Input: penmount - add PenMount 3000 support
[linux-2.6/kvm.git] / fs / xfs / xfs_file.c
blob7f7b42469ea7c9653903d0ffbe00769d40a168eb
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_bit.h"
21 #include "xfs_log.h"
22 #include "xfs_inum.h"
23 #include "xfs_sb.h"
24 #include "xfs_ag.h"
25 #include "xfs_trans.h"
26 #include "xfs_mount.h"
27 #include "xfs_bmap_btree.h"
28 #include "xfs_alloc.h"
29 #include "xfs_dinode.h"
30 #include "xfs_inode.h"
31 #include "xfs_inode_item.h"
32 #include "xfs_bmap.h"
33 #include "xfs_error.h"
34 #include "xfs_vnodeops.h"
35 #include "xfs_da_btree.h"
36 #include "xfs_ioctl.h"
37 #include "xfs_trace.h"
39 #include <linux/dcache.h>
40 #include <linux/falloc.h>
42 static const struct vm_operations_struct xfs_file_vm_ops;
45 * Locking primitives for read and write IO paths to ensure we consistently use
46 * and order the inode->i_mutex, ip->i_lock and ip->i_iolock.
48 static inline void
49 xfs_rw_ilock(
50 struct xfs_inode *ip,
51 int type)
53 if (type & XFS_IOLOCK_EXCL)
54 mutex_lock(&VFS_I(ip)->i_mutex);
55 xfs_ilock(ip, type);
58 static inline void
59 xfs_rw_iunlock(
60 struct xfs_inode *ip,
61 int type)
63 xfs_iunlock(ip, type);
64 if (type & XFS_IOLOCK_EXCL)
65 mutex_unlock(&VFS_I(ip)->i_mutex);
68 static inline void
69 xfs_rw_ilock_demote(
70 struct xfs_inode *ip,
71 int type)
73 xfs_ilock_demote(ip, type);
74 if (type & XFS_IOLOCK_EXCL)
75 mutex_unlock(&VFS_I(ip)->i_mutex);
79 * xfs_iozero
81 * xfs_iozero clears the specified range of buffer supplied,
82 * and marks all the affected blocks as valid and modified. If
83 * an affected block is not allocated, it will be allocated. If
84 * an affected block is not completely overwritten, and is not
85 * valid before the operation, it will be read from disk before
86 * being partially zeroed.
88 STATIC int
89 xfs_iozero(
90 struct xfs_inode *ip, /* inode */
91 loff_t pos, /* offset in file */
92 size_t count) /* size of data to zero */
94 struct page *page;
95 struct address_space *mapping;
96 int status;
98 mapping = VFS_I(ip)->i_mapping;
99 do {
100 unsigned offset, bytes;
101 void *fsdata;
103 offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
104 bytes = PAGE_CACHE_SIZE - offset;
105 if (bytes > count)
106 bytes = count;
108 status = pagecache_write_begin(NULL, mapping, pos, bytes,
109 AOP_FLAG_UNINTERRUPTIBLE,
110 &page, &fsdata);
111 if (status)
112 break;
114 zero_user(page, offset, bytes);
116 status = pagecache_write_end(NULL, mapping, pos, bytes, bytes,
117 page, fsdata);
118 WARN_ON(status <= 0); /* can't return less than zero! */
119 pos += bytes;
120 count -= bytes;
121 status = 0;
122 } while (count);
124 return (-status);
127 STATIC int
128 xfs_file_fsync(
129 struct file *file,
130 loff_t start,
131 loff_t end,
132 int datasync)
134 struct inode *inode = file->f_mapping->host;
135 struct xfs_inode *ip = XFS_I(inode);
136 struct xfs_mount *mp = ip->i_mount;
137 struct xfs_trans *tp;
138 int error = 0;
139 int log_flushed = 0;
141 trace_xfs_file_fsync(ip);
143 error = filemap_write_and_wait_range(inode->i_mapping, start, end);
144 if (error)
145 return error;
147 if (XFS_FORCED_SHUTDOWN(mp))
148 return -XFS_ERROR(EIO);
150 xfs_iflags_clear(ip, XFS_ITRUNCATED);
152 xfs_ilock(ip, XFS_IOLOCK_SHARED);
153 xfs_ioend_wait(ip);
154 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
156 if (mp->m_flags & XFS_MOUNT_BARRIER) {
158 * If we have an RT and/or log subvolume we need to make sure
159 * to flush the write cache the device used for file data
160 * first. This is to ensure newly written file data make
161 * it to disk before logging the new inode size in case of
162 * an extending write.
164 if (XFS_IS_REALTIME_INODE(ip))
165 xfs_blkdev_issue_flush(mp->m_rtdev_targp);
166 else if (mp->m_logdev_targp != mp->m_ddev_targp)
167 xfs_blkdev_issue_flush(mp->m_ddev_targp);
171 * We always need to make sure that the required inode state is safe on
172 * disk. The inode might be clean but we still might need to force the
173 * log because of committed transactions that haven't hit the disk yet.
174 * Likewise, there could be unflushed non-transactional changes to the
175 * inode core that have to go to disk and this requires us to issue
176 * a synchronous transaction to capture these changes correctly.
178 * This code relies on the assumption that if the i_update_core field
179 * of the inode is clear and the inode is unpinned then it is clean
180 * and no action is required.
182 xfs_ilock(ip, XFS_ILOCK_SHARED);
185 * First check if the VFS inode is marked dirty. All the dirtying
186 * of non-transactional updates no goes through mark_inode_dirty*,
187 * which allows us to distinguish beteeen pure timestamp updates
188 * and i_size updates which need to be caught for fdatasync.
189 * After that also theck for the dirty state in the XFS inode, which
190 * might gets cleared when the inode gets written out via the AIL
191 * or xfs_iflush_cluster.
193 if (((inode->i_state & I_DIRTY_DATASYNC) ||
194 ((inode->i_state & I_DIRTY_SYNC) && !datasync)) &&
195 ip->i_update_core) {
197 * Kick off a transaction to log the inode core to get the
198 * updates. The sync transaction will also force the log.
200 xfs_iunlock(ip, XFS_ILOCK_SHARED);
201 tp = xfs_trans_alloc(mp, XFS_TRANS_FSYNC_TS);
202 error = xfs_trans_reserve(tp, 0,
203 XFS_FSYNC_TS_LOG_RES(mp), 0, 0, 0);
204 if (error) {
205 xfs_trans_cancel(tp, 0);
206 return -error;
208 xfs_ilock(ip, XFS_ILOCK_EXCL);
211 * Note - it's possible that we might have pushed ourselves out
212 * of the way during trans_reserve which would flush the inode.
213 * But there's no guarantee that the inode buffer has actually
214 * gone out yet (it's delwri). Plus the buffer could be pinned
215 * anyway if it's part of an inode in another recent
216 * transaction. So we play it safe and fire off the
217 * transaction anyway.
219 xfs_trans_ijoin(tp, ip);
220 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
221 xfs_trans_set_sync(tp);
222 error = _xfs_trans_commit(tp, 0, &log_flushed);
224 xfs_iunlock(ip, XFS_ILOCK_EXCL);
225 } else {
227 * Timestamps/size haven't changed since last inode flush or
228 * inode transaction commit. That means either nothing got
229 * written or a transaction committed which caught the updates.
230 * If the latter happened and the transaction hasn't hit the
231 * disk yet, the inode will be still be pinned. If it is,
232 * force the log.
234 if (xfs_ipincount(ip)) {
235 error = _xfs_log_force_lsn(mp,
236 ip->i_itemp->ili_last_lsn,
237 XFS_LOG_SYNC, &log_flushed);
239 xfs_iunlock(ip, XFS_ILOCK_SHARED);
243 * If we only have a single device, and the log force about was
244 * a no-op we might have to flush the data device cache here.
245 * This can only happen for fdatasync/O_DSYNC if we were overwriting
246 * an already allocated file and thus do not have any metadata to
247 * commit.
249 if ((mp->m_flags & XFS_MOUNT_BARRIER) &&
250 mp->m_logdev_targp == mp->m_ddev_targp &&
251 !XFS_IS_REALTIME_INODE(ip) &&
252 !log_flushed)
253 xfs_blkdev_issue_flush(mp->m_ddev_targp);
255 return -error;
258 STATIC ssize_t
259 xfs_file_aio_read(
260 struct kiocb *iocb,
261 const struct iovec *iovp,
262 unsigned long nr_segs,
263 loff_t pos)
265 struct file *file = iocb->ki_filp;
266 struct inode *inode = file->f_mapping->host;
267 struct xfs_inode *ip = XFS_I(inode);
268 struct xfs_mount *mp = ip->i_mount;
269 size_t size = 0;
270 ssize_t ret = 0;
271 int ioflags = 0;
272 xfs_fsize_t n;
273 unsigned long seg;
275 XFS_STATS_INC(xs_read_calls);
277 BUG_ON(iocb->ki_pos != pos);
279 if (unlikely(file->f_flags & O_DIRECT))
280 ioflags |= IO_ISDIRECT;
281 if (file->f_mode & FMODE_NOCMTIME)
282 ioflags |= IO_INVIS;
284 /* START copy & waste from filemap.c */
285 for (seg = 0; seg < nr_segs; seg++) {
286 const struct iovec *iv = &iovp[seg];
289 * If any segment has a negative length, or the cumulative
290 * length ever wraps negative then return -EINVAL.
292 size += iv->iov_len;
293 if (unlikely((ssize_t)(size|iv->iov_len) < 0))
294 return XFS_ERROR(-EINVAL);
296 /* END copy & waste from filemap.c */
298 if (unlikely(ioflags & IO_ISDIRECT)) {
299 xfs_buftarg_t *target =
300 XFS_IS_REALTIME_INODE(ip) ?
301 mp->m_rtdev_targp : mp->m_ddev_targp;
302 if ((iocb->ki_pos & target->bt_smask) ||
303 (size & target->bt_smask)) {
304 if (iocb->ki_pos == ip->i_size)
305 return 0;
306 return -XFS_ERROR(EINVAL);
310 n = XFS_MAXIOFFSET(mp) - iocb->ki_pos;
311 if (n <= 0 || size == 0)
312 return 0;
314 if (n < size)
315 size = n;
317 if (XFS_FORCED_SHUTDOWN(mp))
318 return -EIO;
320 if (unlikely(ioflags & IO_ISDIRECT)) {
321 xfs_rw_ilock(ip, XFS_IOLOCK_EXCL);
323 if (inode->i_mapping->nrpages) {
324 ret = -xfs_flushinval_pages(ip,
325 (iocb->ki_pos & PAGE_CACHE_MASK),
326 -1, FI_REMAPF_LOCKED);
327 if (ret) {
328 xfs_rw_iunlock(ip, XFS_IOLOCK_EXCL);
329 return ret;
332 xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
333 } else
334 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
336 trace_xfs_file_read(ip, size, iocb->ki_pos, ioflags);
338 ret = generic_file_aio_read(iocb, iovp, nr_segs, iocb->ki_pos);
339 if (ret > 0)
340 XFS_STATS_ADD(xs_read_bytes, ret);
342 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
343 return ret;
346 STATIC ssize_t
347 xfs_file_splice_read(
348 struct file *infilp,
349 loff_t *ppos,
350 struct pipe_inode_info *pipe,
351 size_t count,
352 unsigned int flags)
354 struct xfs_inode *ip = XFS_I(infilp->f_mapping->host);
355 int ioflags = 0;
356 ssize_t ret;
358 XFS_STATS_INC(xs_read_calls);
360 if (infilp->f_mode & FMODE_NOCMTIME)
361 ioflags |= IO_INVIS;
363 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
364 return -EIO;
366 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
368 trace_xfs_file_splice_read(ip, count, *ppos, ioflags);
370 ret = generic_file_splice_read(infilp, ppos, pipe, count, flags);
371 if (ret > 0)
372 XFS_STATS_ADD(xs_read_bytes, ret);
374 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
375 return ret;
378 STATIC void
379 xfs_aio_write_isize_update(
380 struct inode *inode,
381 loff_t *ppos,
382 ssize_t bytes_written)
384 struct xfs_inode *ip = XFS_I(inode);
385 xfs_fsize_t isize = i_size_read(inode);
387 if (bytes_written > 0)
388 XFS_STATS_ADD(xs_write_bytes, bytes_written);
390 if (unlikely(bytes_written < 0 && bytes_written != -EFAULT &&
391 *ppos > isize))
392 *ppos = isize;
394 if (*ppos > ip->i_size) {
395 xfs_rw_ilock(ip, XFS_ILOCK_EXCL);
396 if (*ppos > ip->i_size)
397 ip->i_size = *ppos;
398 xfs_rw_iunlock(ip, XFS_ILOCK_EXCL);
403 * If this was a direct or synchronous I/O that failed (such as ENOSPC) then
404 * part of the I/O may have been written to disk before the error occurred. In
405 * this case the on-disk file size may have been adjusted beyond the in-memory
406 * file size and now needs to be truncated back.
408 STATIC void
409 xfs_aio_write_newsize_update(
410 struct xfs_inode *ip)
412 if (ip->i_new_size) {
413 xfs_rw_ilock(ip, XFS_ILOCK_EXCL);
414 ip->i_new_size = 0;
415 if (ip->i_d.di_size > ip->i_size)
416 ip->i_d.di_size = ip->i_size;
417 xfs_rw_iunlock(ip, XFS_ILOCK_EXCL);
422 * xfs_file_splice_write() does not use xfs_rw_ilock() because
423 * generic_file_splice_write() takes the i_mutex itself. This, in theory,
424 * couuld cause lock inversions between the aio_write path and the splice path
425 * if someone is doing concurrent splice(2) based writes and write(2) based
426 * writes to the same inode. The only real way to fix this is to re-implement
427 * the generic code here with correct locking orders.
429 STATIC ssize_t
430 xfs_file_splice_write(
431 struct pipe_inode_info *pipe,
432 struct file *outfilp,
433 loff_t *ppos,
434 size_t count,
435 unsigned int flags)
437 struct inode *inode = outfilp->f_mapping->host;
438 struct xfs_inode *ip = XFS_I(inode);
439 xfs_fsize_t new_size;
440 int ioflags = 0;
441 ssize_t ret;
443 XFS_STATS_INC(xs_write_calls);
445 if (outfilp->f_mode & FMODE_NOCMTIME)
446 ioflags |= IO_INVIS;
448 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
449 return -EIO;
451 xfs_ilock(ip, XFS_IOLOCK_EXCL);
453 new_size = *ppos + count;
455 xfs_ilock(ip, XFS_ILOCK_EXCL);
456 if (new_size > ip->i_size)
457 ip->i_new_size = new_size;
458 xfs_iunlock(ip, XFS_ILOCK_EXCL);
460 trace_xfs_file_splice_write(ip, count, *ppos, ioflags);
462 ret = generic_file_splice_write(pipe, outfilp, ppos, count, flags);
464 xfs_aio_write_isize_update(inode, ppos, ret);
465 xfs_aio_write_newsize_update(ip);
466 xfs_iunlock(ip, XFS_IOLOCK_EXCL);
467 return ret;
471 * This routine is called to handle zeroing any space in the last
472 * block of the file that is beyond the EOF. We do this since the
473 * size is being increased without writing anything to that block
474 * and we don't want anyone to read the garbage on the disk.
476 STATIC int /* error (positive) */
477 xfs_zero_last_block(
478 xfs_inode_t *ip,
479 xfs_fsize_t offset,
480 xfs_fsize_t isize)
482 xfs_fileoff_t last_fsb;
483 xfs_mount_t *mp = ip->i_mount;
484 int nimaps;
485 int zero_offset;
486 int zero_len;
487 int error = 0;
488 xfs_bmbt_irec_t imap;
490 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
492 zero_offset = XFS_B_FSB_OFFSET(mp, isize);
493 if (zero_offset == 0) {
495 * There are no extra bytes in the last block on disk to
496 * zero, so return.
498 return 0;
501 last_fsb = XFS_B_TO_FSBT(mp, isize);
502 nimaps = 1;
503 error = xfs_bmapi(NULL, ip, last_fsb, 1, 0, NULL, 0, &imap,
504 &nimaps, NULL);
505 if (error) {
506 return error;
508 ASSERT(nimaps > 0);
510 * If the block underlying isize is just a hole, then there
511 * is nothing to zero.
513 if (imap.br_startblock == HOLESTARTBLOCK) {
514 return 0;
517 * Zero the part of the last block beyond the EOF, and write it
518 * out sync. We need to drop the ilock while we do this so we
519 * don't deadlock when the buffer cache calls back to us.
521 xfs_iunlock(ip, XFS_ILOCK_EXCL);
523 zero_len = mp->m_sb.sb_blocksize - zero_offset;
524 if (isize + zero_len > offset)
525 zero_len = offset - isize;
526 error = xfs_iozero(ip, isize, zero_len);
528 xfs_ilock(ip, XFS_ILOCK_EXCL);
529 ASSERT(error >= 0);
530 return error;
534 * Zero any on disk space between the current EOF and the new,
535 * larger EOF. This handles the normal case of zeroing the remainder
536 * of the last block in the file and the unusual case of zeroing blocks
537 * out beyond the size of the file. This second case only happens
538 * with fixed size extents and when the system crashes before the inode
539 * size was updated but after blocks were allocated. If fill is set,
540 * then any holes in the range are filled and zeroed. If not, the holes
541 * are left alone as holes.
544 int /* error (positive) */
545 xfs_zero_eof(
546 xfs_inode_t *ip,
547 xfs_off_t offset, /* starting I/O offset */
548 xfs_fsize_t isize) /* current inode size */
550 xfs_mount_t *mp = ip->i_mount;
551 xfs_fileoff_t start_zero_fsb;
552 xfs_fileoff_t end_zero_fsb;
553 xfs_fileoff_t zero_count_fsb;
554 xfs_fileoff_t last_fsb;
555 xfs_fileoff_t zero_off;
556 xfs_fsize_t zero_len;
557 int nimaps;
558 int error = 0;
559 xfs_bmbt_irec_t imap;
561 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
562 ASSERT(offset > isize);
565 * First handle zeroing the block on which isize resides.
566 * We only zero a part of that block so it is handled specially.
568 error = xfs_zero_last_block(ip, offset, isize);
569 if (error) {
570 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
571 return error;
575 * Calculate the range between the new size and the old
576 * where blocks needing to be zeroed may exist. To get the
577 * block where the last byte in the file currently resides,
578 * we need to subtract one from the size and truncate back
579 * to a block boundary. We subtract 1 in case the size is
580 * exactly on a block boundary.
582 last_fsb = isize ? XFS_B_TO_FSBT(mp, isize - 1) : (xfs_fileoff_t)-1;
583 start_zero_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
584 end_zero_fsb = XFS_B_TO_FSBT(mp, offset - 1);
585 ASSERT((xfs_sfiloff_t)last_fsb < (xfs_sfiloff_t)start_zero_fsb);
586 if (last_fsb == end_zero_fsb) {
588 * The size was only incremented on its last block.
589 * We took care of that above, so just return.
591 return 0;
594 ASSERT(start_zero_fsb <= end_zero_fsb);
595 while (start_zero_fsb <= end_zero_fsb) {
596 nimaps = 1;
597 zero_count_fsb = end_zero_fsb - start_zero_fsb + 1;
598 error = xfs_bmapi(NULL, ip, start_zero_fsb, zero_count_fsb,
599 0, NULL, 0, &imap, &nimaps, NULL);
600 if (error) {
601 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
602 return error;
604 ASSERT(nimaps > 0);
606 if (imap.br_state == XFS_EXT_UNWRITTEN ||
607 imap.br_startblock == HOLESTARTBLOCK) {
609 * This loop handles initializing pages that were
610 * partially initialized by the code below this
611 * loop. It basically zeroes the part of the page
612 * that sits on a hole and sets the page as P_HOLE
613 * and calls remapf if it is a mapped file.
615 start_zero_fsb = imap.br_startoff + imap.br_blockcount;
616 ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
617 continue;
621 * There are blocks we need to zero.
622 * Drop the inode lock while we're doing the I/O.
623 * We'll still have the iolock to protect us.
625 xfs_iunlock(ip, XFS_ILOCK_EXCL);
627 zero_off = XFS_FSB_TO_B(mp, start_zero_fsb);
628 zero_len = XFS_FSB_TO_B(mp, imap.br_blockcount);
630 if ((zero_off + zero_len) > offset)
631 zero_len = offset - zero_off;
633 error = xfs_iozero(ip, zero_off, zero_len);
634 if (error) {
635 goto out_lock;
638 start_zero_fsb = imap.br_startoff + imap.br_blockcount;
639 ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
641 xfs_ilock(ip, XFS_ILOCK_EXCL);
644 return 0;
646 out_lock:
647 xfs_ilock(ip, XFS_ILOCK_EXCL);
648 ASSERT(error >= 0);
649 return error;
653 * Common pre-write limit and setup checks.
655 * Returns with iolock held according to @iolock.
657 STATIC ssize_t
658 xfs_file_aio_write_checks(
659 struct file *file,
660 loff_t *pos,
661 size_t *count,
662 int *iolock)
664 struct inode *inode = file->f_mapping->host;
665 struct xfs_inode *ip = XFS_I(inode);
666 xfs_fsize_t new_size;
667 int error = 0;
669 error = generic_write_checks(file, pos, count, S_ISBLK(inode->i_mode));
670 if (error) {
671 xfs_rw_iunlock(ip, XFS_ILOCK_EXCL | *iolock);
672 *iolock = 0;
673 return error;
676 new_size = *pos + *count;
677 if (new_size > ip->i_size)
678 ip->i_new_size = new_size;
680 if (likely(!(file->f_mode & FMODE_NOCMTIME)))
681 file_update_time(file);
684 * If the offset is beyond the size of the file, we need to zero any
685 * blocks that fall between the existing EOF and the start of this
686 * write.
688 if (*pos > ip->i_size)
689 error = -xfs_zero_eof(ip, *pos, ip->i_size);
691 xfs_rw_iunlock(ip, XFS_ILOCK_EXCL);
692 if (error)
693 return error;
696 * If we're writing the file then make sure to clear the setuid and
697 * setgid bits if the process is not being run by root. This keeps
698 * people from modifying setuid and setgid binaries.
700 return file_remove_suid(file);
705 * xfs_file_dio_aio_write - handle direct IO writes
707 * Lock the inode appropriately to prepare for and issue a direct IO write.
708 * By separating it from the buffered write path we remove all the tricky to
709 * follow locking changes and looping.
711 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
712 * until we're sure the bytes at the new EOF have been zeroed and/or the cached
713 * pages are flushed out.
715 * In most cases the direct IO writes will be done holding IOLOCK_SHARED
716 * allowing them to be done in parallel with reads and other direct IO writes.
717 * However, if the IO is not aligned to filesystem blocks, the direct IO layer
718 * needs to do sub-block zeroing and that requires serialisation against other
719 * direct IOs to the same block. In this case we need to serialise the
720 * submission of the unaligned IOs so that we don't get racing block zeroing in
721 * the dio layer. To avoid the problem with aio, we also need to wait for
722 * outstanding IOs to complete so that unwritten extent conversion is completed
723 * before we try to map the overlapping block. This is currently implemented by
724 * hitting it with a big hammer (i.e. xfs_ioend_wait()).
726 * Returns with locks held indicated by @iolock and errors indicated by
727 * negative return values.
729 STATIC ssize_t
730 xfs_file_dio_aio_write(
731 struct kiocb *iocb,
732 const struct iovec *iovp,
733 unsigned long nr_segs,
734 loff_t pos,
735 size_t ocount,
736 int *iolock)
738 struct file *file = iocb->ki_filp;
739 struct address_space *mapping = file->f_mapping;
740 struct inode *inode = mapping->host;
741 struct xfs_inode *ip = XFS_I(inode);
742 struct xfs_mount *mp = ip->i_mount;
743 ssize_t ret = 0;
744 size_t count = ocount;
745 int unaligned_io = 0;
746 struct xfs_buftarg *target = XFS_IS_REALTIME_INODE(ip) ?
747 mp->m_rtdev_targp : mp->m_ddev_targp;
749 *iolock = 0;
750 if ((pos & target->bt_smask) || (count & target->bt_smask))
751 return -XFS_ERROR(EINVAL);
753 if ((pos & mp->m_blockmask) || ((pos + count) & mp->m_blockmask))
754 unaligned_io = 1;
756 if (unaligned_io || mapping->nrpages || pos > ip->i_size)
757 *iolock = XFS_IOLOCK_EXCL;
758 else
759 *iolock = XFS_IOLOCK_SHARED;
760 xfs_rw_ilock(ip, XFS_ILOCK_EXCL | *iolock);
762 ret = xfs_file_aio_write_checks(file, &pos, &count, iolock);
763 if (ret)
764 return ret;
766 if (mapping->nrpages) {
767 WARN_ON(*iolock != XFS_IOLOCK_EXCL);
768 ret = -xfs_flushinval_pages(ip, (pos & PAGE_CACHE_MASK), -1,
769 FI_REMAPF_LOCKED);
770 if (ret)
771 return ret;
775 * If we are doing unaligned IO, wait for all other IO to drain,
776 * otherwise demote the lock if we had to flush cached pages
778 if (unaligned_io)
779 xfs_ioend_wait(ip);
780 else if (*iolock == XFS_IOLOCK_EXCL) {
781 xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
782 *iolock = XFS_IOLOCK_SHARED;
785 trace_xfs_file_direct_write(ip, count, iocb->ki_pos, 0);
786 ret = generic_file_direct_write(iocb, iovp,
787 &nr_segs, pos, &iocb->ki_pos, count, ocount);
789 /* No fallback to buffered IO on errors for XFS. */
790 ASSERT(ret < 0 || ret == count);
791 return ret;
794 STATIC ssize_t
795 xfs_file_buffered_aio_write(
796 struct kiocb *iocb,
797 const struct iovec *iovp,
798 unsigned long nr_segs,
799 loff_t pos,
800 size_t ocount,
801 int *iolock)
803 struct file *file = iocb->ki_filp;
804 struct address_space *mapping = file->f_mapping;
805 struct inode *inode = mapping->host;
806 struct xfs_inode *ip = XFS_I(inode);
807 ssize_t ret;
808 int enospc = 0;
809 size_t count = ocount;
811 *iolock = XFS_IOLOCK_EXCL;
812 xfs_rw_ilock(ip, XFS_ILOCK_EXCL | *iolock);
814 ret = xfs_file_aio_write_checks(file, &pos, &count, iolock);
815 if (ret)
816 return ret;
818 /* We can write back this queue in page reclaim */
819 current->backing_dev_info = mapping->backing_dev_info;
821 write_retry:
822 trace_xfs_file_buffered_write(ip, count, iocb->ki_pos, 0);
823 ret = generic_file_buffered_write(iocb, iovp, nr_segs,
824 pos, &iocb->ki_pos, count, ret);
826 * if we just got an ENOSPC, flush the inode now we aren't holding any
827 * page locks and retry *once*
829 if (ret == -ENOSPC && !enospc) {
830 ret = -xfs_flush_pages(ip, 0, -1, 0, FI_NONE);
831 if (ret)
832 return ret;
833 enospc = 1;
834 goto write_retry;
836 current->backing_dev_info = NULL;
837 return ret;
840 STATIC ssize_t
841 xfs_file_aio_write(
842 struct kiocb *iocb,
843 const struct iovec *iovp,
844 unsigned long nr_segs,
845 loff_t pos)
847 struct file *file = iocb->ki_filp;
848 struct address_space *mapping = file->f_mapping;
849 struct inode *inode = mapping->host;
850 struct xfs_inode *ip = XFS_I(inode);
851 ssize_t ret;
852 int iolock;
853 size_t ocount = 0;
855 XFS_STATS_INC(xs_write_calls);
857 BUG_ON(iocb->ki_pos != pos);
859 ret = generic_segment_checks(iovp, &nr_segs, &ocount, VERIFY_READ);
860 if (ret)
861 return ret;
863 if (ocount == 0)
864 return 0;
866 xfs_wait_for_freeze(ip->i_mount, SB_FREEZE_WRITE);
868 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
869 return -EIO;
871 if (unlikely(file->f_flags & O_DIRECT))
872 ret = xfs_file_dio_aio_write(iocb, iovp, nr_segs, pos,
873 ocount, &iolock);
874 else
875 ret = xfs_file_buffered_aio_write(iocb, iovp, nr_segs, pos,
876 ocount, &iolock);
878 xfs_aio_write_isize_update(inode, &iocb->ki_pos, ret);
880 if (ret <= 0)
881 goto out_unlock;
883 /* Handle various SYNC-type writes */
884 if ((file->f_flags & O_DSYNC) || IS_SYNC(inode)) {
885 loff_t end = pos + ret - 1;
886 int error;
888 xfs_rw_iunlock(ip, iolock);
889 error = xfs_file_fsync(file, pos, end,
890 (file->f_flags & __O_SYNC) ? 0 : 1);
891 xfs_rw_ilock(ip, iolock);
892 if (error)
893 ret = error;
896 out_unlock:
897 xfs_aio_write_newsize_update(ip);
898 xfs_rw_iunlock(ip, iolock);
899 return ret;
902 STATIC long
903 xfs_file_fallocate(
904 struct file *file,
905 int mode,
906 loff_t offset,
907 loff_t len)
909 struct inode *inode = file->f_path.dentry->d_inode;
910 long error;
911 loff_t new_size = 0;
912 xfs_flock64_t bf;
913 xfs_inode_t *ip = XFS_I(inode);
914 int cmd = XFS_IOC_RESVSP;
915 int attr_flags = XFS_ATTR_NOLOCK;
917 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
918 return -EOPNOTSUPP;
920 bf.l_whence = 0;
921 bf.l_start = offset;
922 bf.l_len = len;
924 xfs_ilock(ip, XFS_IOLOCK_EXCL);
926 if (mode & FALLOC_FL_PUNCH_HOLE)
927 cmd = XFS_IOC_UNRESVSP;
929 /* check the new inode size is valid before allocating */
930 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
931 offset + len > i_size_read(inode)) {
932 new_size = offset + len;
933 error = inode_newsize_ok(inode, new_size);
934 if (error)
935 goto out_unlock;
938 if (file->f_flags & O_DSYNC)
939 attr_flags |= XFS_ATTR_SYNC;
941 error = -xfs_change_file_space(ip, cmd, &bf, 0, attr_flags);
942 if (error)
943 goto out_unlock;
945 /* Change file size if needed */
946 if (new_size) {
947 struct iattr iattr;
949 iattr.ia_valid = ATTR_SIZE;
950 iattr.ia_size = new_size;
951 error = -xfs_setattr_size(ip, &iattr, XFS_ATTR_NOLOCK);
954 out_unlock:
955 xfs_iunlock(ip, XFS_IOLOCK_EXCL);
956 return error;
960 STATIC int
961 xfs_file_open(
962 struct inode *inode,
963 struct file *file)
965 if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
966 return -EFBIG;
967 if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
968 return -EIO;
969 return 0;
972 STATIC int
973 xfs_dir_open(
974 struct inode *inode,
975 struct file *file)
977 struct xfs_inode *ip = XFS_I(inode);
978 int mode;
979 int error;
981 error = xfs_file_open(inode, file);
982 if (error)
983 return error;
986 * If there are any blocks, read-ahead block 0 as we're almost
987 * certain to have the next operation be a read there.
989 mode = xfs_ilock_map_shared(ip);
990 if (ip->i_d.di_nextents > 0)
991 xfs_da_reada_buf(NULL, ip, 0, XFS_DATA_FORK);
992 xfs_iunlock(ip, mode);
993 return 0;
996 STATIC int
997 xfs_file_release(
998 struct inode *inode,
999 struct file *filp)
1001 return -xfs_release(XFS_I(inode));
1004 STATIC int
1005 xfs_file_readdir(
1006 struct file *filp,
1007 void *dirent,
1008 filldir_t filldir)
1010 struct inode *inode = filp->f_path.dentry->d_inode;
1011 xfs_inode_t *ip = XFS_I(inode);
1012 int error;
1013 size_t bufsize;
1016 * The Linux API doesn't pass down the total size of the buffer
1017 * we read into down to the filesystem. With the filldir concept
1018 * it's not needed for correct information, but the XFS dir2 leaf
1019 * code wants an estimate of the buffer size to calculate it's
1020 * readahead window and size the buffers used for mapping to
1021 * physical blocks.
1023 * Try to give it an estimate that's good enough, maybe at some
1024 * point we can change the ->readdir prototype to include the
1025 * buffer size. For now we use the current glibc buffer size.
1027 bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size);
1029 error = xfs_readdir(ip, dirent, bufsize,
1030 (xfs_off_t *)&filp->f_pos, filldir);
1031 if (error)
1032 return -error;
1033 return 0;
1036 STATIC int
1037 xfs_file_mmap(
1038 struct file *filp,
1039 struct vm_area_struct *vma)
1041 vma->vm_ops = &xfs_file_vm_ops;
1042 vma->vm_flags |= VM_CAN_NONLINEAR;
1044 file_accessed(filp);
1045 return 0;
1049 * mmap()d file has taken write protection fault and is being made
1050 * writable. We can set the page state up correctly for a writable
1051 * page, which means we can do correct delalloc accounting (ENOSPC
1052 * checking!) and unwritten extent mapping.
1054 STATIC int
1055 xfs_vm_page_mkwrite(
1056 struct vm_area_struct *vma,
1057 struct vm_fault *vmf)
1059 return block_page_mkwrite(vma, vmf, xfs_get_blocks);
1062 const struct file_operations xfs_file_operations = {
1063 .llseek = generic_file_llseek,
1064 .read = do_sync_read,
1065 .write = do_sync_write,
1066 .aio_read = xfs_file_aio_read,
1067 .aio_write = xfs_file_aio_write,
1068 .splice_read = xfs_file_splice_read,
1069 .splice_write = xfs_file_splice_write,
1070 .unlocked_ioctl = xfs_file_ioctl,
1071 #ifdef CONFIG_COMPAT
1072 .compat_ioctl = xfs_file_compat_ioctl,
1073 #endif
1074 .mmap = xfs_file_mmap,
1075 .open = xfs_file_open,
1076 .release = xfs_file_release,
1077 .fsync = xfs_file_fsync,
1078 .fallocate = xfs_file_fallocate,
1081 const struct file_operations xfs_dir_file_operations = {
1082 .open = xfs_dir_open,
1083 .read = generic_read_dir,
1084 .readdir = xfs_file_readdir,
1085 .llseek = generic_file_llseek,
1086 .unlocked_ioctl = xfs_file_ioctl,
1087 #ifdef CONFIG_COMPAT
1088 .compat_ioctl = xfs_file_compat_ioctl,
1089 #endif
1090 .fsync = xfs_file_fsync,
1093 static const struct vm_operations_struct xfs_file_vm_ops = {
1094 .fault = filemap_fault,
1095 .page_mkwrite = xfs_vm_page_mkwrite,