2 * Kernel-based Virtual Machine driver for Linux
6 * Copyright (C) 2006 Qumranet, Inc.
9 * Yaniv Kamay <yaniv@qumranet.com>
10 * Avi Kivity <avi@qumranet.com>
12 * This work is licensed under the terms of the GNU GPL, version 2. See
13 * the COPYING file in the top-level directory.
16 #include <linux/kvm_host.h>
21 #include "kvm_cache_regs.h"
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/vmalloc.h>
27 #include <linux/highmem.h>
28 #include <linux/sched.h>
32 #include <asm/virtext.h>
34 #define __ex(x) __kvm_handle_fault_on_reboot(x)
36 MODULE_AUTHOR("Qumranet");
37 MODULE_LICENSE("GPL");
39 #define IOPM_ALLOC_ORDER 2
40 #define MSRPM_ALLOC_ORDER 1
42 #define SEG_TYPE_LDT 2
43 #define SEG_TYPE_BUSY_TSS16 3
45 #define SVM_FEATURE_NPT (1 << 0)
46 #define SVM_FEATURE_LBRV (1 << 1)
47 #define SVM_FEATURE_SVML (1 << 2)
49 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
51 /* Turn on to get debugging output*/
52 /* #define NESTED_DEBUG */
55 #define nsvm_printk(fmt, args...) printk(KERN_INFO fmt, ## args)
57 #define nsvm_printk(fmt, args...) do {} while(0)
60 /* enable NPT for AMD64 and X86 with PAE */
61 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
62 static bool npt_enabled
= true;
64 static bool npt_enabled
= false;
68 module_param(npt
, int, S_IRUGO
);
70 static int nested
= 0;
71 module_param(nested
, int, S_IRUGO
);
73 static void svm_flush_tlb(struct kvm_vcpu
*vcpu
);
75 static int nested_svm_exit_handled(struct vcpu_svm
*svm
, bool kvm_override
);
76 static int nested_svm_vmexit(struct vcpu_svm
*svm
);
77 static int nested_svm_vmsave(struct vcpu_svm
*svm
, void *nested_vmcb
,
78 void *arg2
, void *opaque
);
79 static int nested_svm_check_exception(struct vcpu_svm
*svm
, unsigned nr
,
80 bool has_error_code
, u32 error_code
);
82 static inline struct vcpu_svm
*to_svm(struct kvm_vcpu
*vcpu
)
84 return container_of(vcpu
, struct vcpu_svm
, vcpu
);
87 static inline bool is_nested(struct vcpu_svm
*svm
)
89 return svm
->nested_vmcb
;
92 static unsigned long iopm_base
;
94 struct kvm_ldttss_desc
{
97 unsigned base1
: 8, type
: 5, dpl
: 2, p
: 1;
98 unsigned limit1
: 4, zero0
: 3, g
: 1, base2
: 8;
101 } __attribute__((packed
));
103 struct svm_cpu_data
{
109 struct kvm_ldttss_desc
*tss_desc
;
111 struct page
*save_area
;
114 static DEFINE_PER_CPU(struct svm_cpu_data
*, svm_data
);
115 static uint32_t svm_features
;
117 struct svm_init_data
{
122 static u32 msrpm_ranges
[] = {0, 0xc0000000, 0xc0010000};
124 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
125 #define MSRS_RANGE_SIZE 2048
126 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
128 #define MAX_INST_SIZE 15
130 static inline u32
svm_has(u32 feat
)
132 return svm_features
& feat
;
135 static inline void clgi(void)
137 asm volatile (__ex(SVM_CLGI
));
140 static inline void stgi(void)
142 asm volatile (__ex(SVM_STGI
));
145 static inline void invlpga(unsigned long addr
, u32 asid
)
147 asm volatile (__ex(SVM_INVLPGA
) :: "a"(addr
), "c"(asid
));
150 static inline unsigned long kvm_read_cr2(void)
154 asm volatile ("mov %%cr2, %0" : "=r" (cr2
));
158 static inline void kvm_write_cr2(unsigned long val
)
160 asm volatile ("mov %0, %%cr2" :: "r" (val
));
163 static inline void force_new_asid(struct kvm_vcpu
*vcpu
)
165 to_svm(vcpu
)->asid_generation
--;
168 static inline void flush_guest_tlb(struct kvm_vcpu
*vcpu
)
170 force_new_asid(vcpu
);
173 static void svm_set_efer(struct kvm_vcpu
*vcpu
, u64 efer
)
175 if (!npt_enabled
&& !(efer
& EFER_LMA
))
178 to_svm(vcpu
)->vmcb
->save
.efer
= efer
| EFER_SVME
;
179 vcpu
->arch
.shadow_efer
= efer
;
182 static void svm_queue_exception(struct kvm_vcpu
*vcpu
, unsigned nr
,
183 bool has_error_code
, u32 error_code
)
185 struct vcpu_svm
*svm
= to_svm(vcpu
);
187 /* If we are within a nested VM we'd better #VMEXIT and let the
188 guest handle the exception */
189 if (nested_svm_check_exception(svm
, nr
, has_error_code
, error_code
))
192 svm
->vmcb
->control
.event_inj
= nr
194 | (has_error_code
? SVM_EVTINJ_VALID_ERR
: 0)
195 | SVM_EVTINJ_TYPE_EXEPT
;
196 svm
->vmcb
->control
.event_inj_err
= error_code
;
199 static int is_external_interrupt(u32 info
)
201 info
&= SVM_EVTINJ_TYPE_MASK
| SVM_EVTINJ_VALID
;
202 return info
== (SVM_EVTINJ_VALID
| SVM_EVTINJ_TYPE_INTR
);
205 static u32
svm_get_interrupt_shadow(struct kvm_vcpu
*vcpu
, int mask
)
207 struct vcpu_svm
*svm
= to_svm(vcpu
);
210 if (svm
->vmcb
->control
.int_state
& SVM_INTERRUPT_SHADOW_MASK
)
211 ret
|= X86_SHADOW_INT_STI
| X86_SHADOW_INT_MOV_SS
;
215 static void svm_set_interrupt_shadow(struct kvm_vcpu
*vcpu
, int mask
)
217 struct vcpu_svm
*svm
= to_svm(vcpu
);
220 svm
->vmcb
->control
.int_state
&= ~SVM_INTERRUPT_SHADOW_MASK
;
222 svm
->vmcb
->control
.int_state
|= SVM_INTERRUPT_SHADOW_MASK
;
226 static void skip_emulated_instruction(struct kvm_vcpu
*vcpu
)
228 struct vcpu_svm
*svm
= to_svm(vcpu
);
230 if (!svm
->next_rip
) {
231 if (emulate_instruction(vcpu
, vcpu
->run
, 0, 0, EMULTYPE_SKIP
) !=
233 printk(KERN_DEBUG
"%s: NOP\n", __func__
);
236 if (svm
->next_rip
- kvm_rip_read(vcpu
) > MAX_INST_SIZE
)
237 printk(KERN_ERR
"%s: ip 0x%lx next 0x%llx\n",
238 __func__
, kvm_rip_read(vcpu
), svm
->next_rip
);
240 kvm_rip_write(vcpu
, svm
->next_rip
);
241 svm_set_interrupt_shadow(vcpu
, 0);
244 static int has_svm(void)
248 if (!cpu_has_svm(&msg
)) {
249 printk(KERN_INFO
"has_svm: %s\n", msg
);
256 static void svm_hardware_disable(void *garbage
)
261 static void svm_hardware_enable(void *garbage
)
264 struct svm_cpu_data
*svm_data
;
266 struct desc_ptr gdt_descr
;
267 struct desc_struct
*gdt
;
268 int me
= raw_smp_processor_id();
271 printk(KERN_ERR
"svm_cpu_init: err EOPNOTSUPP on %d\n", me
);
274 svm_data
= per_cpu(svm_data
, me
);
277 printk(KERN_ERR
"svm_cpu_init: svm_data is NULL on %d\n",
282 svm_data
->asid_generation
= 1;
283 svm_data
->max_asid
= cpuid_ebx(SVM_CPUID_FUNC
) - 1;
284 svm_data
->next_asid
= svm_data
->max_asid
+ 1;
286 asm volatile ("sgdt %0" : "=m"(gdt_descr
));
287 gdt
= (struct desc_struct
*)gdt_descr
.address
;
288 svm_data
->tss_desc
= (struct kvm_ldttss_desc
*)(gdt
+ GDT_ENTRY_TSS
);
290 rdmsrl(MSR_EFER
, efer
);
291 wrmsrl(MSR_EFER
, efer
| EFER_SVME
);
293 wrmsrl(MSR_VM_HSAVE_PA
,
294 page_to_pfn(svm_data
->save_area
) << PAGE_SHIFT
);
297 static void svm_cpu_uninit(int cpu
)
299 struct svm_cpu_data
*svm_data
300 = per_cpu(svm_data
, raw_smp_processor_id());
305 per_cpu(svm_data
, raw_smp_processor_id()) = NULL
;
306 __free_page(svm_data
->save_area
);
310 static int svm_cpu_init(int cpu
)
312 struct svm_cpu_data
*svm_data
;
315 svm_data
= kzalloc(sizeof(struct svm_cpu_data
), GFP_KERNEL
);
319 svm_data
->save_area
= alloc_page(GFP_KERNEL
);
321 if (!svm_data
->save_area
)
324 per_cpu(svm_data
, cpu
) = svm_data
;
334 static void set_msr_interception(u32
*msrpm
, unsigned msr
,
339 for (i
= 0; i
< NUM_MSR_MAPS
; i
++) {
340 if (msr
>= msrpm_ranges
[i
] &&
341 msr
< msrpm_ranges
[i
] + MSRS_IN_RANGE
) {
342 u32 msr_offset
= (i
* MSRS_IN_RANGE
+ msr
-
343 msrpm_ranges
[i
]) * 2;
345 u32
*base
= msrpm
+ (msr_offset
/ 32);
346 u32 msr_shift
= msr_offset
% 32;
347 u32 mask
= ((write
) ? 0 : 2) | ((read
) ? 0 : 1);
348 *base
= (*base
& ~(0x3 << msr_shift
)) |
356 static void svm_vcpu_init_msrpm(u32
*msrpm
)
358 memset(msrpm
, 0xff, PAGE_SIZE
* (1 << MSRPM_ALLOC_ORDER
));
361 set_msr_interception(msrpm
, MSR_GS_BASE
, 1, 1);
362 set_msr_interception(msrpm
, MSR_FS_BASE
, 1, 1);
363 set_msr_interception(msrpm
, MSR_KERNEL_GS_BASE
, 1, 1);
364 set_msr_interception(msrpm
, MSR_LSTAR
, 1, 1);
365 set_msr_interception(msrpm
, MSR_CSTAR
, 1, 1);
366 set_msr_interception(msrpm
, MSR_SYSCALL_MASK
, 1, 1);
368 set_msr_interception(msrpm
, MSR_K6_STAR
, 1, 1);
369 set_msr_interception(msrpm
, MSR_IA32_SYSENTER_CS
, 1, 1);
370 set_msr_interception(msrpm
, MSR_IA32_SYSENTER_ESP
, 1, 1);
371 set_msr_interception(msrpm
, MSR_IA32_SYSENTER_EIP
, 1, 1);
374 static void svm_enable_lbrv(struct vcpu_svm
*svm
)
376 u32
*msrpm
= svm
->msrpm
;
378 svm
->vmcb
->control
.lbr_ctl
= 1;
379 set_msr_interception(msrpm
, MSR_IA32_LASTBRANCHFROMIP
, 1, 1);
380 set_msr_interception(msrpm
, MSR_IA32_LASTBRANCHTOIP
, 1, 1);
381 set_msr_interception(msrpm
, MSR_IA32_LASTINTFROMIP
, 1, 1);
382 set_msr_interception(msrpm
, MSR_IA32_LASTINTTOIP
, 1, 1);
385 static void svm_disable_lbrv(struct vcpu_svm
*svm
)
387 u32
*msrpm
= svm
->msrpm
;
389 svm
->vmcb
->control
.lbr_ctl
= 0;
390 set_msr_interception(msrpm
, MSR_IA32_LASTBRANCHFROMIP
, 0, 0);
391 set_msr_interception(msrpm
, MSR_IA32_LASTBRANCHTOIP
, 0, 0);
392 set_msr_interception(msrpm
, MSR_IA32_LASTINTFROMIP
, 0, 0);
393 set_msr_interception(msrpm
, MSR_IA32_LASTINTTOIP
, 0, 0);
396 static __init
int svm_hardware_setup(void)
399 struct page
*iopm_pages
;
403 iopm_pages
= alloc_pages(GFP_KERNEL
, IOPM_ALLOC_ORDER
);
408 iopm_va
= page_address(iopm_pages
);
409 memset(iopm_va
, 0xff, PAGE_SIZE
* (1 << IOPM_ALLOC_ORDER
));
410 iopm_base
= page_to_pfn(iopm_pages
) << PAGE_SHIFT
;
412 if (boot_cpu_has(X86_FEATURE_NX
))
413 kvm_enable_efer_bits(EFER_NX
);
415 if (boot_cpu_has(X86_FEATURE_FXSR_OPT
))
416 kvm_enable_efer_bits(EFER_FFXSR
);
419 printk(KERN_INFO
"kvm: Nested Virtualization enabled\n");
420 kvm_enable_efer_bits(EFER_SVME
);
423 for_each_online_cpu(cpu
) {
424 r
= svm_cpu_init(cpu
);
429 svm_features
= cpuid_edx(SVM_CPUID_FUNC
);
431 if (!svm_has(SVM_FEATURE_NPT
))
434 if (npt_enabled
&& !npt
) {
435 printk(KERN_INFO
"kvm: Nested Paging disabled\n");
440 printk(KERN_INFO
"kvm: Nested Paging enabled\n");
448 __free_pages(iopm_pages
, IOPM_ALLOC_ORDER
);
453 static __exit
void svm_hardware_unsetup(void)
457 for_each_online_cpu(cpu
)
460 __free_pages(pfn_to_page(iopm_base
>> PAGE_SHIFT
), IOPM_ALLOC_ORDER
);
464 static void init_seg(struct vmcb_seg
*seg
)
467 seg
->attrib
= SVM_SELECTOR_P_MASK
| SVM_SELECTOR_S_MASK
|
468 SVM_SELECTOR_WRITE_MASK
; /* Read/Write Data Segment */
473 static void init_sys_seg(struct vmcb_seg
*seg
, uint32_t type
)
476 seg
->attrib
= SVM_SELECTOR_P_MASK
| type
;
481 static void init_vmcb(struct vcpu_svm
*svm
)
483 struct vmcb_control_area
*control
= &svm
->vmcb
->control
;
484 struct vmcb_save_area
*save
= &svm
->vmcb
->save
;
486 control
->intercept_cr_read
= INTERCEPT_CR0_MASK
|
490 control
->intercept_cr_write
= INTERCEPT_CR0_MASK
|
495 control
->intercept_dr_read
= INTERCEPT_DR0_MASK
|
500 control
->intercept_dr_write
= INTERCEPT_DR0_MASK
|
507 control
->intercept_exceptions
= (1 << PF_VECTOR
) |
512 control
->intercept
= (1ULL << INTERCEPT_INTR
) |
513 (1ULL << INTERCEPT_NMI
) |
514 (1ULL << INTERCEPT_SMI
) |
515 (1ULL << INTERCEPT_CPUID
) |
516 (1ULL << INTERCEPT_INVD
) |
517 (1ULL << INTERCEPT_HLT
) |
518 (1ULL << INTERCEPT_INVLPG
) |
519 (1ULL << INTERCEPT_INVLPGA
) |
520 (1ULL << INTERCEPT_IOIO_PROT
) |
521 (1ULL << INTERCEPT_MSR_PROT
) |
522 (1ULL << INTERCEPT_TASK_SWITCH
) |
523 (1ULL << INTERCEPT_SHUTDOWN
) |
524 (1ULL << INTERCEPT_VMRUN
) |
525 (1ULL << INTERCEPT_VMMCALL
) |
526 (1ULL << INTERCEPT_VMLOAD
) |
527 (1ULL << INTERCEPT_VMSAVE
) |
528 (1ULL << INTERCEPT_STGI
) |
529 (1ULL << INTERCEPT_CLGI
) |
530 (1ULL << INTERCEPT_SKINIT
) |
531 (1ULL << INTERCEPT_WBINVD
) |
532 (1ULL << INTERCEPT_MONITOR
) |
533 (1ULL << INTERCEPT_MWAIT
);
535 control
->iopm_base_pa
= iopm_base
;
536 control
->msrpm_base_pa
= __pa(svm
->msrpm
);
537 control
->tsc_offset
= 0;
538 control
->int_ctl
= V_INTR_MASKING_MASK
;
546 save
->cs
.selector
= 0xf000;
547 /* Executable/Readable Code Segment */
548 save
->cs
.attrib
= SVM_SELECTOR_READ_MASK
| SVM_SELECTOR_P_MASK
|
549 SVM_SELECTOR_S_MASK
| SVM_SELECTOR_CODE_MASK
;
550 save
->cs
.limit
= 0xffff;
552 * cs.base should really be 0xffff0000, but vmx can't handle that, so
553 * be consistent with it.
555 * Replace when we have real mode working for vmx.
557 save
->cs
.base
= 0xf0000;
559 save
->gdtr
.limit
= 0xffff;
560 save
->idtr
.limit
= 0xffff;
562 init_sys_seg(&save
->ldtr
, SEG_TYPE_LDT
);
563 init_sys_seg(&save
->tr
, SEG_TYPE_BUSY_TSS16
);
565 save
->efer
= EFER_SVME
;
566 save
->dr6
= 0xffff0ff0;
569 save
->rip
= 0x0000fff0;
570 svm
->vcpu
.arch
.regs
[VCPU_REGS_RIP
] = save
->rip
;
573 * cr0 val on cpu init should be 0x60000010, we enable cpu
574 * cache by default. the orderly way is to enable cache in bios.
576 save
->cr0
= 0x00000010 | X86_CR0_PG
| X86_CR0_WP
;
577 save
->cr4
= X86_CR4_PAE
;
581 /* Setup VMCB for Nested Paging */
582 control
->nested_ctl
= 1;
583 control
->intercept
&= ~((1ULL << INTERCEPT_TASK_SWITCH
) |
584 (1ULL << INTERCEPT_INVLPG
));
585 control
->intercept_exceptions
&= ~(1 << PF_VECTOR
);
586 control
->intercept_cr_read
&= ~(INTERCEPT_CR0_MASK
|
588 control
->intercept_cr_write
&= ~(INTERCEPT_CR0_MASK
|
590 save
->g_pat
= 0x0007040600070406ULL
;
591 /* enable caching because the QEMU Bios doesn't enable it */
592 save
->cr0
= X86_CR0_ET
;
596 force_new_asid(&svm
->vcpu
);
598 svm
->nested_vmcb
= 0;
599 svm
->vcpu
.arch
.hflags
= HF_GIF_MASK
;
602 static int svm_vcpu_reset(struct kvm_vcpu
*vcpu
)
604 struct vcpu_svm
*svm
= to_svm(vcpu
);
608 if (vcpu
->vcpu_id
!= 0) {
609 kvm_rip_write(vcpu
, 0);
610 svm
->vmcb
->save
.cs
.base
= svm
->vcpu
.arch
.sipi_vector
<< 12;
611 svm
->vmcb
->save
.cs
.selector
= svm
->vcpu
.arch
.sipi_vector
<< 8;
613 vcpu
->arch
.regs_avail
= ~0;
614 vcpu
->arch
.regs_dirty
= ~0;
619 static struct kvm_vcpu
*svm_create_vcpu(struct kvm
*kvm
, unsigned int id
)
621 struct vcpu_svm
*svm
;
623 struct page
*msrpm_pages
;
624 struct page
*hsave_page
;
625 struct page
*nested_msrpm_pages
;
628 svm
= kmem_cache_zalloc(kvm_vcpu_cache
, GFP_KERNEL
);
634 err
= kvm_vcpu_init(&svm
->vcpu
, kvm
, id
);
638 page
= alloc_page(GFP_KERNEL
);
645 msrpm_pages
= alloc_pages(GFP_KERNEL
, MSRPM_ALLOC_ORDER
);
649 nested_msrpm_pages
= alloc_pages(GFP_KERNEL
, MSRPM_ALLOC_ORDER
);
650 if (!nested_msrpm_pages
)
653 svm
->msrpm
= page_address(msrpm_pages
);
654 svm_vcpu_init_msrpm(svm
->msrpm
);
656 hsave_page
= alloc_page(GFP_KERNEL
);
659 svm
->hsave
= page_address(hsave_page
);
661 svm
->nested_msrpm
= page_address(nested_msrpm_pages
);
663 svm
->vmcb
= page_address(page
);
664 clear_page(svm
->vmcb
);
665 svm
->vmcb_pa
= page_to_pfn(page
) << PAGE_SHIFT
;
666 svm
->asid_generation
= 0;
670 svm
->vcpu
.fpu_active
= 1;
671 svm
->vcpu
.arch
.apic_base
= 0xfee00000 | MSR_IA32_APICBASE_ENABLE
;
672 if (svm
->vcpu
.vcpu_id
== 0)
673 svm
->vcpu
.arch
.apic_base
|= MSR_IA32_APICBASE_BSP
;
678 kvm_vcpu_uninit(&svm
->vcpu
);
680 kmem_cache_free(kvm_vcpu_cache
, svm
);
685 static void svm_free_vcpu(struct kvm_vcpu
*vcpu
)
687 struct vcpu_svm
*svm
= to_svm(vcpu
);
689 __free_page(pfn_to_page(svm
->vmcb_pa
>> PAGE_SHIFT
));
690 __free_pages(virt_to_page(svm
->msrpm
), MSRPM_ALLOC_ORDER
);
691 __free_page(virt_to_page(svm
->hsave
));
692 __free_pages(virt_to_page(svm
->nested_msrpm
), MSRPM_ALLOC_ORDER
);
693 kvm_vcpu_uninit(vcpu
);
694 kmem_cache_free(kvm_vcpu_cache
, svm
);
697 static void svm_vcpu_load(struct kvm_vcpu
*vcpu
, int cpu
)
699 struct vcpu_svm
*svm
= to_svm(vcpu
);
702 if (unlikely(cpu
!= vcpu
->cpu
)) {
706 * Make sure that the guest sees a monotonically
710 delta
= vcpu
->arch
.host_tsc
- tsc_this
;
711 svm
->vmcb
->control
.tsc_offset
+= delta
;
713 kvm_migrate_timers(vcpu
);
716 for (i
= 0; i
< NR_HOST_SAVE_USER_MSRS
; i
++)
717 rdmsrl(host_save_user_msrs
[i
], svm
->host_user_msrs
[i
]);
720 static void svm_vcpu_put(struct kvm_vcpu
*vcpu
)
722 struct vcpu_svm
*svm
= to_svm(vcpu
);
725 ++vcpu
->stat
.host_state_reload
;
726 for (i
= 0; i
< NR_HOST_SAVE_USER_MSRS
; i
++)
727 wrmsrl(host_save_user_msrs
[i
], svm
->host_user_msrs
[i
]);
729 rdtscll(vcpu
->arch
.host_tsc
);
732 static unsigned long svm_get_rflags(struct kvm_vcpu
*vcpu
)
734 return to_svm(vcpu
)->vmcb
->save
.rflags
;
737 static void svm_set_rflags(struct kvm_vcpu
*vcpu
, unsigned long rflags
)
739 to_svm(vcpu
)->vmcb
->save
.rflags
= rflags
;
742 static void svm_set_vintr(struct vcpu_svm
*svm
)
744 svm
->vmcb
->control
.intercept
|= 1ULL << INTERCEPT_VINTR
;
747 static void svm_clear_vintr(struct vcpu_svm
*svm
)
749 svm
->vmcb
->control
.intercept
&= ~(1ULL << INTERCEPT_VINTR
);
752 static struct vmcb_seg
*svm_seg(struct kvm_vcpu
*vcpu
, int seg
)
754 struct vmcb_save_area
*save
= &to_svm(vcpu
)->vmcb
->save
;
757 case VCPU_SREG_CS
: return &save
->cs
;
758 case VCPU_SREG_DS
: return &save
->ds
;
759 case VCPU_SREG_ES
: return &save
->es
;
760 case VCPU_SREG_FS
: return &save
->fs
;
761 case VCPU_SREG_GS
: return &save
->gs
;
762 case VCPU_SREG_SS
: return &save
->ss
;
763 case VCPU_SREG_TR
: return &save
->tr
;
764 case VCPU_SREG_LDTR
: return &save
->ldtr
;
770 static u64
svm_get_segment_base(struct kvm_vcpu
*vcpu
, int seg
)
772 struct vmcb_seg
*s
= svm_seg(vcpu
, seg
);
777 static void svm_get_segment(struct kvm_vcpu
*vcpu
,
778 struct kvm_segment
*var
, int seg
)
780 struct vmcb_seg
*s
= svm_seg(vcpu
, seg
);
783 var
->limit
= s
->limit
;
784 var
->selector
= s
->selector
;
785 var
->type
= s
->attrib
& SVM_SELECTOR_TYPE_MASK
;
786 var
->s
= (s
->attrib
>> SVM_SELECTOR_S_SHIFT
) & 1;
787 var
->dpl
= (s
->attrib
>> SVM_SELECTOR_DPL_SHIFT
) & 3;
788 var
->present
= (s
->attrib
>> SVM_SELECTOR_P_SHIFT
) & 1;
789 var
->avl
= (s
->attrib
>> SVM_SELECTOR_AVL_SHIFT
) & 1;
790 var
->l
= (s
->attrib
>> SVM_SELECTOR_L_SHIFT
) & 1;
791 var
->db
= (s
->attrib
>> SVM_SELECTOR_DB_SHIFT
) & 1;
792 var
->g
= (s
->attrib
>> SVM_SELECTOR_G_SHIFT
) & 1;
794 /* AMD's VMCB does not have an explicit unusable field, so emulate it
795 * for cross vendor migration purposes by "not present"
797 var
->unusable
= !var
->present
|| (var
->type
== 0);
802 * SVM always stores 0 for the 'G' bit in the CS selector in
803 * the VMCB on a VMEXIT. This hurts cross-vendor migration:
804 * Intel's VMENTRY has a check on the 'G' bit.
806 var
->g
= s
->limit
> 0xfffff;
810 * Work around a bug where the busy flag in the tr selector
820 * The accessed bit must always be set in the segment
821 * descriptor cache, although it can be cleared in the
822 * descriptor, the cached bit always remains at 1. Since
823 * Intel has a check on this, set it here to support
824 * cross-vendor migration.
830 /* On AMD CPUs sometimes the DB bit in the segment
831 * descriptor is left as 1, although the whole segment has
832 * been made unusable. Clear it here to pass an Intel VMX
833 * entry check when cross vendor migrating.
841 static int svm_get_cpl(struct kvm_vcpu
*vcpu
)
843 struct vmcb_save_area
*save
= &to_svm(vcpu
)->vmcb
->save
;
848 static void svm_get_idt(struct kvm_vcpu
*vcpu
, struct descriptor_table
*dt
)
850 struct vcpu_svm
*svm
= to_svm(vcpu
);
852 dt
->limit
= svm
->vmcb
->save
.idtr
.limit
;
853 dt
->base
= svm
->vmcb
->save
.idtr
.base
;
856 static void svm_set_idt(struct kvm_vcpu
*vcpu
, struct descriptor_table
*dt
)
858 struct vcpu_svm
*svm
= to_svm(vcpu
);
860 svm
->vmcb
->save
.idtr
.limit
= dt
->limit
;
861 svm
->vmcb
->save
.idtr
.base
= dt
->base
;
864 static void svm_get_gdt(struct kvm_vcpu
*vcpu
, struct descriptor_table
*dt
)
866 struct vcpu_svm
*svm
= to_svm(vcpu
);
868 dt
->limit
= svm
->vmcb
->save
.gdtr
.limit
;
869 dt
->base
= svm
->vmcb
->save
.gdtr
.base
;
872 static void svm_set_gdt(struct kvm_vcpu
*vcpu
, struct descriptor_table
*dt
)
874 struct vcpu_svm
*svm
= to_svm(vcpu
);
876 svm
->vmcb
->save
.gdtr
.limit
= dt
->limit
;
877 svm
->vmcb
->save
.gdtr
.base
= dt
->base
;
880 static void svm_decache_cr4_guest_bits(struct kvm_vcpu
*vcpu
)
884 static void svm_set_cr0(struct kvm_vcpu
*vcpu
, unsigned long cr0
)
886 struct vcpu_svm
*svm
= to_svm(vcpu
);
889 if (vcpu
->arch
.shadow_efer
& EFER_LME
) {
890 if (!is_paging(vcpu
) && (cr0
& X86_CR0_PG
)) {
891 vcpu
->arch
.shadow_efer
|= EFER_LMA
;
892 svm
->vmcb
->save
.efer
|= EFER_LMA
| EFER_LME
;
895 if (is_paging(vcpu
) && !(cr0
& X86_CR0_PG
)) {
896 vcpu
->arch
.shadow_efer
&= ~EFER_LMA
;
897 svm
->vmcb
->save
.efer
&= ~(EFER_LMA
| EFER_LME
);
904 if ((vcpu
->arch
.cr0
& X86_CR0_TS
) && !(cr0
& X86_CR0_TS
)) {
905 svm
->vmcb
->control
.intercept_exceptions
&= ~(1 << NM_VECTOR
);
906 vcpu
->fpu_active
= 1;
909 vcpu
->arch
.cr0
= cr0
;
910 cr0
|= X86_CR0_PG
| X86_CR0_WP
;
911 if (!vcpu
->fpu_active
) {
912 svm
->vmcb
->control
.intercept_exceptions
|= (1 << NM_VECTOR
);
917 * re-enable caching here because the QEMU bios
918 * does not do it - this results in some delay at
921 cr0
&= ~(X86_CR0_CD
| X86_CR0_NW
);
922 svm
->vmcb
->save
.cr0
= cr0
;
925 static void svm_set_cr4(struct kvm_vcpu
*vcpu
, unsigned long cr4
)
927 unsigned long host_cr4_mce
= read_cr4() & X86_CR4_MCE
;
928 unsigned long old_cr4
= to_svm(vcpu
)->vmcb
->save
.cr4
;
930 if (npt_enabled
&& ((old_cr4
^ cr4
) & X86_CR4_PGE
))
931 force_new_asid(vcpu
);
933 vcpu
->arch
.cr4
= cr4
;
937 to_svm(vcpu
)->vmcb
->save
.cr4
= cr4
;
940 static void svm_set_segment(struct kvm_vcpu
*vcpu
,
941 struct kvm_segment
*var
, int seg
)
943 struct vcpu_svm
*svm
= to_svm(vcpu
);
944 struct vmcb_seg
*s
= svm_seg(vcpu
, seg
);
947 s
->limit
= var
->limit
;
948 s
->selector
= var
->selector
;
952 s
->attrib
= (var
->type
& SVM_SELECTOR_TYPE_MASK
);
953 s
->attrib
|= (var
->s
& 1) << SVM_SELECTOR_S_SHIFT
;
954 s
->attrib
|= (var
->dpl
& 3) << SVM_SELECTOR_DPL_SHIFT
;
955 s
->attrib
|= (var
->present
& 1) << SVM_SELECTOR_P_SHIFT
;
956 s
->attrib
|= (var
->avl
& 1) << SVM_SELECTOR_AVL_SHIFT
;
957 s
->attrib
|= (var
->l
& 1) << SVM_SELECTOR_L_SHIFT
;
958 s
->attrib
|= (var
->db
& 1) << SVM_SELECTOR_DB_SHIFT
;
959 s
->attrib
|= (var
->g
& 1) << SVM_SELECTOR_G_SHIFT
;
961 if (seg
== VCPU_SREG_CS
)
963 = (svm
->vmcb
->save
.cs
.attrib
964 >> SVM_SELECTOR_DPL_SHIFT
) & 3;
968 static void update_db_intercept(struct kvm_vcpu
*vcpu
)
970 struct vcpu_svm
*svm
= to_svm(vcpu
);
972 svm
->vmcb
->control
.intercept_exceptions
&=
973 ~((1 << DB_VECTOR
) | (1 << BP_VECTOR
));
975 if (vcpu
->arch
.singlestep
)
976 svm
->vmcb
->control
.intercept_exceptions
|= (1 << DB_VECTOR
);
978 if (vcpu
->guest_debug
& KVM_GUESTDBG_ENABLE
) {
979 if (vcpu
->guest_debug
&
980 (KVM_GUESTDBG_SINGLESTEP
| KVM_GUESTDBG_USE_HW_BP
))
981 svm
->vmcb
->control
.intercept_exceptions
|=
983 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_SW_BP
)
984 svm
->vmcb
->control
.intercept_exceptions
|=
987 vcpu
->guest_debug
= 0;
990 static int svm_guest_debug(struct kvm_vcpu
*vcpu
, struct kvm_guest_debug
*dbg
)
992 int old_debug
= vcpu
->guest_debug
;
993 struct vcpu_svm
*svm
= to_svm(vcpu
);
995 vcpu
->guest_debug
= dbg
->control
;
997 update_db_intercept(vcpu
);
999 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
)
1000 svm
->vmcb
->save
.dr7
= dbg
->arch
.debugreg
[7];
1002 svm
->vmcb
->save
.dr7
= vcpu
->arch
.dr7
;
1004 if (vcpu
->guest_debug
& KVM_GUESTDBG_SINGLESTEP
)
1005 svm
->vmcb
->save
.rflags
|= X86_EFLAGS_TF
| X86_EFLAGS_RF
;
1006 else if (old_debug
& KVM_GUESTDBG_SINGLESTEP
)
1007 svm
->vmcb
->save
.rflags
&= ~(X86_EFLAGS_TF
| X86_EFLAGS_RF
);
1012 static void load_host_msrs(struct kvm_vcpu
*vcpu
)
1014 #ifdef CONFIG_X86_64
1015 wrmsrl(MSR_GS_BASE
, to_svm(vcpu
)->host_gs_base
);
1019 static void save_host_msrs(struct kvm_vcpu
*vcpu
)
1021 #ifdef CONFIG_X86_64
1022 rdmsrl(MSR_GS_BASE
, to_svm(vcpu
)->host_gs_base
);
1026 static void new_asid(struct vcpu_svm
*svm
, struct svm_cpu_data
*svm_data
)
1028 if (svm_data
->next_asid
> svm_data
->max_asid
) {
1029 ++svm_data
->asid_generation
;
1030 svm_data
->next_asid
= 1;
1031 svm
->vmcb
->control
.tlb_ctl
= TLB_CONTROL_FLUSH_ALL_ASID
;
1034 svm
->vcpu
.cpu
= svm_data
->cpu
;
1035 svm
->asid_generation
= svm_data
->asid_generation
;
1036 svm
->vmcb
->control
.asid
= svm_data
->next_asid
++;
1039 static unsigned long svm_get_dr(struct kvm_vcpu
*vcpu
, int dr
)
1041 struct vcpu_svm
*svm
= to_svm(vcpu
);
1046 val
= vcpu
->arch
.db
[dr
];
1049 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
)
1050 val
= vcpu
->arch
.dr6
;
1052 val
= svm
->vmcb
->save
.dr6
;
1055 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
)
1056 val
= vcpu
->arch
.dr7
;
1058 val
= svm
->vmcb
->save
.dr7
;
1064 KVMTRACE_2D(DR_READ
, vcpu
, (u32
)dr
, (u32
)val
, handler
);
1068 static void svm_set_dr(struct kvm_vcpu
*vcpu
, int dr
, unsigned long value
,
1071 struct vcpu_svm
*svm
= to_svm(vcpu
);
1073 KVMTRACE_2D(DR_WRITE
, vcpu
, (u32
)dr
, (u32
)value
, handler
);
1079 vcpu
->arch
.db
[dr
] = value
;
1080 if (!(vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
))
1081 vcpu
->arch
.eff_db
[dr
] = value
;
1084 if (vcpu
->arch
.cr4
& X86_CR4_DE
)
1085 *exception
= UD_VECTOR
;
1088 if (value
& 0xffffffff00000000ULL
) {
1089 *exception
= GP_VECTOR
;
1092 vcpu
->arch
.dr6
= (value
& DR6_VOLATILE
) | DR6_FIXED_1
;
1095 if (value
& 0xffffffff00000000ULL
) {
1096 *exception
= GP_VECTOR
;
1099 vcpu
->arch
.dr7
= (value
& DR7_VOLATILE
) | DR7_FIXED_1
;
1100 if (!(vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
)) {
1101 svm
->vmcb
->save
.dr7
= vcpu
->arch
.dr7
;
1102 vcpu
->arch
.switch_db_regs
= (value
& DR7_BP_EN_MASK
);
1106 /* FIXME: Possible case? */
1107 printk(KERN_DEBUG
"%s: unexpected dr %u\n",
1109 *exception
= UD_VECTOR
;
1114 static int pf_interception(struct vcpu_svm
*svm
, struct kvm_run
*kvm_run
)
1119 fault_address
= svm
->vmcb
->control
.exit_info_2
;
1120 error_code
= svm
->vmcb
->control
.exit_info_1
;
1123 KVMTRACE_3D(PAGE_FAULT
, &svm
->vcpu
, error_code
,
1124 (u32
)fault_address
, (u32
)(fault_address
>> 32),
1127 KVMTRACE_3D(TDP_FAULT
, &svm
->vcpu
, error_code
,
1128 (u32
)fault_address
, (u32
)(fault_address
>> 32),
1131 * FIXME: Tis shouldn't be necessary here, but there is a flush
1132 * missing in the MMU code. Until we find this bug, flush the
1133 * complete TLB here on an NPF
1136 svm_flush_tlb(&svm
->vcpu
);
1138 if (kvm_event_needs_reinjection(&svm
->vcpu
))
1139 kvm_mmu_unprotect_page_virt(&svm
->vcpu
, fault_address
);
1141 return kvm_mmu_page_fault(&svm
->vcpu
, fault_address
, error_code
);
1144 static int db_interception(struct vcpu_svm
*svm
, struct kvm_run
*kvm_run
)
1146 if (!(svm
->vcpu
.guest_debug
&
1147 (KVM_GUESTDBG_SINGLESTEP
| KVM_GUESTDBG_USE_HW_BP
)) &&
1148 !svm
->vcpu
.arch
.singlestep
) {
1149 kvm_queue_exception(&svm
->vcpu
, DB_VECTOR
);
1153 if (svm
->vcpu
.arch
.singlestep
) {
1154 svm
->vcpu
.arch
.singlestep
= false;
1155 if (!(svm
->vcpu
.guest_debug
& KVM_GUESTDBG_SINGLESTEP
))
1156 svm
->vmcb
->save
.rflags
&=
1157 ~(X86_EFLAGS_TF
| X86_EFLAGS_RF
);
1158 update_db_intercept(&svm
->vcpu
);
1161 if (svm
->vcpu
.guest_debug
&
1162 (KVM_GUESTDBG_SINGLESTEP
| KVM_GUESTDBG_USE_HW_BP
)){
1163 kvm_run
->exit_reason
= KVM_EXIT_DEBUG
;
1164 kvm_run
->debug
.arch
.pc
=
1165 svm
->vmcb
->save
.cs
.base
+ svm
->vmcb
->save
.rip
;
1166 kvm_run
->debug
.arch
.exception
= DB_VECTOR
;
1173 static int bp_interception(struct vcpu_svm
*svm
, struct kvm_run
*kvm_run
)
1175 kvm_run
->exit_reason
= KVM_EXIT_DEBUG
;
1176 kvm_run
->debug
.arch
.pc
= svm
->vmcb
->save
.cs
.base
+ svm
->vmcb
->save
.rip
;
1177 kvm_run
->debug
.arch
.exception
= BP_VECTOR
;
1181 static int ud_interception(struct vcpu_svm
*svm
, struct kvm_run
*kvm_run
)
1185 er
= emulate_instruction(&svm
->vcpu
, kvm_run
, 0, 0, EMULTYPE_TRAP_UD
);
1186 if (er
!= EMULATE_DONE
)
1187 kvm_queue_exception(&svm
->vcpu
, UD_VECTOR
);
1191 static int nm_interception(struct vcpu_svm
*svm
, struct kvm_run
*kvm_run
)
1193 svm
->vmcb
->control
.intercept_exceptions
&= ~(1 << NM_VECTOR
);
1194 if (!(svm
->vcpu
.arch
.cr0
& X86_CR0_TS
))
1195 svm
->vmcb
->save
.cr0
&= ~X86_CR0_TS
;
1196 svm
->vcpu
.fpu_active
= 1;
1201 static int mc_interception(struct vcpu_svm
*svm
, struct kvm_run
*kvm_run
)
1204 * On an #MC intercept the MCE handler is not called automatically in
1205 * the host. So do it by hand here.
1209 /* not sure if we ever come back to this point */
1214 static int shutdown_interception(struct vcpu_svm
*svm
, struct kvm_run
*kvm_run
)
1217 * VMCB is undefined after a SHUTDOWN intercept
1218 * so reinitialize it.
1220 clear_page(svm
->vmcb
);
1223 kvm_run
->exit_reason
= KVM_EXIT_SHUTDOWN
;
1227 static int io_interception(struct vcpu_svm
*svm
, struct kvm_run
*kvm_run
)
1229 u32 io_info
= svm
->vmcb
->control
.exit_info_1
; /* address size bug? */
1230 int size
, in
, string
;
1233 ++svm
->vcpu
.stat
.io_exits
;
1235 svm
->next_rip
= svm
->vmcb
->control
.exit_info_2
;
1237 string
= (io_info
& SVM_IOIO_STR_MASK
) != 0;
1240 if (emulate_instruction(&svm
->vcpu
,
1241 kvm_run
, 0, 0, 0) == EMULATE_DO_MMIO
)
1246 in
= (io_info
& SVM_IOIO_TYPE_MASK
) != 0;
1247 port
= io_info
>> 16;
1248 size
= (io_info
& SVM_IOIO_SIZE_MASK
) >> SVM_IOIO_SIZE_SHIFT
;
1250 skip_emulated_instruction(&svm
->vcpu
);
1251 return kvm_emulate_pio(&svm
->vcpu
, kvm_run
, in
, size
, port
);
1254 static int nmi_interception(struct vcpu_svm
*svm
, struct kvm_run
*kvm_run
)
1256 KVMTRACE_0D(NMI
, &svm
->vcpu
, handler
);
1260 static int intr_interception(struct vcpu_svm
*svm
, struct kvm_run
*kvm_run
)
1262 ++svm
->vcpu
.stat
.irq_exits
;
1263 KVMTRACE_0D(INTR
, &svm
->vcpu
, handler
);
1267 static int nop_on_interception(struct vcpu_svm
*svm
, struct kvm_run
*kvm_run
)
1272 static int halt_interception(struct vcpu_svm
*svm
, struct kvm_run
*kvm_run
)
1274 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 1;
1275 skip_emulated_instruction(&svm
->vcpu
);
1276 return kvm_emulate_halt(&svm
->vcpu
);
1279 static int vmmcall_interception(struct vcpu_svm
*svm
, struct kvm_run
*kvm_run
)
1281 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 3;
1282 skip_emulated_instruction(&svm
->vcpu
);
1283 kvm_emulate_hypercall(&svm
->vcpu
);
1287 static int nested_svm_check_permissions(struct vcpu_svm
*svm
)
1289 if (!(svm
->vcpu
.arch
.shadow_efer
& EFER_SVME
)
1290 || !is_paging(&svm
->vcpu
)) {
1291 kvm_queue_exception(&svm
->vcpu
, UD_VECTOR
);
1295 if (svm
->vmcb
->save
.cpl
) {
1296 kvm_inject_gp(&svm
->vcpu
, 0);
1303 static int nested_svm_check_exception(struct vcpu_svm
*svm
, unsigned nr
,
1304 bool has_error_code
, u32 error_code
)
1306 if (is_nested(svm
)) {
1307 svm
->vmcb
->control
.exit_code
= SVM_EXIT_EXCP_BASE
+ nr
;
1308 svm
->vmcb
->control
.exit_code_hi
= 0;
1309 svm
->vmcb
->control
.exit_info_1
= error_code
;
1310 svm
->vmcb
->control
.exit_info_2
= svm
->vcpu
.arch
.cr2
;
1311 if (nested_svm_exit_handled(svm
, false)) {
1312 nsvm_printk("VMexit -> EXCP 0x%x\n", nr
);
1314 nested_svm_vmexit(svm
);
1322 static inline int nested_svm_intr(struct vcpu_svm
*svm
)
1324 if (is_nested(svm
)) {
1325 if (!(svm
->vcpu
.arch
.hflags
& HF_VINTR_MASK
))
1328 if (!(svm
->vcpu
.arch
.hflags
& HF_HIF_MASK
))
1331 svm
->vmcb
->control
.exit_code
= SVM_EXIT_INTR
;
1333 if (nested_svm_exit_handled(svm
, false)) {
1334 nsvm_printk("VMexit -> INTR\n");
1335 nested_svm_vmexit(svm
);
1343 static struct page
*nested_svm_get_page(struct vcpu_svm
*svm
, u64 gpa
)
1347 down_read(¤t
->mm
->mmap_sem
);
1348 page
= gfn_to_page(svm
->vcpu
.kvm
, gpa
>> PAGE_SHIFT
);
1349 up_read(¤t
->mm
->mmap_sem
);
1351 if (is_error_page(page
)) {
1352 printk(KERN_INFO
"%s: could not find page at 0x%llx\n",
1354 kvm_release_page_clean(page
);
1355 kvm_inject_gp(&svm
->vcpu
, 0);
1361 static int nested_svm_do(struct vcpu_svm
*svm
,
1362 u64 arg1_gpa
, u64 arg2_gpa
, void *opaque
,
1363 int (*handler
)(struct vcpu_svm
*svm
,
1368 struct page
*arg1_page
;
1369 struct page
*arg2_page
= NULL
;
1374 arg1_page
= nested_svm_get_page(svm
, arg1_gpa
);
1375 if(arg1_page
== NULL
)
1379 arg2_page
= nested_svm_get_page(svm
, arg2_gpa
);
1380 if(arg2_page
== NULL
) {
1381 kvm_release_page_clean(arg1_page
);
1386 arg1
= kmap_atomic(arg1_page
, KM_USER0
);
1388 arg2
= kmap_atomic(arg2_page
, KM_USER1
);
1390 retval
= handler(svm
, arg1
, arg2
, opaque
);
1392 kunmap_atomic(arg1
, KM_USER0
);
1394 kunmap_atomic(arg2
, KM_USER1
);
1396 kvm_release_page_dirty(arg1_page
);
1398 kvm_release_page_dirty(arg2_page
);
1403 static int nested_svm_exit_handled_real(struct vcpu_svm
*svm
,
1408 struct vmcb
*nested_vmcb
= (struct vmcb
*)arg1
;
1409 bool kvm_overrides
= *(bool *)opaque
;
1410 u32 exit_code
= svm
->vmcb
->control
.exit_code
;
1412 if (kvm_overrides
) {
1413 switch (exit_code
) {
1417 /* For now we are always handling NPFs when using them */
1422 /* When we're shadowing, trap PFs */
1423 case SVM_EXIT_EXCP_BASE
+ PF_VECTOR
:
1432 switch (exit_code
) {
1433 case SVM_EXIT_READ_CR0
... SVM_EXIT_READ_CR8
: {
1434 u32 cr_bits
= 1 << (exit_code
- SVM_EXIT_READ_CR0
);
1435 if (nested_vmcb
->control
.intercept_cr_read
& cr_bits
)
1439 case SVM_EXIT_WRITE_CR0
... SVM_EXIT_WRITE_CR8
: {
1440 u32 cr_bits
= 1 << (exit_code
- SVM_EXIT_WRITE_CR0
);
1441 if (nested_vmcb
->control
.intercept_cr_write
& cr_bits
)
1445 case SVM_EXIT_READ_DR0
... SVM_EXIT_READ_DR7
: {
1446 u32 dr_bits
= 1 << (exit_code
- SVM_EXIT_READ_DR0
);
1447 if (nested_vmcb
->control
.intercept_dr_read
& dr_bits
)
1451 case SVM_EXIT_WRITE_DR0
... SVM_EXIT_WRITE_DR7
: {
1452 u32 dr_bits
= 1 << (exit_code
- SVM_EXIT_WRITE_DR0
);
1453 if (nested_vmcb
->control
.intercept_dr_write
& dr_bits
)
1457 case SVM_EXIT_EXCP_BASE
... SVM_EXIT_EXCP_BASE
+ 0x1f: {
1458 u32 excp_bits
= 1 << (exit_code
- SVM_EXIT_EXCP_BASE
);
1459 if (nested_vmcb
->control
.intercept_exceptions
& excp_bits
)
1464 u64 exit_bits
= 1ULL << (exit_code
- SVM_EXIT_INTR
);
1465 nsvm_printk("exit code: 0x%x\n", exit_code
);
1466 if (nested_vmcb
->control
.intercept
& exit_bits
)
1474 static int nested_svm_exit_handled_msr(struct vcpu_svm
*svm
,
1475 void *arg1
, void *arg2
,
1478 struct vmcb
*nested_vmcb
= (struct vmcb
*)arg1
;
1479 u8
*msrpm
= (u8
*)arg2
;
1481 u32 msr
= svm
->vcpu
.arch
.regs
[VCPU_REGS_RCX
];
1482 u32 param
= svm
->vmcb
->control
.exit_info_1
& 1;
1484 if (!(nested_vmcb
->control
.intercept
& (1ULL << INTERCEPT_MSR_PROT
)))
1492 case 0xc0000000 ... 0xc0001fff:
1493 t0
= (8192 + msr
- 0xc0000000) * 2;
1497 case 0xc0010000 ... 0xc0011fff:
1498 t0
= (16384 + msr
- 0xc0010000) * 2;
1506 if (msrpm
[t1
] & ((1 << param
) << t0
))
1512 static int nested_svm_exit_handled(struct vcpu_svm
*svm
, bool kvm_override
)
1514 bool k
= kvm_override
;
1516 switch (svm
->vmcb
->control
.exit_code
) {
1518 return nested_svm_do(svm
, svm
->nested_vmcb
,
1519 svm
->nested_vmcb_msrpm
, NULL
,
1520 nested_svm_exit_handled_msr
);
1524 return nested_svm_do(svm
, svm
->nested_vmcb
, 0, &k
,
1525 nested_svm_exit_handled_real
);
1528 static int nested_svm_vmexit_real(struct vcpu_svm
*svm
, void *arg1
,
1529 void *arg2
, void *opaque
)
1531 struct vmcb
*nested_vmcb
= (struct vmcb
*)arg1
;
1532 struct vmcb
*hsave
= svm
->hsave
;
1533 u64 nested_save
[] = { nested_vmcb
->save
.cr0
,
1534 nested_vmcb
->save
.cr3
,
1535 nested_vmcb
->save
.cr4
,
1536 nested_vmcb
->save
.efer
,
1537 nested_vmcb
->control
.intercept_cr_read
,
1538 nested_vmcb
->control
.intercept_cr_write
,
1539 nested_vmcb
->control
.intercept_dr_read
,
1540 nested_vmcb
->control
.intercept_dr_write
,
1541 nested_vmcb
->control
.intercept_exceptions
,
1542 nested_vmcb
->control
.intercept
,
1543 nested_vmcb
->control
.msrpm_base_pa
,
1544 nested_vmcb
->control
.iopm_base_pa
,
1545 nested_vmcb
->control
.tsc_offset
};
1547 /* Give the current vmcb to the guest */
1548 memcpy(nested_vmcb
, svm
->vmcb
, sizeof(struct vmcb
));
1549 nested_vmcb
->save
.cr0
= nested_save
[0];
1551 nested_vmcb
->save
.cr3
= nested_save
[1];
1552 nested_vmcb
->save
.cr4
= nested_save
[2];
1553 nested_vmcb
->save
.efer
= nested_save
[3];
1554 nested_vmcb
->control
.intercept_cr_read
= nested_save
[4];
1555 nested_vmcb
->control
.intercept_cr_write
= nested_save
[5];
1556 nested_vmcb
->control
.intercept_dr_read
= nested_save
[6];
1557 nested_vmcb
->control
.intercept_dr_write
= nested_save
[7];
1558 nested_vmcb
->control
.intercept_exceptions
= nested_save
[8];
1559 nested_vmcb
->control
.intercept
= nested_save
[9];
1560 nested_vmcb
->control
.msrpm_base_pa
= nested_save
[10];
1561 nested_vmcb
->control
.iopm_base_pa
= nested_save
[11];
1562 nested_vmcb
->control
.tsc_offset
= nested_save
[12];
1564 /* We always set V_INTR_MASKING and remember the old value in hflags */
1565 if (!(svm
->vcpu
.arch
.hflags
& HF_VINTR_MASK
))
1566 nested_vmcb
->control
.int_ctl
&= ~V_INTR_MASKING_MASK
;
1568 if ((nested_vmcb
->control
.int_ctl
& V_IRQ_MASK
) &&
1569 (nested_vmcb
->control
.int_vector
)) {
1570 nsvm_printk("WARNING: IRQ 0x%x still enabled on #VMEXIT\n",
1571 nested_vmcb
->control
.int_vector
);
1574 /* Restore the original control entries */
1575 svm
->vmcb
->control
= hsave
->control
;
1577 /* Kill any pending exceptions */
1578 if (svm
->vcpu
.arch
.exception
.pending
== true)
1579 nsvm_printk("WARNING: Pending Exception\n");
1580 svm
->vcpu
.arch
.exception
.pending
= false;
1582 /* Restore selected save entries */
1583 svm
->vmcb
->save
.es
= hsave
->save
.es
;
1584 svm
->vmcb
->save
.cs
= hsave
->save
.cs
;
1585 svm
->vmcb
->save
.ss
= hsave
->save
.ss
;
1586 svm
->vmcb
->save
.ds
= hsave
->save
.ds
;
1587 svm
->vmcb
->save
.gdtr
= hsave
->save
.gdtr
;
1588 svm
->vmcb
->save
.idtr
= hsave
->save
.idtr
;
1589 svm
->vmcb
->save
.rflags
= hsave
->save
.rflags
;
1590 svm_set_efer(&svm
->vcpu
, hsave
->save
.efer
);
1591 svm_set_cr0(&svm
->vcpu
, hsave
->save
.cr0
| X86_CR0_PE
);
1592 svm_set_cr4(&svm
->vcpu
, hsave
->save
.cr4
);
1594 svm
->vmcb
->save
.cr3
= hsave
->save
.cr3
;
1595 svm
->vcpu
.arch
.cr3
= hsave
->save
.cr3
;
1597 kvm_set_cr3(&svm
->vcpu
, hsave
->save
.cr3
);
1599 kvm_register_write(&svm
->vcpu
, VCPU_REGS_RAX
, hsave
->save
.rax
);
1600 kvm_register_write(&svm
->vcpu
, VCPU_REGS_RSP
, hsave
->save
.rsp
);
1601 kvm_register_write(&svm
->vcpu
, VCPU_REGS_RIP
, hsave
->save
.rip
);
1602 svm
->vmcb
->save
.dr7
= 0;
1603 svm
->vmcb
->save
.cpl
= 0;
1604 svm
->vmcb
->control
.exit_int_info
= 0;
1606 svm
->vcpu
.arch
.hflags
&= ~HF_GIF_MASK
;
1607 /* Exit nested SVM mode */
1608 svm
->nested_vmcb
= 0;
1613 static int nested_svm_vmexit(struct vcpu_svm
*svm
)
1615 nsvm_printk("VMexit\n");
1616 if (nested_svm_do(svm
, svm
->nested_vmcb
, 0,
1617 NULL
, nested_svm_vmexit_real
))
1620 kvm_mmu_reset_context(&svm
->vcpu
);
1621 kvm_mmu_load(&svm
->vcpu
);
1626 static int nested_svm_vmrun_msrpm(struct vcpu_svm
*svm
, void *arg1
,
1627 void *arg2
, void *opaque
)
1630 u32
*nested_msrpm
= (u32
*)arg1
;
1631 for (i
=0; i
< PAGE_SIZE
* (1 << MSRPM_ALLOC_ORDER
) / 4; i
++)
1632 svm
->nested_msrpm
[i
] = svm
->msrpm
[i
] | nested_msrpm
[i
];
1633 svm
->vmcb
->control
.msrpm_base_pa
= __pa(svm
->nested_msrpm
);
1638 static int nested_svm_vmrun(struct vcpu_svm
*svm
, void *arg1
,
1639 void *arg2
, void *opaque
)
1641 struct vmcb
*nested_vmcb
= (struct vmcb
*)arg1
;
1642 struct vmcb
*hsave
= svm
->hsave
;
1644 /* nested_vmcb is our indicator if nested SVM is activated */
1645 svm
->nested_vmcb
= svm
->vmcb
->save
.rax
;
1647 /* Clear internal status */
1648 svm
->vcpu
.arch
.exception
.pending
= false;
1650 /* Save the old vmcb, so we don't need to pick what we save, but
1651 can restore everything when a VMEXIT occurs */
1652 memcpy(hsave
, svm
->vmcb
, sizeof(struct vmcb
));
1653 /* We need to remember the original CR3 in the SPT case */
1655 hsave
->save
.cr3
= svm
->vcpu
.arch
.cr3
;
1656 hsave
->save
.cr4
= svm
->vcpu
.arch
.cr4
;
1657 hsave
->save
.rip
= svm
->next_rip
;
1659 if (svm
->vmcb
->save
.rflags
& X86_EFLAGS_IF
)
1660 svm
->vcpu
.arch
.hflags
|= HF_HIF_MASK
;
1662 svm
->vcpu
.arch
.hflags
&= ~HF_HIF_MASK
;
1664 /* Load the nested guest state */
1665 svm
->vmcb
->save
.es
= nested_vmcb
->save
.es
;
1666 svm
->vmcb
->save
.cs
= nested_vmcb
->save
.cs
;
1667 svm
->vmcb
->save
.ss
= nested_vmcb
->save
.ss
;
1668 svm
->vmcb
->save
.ds
= nested_vmcb
->save
.ds
;
1669 svm
->vmcb
->save
.gdtr
= nested_vmcb
->save
.gdtr
;
1670 svm
->vmcb
->save
.idtr
= nested_vmcb
->save
.idtr
;
1671 svm
->vmcb
->save
.rflags
= nested_vmcb
->save
.rflags
;
1672 svm_set_efer(&svm
->vcpu
, nested_vmcb
->save
.efer
);
1673 svm_set_cr0(&svm
->vcpu
, nested_vmcb
->save
.cr0
);
1674 svm_set_cr4(&svm
->vcpu
, nested_vmcb
->save
.cr4
);
1676 svm
->vmcb
->save
.cr3
= nested_vmcb
->save
.cr3
;
1677 svm
->vcpu
.arch
.cr3
= nested_vmcb
->save
.cr3
;
1679 kvm_set_cr3(&svm
->vcpu
, nested_vmcb
->save
.cr3
);
1680 kvm_mmu_reset_context(&svm
->vcpu
);
1682 svm
->vmcb
->save
.cr2
= nested_vmcb
->save
.cr2
;
1683 kvm_register_write(&svm
->vcpu
, VCPU_REGS_RAX
, nested_vmcb
->save
.rax
);
1684 kvm_register_write(&svm
->vcpu
, VCPU_REGS_RSP
, nested_vmcb
->save
.rsp
);
1685 kvm_register_write(&svm
->vcpu
, VCPU_REGS_RIP
, nested_vmcb
->save
.rip
);
1686 /* In case we don't even reach vcpu_run, the fields are not updated */
1687 svm
->vmcb
->save
.rax
= nested_vmcb
->save
.rax
;
1688 svm
->vmcb
->save
.rsp
= nested_vmcb
->save
.rsp
;
1689 svm
->vmcb
->save
.rip
= nested_vmcb
->save
.rip
;
1690 svm
->vmcb
->save
.dr7
= nested_vmcb
->save
.dr7
;
1691 svm
->vmcb
->save
.dr6
= nested_vmcb
->save
.dr6
;
1692 svm
->vmcb
->save
.cpl
= nested_vmcb
->save
.cpl
;
1694 /* We don't want a nested guest to be more powerful than the guest,
1695 so all intercepts are ORed */
1696 svm
->vmcb
->control
.intercept_cr_read
|=
1697 nested_vmcb
->control
.intercept_cr_read
;
1698 svm
->vmcb
->control
.intercept_cr_write
|=
1699 nested_vmcb
->control
.intercept_cr_write
;
1700 svm
->vmcb
->control
.intercept_dr_read
|=
1701 nested_vmcb
->control
.intercept_dr_read
;
1702 svm
->vmcb
->control
.intercept_dr_write
|=
1703 nested_vmcb
->control
.intercept_dr_write
;
1704 svm
->vmcb
->control
.intercept_exceptions
|=
1705 nested_vmcb
->control
.intercept_exceptions
;
1707 svm
->vmcb
->control
.intercept
|= nested_vmcb
->control
.intercept
;
1709 svm
->nested_vmcb_msrpm
= nested_vmcb
->control
.msrpm_base_pa
;
1711 force_new_asid(&svm
->vcpu
);
1712 svm
->vmcb
->control
.exit_int_info
= nested_vmcb
->control
.exit_int_info
;
1713 svm
->vmcb
->control
.exit_int_info_err
= nested_vmcb
->control
.exit_int_info_err
;
1714 svm
->vmcb
->control
.int_ctl
= nested_vmcb
->control
.int_ctl
| V_INTR_MASKING_MASK
;
1715 if (nested_vmcb
->control
.int_ctl
& V_IRQ_MASK
) {
1716 nsvm_printk("nSVM Injecting Interrupt: 0x%x\n",
1717 nested_vmcb
->control
.int_ctl
);
1719 if (nested_vmcb
->control
.int_ctl
& V_INTR_MASKING_MASK
)
1720 svm
->vcpu
.arch
.hflags
|= HF_VINTR_MASK
;
1722 svm
->vcpu
.arch
.hflags
&= ~HF_VINTR_MASK
;
1724 nsvm_printk("nSVM exit_int_info: 0x%x | int_state: 0x%x\n",
1725 nested_vmcb
->control
.exit_int_info
,
1726 nested_vmcb
->control
.int_state
);
1728 svm
->vmcb
->control
.int_vector
= nested_vmcb
->control
.int_vector
;
1729 svm
->vmcb
->control
.int_state
= nested_vmcb
->control
.int_state
;
1730 svm
->vmcb
->control
.tsc_offset
+= nested_vmcb
->control
.tsc_offset
;
1731 if (nested_vmcb
->control
.event_inj
& SVM_EVTINJ_VALID
)
1732 nsvm_printk("Injecting Event: 0x%x\n",
1733 nested_vmcb
->control
.event_inj
);
1734 svm
->vmcb
->control
.event_inj
= nested_vmcb
->control
.event_inj
;
1735 svm
->vmcb
->control
.event_inj_err
= nested_vmcb
->control
.event_inj_err
;
1737 svm
->vcpu
.arch
.hflags
|= HF_GIF_MASK
;
1742 static int nested_svm_vmloadsave(struct vmcb
*from_vmcb
, struct vmcb
*to_vmcb
)
1744 to_vmcb
->save
.fs
= from_vmcb
->save
.fs
;
1745 to_vmcb
->save
.gs
= from_vmcb
->save
.gs
;
1746 to_vmcb
->save
.tr
= from_vmcb
->save
.tr
;
1747 to_vmcb
->save
.ldtr
= from_vmcb
->save
.ldtr
;
1748 to_vmcb
->save
.kernel_gs_base
= from_vmcb
->save
.kernel_gs_base
;
1749 to_vmcb
->save
.star
= from_vmcb
->save
.star
;
1750 to_vmcb
->save
.lstar
= from_vmcb
->save
.lstar
;
1751 to_vmcb
->save
.cstar
= from_vmcb
->save
.cstar
;
1752 to_vmcb
->save
.sfmask
= from_vmcb
->save
.sfmask
;
1753 to_vmcb
->save
.sysenter_cs
= from_vmcb
->save
.sysenter_cs
;
1754 to_vmcb
->save
.sysenter_esp
= from_vmcb
->save
.sysenter_esp
;
1755 to_vmcb
->save
.sysenter_eip
= from_vmcb
->save
.sysenter_eip
;
1760 static int nested_svm_vmload(struct vcpu_svm
*svm
, void *nested_vmcb
,
1761 void *arg2
, void *opaque
)
1763 return nested_svm_vmloadsave((struct vmcb
*)nested_vmcb
, svm
->vmcb
);
1766 static int nested_svm_vmsave(struct vcpu_svm
*svm
, void *nested_vmcb
,
1767 void *arg2
, void *opaque
)
1769 return nested_svm_vmloadsave(svm
->vmcb
, (struct vmcb
*)nested_vmcb
);
1772 static int vmload_interception(struct vcpu_svm
*svm
, struct kvm_run
*kvm_run
)
1774 if (nested_svm_check_permissions(svm
))
1777 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 3;
1778 skip_emulated_instruction(&svm
->vcpu
);
1780 nested_svm_do(svm
, svm
->vmcb
->save
.rax
, 0, NULL
, nested_svm_vmload
);
1785 static int vmsave_interception(struct vcpu_svm
*svm
, struct kvm_run
*kvm_run
)
1787 if (nested_svm_check_permissions(svm
))
1790 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 3;
1791 skip_emulated_instruction(&svm
->vcpu
);
1793 nested_svm_do(svm
, svm
->vmcb
->save
.rax
, 0, NULL
, nested_svm_vmsave
);
1798 static int vmrun_interception(struct vcpu_svm
*svm
, struct kvm_run
*kvm_run
)
1800 nsvm_printk("VMrun\n");
1801 if (nested_svm_check_permissions(svm
))
1804 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 3;
1805 skip_emulated_instruction(&svm
->vcpu
);
1807 if (nested_svm_do(svm
, svm
->vmcb
->save
.rax
, 0,
1808 NULL
, nested_svm_vmrun
))
1811 if (nested_svm_do(svm
, svm
->nested_vmcb_msrpm
, 0,
1812 NULL
, nested_svm_vmrun_msrpm
))
1818 static int stgi_interception(struct vcpu_svm
*svm
, struct kvm_run
*kvm_run
)
1820 if (nested_svm_check_permissions(svm
))
1823 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 3;
1824 skip_emulated_instruction(&svm
->vcpu
);
1826 svm
->vcpu
.arch
.hflags
|= HF_GIF_MASK
;
1831 static int clgi_interception(struct vcpu_svm
*svm
, struct kvm_run
*kvm_run
)
1833 if (nested_svm_check_permissions(svm
))
1836 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 3;
1837 skip_emulated_instruction(&svm
->vcpu
);
1839 svm
->vcpu
.arch
.hflags
&= ~HF_GIF_MASK
;
1841 /* After a CLGI no interrupts should come */
1842 svm_clear_vintr(svm
);
1843 svm
->vmcb
->control
.int_ctl
&= ~V_IRQ_MASK
;
1848 static int invalid_op_interception(struct vcpu_svm
*svm
,
1849 struct kvm_run
*kvm_run
)
1851 kvm_queue_exception(&svm
->vcpu
, UD_VECTOR
);
1855 static int task_switch_interception(struct vcpu_svm
*svm
,
1856 struct kvm_run
*kvm_run
)
1860 int int_type
= svm
->vmcb
->control
.exit_int_info
&
1861 SVM_EXITINTINFO_TYPE_MASK
;
1862 int int_vec
= svm
->vmcb
->control
.exit_int_info
& SVM_EVTINJ_VEC_MASK
;
1864 svm
->vmcb
->control
.exit_int_info
& SVM_EXITINTINFO_TYPE_MASK
;
1866 svm
->vmcb
->control
.exit_int_info
& SVM_EXITINTINFO_VALID
;
1868 tss_selector
= (u16
)svm
->vmcb
->control
.exit_info_1
;
1870 if (svm
->vmcb
->control
.exit_info_2
&
1871 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET
))
1872 reason
= TASK_SWITCH_IRET
;
1873 else if (svm
->vmcb
->control
.exit_info_2
&
1874 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP
))
1875 reason
= TASK_SWITCH_JMP
;
1877 reason
= TASK_SWITCH_GATE
;
1879 reason
= TASK_SWITCH_CALL
;
1881 if (reason
== TASK_SWITCH_GATE
) {
1883 case SVM_EXITINTINFO_TYPE_NMI
:
1884 svm
->vcpu
.arch
.nmi_injected
= false;
1886 case SVM_EXITINTINFO_TYPE_EXEPT
:
1887 kvm_clear_exception_queue(&svm
->vcpu
);
1889 case SVM_EXITINTINFO_TYPE_INTR
:
1890 kvm_clear_interrupt_queue(&svm
->vcpu
);
1897 if (reason
!= TASK_SWITCH_GATE
||
1898 int_type
== SVM_EXITINTINFO_TYPE_SOFT
||
1899 (int_type
== SVM_EXITINTINFO_TYPE_EXEPT
&&
1900 (int_vec
== OF_VECTOR
|| int_vec
== BP_VECTOR
)))
1901 skip_emulated_instruction(&svm
->vcpu
);
1903 return kvm_task_switch(&svm
->vcpu
, tss_selector
, reason
);
1906 static int cpuid_interception(struct vcpu_svm
*svm
, struct kvm_run
*kvm_run
)
1908 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 2;
1909 kvm_emulate_cpuid(&svm
->vcpu
);
1913 static int iret_interception(struct vcpu_svm
*svm
, struct kvm_run
*kvm_run
)
1915 ++svm
->vcpu
.stat
.nmi_window_exits
;
1916 svm
->vmcb
->control
.intercept
&= ~(1UL << INTERCEPT_IRET
);
1917 svm
->vcpu
.arch
.hflags
|= HF_IRET_MASK
;
1921 static int invlpg_interception(struct vcpu_svm
*svm
, struct kvm_run
*kvm_run
)
1923 if (emulate_instruction(&svm
->vcpu
, kvm_run
, 0, 0, 0) != EMULATE_DONE
)
1924 pr_unimpl(&svm
->vcpu
, "%s: failed\n", __func__
);
1928 static int emulate_on_interception(struct vcpu_svm
*svm
,
1929 struct kvm_run
*kvm_run
)
1931 if (emulate_instruction(&svm
->vcpu
, NULL
, 0, 0, 0) != EMULATE_DONE
)
1932 pr_unimpl(&svm
->vcpu
, "%s: failed\n", __func__
);
1936 static int cr8_write_interception(struct vcpu_svm
*svm
, struct kvm_run
*kvm_run
)
1938 u8 cr8_prev
= kvm_get_cr8(&svm
->vcpu
);
1939 /* instruction emulation calls kvm_set_cr8() */
1940 emulate_instruction(&svm
->vcpu
, NULL
, 0, 0, 0);
1941 if (irqchip_in_kernel(svm
->vcpu
.kvm
)) {
1942 svm
->vmcb
->control
.intercept_cr_write
&= ~INTERCEPT_CR8_MASK
;
1945 if (cr8_prev
<= kvm_get_cr8(&svm
->vcpu
))
1947 kvm_run
->exit_reason
= KVM_EXIT_SET_TPR
;
1951 static int svm_get_msr(struct kvm_vcpu
*vcpu
, unsigned ecx
, u64
*data
)
1953 struct vcpu_svm
*svm
= to_svm(vcpu
);
1956 case MSR_IA32_TIME_STAMP_COUNTER
: {
1960 *data
= svm
->vmcb
->control
.tsc_offset
+ tsc
;
1964 *data
= svm
->vmcb
->save
.star
;
1966 #ifdef CONFIG_X86_64
1968 *data
= svm
->vmcb
->save
.lstar
;
1971 *data
= svm
->vmcb
->save
.cstar
;
1973 case MSR_KERNEL_GS_BASE
:
1974 *data
= svm
->vmcb
->save
.kernel_gs_base
;
1976 case MSR_SYSCALL_MASK
:
1977 *data
= svm
->vmcb
->save
.sfmask
;
1980 case MSR_IA32_SYSENTER_CS
:
1981 *data
= svm
->vmcb
->save
.sysenter_cs
;
1983 case MSR_IA32_SYSENTER_EIP
:
1984 *data
= svm
->vmcb
->save
.sysenter_eip
;
1986 case MSR_IA32_SYSENTER_ESP
:
1987 *data
= svm
->vmcb
->save
.sysenter_esp
;
1989 /* Nobody will change the following 5 values in the VMCB so
1990 we can safely return them on rdmsr. They will always be 0
1991 until LBRV is implemented. */
1992 case MSR_IA32_DEBUGCTLMSR
:
1993 *data
= svm
->vmcb
->save
.dbgctl
;
1995 case MSR_IA32_LASTBRANCHFROMIP
:
1996 *data
= svm
->vmcb
->save
.br_from
;
1998 case MSR_IA32_LASTBRANCHTOIP
:
1999 *data
= svm
->vmcb
->save
.br_to
;
2001 case MSR_IA32_LASTINTFROMIP
:
2002 *data
= svm
->vmcb
->save
.last_excp_from
;
2004 case MSR_IA32_LASTINTTOIP
:
2005 *data
= svm
->vmcb
->save
.last_excp_to
;
2007 case MSR_VM_HSAVE_PA
:
2008 *data
= svm
->hsave_msr
;
2013 case MSR_IA32_UCODE_REV
:
2017 return kvm_get_msr_common(vcpu
, ecx
, data
);
2022 static int rdmsr_interception(struct vcpu_svm
*svm
, struct kvm_run
*kvm_run
)
2024 u32 ecx
= svm
->vcpu
.arch
.regs
[VCPU_REGS_RCX
];
2027 if (svm_get_msr(&svm
->vcpu
, ecx
, &data
))
2028 kvm_inject_gp(&svm
->vcpu
, 0);
2030 KVMTRACE_3D(MSR_READ
, &svm
->vcpu
, ecx
, (u32
)data
,
2031 (u32
)(data
>> 32), handler
);
2033 svm
->vcpu
.arch
.regs
[VCPU_REGS_RAX
] = data
& 0xffffffff;
2034 svm
->vcpu
.arch
.regs
[VCPU_REGS_RDX
] = data
>> 32;
2035 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 2;
2036 skip_emulated_instruction(&svm
->vcpu
);
2041 static int svm_set_msr(struct kvm_vcpu
*vcpu
, unsigned ecx
, u64 data
)
2043 struct vcpu_svm
*svm
= to_svm(vcpu
);
2046 case MSR_IA32_TIME_STAMP_COUNTER
: {
2050 svm
->vmcb
->control
.tsc_offset
= data
- tsc
;
2054 svm
->vmcb
->save
.star
= data
;
2056 #ifdef CONFIG_X86_64
2058 svm
->vmcb
->save
.lstar
= data
;
2061 svm
->vmcb
->save
.cstar
= data
;
2063 case MSR_KERNEL_GS_BASE
:
2064 svm
->vmcb
->save
.kernel_gs_base
= data
;
2066 case MSR_SYSCALL_MASK
:
2067 svm
->vmcb
->save
.sfmask
= data
;
2070 case MSR_IA32_SYSENTER_CS
:
2071 svm
->vmcb
->save
.sysenter_cs
= data
;
2073 case MSR_IA32_SYSENTER_EIP
:
2074 svm
->vmcb
->save
.sysenter_eip
= data
;
2076 case MSR_IA32_SYSENTER_ESP
:
2077 svm
->vmcb
->save
.sysenter_esp
= data
;
2079 case MSR_IA32_DEBUGCTLMSR
:
2080 if (!svm_has(SVM_FEATURE_LBRV
)) {
2081 pr_unimpl(vcpu
, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
2085 if (data
& DEBUGCTL_RESERVED_BITS
)
2088 svm
->vmcb
->save
.dbgctl
= data
;
2089 if (data
& (1ULL<<0))
2090 svm_enable_lbrv(svm
);
2092 svm_disable_lbrv(svm
);
2094 case MSR_K7_EVNTSEL0
:
2095 case MSR_K7_EVNTSEL1
:
2096 case MSR_K7_EVNTSEL2
:
2097 case MSR_K7_EVNTSEL3
:
2098 case MSR_K7_PERFCTR0
:
2099 case MSR_K7_PERFCTR1
:
2100 case MSR_K7_PERFCTR2
:
2101 case MSR_K7_PERFCTR3
:
2103 * Just discard all writes to the performance counters; this
2104 * should keep both older linux and windows 64-bit guests
2107 pr_unimpl(vcpu
, "unimplemented perfctr wrmsr: 0x%x data 0x%llx\n", ecx
, data
);
2110 case MSR_VM_HSAVE_PA
:
2111 svm
->hsave_msr
= data
;
2114 return kvm_set_msr_common(vcpu
, ecx
, data
);
2119 static int wrmsr_interception(struct vcpu_svm
*svm
, struct kvm_run
*kvm_run
)
2121 u32 ecx
= svm
->vcpu
.arch
.regs
[VCPU_REGS_RCX
];
2122 u64 data
= (svm
->vcpu
.arch
.regs
[VCPU_REGS_RAX
] & -1u)
2123 | ((u64
)(svm
->vcpu
.arch
.regs
[VCPU_REGS_RDX
] & -1u) << 32);
2125 KVMTRACE_3D(MSR_WRITE
, &svm
->vcpu
, ecx
, (u32
)data
, (u32
)(data
>> 32),
2128 svm
->next_rip
= kvm_rip_read(&svm
->vcpu
) + 2;
2129 if (svm_set_msr(&svm
->vcpu
, ecx
, data
))
2130 kvm_inject_gp(&svm
->vcpu
, 0);
2132 skip_emulated_instruction(&svm
->vcpu
);
2136 static int msr_interception(struct vcpu_svm
*svm
, struct kvm_run
*kvm_run
)
2138 if (svm
->vmcb
->control
.exit_info_1
)
2139 return wrmsr_interception(svm
, kvm_run
);
2141 return rdmsr_interception(svm
, kvm_run
);
2144 static int interrupt_window_interception(struct vcpu_svm
*svm
,
2145 struct kvm_run
*kvm_run
)
2147 KVMTRACE_0D(PEND_INTR
, &svm
->vcpu
, handler
);
2149 svm_clear_vintr(svm
);
2150 svm
->vmcb
->control
.int_ctl
&= ~V_IRQ_MASK
;
2152 * If the user space waits to inject interrupts, exit as soon as
2155 if (!irqchip_in_kernel(svm
->vcpu
.kvm
) &&
2156 kvm_run
->request_interrupt_window
&&
2157 !kvm_cpu_has_interrupt(&svm
->vcpu
)) {
2158 ++svm
->vcpu
.stat
.irq_window_exits
;
2159 kvm_run
->exit_reason
= KVM_EXIT_IRQ_WINDOW_OPEN
;
2166 static int (*svm_exit_handlers
[])(struct vcpu_svm
*svm
,
2167 struct kvm_run
*kvm_run
) = {
2168 [SVM_EXIT_READ_CR0
] = emulate_on_interception
,
2169 [SVM_EXIT_READ_CR3
] = emulate_on_interception
,
2170 [SVM_EXIT_READ_CR4
] = emulate_on_interception
,
2171 [SVM_EXIT_READ_CR8
] = emulate_on_interception
,
2173 [SVM_EXIT_WRITE_CR0
] = emulate_on_interception
,
2174 [SVM_EXIT_WRITE_CR3
] = emulate_on_interception
,
2175 [SVM_EXIT_WRITE_CR4
] = emulate_on_interception
,
2176 [SVM_EXIT_WRITE_CR8
] = cr8_write_interception
,
2177 [SVM_EXIT_READ_DR0
] = emulate_on_interception
,
2178 [SVM_EXIT_READ_DR1
] = emulate_on_interception
,
2179 [SVM_EXIT_READ_DR2
] = emulate_on_interception
,
2180 [SVM_EXIT_READ_DR3
] = emulate_on_interception
,
2181 [SVM_EXIT_WRITE_DR0
] = emulate_on_interception
,
2182 [SVM_EXIT_WRITE_DR1
] = emulate_on_interception
,
2183 [SVM_EXIT_WRITE_DR2
] = emulate_on_interception
,
2184 [SVM_EXIT_WRITE_DR3
] = emulate_on_interception
,
2185 [SVM_EXIT_WRITE_DR5
] = emulate_on_interception
,
2186 [SVM_EXIT_WRITE_DR7
] = emulate_on_interception
,
2187 [SVM_EXIT_EXCP_BASE
+ DB_VECTOR
] = db_interception
,
2188 [SVM_EXIT_EXCP_BASE
+ BP_VECTOR
] = bp_interception
,
2189 [SVM_EXIT_EXCP_BASE
+ UD_VECTOR
] = ud_interception
,
2190 [SVM_EXIT_EXCP_BASE
+ PF_VECTOR
] = pf_interception
,
2191 [SVM_EXIT_EXCP_BASE
+ NM_VECTOR
] = nm_interception
,
2192 [SVM_EXIT_EXCP_BASE
+ MC_VECTOR
] = mc_interception
,
2193 [SVM_EXIT_INTR
] = intr_interception
,
2194 [SVM_EXIT_NMI
] = nmi_interception
,
2195 [SVM_EXIT_SMI
] = nop_on_interception
,
2196 [SVM_EXIT_INIT
] = nop_on_interception
,
2197 [SVM_EXIT_VINTR
] = interrupt_window_interception
,
2198 /* [SVM_EXIT_CR0_SEL_WRITE] = emulate_on_interception, */
2199 [SVM_EXIT_CPUID
] = cpuid_interception
,
2200 [SVM_EXIT_IRET
] = iret_interception
,
2201 [SVM_EXIT_INVD
] = emulate_on_interception
,
2202 [SVM_EXIT_HLT
] = halt_interception
,
2203 [SVM_EXIT_INVLPG
] = invlpg_interception
,
2204 [SVM_EXIT_INVLPGA
] = invalid_op_interception
,
2205 [SVM_EXIT_IOIO
] = io_interception
,
2206 [SVM_EXIT_MSR
] = msr_interception
,
2207 [SVM_EXIT_TASK_SWITCH
] = task_switch_interception
,
2208 [SVM_EXIT_SHUTDOWN
] = shutdown_interception
,
2209 [SVM_EXIT_VMRUN
] = vmrun_interception
,
2210 [SVM_EXIT_VMMCALL
] = vmmcall_interception
,
2211 [SVM_EXIT_VMLOAD
] = vmload_interception
,
2212 [SVM_EXIT_VMSAVE
] = vmsave_interception
,
2213 [SVM_EXIT_STGI
] = stgi_interception
,
2214 [SVM_EXIT_CLGI
] = clgi_interception
,
2215 [SVM_EXIT_SKINIT
] = invalid_op_interception
,
2216 [SVM_EXIT_WBINVD
] = emulate_on_interception
,
2217 [SVM_EXIT_MONITOR
] = invalid_op_interception
,
2218 [SVM_EXIT_MWAIT
] = invalid_op_interception
,
2219 [SVM_EXIT_NPF
] = pf_interception
,
2222 static int handle_exit(struct kvm_run
*kvm_run
, struct kvm_vcpu
*vcpu
)
2224 struct vcpu_svm
*svm
= to_svm(vcpu
);
2225 u32 exit_code
= svm
->vmcb
->control
.exit_code
;
2227 KVMTRACE_3D(VMEXIT
, vcpu
, exit_code
, (u32
)svm
->vmcb
->save
.rip
,
2228 (u32
)((u64
)svm
->vmcb
->save
.rip
>> 32), entryexit
);
2230 if (is_nested(svm
)) {
2231 nsvm_printk("nested handle_exit: 0x%x | 0x%lx | 0x%lx | 0x%lx\n",
2232 exit_code
, svm
->vmcb
->control
.exit_info_1
,
2233 svm
->vmcb
->control
.exit_info_2
, svm
->vmcb
->save
.rip
);
2234 if (nested_svm_exit_handled(svm
, true)) {
2235 nested_svm_vmexit(svm
);
2236 nsvm_printk("-> #VMEXIT\n");
2243 if ((vcpu
->arch
.cr0
^ svm
->vmcb
->save
.cr0
) & X86_CR0_PG
) {
2244 svm_set_cr0(vcpu
, svm
->vmcb
->save
.cr0
);
2247 vcpu
->arch
.cr0
= svm
->vmcb
->save
.cr0
;
2248 vcpu
->arch
.cr3
= svm
->vmcb
->save
.cr3
;
2249 if (is_paging(vcpu
) && is_pae(vcpu
) && !is_long_mode(vcpu
)) {
2250 if (!load_pdptrs(vcpu
, vcpu
->arch
.cr3
)) {
2251 kvm_inject_gp(vcpu
, 0);
2256 kvm_mmu_reset_context(vcpu
);
2262 if (svm
->vmcb
->control
.exit_code
== SVM_EXIT_ERR
) {
2263 kvm_run
->exit_reason
= KVM_EXIT_FAIL_ENTRY
;
2264 kvm_run
->fail_entry
.hardware_entry_failure_reason
2265 = svm
->vmcb
->control
.exit_code
;
2269 if (is_external_interrupt(svm
->vmcb
->control
.exit_int_info
) &&
2270 exit_code
!= SVM_EXIT_EXCP_BASE
+ PF_VECTOR
&&
2271 exit_code
!= SVM_EXIT_NPF
&& exit_code
!= SVM_EXIT_TASK_SWITCH
)
2272 printk(KERN_ERR
"%s: unexpected exit_ini_info 0x%x "
2274 __func__
, svm
->vmcb
->control
.exit_int_info
,
2277 if (exit_code
>= ARRAY_SIZE(svm_exit_handlers
)
2278 || !svm_exit_handlers
[exit_code
]) {
2279 kvm_run
->exit_reason
= KVM_EXIT_UNKNOWN
;
2280 kvm_run
->hw
.hardware_exit_reason
= exit_code
;
2284 return svm_exit_handlers
[exit_code
](svm
, kvm_run
);
2287 static void reload_tss(struct kvm_vcpu
*vcpu
)
2289 int cpu
= raw_smp_processor_id();
2291 struct svm_cpu_data
*svm_data
= per_cpu(svm_data
, cpu
);
2292 svm_data
->tss_desc
->type
= 9; /* available 32/64-bit TSS */
2296 static void pre_svm_run(struct vcpu_svm
*svm
)
2298 int cpu
= raw_smp_processor_id();
2300 struct svm_cpu_data
*svm_data
= per_cpu(svm_data
, cpu
);
2302 svm
->vmcb
->control
.tlb_ctl
= TLB_CONTROL_DO_NOTHING
;
2303 if (svm
->vcpu
.cpu
!= cpu
||
2304 svm
->asid_generation
!= svm_data
->asid_generation
)
2305 new_asid(svm
, svm_data
);
2308 static void svm_inject_nmi(struct kvm_vcpu
*vcpu
)
2310 struct vcpu_svm
*svm
= to_svm(vcpu
);
2312 svm
->vmcb
->control
.event_inj
= SVM_EVTINJ_VALID
| SVM_EVTINJ_TYPE_NMI
;
2313 vcpu
->arch
.hflags
|= HF_NMI_MASK
;
2314 svm
->vmcb
->control
.intercept
|= (1UL << INTERCEPT_IRET
);
2315 ++vcpu
->stat
.nmi_injections
;
2318 static inline void svm_inject_irq(struct vcpu_svm
*svm
, int irq
)
2320 struct vmcb_control_area
*control
;
2322 KVMTRACE_1D(INJ_VIRQ
, &svm
->vcpu
, (u32
)irq
, handler
);
2324 ++svm
->vcpu
.stat
.irq_injections
;
2325 control
= &svm
->vmcb
->control
;
2326 control
->int_vector
= irq
;
2327 control
->int_ctl
&= ~V_INTR_PRIO_MASK
;
2328 control
->int_ctl
|= V_IRQ_MASK
|
2329 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT
);
2332 static void svm_queue_irq(struct kvm_vcpu
*vcpu
, unsigned nr
)
2334 struct vcpu_svm
*svm
= to_svm(vcpu
);
2336 svm
->vmcb
->control
.event_inj
= nr
|
2337 SVM_EVTINJ_VALID
| SVM_EVTINJ_TYPE_INTR
;
2340 static void svm_set_irq(struct kvm_vcpu
*vcpu
)
2342 struct vcpu_svm
*svm
= to_svm(vcpu
);
2344 nested_svm_intr(svm
);
2346 svm_queue_irq(vcpu
, vcpu
->arch
.interrupt
.nr
);
2349 static void update_cr8_intercept(struct kvm_vcpu
*vcpu
, int tpr
, int irr
)
2351 struct vcpu_svm
*svm
= to_svm(vcpu
);
2357 svm
->vmcb
->control
.intercept_cr_write
|= INTERCEPT_CR8_MASK
;
2360 static int svm_nmi_allowed(struct kvm_vcpu
*vcpu
)
2362 struct vcpu_svm
*svm
= to_svm(vcpu
);
2363 struct vmcb
*vmcb
= svm
->vmcb
;
2364 return !(vmcb
->control
.int_state
& SVM_INTERRUPT_SHADOW_MASK
) &&
2365 !(svm
->vcpu
.arch
.hflags
& HF_NMI_MASK
);
2368 static int svm_interrupt_allowed(struct kvm_vcpu
*vcpu
)
2370 struct vcpu_svm
*svm
= to_svm(vcpu
);
2371 struct vmcb
*vmcb
= svm
->vmcb
;
2372 return (vmcb
->save
.rflags
& X86_EFLAGS_IF
) &&
2373 !(vmcb
->control
.int_state
& SVM_INTERRUPT_SHADOW_MASK
) &&
2374 (svm
->vcpu
.arch
.hflags
& HF_GIF_MASK
);
2377 static void enable_irq_window(struct kvm_vcpu
*vcpu
)
2379 svm_set_vintr(to_svm(vcpu
));
2380 svm_inject_irq(to_svm(vcpu
), 0x0);
2383 static void enable_nmi_window(struct kvm_vcpu
*vcpu
)
2385 struct vcpu_svm
*svm
= to_svm(vcpu
);
2387 if ((svm
->vcpu
.arch
.hflags
& (HF_NMI_MASK
| HF_IRET_MASK
))
2389 return; /* IRET will cause a vm exit */
2391 /* Something prevents NMI from been injected. Single step over
2392 possible problem (IRET or exception injection or interrupt
2394 vcpu
->arch
.singlestep
= true;
2395 svm
->vmcb
->save
.rflags
|= (X86_EFLAGS_TF
| X86_EFLAGS_RF
);
2396 update_db_intercept(vcpu
);
2399 static int svm_set_tss_addr(struct kvm
*kvm
, unsigned int addr
)
2404 static void svm_flush_tlb(struct kvm_vcpu
*vcpu
)
2406 force_new_asid(vcpu
);
2409 static void svm_prepare_guest_switch(struct kvm_vcpu
*vcpu
)
2413 static inline void sync_cr8_to_lapic(struct kvm_vcpu
*vcpu
)
2415 struct vcpu_svm
*svm
= to_svm(vcpu
);
2417 if (!(svm
->vmcb
->control
.intercept_cr_write
& INTERCEPT_CR8_MASK
)) {
2418 int cr8
= svm
->vmcb
->control
.int_ctl
& V_TPR_MASK
;
2419 kvm_set_cr8(vcpu
, cr8
);
2423 static inline void sync_lapic_to_cr8(struct kvm_vcpu
*vcpu
)
2425 struct vcpu_svm
*svm
= to_svm(vcpu
);
2428 cr8
= kvm_get_cr8(vcpu
);
2429 svm
->vmcb
->control
.int_ctl
&= ~V_TPR_MASK
;
2430 svm
->vmcb
->control
.int_ctl
|= cr8
& V_TPR_MASK
;
2433 static void svm_complete_interrupts(struct vcpu_svm
*svm
)
2437 u32 exitintinfo
= svm
->vmcb
->control
.exit_int_info
;
2439 if (svm
->vcpu
.arch
.hflags
& HF_IRET_MASK
)
2440 svm
->vcpu
.arch
.hflags
&= ~(HF_NMI_MASK
| HF_IRET_MASK
);
2442 svm
->vcpu
.arch
.nmi_injected
= false;
2443 kvm_clear_exception_queue(&svm
->vcpu
);
2444 kvm_clear_interrupt_queue(&svm
->vcpu
);
2446 if (!(exitintinfo
& SVM_EXITINTINFO_VALID
))
2449 vector
= exitintinfo
& SVM_EXITINTINFO_VEC_MASK
;
2450 type
= exitintinfo
& SVM_EXITINTINFO_TYPE_MASK
;
2453 case SVM_EXITINTINFO_TYPE_NMI
:
2454 svm
->vcpu
.arch
.nmi_injected
= true;
2456 case SVM_EXITINTINFO_TYPE_EXEPT
:
2457 /* In case of software exception do not reinject an exception
2458 vector, but re-execute and instruction instead */
2459 if (kvm_exception_is_soft(vector
))
2461 if (exitintinfo
& SVM_EXITINTINFO_VALID_ERR
) {
2462 u32 err
= svm
->vmcb
->control
.exit_int_info_err
;
2463 kvm_queue_exception_e(&svm
->vcpu
, vector
, err
);
2466 kvm_queue_exception(&svm
->vcpu
, vector
);
2468 case SVM_EXITINTINFO_TYPE_INTR
:
2469 kvm_queue_interrupt(&svm
->vcpu
, vector
, false);
2476 #ifdef CONFIG_X86_64
2482 static void svm_vcpu_run(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
2484 struct vcpu_svm
*svm
= to_svm(vcpu
);
2489 svm
->vmcb
->save
.rax
= vcpu
->arch
.regs
[VCPU_REGS_RAX
];
2490 svm
->vmcb
->save
.rsp
= vcpu
->arch
.regs
[VCPU_REGS_RSP
];
2491 svm
->vmcb
->save
.rip
= vcpu
->arch
.regs
[VCPU_REGS_RIP
];
2495 sync_lapic_to_cr8(vcpu
);
2497 save_host_msrs(vcpu
);
2498 fs_selector
= kvm_read_fs();
2499 gs_selector
= kvm_read_gs();
2500 ldt_selector
= kvm_read_ldt();
2501 svm
->host_cr2
= kvm_read_cr2();
2502 if (!is_nested(svm
))
2503 svm
->vmcb
->save
.cr2
= vcpu
->arch
.cr2
;
2504 /* required for live migration with NPT */
2506 svm
->vmcb
->save
.cr3
= vcpu
->arch
.cr3
;
2513 "push %%"R
"bp; \n\t"
2514 "mov %c[rbx](%[svm]), %%"R
"bx \n\t"
2515 "mov %c[rcx](%[svm]), %%"R
"cx \n\t"
2516 "mov %c[rdx](%[svm]), %%"R
"dx \n\t"
2517 "mov %c[rsi](%[svm]), %%"R
"si \n\t"
2518 "mov %c[rdi](%[svm]), %%"R
"di \n\t"
2519 "mov %c[rbp](%[svm]), %%"R
"bp \n\t"
2520 #ifdef CONFIG_X86_64
2521 "mov %c[r8](%[svm]), %%r8 \n\t"
2522 "mov %c[r9](%[svm]), %%r9 \n\t"
2523 "mov %c[r10](%[svm]), %%r10 \n\t"
2524 "mov %c[r11](%[svm]), %%r11 \n\t"
2525 "mov %c[r12](%[svm]), %%r12 \n\t"
2526 "mov %c[r13](%[svm]), %%r13 \n\t"
2527 "mov %c[r14](%[svm]), %%r14 \n\t"
2528 "mov %c[r15](%[svm]), %%r15 \n\t"
2531 /* Enter guest mode */
2533 "mov %c[vmcb](%[svm]), %%"R
"ax \n\t"
2534 __ex(SVM_VMLOAD
) "\n\t"
2535 __ex(SVM_VMRUN
) "\n\t"
2536 __ex(SVM_VMSAVE
) "\n\t"
2539 /* Save guest registers, load host registers */
2540 "mov %%"R
"bx, %c[rbx](%[svm]) \n\t"
2541 "mov %%"R
"cx, %c[rcx](%[svm]) \n\t"
2542 "mov %%"R
"dx, %c[rdx](%[svm]) \n\t"
2543 "mov %%"R
"si, %c[rsi](%[svm]) \n\t"
2544 "mov %%"R
"di, %c[rdi](%[svm]) \n\t"
2545 "mov %%"R
"bp, %c[rbp](%[svm]) \n\t"
2546 #ifdef CONFIG_X86_64
2547 "mov %%r8, %c[r8](%[svm]) \n\t"
2548 "mov %%r9, %c[r9](%[svm]) \n\t"
2549 "mov %%r10, %c[r10](%[svm]) \n\t"
2550 "mov %%r11, %c[r11](%[svm]) \n\t"
2551 "mov %%r12, %c[r12](%[svm]) \n\t"
2552 "mov %%r13, %c[r13](%[svm]) \n\t"
2553 "mov %%r14, %c[r14](%[svm]) \n\t"
2554 "mov %%r15, %c[r15](%[svm]) \n\t"
2559 [vmcb
]"i"(offsetof(struct vcpu_svm
, vmcb_pa
)),
2560 [rbx
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_RBX
])),
2561 [rcx
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_RCX
])),
2562 [rdx
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_RDX
])),
2563 [rsi
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_RSI
])),
2564 [rdi
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_RDI
])),
2565 [rbp
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_RBP
]))
2566 #ifdef CONFIG_X86_64
2567 , [r8
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_R8
])),
2568 [r9
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_R9
])),
2569 [r10
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_R10
])),
2570 [r11
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_R11
])),
2571 [r12
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_R12
])),
2572 [r13
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_R13
])),
2573 [r14
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_R14
])),
2574 [r15
]"i"(offsetof(struct vcpu_svm
, vcpu
.arch
.regs
[VCPU_REGS_R15
]))
2577 , R
"bx", R
"cx", R
"dx", R
"si", R
"di"
2578 #ifdef CONFIG_X86_64
2579 , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
2583 vcpu
->arch
.cr2
= svm
->vmcb
->save
.cr2
;
2584 vcpu
->arch
.regs
[VCPU_REGS_RAX
] = svm
->vmcb
->save
.rax
;
2585 vcpu
->arch
.regs
[VCPU_REGS_RSP
] = svm
->vmcb
->save
.rsp
;
2586 vcpu
->arch
.regs
[VCPU_REGS_RIP
] = svm
->vmcb
->save
.rip
;
2588 kvm_write_cr2(svm
->host_cr2
);
2590 kvm_load_fs(fs_selector
);
2591 kvm_load_gs(gs_selector
);
2592 kvm_load_ldt(ldt_selector
);
2593 load_host_msrs(vcpu
);
2597 local_irq_disable();
2601 sync_cr8_to_lapic(vcpu
);
2605 svm_complete_interrupts(svm
);
2610 static void svm_set_cr3(struct kvm_vcpu
*vcpu
, unsigned long root
)
2612 struct vcpu_svm
*svm
= to_svm(vcpu
);
2615 svm
->vmcb
->control
.nested_cr3
= root
;
2616 force_new_asid(vcpu
);
2620 svm
->vmcb
->save
.cr3
= root
;
2621 force_new_asid(vcpu
);
2623 if (vcpu
->fpu_active
) {
2624 svm
->vmcb
->control
.intercept_exceptions
|= (1 << NM_VECTOR
);
2625 svm
->vmcb
->save
.cr0
|= X86_CR0_TS
;
2626 vcpu
->fpu_active
= 0;
2630 static int is_disabled(void)
2634 rdmsrl(MSR_VM_CR
, vm_cr
);
2635 if (vm_cr
& (1 << SVM_VM_CR_SVM_DISABLE
))
2642 svm_patch_hypercall(struct kvm_vcpu
*vcpu
, unsigned char *hypercall
)
2645 * Patch in the VMMCALL instruction:
2647 hypercall
[0] = 0x0f;
2648 hypercall
[1] = 0x01;
2649 hypercall
[2] = 0xd9;
2652 static void svm_check_processor_compat(void *rtn
)
2657 static bool svm_cpu_has_accelerated_tpr(void)
2662 static int get_npt_level(void)
2664 #ifdef CONFIG_X86_64
2665 return PT64_ROOT_LEVEL
;
2667 return PT32E_ROOT_LEVEL
;
2671 static u64
svm_get_mt_mask(struct kvm_vcpu
*vcpu
, gfn_t gfn
, bool is_mmio
)
2676 static struct kvm_x86_ops svm_x86_ops
= {
2677 .cpu_has_kvm_support
= has_svm
,
2678 .disabled_by_bios
= is_disabled
,
2679 .hardware_setup
= svm_hardware_setup
,
2680 .hardware_unsetup
= svm_hardware_unsetup
,
2681 .check_processor_compatibility
= svm_check_processor_compat
,
2682 .hardware_enable
= svm_hardware_enable
,
2683 .hardware_disable
= svm_hardware_disable
,
2684 .cpu_has_accelerated_tpr
= svm_cpu_has_accelerated_tpr
,
2686 .vcpu_create
= svm_create_vcpu
,
2687 .vcpu_free
= svm_free_vcpu
,
2688 .vcpu_reset
= svm_vcpu_reset
,
2690 .prepare_guest_switch
= svm_prepare_guest_switch
,
2691 .vcpu_load
= svm_vcpu_load
,
2692 .vcpu_put
= svm_vcpu_put
,
2694 .set_guest_debug
= svm_guest_debug
,
2695 .get_msr
= svm_get_msr
,
2696 .set_msr
= svm_set_msr
,
2697 .get_segment_base
= svm_get_segment_base
,
2698 .get_segment
= svm_get_segment
,
2699 .set_segment
= svm_set_segment
,
2700 .get_cpl
= svm_get_cpl
,
2701 .get_cs_db_l_bits
= kvm_get_cs_db_l_bits
,
2702 .decache_cr4_guest_bits
= svm_decache_cr4_guest_bits
,
2703 .set_cr0
= svm_set_cr0
,
2704 .set_cr3
= svm_set_cr3
,
2705 .set_cr4
= svm_set_cr4
,
2706 .set_efer
= svm_set_efer
,
2707 .get_idt
= svm_get_idt
,
2708 .set_idt
= svm_set_idt
,
2709 .get_gdt
= svm_get_gdt
,
2710 .set_gdt
= svm_set_gdt
,
2711 .get_dr
= svm_get_dr
,
2712 .set_dr
= svm_set_dr
,
2713 .get_rflags
= svm_get_rflags
,
2714 .set_rflags
= svm_set_rflags
,
2716 .tlb_flush
= svm_flush_tlb
,
2718 .run
= svm_vcpu_run
,
2719 .handle_exit
= handle_exit
,
2720 .skip_emulated_instruction
= skip_emulated_instruction
,
2721 .set_interrupt_shadow
= svm_set_interrupt_shadow
,
2722 .get_interrupt_shadow
= svm_get_interrupt_shadow
,
2723 .patch_hypercall
= svm_patch_hypercall
,
2724 .set_irq
= svm_set_irq
,
2725 .set_nmi
= svm_inject_nmi
,
2726 .queue_exception
= svm_queue_exception
,
2727 .interrupt_allowed
= svm_interrupt_allowed
,
2728 .nmi_allowed
= svm_nmi_allowed
,
2729 .enable_nmi_window
= enable_nmi_window
,
2730 .enable_irq_window
= enable_irq_window
,
2731 .update_cr8_intercept
= update_cr8_intercept
,
2733 .set_tss_addr
= svm_set_tss_addr
,
2734 .get_tdp_level
= get_npt_level
,
2735 .get_mt_mask
= svm_get_mt_mask
,
2738 static int __init
svm_init(void)
2740 return kvm_init(&svm_x86_ops
, sizeof(struct vcpu_svm
),
2744 static void __exit
svm_exit(void)
2749 module_init(svm_init
)
2750 module_exit(svm_exit
)