
1984 * 4) Store it. Note that the debug code below can reduce
1985 * the alignment to BYTES_PER_WORD.
1987 align = ralign;
1989 /* Get cache's description obj. */
1990 cachep = kmem_cache_alloc(&cache_cache, SLAB_KERNEL);
1991 if (!cachep)
1992 goto oops;
1993 memset(cachep, 0, sizeof(struct kmem_cache));
1995 #if DEBUG
1996 cachep->obj_size = size;
1998 if (flags & SLAB_RED_ZONE) {
1999 /* redzoning only works with word aligned caches */
2000 align = BYTES_PER_WORD;
2002 /* add space for red zone words */
2003 cachep->obj_offset += BYTES_PER_WORD;
2004 size += 2 * BYTES_PER_WORD;
2006 if (flags & SLAB_STORE_USER) {
2007 /* user store requires word alignment and
2008 * one word storage behind the end of the real
2009 * object.
2011 align = BYTES_PER_WORD;
2012 size += BYTES_PER_WORD;
2014 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
2015 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
2016 && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
2017 cachep->obj_offset += PAGE_SIZE - size;
2018 size = PAGE_SIZE;
2020 #endif
2021 #endif
2023 /* Determine if the slab management is 'on' or 'off' slab. */
2024 if (size >= (PAGE_SIZE >> 3))
2026 * Size is large, assume best to place the slab management obj
2027 * off-slab (should allow better packing of objs).
2029 flags |= CFLGS_OFF_SLAB;
2031 size = ALIGN(size, align);
2033 left_over = calculate_slab_order(cachep, size, align, flags);
2035 if (!cachep->num) {
2036 printk("kmem_cache_create: couldn't create cache %s.\n", name);
2037 kmem_cache_free(&cache_cache, cachep);
2038 cachep = NULL;
2039 goto oops;
2041 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2042 + sizeof(struct slab), align);
2045 * If the slab has been placed off-slab, and we have enough space then
2046 * move it on-slab. This is at the expense of any extra colouring.
2048 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2049 flags &= ~CFLGS_OFF_SLAB;
2050 left_over -= slab_size;
2053 if (flags & CFLGS_OFF_SLAB) {
2054 /* really off slab. No need for manual alignment */
2055 slab_size =
2056 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
2059 cachep->colour_off = cache_line_size();
2060 /* Offset must be a multiple of the alignment. */
2061 if (cachep->colour_off < align)
2062 cachep->colour_off = align;
2063 cachep->colour = left_over / cachep->colour_off;
2064 cachep->slab_size = slab_size;
2065 cachep->flags = flags;
2066 cachep->gfpflags = 0;
2067 if (flags & SLAB_CACHE_DMA)
2068 cachep->gfpflags |= GFP_DMA;
2069 cachep->buffer_size = size;
2071 if (flags & CFLGS_OFF_SLAB)
2072 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
2073 cachep->ctor = ctor;
2074 cachep->dtor = dtor;
2075 cachep->name = name;
2078 setup_cpu_cache(cachep);
2080 /* cache setup completed, link it into the list */
2081 list_add(&cachep->next, &cache_chain);
2082 oops:
2083 if (!cachep && (flags & SLAB_PANIC))
2084 panic("kmem_cache_create(): failed to create slab `%s'\n",
2085 name);
2086 mutex_unlock(&cache_chain_mutex);
2087 unlock_cpu_hotplug();
2088 return cachep;
2090 EXPORT_SYMBOL(kmem_cache_create);
2092 #if DEBUG
2093 static void check_irq_off(void)
2095 BUG_ON(!irqs_disabled());
2098 static void check_irq_on(void)
2100 BUG_ON(irqs_disabled());
2103 static void check_spinlock_acquired(struct kmem_cache *cachep)
2105 #ifdef CONFIG_SMP
2106 check_irq_off();
2107 assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
2108 #endif
2111 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2113 #ifdef CONFIG_SMP
2114 check_irq_off();
2115 assert_spin_locked(&cachep->nodelists[node]->list_lock);
2116 #endif
2119 #else
2120 #define check_irq_off() do { } while(0)
2121 #define check_irq_on() do { } while(0)
2122 #define check_spinlock_acquired(x) do { } while(0)
2123 #define check_spinlock_acquired_node(x, y) do { } while(0)
2124 #endif
2127 * Waits for all CPUs to execute func().
2129 static void smp_call_function_all_cpus(void (*func)(void *arg), void *arg)
2131 check_irq_on();
2132 preempt_disable();
2133 local_irq_disable();
2134 func(arg);
2135 local_irq_enable();
2137 if (smp_call_function(func, arg, 1, 1))
2138 BUG();
2140 preempt_enable();
2143 static void drain_array_locked(struct kmem_cache *cachep,
2144 struct array_cache *ac, int force, int node);
2146 static void do_drain(void *arg)
2148 struct kmem_cache *cachep = arg;
2149 struct array_cache *ac;
2150 int node = numa_node_id();
2152 check_irq_off();
2153 ac = cpu_cache_get(cachep);
2154 spin_lock(&cachep->nodelists[node]->list_lock);
2155 free_block(cachep, ac->entry, ac->avail, node);
2156 spin_unlock(&cachep->nodelists[node]->list_lock);
2157 ac->avail = 0;
2160 static void drain_cpu_caches(struct kmem_cache *cachep)
2162 struct kmem_list3 *l3;
2163 int node;
2165 smp_call_function_all_cpus(do_drain, cachep);
2166 check_irq_on();
2167 for_each_online_node(node) {
2168 l3 = cachep->nodelists[node];
2169 if (l3) {
2170 spin_lock_irq(&l3->list_lock);
2171 drain_array_locked(cachep, l3->shared, 1, node);
2172 spin_unlock_irq(&l3->list_lock);
2173 if (l3->alien)
2174 drain_alien_cache(cachep, l3->alien);
2179 static int __node_shrink(struct kmem_cache *cachep, int node)
2181 struct slab *slabp;
2182 struct kmem_list3 *l3 = cachep->nodelists[node];
2183 int ret;
2185 for (;;) {
2186 struct list_head *p;
2188 p = l3->slabs_free.prev;
2189 if (p == &l3->slabs_free)
2190 break;
2192 slabp = list_entry(l3->slabs_free.prev, struct slab, list);
2193 #if DEBUG
2194 if (slabp->inuse)
2195 BUG();
2196 #endif
2197 list_del(&slabp->list);
2199 l3->free_objects -= cachep->num;
2200 spin_unlock_irq(&l3->list_lock);
2201 slab_destroy(cachep, slabp);
2202 spin_lock_irq(&l3->list_lock);
2204 ret = !list_empty(&l3->slabs_full) || !list_empty(&l3->slabs_partial);
2205 return ret;
2208 static int __cache_shrink(struct kmem_cache *cachep)
2210 int ret = 0, i = 0;
2211 struct kmem_list3 *l3;
2213 drain_cpu_caches(cachep);
2215 check_irq_on();
2216 for_each_online_node(i) {
2217 l3 = cachep->nodelists[i];
2218 if (l3) {
2219 spin_lock_irq(&l3->list_lock);
2220 ret += __node_shrink(cachep, i);
2221 spin_unlock_irq(&l3->list_lock);
2224 return (ret ? 1 : 0);
2228 * kmem_cache_shrink - Shrink a cache.
2229 * @cachep: The cache to shrink.
2231 * Releases as many slabs as possible for a cache.
2232 * To help debugging, a zero exit status indicates all slabs were released.
2234 int kmem_cache_shrink(struct kmem_cache *cachep)
2236 if (!cachep || in_interrupt())
2237 BUG();
2239 return __cache_shrink(cachep);
2241 EXPORT_SYMBOL(kmem_cache_shrink);
2244 * kmem_cache_destroy - delete a cache
2245 * @cachep: the cache to destroy
2247 * Remove a struct kmem_cache object from the slab cache.
2248 * Returns 0 on success.
2250 * It is expected this function will be called by a module when it is
2251 * unloaded. This will remove the cache completely, and avoid a duplicate
2252 * cache being allocated each time a module is loaded and unloaded, if the
2253 * module doesn't have persistent in-kernel storage across loads and unloads.
2255 * The cache must be empty before calling this function.
2257 * The caller must guarantee that noone will allocate memory from the cache
2258 * during the kmem_cache_destroy().
2260 int kmem_cache_destroy(struct kmem_cache *cachep)
2262 int i;
2263 struct kmem_list3 *l3;
2265 if (!cachep || in_interrupt())
2266 BUG();
2268 /* Don't let CPUs to come and go */
2269 lock_cpu_hotplug();
2271 /* Find the cache in the chain of caches. */
2272 mutex_lock(&cache_chain_mutex);
2274 * the chain is never empty, cache_cache is never destroyed
2276 list_del(&cachep->next);
2277 mutex_unlock(&cache_chain_mutex);
2279 if (__cache_shrink(cachep)) {
2280 slab_error(cachep, "Can't free all objects");
2281 mutex_lock(&cache_chain_mutex);
2282 list_add(&cachep->next, &cache_chain);
2283 mutex_unlock(&cache_chain_mutex);
2284 unlock_cpu_hotplug();
2285 return 1;
2288 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2289 synchronize_rcu();
2291 for_each_online_cpu(i)
2292 kfree(cachep->array[i]);
2294 /* NUMA: free the list3 structures */
2295 for_each_online_node(i) {
2296 l3 = cachep->nodelists[i];
2297 if (l3) {
2298 kfree(l3->shared);
2299 free_alien_cache(l3->alien);
2300 kfree(l3);
2303 kmem_cache_free(&cache_cache, cachep);
2304 unlock_cpu_hotplug();
2305 return 0;
2307 EXPORT_SYMBOL(kmem_cache_destroy);
2309 /* Get the memory for a slab management obj. */
2310 static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2311 int colour_off, gfp_t local_flags)
2313 struct slab *slabp;
2315 if (OFF_SLAB(cachep)) {
2316 /* Slab management obj is off-slab. */
2317 slabp = kmem_cache_alloc(cachep->slabp_cache, local_flags);
2318 if (!slabp)
2319 return NULL;
2320 } else {
2321 slabp = objp + colour_off;
2322 colour_off += cachep->slab_size;
2324 slabp->inuse = 0;
2325 slabp->colouroff = colour_off;
2326 slabp->s_mem = objp + colour_off;
2327 return slabp;
2330 static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2332 return (kmem_bufctl_t *) (slabp + 1);
2335 static void cache_init_objs(struct kmem_cache *cachep,
2336 struct slab *slabp, unsigned long ctor_flags)
2338 int i;
2340 for (i = 0; i < cachep->num; i++) {
2341 void *objp = index_to_obj(cachep, slabp, i);
2342 #if DEBUG
2343 /* need to poison the objs? */
2344 if (cachep->flags & SLAB_POISON)
2345 poison_obj(cachep, objp, POISON_FREE);
2346 if (cachep->flags & SLAB_STORE_USER)
2347 *dbg_userword(cachep, objp) = NULL;
2349 if (cachep->flags & SLAB_RED_ZONE) {
2350 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2351 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2354 * Constructors are not allowed to allocate memory from the same
2355 * cache which they are a constructor for. Otherwise, deadlock.
2356 * They must also be threaded.
2358 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2359 cachep->ctor(objp + obj_offset(cachep), cachep,
2360 ctor_flags);
2362 if (cachep->flags & SLAB_RED_ZONE) {
2363 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2364 slab_error(cachep, "constructor overwrote the"
2365 " end of an object");
2366 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2367 slab_error(cachep, "constructor overwrote the"
2368 " start of an object");
2370 if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
2371 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
2372 kernel_map_pages(virt_to_page(objp),
2373 cachep->buffer_size / PAGE_SIZE, 0);
2374 #else
2375 if (cachep->ctor)
2376 cachep->ctor(objp, cachep, ctor_flags);
2377 #endif
2378 slab_bufctl(slabp)[i] = i + 1;
2380 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
2381 slabp->free = 0;
2384 static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
2386 if (flags & SLAB_DMA)
2387 BUG_ON(!(cachep->gfpflags & GFP_DMA));
2388 else
2389 BUG_ON(cachep->gfpflags & GFP_DMA);
2392 static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2393 int nodeid)
2395 void *objp = index_to_obj(cachep, slabp, slabp->free);
2396 kmem_bufctl_t next;
2398 slabp->inuse++;
2399 next = slab_bufctl(slabp)[slabp->free];
2400 #if DEBUG
2401 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2402 WARN_ON(slabp->nodeid != nodeid);
2403 #endif
2404 slabp->free = next;
2406 return objp;
2409 static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2410 void *objp, int nodeid)
2412 unsigned int objnr = obj_to_index(cachep, slabp, objp);
2414 #if DEBUG
2415 /* Verify that the slab belongs to the intended node */
2416 WARN_ON(slabp->nodeid != nodeid);
2418 if (slab_bufctl(slabp)[objnr] != BUFCTL_FREE) {
2419 printk(KERN_ERR "slab: double free detected in cache "
2420 "'%s', objp %p\n", cachep->name, objp);
2421 BUG();
2423 #endif
2424 slab_bufctl(slabp)[objnr] = slabp->free;
2425 slabp->free = objnr;
2426 slabp->inuse--;
2429 static void set_slab_attr(struct kmem_cache *cachep, struct slab *slabp,
2430 void *objp)
2432 int i;
2433 struct page *page;
2435 /* Nasty!!!!!! I hope this is OK. */
2436 i = 1 << cachep->gfporder;
2437 page = virt_to_page(objp);
2438 do {
2439 page_set_cache(page, cachep);
2440 page_set_slab(page, slabp);
2441 page++;
2442 } while (--i);
2446 * Grow (by 1) the number of slabs within a cache. This is called by
2447 * kmem_cache_alloc() when there are no active objs left in a cache.
2449 static int cache_grow(struct kmem_cache *cachep, gfp_t flags, int nodeid)
2451 struct slab *slabp;
2452 void *objp;
2453 size_t offset;
2454 gfp_t local_flags;
2455 unsigned long ctor_flags;
2456 struct kmem_list3 *l3;
2459 * Be lazy and only check for valid flags here, keeping it out of the
2460 * critical path in kmem_cache_alloc().
2462 if (flags & ~(SLAB_DMA | SLAB_LEVEL_MASK | SLAB_NO_GROW))
2463 BUG();
2464 if (flags & SLAB_NO_GROW)
2465 return 0;
2467 ctor_flags = SLAB_CTOR_CONSTRUCTOR;
2468 local_flags = (flags & SLAB_LEVEL_MASK);
2469 if (!(local_flags & __GFP_WAIT))
2471 * Not allowed to sleep. Need to tell a constructor about
2472 * this - it might need to know...
2474 ctor_flags |= SLAB_CTOR_ATOMIC;
2476 /* Take the l3 list lock to change the colour_next on this node */
2477 check_irq_off();
2478 l3 = cachep->nodelists[nodeid];
2479 spin_lock(&l3->list_lock);
2481 /* Get colour for the slab, and cal the next value. */
2482 offset = l3->colour_next;
2483 l3->colour_next++;
2484 if (l3->colour_next >= cachep->colour)
2485 l3->colour_next = 0;
2486 spin_unlock(&l3->list_lock);
2488 offset *= cachep->colour_off;
2490 if (local_flags & __GFP_WAIT)
2491 local_irq_enable();
2494 * The test for missing atomic flag is performed here, rather than
2495 * the more obvious place, simply to reduce the critical path length
2496 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2497 * will eventually be caught here (where it matters).
2499 kmem_flagcheck(cachep, flags);
2502 * Get mem for the objs. Attempt to allocate a physical page from
2503 * 'nodeid'.
2505 objp = kmem_getpages(cachep, flags, nodeid);
2506 if (!objp)
2507 goto failed;
2509 /* Get slab management. */
2510 slabp = alloc_slabmgmt(cachep, objp, offset, local_flags);
2511 if (!slabp)
2512 goto opps1;
2514 slabp->nodeid = nodeid;
2515 set_slab_attr(cachep, slabp, objp);
2517 cache_init_objs(cachep, slabp, ctor_flags);
2519 if (local_flags & __GFP_WAIT)
2520 local_irq_disable();
2521 check_irq_off();
2522 spin_lock(&l3->list_lock);
2524 /* Make slab active. */
2525 list_add_tail(&slabp->list, &(l3->slabs_free));
2526 STATS_INC_GROWN(cachep);
2527 l3->free_objects += cachep->num;
2528 spin_unlock(&l3->list_lock);
2529 return 1;
2530 opps1:
2531 kmem_freepages(cachep, objp);
2532 failed:
2533 if (local_flags & __GFP_WAIT)
2534 local_irq_disable();
2535 return 0;
2538 #if DEBUG
2541 * Perform extra freeing checks:
2542 * - detect bad pointers.
2543 * - POISON/RED_ZONE checking
2544 * - destructor calls, for caches with POISON+dtor
2546 static void kfree_debugcheck(const void *objp)
2548 struct page *page;
2550 if (!virt_addr_valid(objp)) {
2551 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
2552 (unsigned long)objp);
2553 BUG();
2555 page = virt_to_page(objp);
2556 if (!PageSlab(page)) {
2557 printk(KERN_ERR "kfree_debugcheck: bad ptr %lxh.\n",
2558 (unsigned long)objp);
2559 BUG();
2563 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2564 void *caller)
2566 struct page *page;
2567 unsigned int objnr;
2568 struct slab *slabp;
2570 objp -= obj_offset(cachep);
2571 kfree_debugcheck(objp);
2572 page = virt_to_page(objp);
2574 if (page_get_cache(page) != cachep) {
2575 printk(KERN_ERR "mismatch in kmem_cache_free: expected "
2576 "cache %p, got %p\n",
2577 page_get_cache(page), cachep);
2578 printk(KERN_ERR "%p is %s.\n", cachep, cachep->name);
2579 printk(KERN_ERR "%p is %s.\n", page_get_cache(page),
2580 page_get_cache(page)->name);
2581 WARN_ON(1);
2583 slabp = page_get_slab(page);
2585 if (cachep->flags & SLAB_RED_ZONE) {
2586 if (*dbg_redzone1(cachep, objp) != RED_ACTIVE ||
2587 *dbg_redzone2(cachep, objp) != RED_ACTIVE) {
2588 slab_error(cachep, "double free, or memory outside"
2589 " object was overwritten");
2590 printk(KERN_ERR "%p: redzone 1:0x%lx, "
2591 "redzone 2:0x%lx.\n",
2592 objp, *dbg_redzone1(cachep, objp),
2593 *dbg_redzone2(cachep, objp));
2595 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2596 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2598 if (cachep->flags & SLAB_STORE_USER)
2599 *dbg_userword(cachep, objp) = caller;
2601 objnr = obj_to_index(cachep, slabp, objp);
2603 BUG_ON(objnr >= cachep->num);
2604 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
2606 if (cachep->flags & SLAB_DEBUG_INITIAL) {
2608 * Need to call the slab's constructor so the caller can
2609 * perform a verify of its state (debugging). Called without
2610 * the cache-lock held.
2612 cachep->ctor(objp + obj_offset(cachep),
2613 cachep, SLAB_CTOR_CONSTRUCTOR | SLAB_CTOR_VERIFY);
2615 if (cachep->flags & SLAB_POISON && cachep->dtor) {
2616 /* we want to cache poison the object,
2617 * call the destruction callback
2619 cachep->dtor(objp + obj_offset(cachep), cachep, 0);
2621 if (cachep->flags & SLAB_POISON) {
2622 #ifdef CONFIG_DEBUG_PAGEALLOC
2623 if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
2624 store_stackinfo(cachep, objp, (unsigned long)caller);
2625 kernel_map_pages(virt_to_page(objp),
2626 cachep->buffer_size / PAGE_SIZE, 0);
2627 } else {
2628 poison_obj(cachep, objp, POISON_FREE);
2630 #else
2631 poison_obj(cachep, objp, POISON_FREE);
2632 #endif
2634 return objp;
2637 static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
2639 kmem_bufctl_t i;
2640 int entries = 0;
2642 /* Check slab's freelist to see if this obj is there. */
2643 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2644 entries++;
2645 if (entries > cachep->num || i >= cachep->num)
2646 goto bad;
2648 if (entries != cachep->num - slabp->inuse) {
2649 bad:
2650 printk(KERN_ERR "slab: Internal list corruption detected in "
2651 "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2652 cachep->name, cachep->num, slabp, slabp->inuse);
2653 for (i = 0;
2654 i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
2655 i++) {
2656 if (i % 16 == 0)
2657 printk("\n%03x:", i);
2658 printk(" %02x", ((unsigned char *)slabp)[i]);
2660 printk("\n");
2661 BUG();
2664 #else
2665 #define kfree_debugcheck(x) do { } while(0)
2666 #define cache_free_debugcheck(x,objp,z) (objp)
2667 #define check_slabp(x,y) do { } while(0)
2668 #endif
2670 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
2672 int batchcount;
2673 struct kmem_list3 *l3;
2674 struct array_cache *ac;
2676 check_irq_off();
2677 ac = cpu_cache_get(cachep);
2678 retry:
2679 batchcount = ac->batchcount;
2680 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2682 * If there was little recent activity on this cache, then
2683 * perform only a partial refill. Otherwise we could generate
2684 * refill bouncing.
2686 batchcount = BATCHREFILL_LIMIT;
2688 l3 = cachep->nodelists[numa_node_id()];
2690 BUG_ON(ac->avail > 0 || !l3);
2691 spin_lock(&l3->list_lock);
2693 if (l3->shared) {
2694 struct array_cache *shared_array = l3->shared;
2695 if (shared_array->avail) {
2696 if (batchcount > shared_array->avail)
2697 batchcount = shared_array->avail;
2698 shared_array->avail -= batchcount;
2699 ac->avail = batchcount;
2700 memcpy(ac->entry,
2701 &(shared_array->entry[shared_array->avail]),
2702 sizeof(void *) * batchcount);
2703 shared_array->touched = 1;
2704 goto alloc_done;
2707 while (batchcount > 0) {
2708 struct list_head *entry;
2709 struct slab *slabp;
2710 /* Get slab alloc is to come from. */
2711 entry = l3->slabs_partial.next;
2712 if (entry == &l3->slabs_partial) {
2713 l3->free_touched = 1;
2714 entry = l3->slabs_free.next;
2715 if (entry == &l3->slabs_free)
2716 goto must_grow;
2719 slabp = list_entry(entry, struct slab, list);
2720 check_slabp(cachep, slabp);
2721 check_spinlock_acquired(cachep);
2722 while (slabp->inuse < cachep->num && batchcount--) {
2723 STATS_INC_ALLOCED(cachep);
2724 STATS_INC_ACTIVE(cachep);
2725 STATS_SET_HIGH(cachep);
2727 ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
2728 numa_node_id());
2730 check_slabp(cachep, slabp);
2732 /* move slabp to correct slabp list: */
2733 list_del(&slabp->list);
2734 if (slabp->free == BUFCTL_END)
2735 list_add(&slabp->list, &l3->slabs_full);
2736 else
2737 list_add(&slabp->list, &l3->slabs_partial);
2740 must_grow:
2741 l3->free_objects -= ac->avail;
2742 alloc_done:
2743 spin_unlock(&l3->list_lock);
2745 if (unlikely(!ac->avail)) {
2746 int x;
2747 x = cache_grow(cachep, flags, numa_node_id());
2749 /* cache_grow can reenable interrupts, then ac could change. */
2750 ac = cpu_cache_get(cachep);
2751 if (!x && ac->avail == 0) /* no objects in sight? abort */
2752 return NULL;
2754 if (!ac->avail) /* objects refilled by interrupt? */
2755 goto retry;
2757 ac->touched = 1;
2758 return ac->entry[--ac->avail];
2761 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
2762 gfp_t flags)
2764 might_sleep_if(flags & __GFP_WAIT);
2765 #if DEBUG
2766 kmem_flagcheck(cachep, flags);
2767 #endif
2770 #if DEBUG
2771 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
2772 gfp_t flags, void *objp, void *caller)
2774 if (!objp)
2775 return objp;
2776 if (cachep->flags & SLAB_POISON) {
2777 #ifdef CONFIG_DEBUG_PAGEALLOC
2778 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
2779 kernel_map_pages(virt_to_page(objp),
2780 cachep->buffer_size / PAGE_SIZE, 1);
2781 else
2782 check_poison_obj(cachep, objp);
2783 #else
2784 check_poison_obj(cachep, objp);
2785 #endif
2786 poison_obj(cachep, objp, POISON_INUSE);
2788 if (cachep->flags & SLAB_STORE_USER)
2789 *dbg_userword(cachep, objp) = caller;
2791 if (cachep->flags & SLAB_RED_ZONE) {
2792 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
2793 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
2794 slab_error(cachep, "double free, or memory outside"
2795 " object was overwritten");
2796 printk(KERN_ERR
2797 "%p: redzone 1:0x%lx, redzone 2:0x%lx\n",
2798 objp, *dbg_redzone1(cachep, objp),
2799 *dbg_redzone2(cachep, objp));
2801 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
2802 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
2804 objp += obj_offset(cachep);
2805 if (cachep->ctor && cachep->flags & SLAB_POISON) {
2806 unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR;
2808 if (!(flags & __GFP_WAIT))
2809 ctor_flags |= SLAB_CTOR_ATOMIC;
2811 cachep->ctor(objp, cachep, ctor_flags);
2813 return objp;
2815 #else
2816 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
2817 #endif
2819 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
2821 void *objp;
2822 struct array_cache *ac;
2824 #ifdef CONFIG_NUMA
2825 if (unlikely(current->mempolicy && !in_interrupt())) {
2826 int nid = slab_node(current->mempolicy);
2828 if (nid != numa_node_id())
2829 return __cache_alloc_node(cachep, flags, nid);
2831 #endif
2833 check_irq_off();
2834 ac = cpu_cache_get(cachep);
2835 if (likely(ac->avail)) {
2836 STATS_INC_ALLOCHIT(cachep);
2837 ac->touched = 1;
2838 objp = ac->entry[--ac->avail];
2839 } else {
2840 STATS_INC_ALLOCMISS(cachep);
2841 objp = cache_alloc_refill(cachep, flags);
2843 return objp;
2846 static __always_inline void *__cache_alloc(struct kmem_cache *cachep,
2847 gfp_t flags, void *caller)
2849 unsigned long save_flags;
2850 void *objp;
2852 cache_alloc_debugcheck_before(cachep, flags);
2854 local_irq_save(save_flags);
2855 objp = ____cache_alloc(cachep, flags);
2856 local_irq_restore(save_flags);
2857 objp = cache_alloc_debugcheck_after(cachep, flags, objp,
2858 caller);
2859 prefetchw(objp);
2860 return objp;
2863 #ifdef CONFIG_NUMA
2865 * A interface to enable slab creation on nodeid
2867 static void *__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
2868 int nodeid)
2870 struct list_head *entry;
2871 struct slab *slabp;
2872 struct kmem_list3 *l3;
2873 void *obj;
2874 int x;
2876 l3 = cachep->nodelists[nodeid];
2877 BUG_ON(!l3);
2879 retry:
2880 check_irq_off();
2881 spin_lock(&l3->list_lock);
2882 entry = l3->slabs_partial.next;
2883 if (entry == &l3->slabs_partial) {
2884 l3->free_touched = 1;
2885 entry = l3->slabs_free.next;
2886 if (entry == &l3->slabs_free)
2887 goto must_grow;
2890 slabp = list_entry(entry, struct slab, list);
2891 check_spinlock_acquired_node(cachep, nodeid);
2892 check_slabp(cachep, slabp);
2894 STATS_INC_NODEALLOCS(cachep);
2895 STATS_INC_ACTIVE(cachep);
2896 STATS_SET_HIGH(cachep);
2898 BUG_ON(slabp->inuse == cachep->num);
2900 obj = slab_get_obj(cachep, slabp, nodeid);
2901 check_slabp(cachep, slabp);
2902 l3->free_objects--;
2903 /* move slabp to correct slabp list: */
2904 list_del(&slabp->list);
2906 if (slabp->free == BUFCTL_END)
2907 list_add(&slabp->list, &l3->slabs_full);
2908 else
2909 list_add(&slabp->list, &l3->slabs_partial);
2911 spin_unlock(&l3->list_lock);
2912 goto done;
2914 must_grow:
2915 spin_unlock(&l3->list_lock);
2916 x = cache_grow(cachep, flags, nodeid);
2918 if (!x)
2919 return NULL;
2921 goto retry;
2922 done:
2923 return obj;
2925 #endif
2928 * Caller needs to acquire correct kmem_list's list_lock
2930 static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
2931 int node)
2933 int i;
2934 struct kmem_list3 *l3;
2936 for (i = 0; i < nr_objects; i++) {
2937 void *objp = objpp[i];
2938 struct slab *slabp;
2940 slabp = virt_to_slab(objp);
2941 l3 = cachep->nodelists[node];
2942 list_del(&slabp->list);
2943 check_spinlock_acquired_node(cachep, node);
2944 check_slabp(cachep, slabp);
2945 slab_put_obj(cachep, slabp, objp, node);
2946 STATS_DEC_ACTIVE(cachep);
2947 l3->free_objects++;
2948 check_slabp(cachep, slabp);
2950 /* fixup slab chains */
2951 if (slabp->inuse == 0) {
2952 if (l3->free_objects > l3->free_limit) {
2953 l3->free_objects -= cachep->num;
2954 slab_destroy(cachep, slabp);
2955 } else {
2956 list_add(&slabp->list, &l3->slabs_free);
2958 } else {
2959 /* Unconditionally move a slab to the end of the
2960 * partial list on free - maximum time for the
2961 * other objects to be freed, too.
2963 list_add_tail(&slabp->list, &l3->slabs_partial);
2968 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
2970 int batchcount;
2971 struct kmem_list3 *l3;
2972 int node = numa_node_id();
2974 batchcount = ac->batchcount;
2975 #if DEBUG
2976 BUG_ON(!batchcount || batchcount > ac->avail);
2977 #endif
2978 check_irq_off();
2979 l3 = cachep->nodelists[node];
2980 spin_lock(&l3->list_lock);
2981 if (l3->shared) {
2982 struct array_cache *shared_array = l3->shared;
2983 int max = shared_array->limit - shared_array->avail;
2984 if (max) {
2985 if (batchcount > max)
2986 batchcount = max;
2987 memcpy(&(shared_array->entry[shared_array->avail]),
2988 ac->entry, sizeof(void *) * batchcount);
2989 shared_array->avail += batchcount;
2990 goto free_done;
2994 free_block(cachep, ac->entry, batchcount, node);
2995 free_done:
2996 #if STATS
2998 int i = 0;
2999 struct list_head *p;
3001 p = l3->slabs_free.next;
3002 while (p != &(l3->slabs_free)) {
3003 struct slab *slabp;
3005 slabp = list_entry(p, struct slab, list);
3006 BUG_ON(slabp->inuse);
3008 i++;
3009 p = p->next;
3011 STATS_SET_FREEABLE(cachep, i);
3013 #endif
3014 spin_unlock(&l3->list_lock);
3015 ac->avail -= batchcount;
3016 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3020 * Release an obj back to its cache. If the obj has a constructed state, it must
3021 * be in this state _before_ it is released. Called with disabled ints.
3023 static inline void __cache_free(struct kmem_cache *cachep, void *objp)
3025 struct array_cache *ac = cpu_cache_get(cachep);
3027 check_irq_off();
3028 objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
3030 /* Make sure we are not freeing a object from another
3031 * node to the array cache on this cpu.
3033 #ifdef CONFIG_NUMA
3035 struct slab *slabp;
3036 slabp = virt_to_slab(objp);
3037 if (unlikely(slabp->nodeid != numa_node_id())) {
3038 struct array_cache *alien = NULL;
3039 int nodeid = slabp->nodeid;
3040 struct kmem_list3 *l3;
3042 l3 = cachep->nodelists[numa_node_id()];
3043 STATS_INC_NODEFREES(cachep);
3044 if (l3->alien && l3->alien[nodeid]) {
3045 alien = l3->alien[nodeid];
3046 spin_lock(&alien->lock);
3047 if (unlikely(alien->avail == alien->limit))
3048 __drain_alien_cache(cachep,
3049 alien, nodeid);
3050 alien->entry[alien->avail++] = objp;
3051 spin_unlock(&alien->lock);
3052 } else {
3053 spin_lock(&(cachep->nodelists[nodeid])->
3054 list_lock);
3055 free_block(cachep, &objp, 1, nodeid);
3056 spin_unlock(&(cachep->nodelists[nodeid])->
3057 list_lock);
3059 return;
3062 #endif
3063 if (likely(ac->avail < ac->limit)) {
3064 STATS_INC_FREEHIT(cachep);
3065 ac->entry[ac->avail++] = objp;
3066 return;
3067 } else {
3068 STATS_INC_FREEMISS(cachep);
3069 cache_flusharray(cachep, ac);
3070 ac->entry[ac->avail++] = objp;
3075 * kmem_cache_alloc - Allocate an object
3076 * @cachep: The cache to allocate from.
3077 * @flags: See kmalloc().
3079 * Allocate an object from this cache. The flags are only relevant
3080 * if the cache has no available objects.
3082 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3084 return __cache_alloc(cachep, flags, __builtin_return_address(0));
3086 EXPORT_SYMBOL(kmem_cache_alloc);
3089 * kmem_ptr_validate - check if an untrusted pointer might
3090 * be a slab entry.
3091 * @cachep: the cache we're checking against
3092 * @ptr: pointer to validate
3094 * This verifies that the untrusted pointer looks sane:
3095 * it is _not_ a guarantee that the pointer is actually
3096 * part of the slab cache in question, but it at least
3097 * validates that the pointer can be dereferenced and
3098 * looks half-way sane.
3100 * Currently only used for dentry validation.
3102 int fastcall kmem_ptr_validate(struct kmem_cache *cachep, void *ptr)
3104 unsigned long addr = (unsigned long)ptr;
3105 unsigned long min_addr = PAGE_OFFSET;
3106 unsigned long align_mask = BYTES_PER_WORD - 1;
3107 unsigned long size = cachep->buffer_size;
3108 struct page *page;
3110 if (unlikely(addr < min_addr))
3111 goto out;
3112 if (unlikely(addr > (unsigned long)high_memory - size))
3113 goto out;
3114 if (unlikely(addr & align_mask))
3115 goto out;
3116 if (unlikely(!kern_addr_valid(addr)))
3117 goto out;
3118 if (unlikely(!kern_addr_valid(addr + size - 1)))
3119 goto out;
3120 page = virt_to_page(ptr);
3121 if (unlikely(!PageSlab(page)))
3122 goto out;
3123 if (unlikely(page_get_cache(page) != cachep))
3124 goto out;
3125 return 1;
3126 out:
3127 return 0;
3130 #ifdef CONFIG_NUMA
3132 * kmem_cache_alloc_node - Allocate an object on the specified node
3133 * @cachep: The cache to allocate from.
3134 * @flags: See kmalloc().
3135 * @nodeid: node number of the target node.
3137 * Identical to kmem_cache_alloc, except that this function is slow
3138 * and can sleep. And it will allocate memory on the given node, which
3139 * can improve the performance for cpu bound structures.
3140 * New and improved: it will now make sure that the object gets
3141 * put on the correct node list so that there is no false sharing.
3143 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3145 unsigned long save_flags;
3146 void *ptr;
3148 cache_alloc_debugcheck_before(cachep, flags);
3149 local_irq_save(save_flags);
3151 if (nodeid == -1 || nodeid == numa_node_id() ||
3152 !cachep->nodelists[nodeid])
3153 ptr = ____cache_alloc(cachep, flags);
3154 else
3155 ptr = __cache_alloc_node(cachep, flags, nodeid);
3156 local_irq_restore(save_flags);
3158 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr,
3159 __builtin_return_address(0));
3161 return ptr;
3163 EXPORT_SYMBOL(kmem_cache_alloc_node);
3165 void *kmalloc_node(size_t size, gfp_t flags, int node)
3167 struct kmem_cache *cachep;
3169 cachep = kmem_find_general_cachep(size, flags);
3170 if (unlikely(cachep == NULL))
3171 return NULL;
3172 return kmem_cache_alloc_node(cachep, flags, node);
3174 EXPORT_SYMBOL(kmalloc_node);
3175 #endif
3178 * kmalloc - allocate memory
3179 * @size: how many bytes of memory are required.
3180 * @flags: the type of memory to allocate.
3181 * @caller: function caller for debug tracking of the caller
3183 * kmalloc is the normal method of allocating memory
3184 * in the kernel.
3186 * The @flags argument may be one of:
3188 * %GFP_USER - Allocate memory on behalf of user. May sleep.
3190 * %GFP_KERNEL - Allocate normal kernel ram. May sleep.
3192 * %GFP_ATOMIC - Allocation will not sleep. Use inside interrupt handlers.
3194 * Additionally, the %GFP_DMA flag may be set to indicate the memory
3195 * must be suitable for DMA. This can mean different things on different
3196 * platforms. For example, on i386, it means that the memory must come
3197 * from the first 16MB.
3199 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3200 void *caller)
3202 struct kmem_cache *cachep;
3204 /* If you want to save a few bytes .text space: replace
3205 * __ with kmem_.
3206 * Then kmalloc uses the uninlined functions instead of the inline
3207 * functions.
3209 cachep = __find_general_cachep(size, flags);
3210 if (unlikely(cachep == NULL))
3211 return NULL;
3212 return __cache_alloc(cachep, flags, caller);
3215 #ifndef CONFIG_DEBUG_SLAB
3217 void *__kmalloc(size_t size, gfp_t flags)
3219 return __do_kmalloc(size, flags, NULL);
3221 EXPORT_SYMBOL(__kmalloc);
3223 #else
3225 void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
3227 return __do_kmalloc(size, flags, caller);
3229 EXPORT_SYMBOL(__kmalloc_track_caller);
3231 #endif
3233 #ifdef CONFIG_SMP
3235 * __alloc_percpu - allocate one copy of the object for every present
3236 * cpu in the system, zeroing them.
3237 * Objects should be dereferenced using the per_cpu_ptr macro only.
3239 * @size: how many bytes of memory are required.
3241 void *__alloc_percpu(size_t size)
3243 int i;
3244 struct percpu_data *pdata = kmalloc(sizeof(*pdata), GFP_KERNEL);
3246 if (!pdata)
3247 return NULL;
3250 * Cannot use for_each_online_cpu since a cpu may come online
3251 * and we have no way of figuring out how to fix the array
3252 * that we have allocated then....
3254 for_each_cpu(i) {
3255 int node = cpu_to_node(i);
3257 if (node_online(node))
3258 pdata->ptrs[i] = kmalloc_node(size, GFP_KERNEL, node);
3259 else
3260 pdata->ptrs[i] = kmalloc(size, GFP_KERNEL);
3262 if (!pdata->ptrs[i])
3263 goto unwind_oom;
3264 memset(pdata->ptrs[i], 0, size);
3267 /* Catch derefs w/o wrappers */
3268 return (void *)(~(unsigned long)pdata);
3270 unwind_oom:
3271 while (--i >= 0) {
3272 if (!cpu_possible(i))
3273 continue;
3274 kfree(pdata->ptrs[i]);
3276 kfree(pdata);
3277 return NULL;
3279 EXPORT_SYMBOL(__alloc_percpu);
3280 #endif
3283 * kmem_cache_free - Deallocate an object
3284 * @cachep: The cache the allocation was from.
3285 * @objp: The previously allocated object.
3287 * Free an object which was previously allocated from this
3288 * cache.
3290 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3292 unsigned long flags;
3294 local_irq_save(flags);
3295 __cache_free(cachep, objp);
3296 local_irq_restore(flags);
3298 EXPORT_SYMBOL(kmem_cache_free);
3301 * kfree - free previously allocated memory
3302 * @objp: pointer returned by kmalloc.
3304 * If @objp is NULL, no operation is performed.
3306 * Don't free memory not originally allocated by kmalloc()
3307 * or you will run into trouble.
3309 void kfree(const void *objp)
3311 struct kmem_cache *c;
3312 unsigned long flags;
3314 if (unlikely(!objp))
3315 return;
3316 local_irq_save(flags);
3317 kfree_debugcheck(objp);
3318 c = virt_to_cache(objp);
3319 mutex_debug_check_no_locks_freed(objp, obj_size(c));
3320 __cache_free(c, (void *)objp);
3321 local_irq_restore(flags);
3323 EXPORT_SYMBOL(kfree);
3325 #ifdef CONFIG_SMP
3327 * free_percpu - free previously allocated percpu memory
3328 * @objp: pointer returned by alloc_percpu.
3330 * Don't free memory not originally allocated by alloc_percpu()
3331 * The complemented objp is to check for that.
3333 void free_percpu(const void *objp)
3335 int i;
3336 struct percpu_data *p = (struct percpu_data *)(~(unsigned long)objp);
3339 * We allocate for all cpus so we cannot use for online cpu here.
3341 for_each_cpu(i)
3342 kfree(p->ptrs[i]);
3343 kfree(p);
3345 EXPORT_SYMBOL(free_percpu);
3346 #endif
3348 unsigned int kmem_cache_size(struct kmem_cache *cachep)
3350 return obj_size(cachep);
3352 EXPORT_SYMBOL(kmem_cache_size);
3354 const char *kmem_cache_name(struct kmem_cache *cachep)
3356 return cachep->name;
3358 EXPORT_SYMBOL_GPL(kmem_cache_name);
3361 * This initializes kmem_list3 for all nodes.
3363 static int alloc_kmemlist(struct kmem_cache *cachep)
3365 int node;
3366 struct kmem_list3 *l3;
3367 int err = 0;
3369 for_each_online_node(node) {
3370 struct array_cache *nc = NULL, *new;
3371 struct array_cache **new_alien = NULL;
3372 #ifdef CONFIG_NUMA
3373 new_alien = alloc_alien_cache(node, cachep->limit);
3374 if (!new_alien)
3375 goto fail;
3376 #endif
3377 new = alloc_arraycache(node, cachep->shared*cachep->batchcount,
3378 0xbaadf00d);
3379 if (!new)
3380 goto fail;
3381 l3 = cachep->nodelists[node];
3382 if (l3) {
3383 spin_lock_irq(&l3->list_lock);
3385 nc = cachep->nodelists[node]->shared;
3386 if (nc)
3387 free_block(cachep, nc->entry, nc->avail, node);
3389 l3->shared = new;
3390 if (!cachep->nodelists[node]->alien) {
3391 l3->alien = new_alien;
3392 new_alien = NULL;
3394 l3->free_limit = (1 + nr_cpus_node(node)) *
3395 cachep->batchcount + cachep->num;
3396 spin_unlock_irq(&l3->list_lock);
3397 kfree(nc);
3398 free_alien_cache(new_alien);
3399 continue;
3401 l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
3402 if (!l3)
3403 goto fail;
3405 kmem_list3_init(l3);
3406 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
3407 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3408 l3->shared = new;
3409 l3->alien = new_alien;
3410 l3->free_limit = (1 + nr_cpus_node(node)) *
3411 cachep->batchcount + cachep->num;
3412 cachep->nodelists[node] = l3;
3414 return err;
3415 fail:
3416 err = -ENOMEM;
3417 return err;
3420 struct ccupdate_struct {
3421 struct kmem_cache *cachep;
3422 struct array_cache *new[NR_CPUS];
3425 static void do_ccupdate_local(void *info)
3427 struct ccupdate_struct *new = info;
3428 struct array_cache *old;
3430 check_irq_off();
3431 old = cpu_cache_get(new->cachep);
3433 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3434 new->new[smp_processor_id()] = old;
3437 /* Always called with the cache_chain_mutex held */
3438 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3439 int batchcount, int shared)
3441 struct ccupdate_struct new;
3442 int i, err;
3444 memset(&new.new, 0, sizeof(new.new));
3445 for_each_online_cpu(i) {
3446 new.new[i] = alloc_arraycache(cpu_to_node(i), limit,
3447 batchcount);
3448 if (!new.new[i]) {
3449 for (i--; i >= 0; i--)
3450 kfree(new.new[i]);
3451 return -ENOMEM;
3454 new.cachep = cachep;
3456 smp_call_function_all_cpus(do_ccupdate_local, (void *)&new);
3458 check_irq_on();
3459 cachep->batchcount = batchcount;
3460 cachep->limit = limit;
3461 cachep->shared = shared;
3463 for_each_online_cpu(i) {
3464 struct array_cache *ccold = new.new[i];
3465 if (!ccold)
3466 continue;
3467 spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3468 free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
3469 spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3470 kfree(ccold);
3473 err = alloc_kmemlist(cachep);
3474 if (err) {
3475 printk(KERN_ERR "alloc_kmemlist failed for %s, error %d.\n",
3476 cachep->name, -err);
3477 BUG();
3479 return 0;
3482 /* Called with cache_chain_mutex held always */
3483 static void enable_cpucache(struct kmem_cache *cachep)
3485 int err;
3486 int limit, shared;
3489 * The head array serves three purposes:
3490 * - create a LIFO ordering, i.e. return objects that are cache-warm
3491 * - reduce the number of spinlock operations.
3492 * - reduce the number of linked list operations on the slab and
3493 * bufctl chains: array operations are cheaper.
3494 * The numbers are guessed, we should auto-tune as described by
3495 * Bonwick.
3497 if (cachep->buffer_size > 131072)
3498 limit = 1;
3499 else if (cachep->buffer_size > PAGE_SIZE)
3500 limit = 8;
3501 else if (cachep->buffer_size > 1024)
3502 limit = 24;
3503 else if (cachep->buffer_size > 256)
3504 limit = 54;
3505 else
3506 limit = 120;
3509 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3510 * allocation behaviour: Most allocs on one cpu, most free operations
3511 * on another cpu. For these cases, an efficient object passing between
3512 * cpus is necessary. This is provided by a shared array. The array
3513 * replaces Bonwick's magazine layer.
3514 * On uniprocessor, it's functionally equivalent (but less efficient)
3515 * to a larger limit. Thus disabled by default.
3517 shared = 0;
3518 #ifdef CONFIG_SMP
3519 if (cachep->buffer_size <= PAGE_SIZE)
3520 shared = 8;
3521 #endif
3523 #if DEBUG
3525 * With debugging enabled, large batchcount lead to excessively long
3526 * periods with disabled local interrupts. Limit the batchcount
3528 if (limit > 32)
3529 limit = 32;
3530 #endif
3531 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
3532 if (err)
3533 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
3534 cachep->name, -err);
3537 static void drain_array_locked(struct kmem_cache *cachep,
3538 struct array_cache *ac, int force, int node)
3540 int tofree;
3542 check_spinlock_acquired_node(cachep, node);
3543 if (ac->touched && !force) {
3544 ac->touched = 0;
3545 } else if (ac->avail) {
3546 tofree = force ? ac->avail : (ac->limit + 4) / 5;
3547 if (tofree > ac->avail)
3548 tofree = (ac->avail + 1) / 2;
3549 free_block(cachep, ac->entry, tofree, node);
3550 ac->avail -= tofree;
3551 memmove(ac->entry, &(ac->entry[tofree]),
3552 sizeof(void *) * ac->avail);
3557 * cache_reap - Reclaim memory from caches.
3558 * @unused: unused parameter
3560 * Called from workqueue/eventd every few seconds.
3561 * Purpose:
3562 * - clear the per-cpu caches for this CPU.
3563 * - return freeable pages to the main free memory pool.
3565 * If we cannot acquire the cache chain mutex then just give up - we'll try
3566 * again on the next iteration.
3568 static void cache_reap(void *unused)
3570 struct list_head *walk;
3571 struct kmem_list3 *l3;
3573 if (!mutex_trylock(&cache_chain_mutex)) {
3574 /* Give up. Setup the next iteration. */
3575 schedule_delayed_work(&__get_cpu_var(reap_work),
3576 REAPTIMEOUT_CPUC);
3577 return;
3580 list_for_each(walk, &cache_chain) {
3581 struct kmem_cache *searchp;
3582 struct list_head *p;
3583 int tofree;
3584 struct slab *slabp;
3586 searchp = list_entry(walk, struct kmem_cache, next);
3588 if (searchp->flags & SLAB_NO_REAP)
3589 goto next;
3591 check_irq_on();
3593 l3 = searchp->nodelists[numa_node_id()];
3594 reap_alien(searchp, l3);
3595 spin_lock_irq(&l3->list_lock);
3597 drain_array_locked(searchp, cpu_cache_get(searchp), 0,
3598 numa_node_id());
3600 if (time_after(l3->next_reap, jiffies))
3601 goto next_unlock;
3603 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
3605 if (l3->shared)
3606 drain_array_locked(searchp, l3->shared, 0,
3607 numa_node_id());
3609 if (l3->free_touched) {
3610 l3->free_touched = 0;
3611 goto next_unlock;
3614 tofree = (l3->free_limit + 5 * searchp->num - 1) /
3615 (5 * searchp->num);
3616 do {
3617 p = l3->slabs_free.next;
3618 if (p == &(l3->slabs_free))
3619 break;
3621 slabp = list_entry(p, struct slab, list);
3622 BUG_ON(slabp->inuse);
3623 list_del(&slabp->list);
3624 STATS_INC_REAPED(searchp);
3627 * Safe to drop the lock. The slab is no longer linked
3628 * to the cache. searchp cannot disappear, we hold
3629 * cache_chain_lock
3631 l3->free_objects -= searchp->num;
3632 spin_unlock_irq(&l3->list_lock);
3633 slab_destroy(searchp, slabp);
3634 spin_lock_irq(&l3->list_lock);
3635 } while (--tofree > 0);
3636 next_unlock:
3637 spin_unlock_irq(&l3->list_lock);
3638 next:
3639 cond_resched();
3641 check_irq_on();
3642 mutex_unlock(&cache_chain_mutex);
3643 next_reap_node();
3644 /* Set up the next iteration */
3645 schedule_delayed_work(&__get_cpu_var(reap_work), REAPTIMEOUT_CPUC);
3648 #ifdef CONFIG_PROC_FS
3650 static void print_slabinfo_header(struct seq_file *m)
3653 * Output format version, so at least we can change it
3654 * without _too_ many complaints.
3656 #if STATS
3657 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
3658 #else
3659 seq_puts(m, "slabinfo - version: 2.1\n");
3660 #endif
3661 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
3662 "<objperslab> <pagesperslab>");
3663 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
3664 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
3665 #if STATS
3666 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
3667 "<error> <maxfreeable> <nodeallocs> <remotefrees>");
3668 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
3669 #endif
3670 seq_putc(m, '\n');
3673 static void *s_start(struct seq_file *m, loff_t *pos)
3675 loff_t n = *pos;
3676 struct list_head *p;
3678 mutex_lock(&cache_chain_mutex);
3679 if (!n)
3680 print_slabinfo_header(m);
3681 p = cache_chain.next;
3682 while (n--) {
3683 p = p->next;
3684 if (p == &cache_chain)
3685 return NULL;
3687 return list_entry(p, struct kmem_cache, next);
3690 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
3692 struct kmem_cache *cachep = p;
3693 ++*pos;
3694 return cachep->next.next == &cache_chain ?
3695 NULL : list_entry(cachep->next.next, struct kmem_cache, next);
3698 static void s_stop(struct seq_file *m, void *p)
3700 mutex_unlock(&cache_chain_mutex);
3703 static int s_show(struct seq_file *m, void *p)
3705 struct kmem_cache *cachep = p;
3706 struct list_head *q;
3707 struct slab *slabp;
3708 unsigned long active_objs;
3709 unsigned long num_objs;
3710 unsigned long active_slabs = 0;
3711 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
3712 const char *name;
3713 char *error = NULL;
3714 int node;
3715 struct kmem_list3 *l3;
3717 active_objs = 0;
3718 num_slabs = 0;
3719 for_each_online_node(node) {
3720 l3 = cachep->nodelists[node];
3721 if (!l3)
3722 continue;
3724 check_irq_on();
3725 spin_lock_irq(&l3->list_lock);
3727 list_for_each(q, &l3->slabs_full) {
3728 slabp = list_entry(q, struct slab, list);
3729 if (slabp->inuse != cachep->num && !error)
3730 error = "slabs_full accounting error";
3731 active_objs += cachep->num;
3732 active_slabs++;
3734 list_for_each(q, &l3->slabs_partial) {
3735 slabp = list_entry(q, struct slab, list);
3736 if (slabp->inuse == cachep->num && !error)
3737 error = "slabs_partial inuse accounting error";
3738 if (!slabp->inuse && !error)
3739 error = "slabs_partial/inuse accounting error";
3740 active_objs += slabp->inuse;
3741 active_slabs++;
3743 list_for_each(q, &l3->slabs_free) {
3744 slabp = list_entry(q, struct slab, list);
3745 if (slabp->inuse && !error)
3746 error = "slabs_free/inuse accounting error";
3747 num_slabs++;
3749 free_objects += l3->free_objects;
3750 if (l3->shared)
3751 shared_avail += l3->shared->avail;
3753 spin_unlock_irq(&l3->list_lock);
3755 num_slabs += active_slabs;
3756 num_objs = num_slabs * cachep->num;
3757 if (num_objs - active_objs != free_objects && !error)
3758 error = "free_objects accounting error";
3760 name = cachep->name;
3761 if (error)
3762 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
3764 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
3765 name, active_objs, num_objs, cachep->buffer_size,
3766 cachep->num, (1 << cachep->gfporder));
3767 seq_printf(m, " : tunables %4u %4u %4u",
3768 cachep->limit, cachep->batchcount, cachep->shared);
3769 seq_printf(m, " : slabdata %6lu %6lu %6lu",
3770 active_slabs, num_slabs, shared_avail);
3771 #if STATS
3772 { /* list3 stats */
3773 unsigned long high = cachep->high_mark;
3774 unsigned long allocs = cachep->num_allocations;
3775 unsigned long grown = cachep->grown;
3776 unsigned long reaped = cachep->reaped;
3777 unsigned long errors = cachep->errors;
3778 unsigned long max_freeable = cachep->max_freeable;
3779 unsigned long node_allocs = cachep->node_allocs;
3780 unsigned long node_frees = cachep->node_frees;
3782 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
3783 %4lu %4lu %4lu %4lu", allocs, high, grown,
3784 reaped, errors, max_freeable, node_allocs,
3785 node_frees);
3787 /* cpu stats */
3789 unsigned long allochit = atomic_read(&cachep->allochit);
3790 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
3791 unsigned long freehit = atomic_read(&cachep->freehit);
3792 unsigned long freemiss = atomic_read(&cachep->freemiss);
3794 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
3795 allochit, allocmiss, freehit, freemiss);
3797 #endif
3798 seq_putc(m, '\n');
3799 return 0;
3803 * slabinfo_op - iterator that generates /proc/slabinfo
3805 * Output layout:
3806 * cache-name
3807 * num-active-objs
3808 * total-objs
3809 * object size
3810 * num-active-slabs
3811 * total-slabs
3812 * num-pages-per-slab
3813 * + further values on SMP and with statistics enabled
3816 struct seq_operations slabinfo_op = {
3817 .start = s_start,
3818 .next = s_next,
3819 .stop = s_stop,
3820 .show = s_show,
3823 #define MAX_SLABINFO_WRITE 128
3825 * slabinfo_write - Tuning for the slab allocator
3826 * @file: unused
3827 * @buffer: user buffer
3828 * @count: data length
3829 * @ppos: unused
3831 ssize_t slabinfo_write(struct file *file, const char __user * buffer,
3832 size_t count, loff_t *ppos)
3834 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
3835 int limit, batchcount, shared, res;
3836 struct list_head *p;
3838 if (count > MAX_SLABINFO_WRITE)
3839 return -EINVAL;
3840 if (copy_from_user(&kbuf, buffer, count))
3841 return -EFAULT;
3842 kbuf[MAX_SLABINFO_WRITE] = '\0';
3844 tmp = strchr(kbuf, ' ');
3845 if (!tmp)
3846 return -EINVAL;
3847 *tmp = '\0';
3848 tmp++;
3849 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
3850 return -EINVAL;
3852 /* Find the cache in the chain of caches. */
3853 mutex_lock(&cache_chain_mutex);
3854 res = -EINVAL;
3855 list_for_each(p, &cache_chain) {
3856 struct kmem_cache *cachep;
3858 cachep = list_entry(p, struct kmem_cache, next);
3859 if (!strcmp(cachep->name, kbuf)) {
3860 if (limit < 1 || batchcount < 1 ||
3861 batchcount > limit || shared < 0) {
3862 res = 0;
3863 } else {
3864 res = do_tune_cpucache(cachep, limit,
3865 batchcount, shared);
3867 break;
3870 mutex_unlock(&cache_chain_mutex);
3871 if (res >= 0)
3872 res = count;
3873 return res;
3875 #endif
3878 * ksize - get the actual amount of memory allocated for a given object
3879 * @objp: Pointer to the object
3881 * kmalloc may internally round up allocations and return more memory
3882 * than requested. ksize() can be used to determine the actual amount of
3883 * memory allocated. The caller may use this additional memory, even though
3884 * a smaller amount of memory was initially specified with the kmalloc call.
3885 * The caller must guarantee that objp points to a valid object previously
3886 * allocated with either kmalloc() or kmem_cache_alloc(). The object
3887 * must not be freed during the duration of the call.
3889 unsigned int ksize(const void *objp)
3891 if (unlikely(objp == NULL))
3892 return 0;
3894 return obj_size(virt_to_cache(objp));