[NETNS]: Enable routing configuration in non-initial namespace.
[linux-2.6/kvm.git] / drivers / ide / ide-iops.c
blobe2a7e95e1636ccfc326748f5fa32a27132f2341d
1 /*
2 * linux/drivers/ide/ide-iops.c Version 0.37 Mar 05, 2003
4 * Copyright (C) 2000-2002 Andre Hedrick <andre@linux-ide.org>
5 * Copyright (C) 2003 Red Hat <alan@redhat.com>
7 */
9 #include <linux/module.h>
10 #include <linux/types.h>
11 #include <linux/string.h>
12 #include <linux/kernel.h>
13 #include <linux/timer.h>
14 #include <linux/mm.h>
15 #include <linux/interrupt.h>
16 #include <linux/major.h>
17 #include <linux/errno.h>
18 #include <linux/genhd.h>
19 #include <linux/blkpg.h>
20 #include <linux/slab.h>
21 #include <linux/pci.h>
22 #include <linux/delay.h>
23 #include <linux/hdreg.h>
24 #include <linux/ide.h>
25 #include <linux/bitops.h>
26 #include <linux/nmi.h>
28 #include <asm/byteorder.h>
29 #include <asm/irq.h>
30 #include <asm/uaccess.h>
31 #include <asm/io.h>
34 * Conventional PIO operations for ATA devices
37 static u8 ide_inb (unsigned long port)
39 return (u8) inb(port);
42 static u16 ide_inw (unsigned long port)
44 return (u16) inw(port);
47 static void ide_insw (unsigned long port, void *addr, u32 count)
49 insw(port, addr, count);
52 static void ide_insl (unsigned long port, void *addr, u32 count)
54 insl(port, addr, count);
57 static void ide_outb (u8 val, unsigned long port)
59 outb(val, port);
62 static void ide_outbsync (ide_drive_t *drive, u8 addr, unsigned long port)
64 outb(addr, port);
67 static void ide_outw (u16 val, unsigned long port)
69 outw(val, port);
72 static void ide_outsw (unsigned long port, void *addr, u32 count)
74 outsw(port, addr, count);
77 static void ide_outsl (unsigned long port, void *addr, u32 count)
79 outsl(port, addr, count);
82 void default_hwif_iops (ide_hwif_t *hwif)
84 hwif->OUTB = ide_outb;
85 hwif->OUTBSYNC = ide_outbsync;
86 hwif->OUTW = ide_outw;
87 hwif->OUTSW = ide_outsw;
88 hwif->OUTSL = ide_outsl;
89 hwif->INB = ide_inb;
90 hwif->INW = ide_inw;
91 hwif->INSW = ide_insw;
92 hwif->INSL = ide_insl;
96 * MMIO operations, typically used for SATA controllers
99 static u8 ide_mm_inb (unsigned long port)
101 return (u8) readb((void __iomem *) port);
104 static u16 ide_mm_inw (unsigned long port)
106 return (u16) readw((void __iomem *) port);
109 static void ide_mm_insw (unsigned long port, void *addr, u32 count)
111 __ide_mm_insw((void __iomem *) port, addr, count);
114 static void ide_mm_insl (unsigned long port, void *addr, u32 count)
116 __ide_mm_insl((void __iomem *) port, addr, count);
119 static void ide_mm_outb (u8 value, unsigned long port)
121 writeb(value, (void __iomem *) port);
124 static void ide_mm_outbsync (ide_drive_t *drive, u8 value, unsigned long port)
126 writeb(value, (void __iomem *) port);
129 static void ide_mm_outw (u16 value, unsigned long port)
131 writew(value, (void __iomem *) port);
134 static void ide_mm_outsw (unsigned long port, void *addr, u32 count)
136 __ide_mm_outsw((void __iomem *) port, addr, count);
139 static void ide_mm_outsl (unsigned long port, void *addr, u32 count)
141 __ide_mm_outsl((void __iomem *) port, addr, count);
144 void default_hwif_mmiops (ide_hwif_t *hwif)
146 hwif->OUTB = ide_mm_outb;
147 /* Most systems will need to override OUTBSYNC, alas however
148 this one is controller specific! */
149 hwif->OUTBSYNC = ide_mm_outbsync;
150 hwif->OUTW = ide_mm_outw;
151 hwif->OUTSW = ide_mm_outsw;
152 hwif->OUTSL = ide_mm_outsl;
153 hwif->INB = ide_mm_inb;
154 hwif->INW = ide_mm_inw;
155 hwif->INSW = ide_mm_insw;
156 hwif->INSL = ide_mm_insl;
159 EXPORT_SYMBOL(default_hwif_mmiops);
161 void SELECT_DRIVE (ide_drive_t *drive)
163 if (HWIF(drive)->selectproc)
164 HWIF(drive)->selectproc(drive);
165 HWIF(drive)->OUTB(drive->select.all, IDE_SELECT_REG);
168 EXPORT_SYMBOL(SELECT_DRIVE);
170 void SELECT_MASK (ide_drive_t *drive, int mask)
172 if (HWIF(drive)->maskproc)
173 HWIF(drive)->maskproc(drive, mask);
177 * Some localbus EIDE interfaces require a special access sequence
178 * when using 32-bit I/O instructions to transfer data. We call this
179 * the "vlb_sync" sequence, which consists of three successive reads
180 * of the sector count register location, with interrupts disabled
181 * to ensure that the reads all happen together.
183 static void ata_vlb_sync(ide_drive_t *drive, unsigned long port)
185 (void) HWIF(drive)->INB(port);
186 (void) HWIF(drive)->INB(port);
187 (void) HWIF(drive)->INB(port);
191 * This is used for most PIO data transfers *from* the IDE interface
193 static void ata_input_data(ide_drive_t *drive, void *buffer, u32 wcount)
195 ide_hwif_t *hwif = HWIF(drive);
196 u8 io_32bit = drive->io_32bit;
198 if (io_32bit) {
199 if (io_32bit & 2) {
200 unsigned long flags;
201 local_irq_save(flags);
202 ata_vlb_sync(drive, IDE_NSECTOR_REG);
203 hwif->INSL(IDE_DATA_REG, buffer, wcount);
204 local_irq_restore(flags);
205 } else
206 hwif->INSL(IDE_DATA_REG, buffer, wcount);
207 } else {
208 hwif->INSW(IDE_DATA_REG, buffer, wcount<<1);
213 * This is used for most PIO data transfers *to* the IDE interface
215 static void ata_output_data(ide_drive_t *drive, void *buffer, u32 wcount)
217 ide_hwif_t *hwif = HWIF(drive);
218 u8 io_32bit = drive->io_32bit;
220 if (io_32bit) {
221 if (io_32bit & 2) {
222 unsigned long flags;
223 local_irq_save(flags);
224 ata_vlb_sync(drive, IDE_NSECTOR_REG);
225 hwif->OUTSL(IDE_DATA_REG, buffer, wcount);
226 local_irq_restore(flags);
227 } else
228 hwif->OUTSL(IDE_DATA_REG, buffer, wcount);
229 } else {
230 hwif->OUTSW(IDE_DATA_REG, buffer, wcount<<1);
235 * The following routines are mainly used by the ATAPI drivers.
237 * These routines will round up any request for an odd number of bytes,
238 * so if an odd bytecount is specified, be sure that there's at least one
239 * extra byte allocated for the buffer.
242 static void atapi_input_bytes(ide_drive_t *drive, void *buffer, u32 bytecount)
244 ide_hwif_t *hwif = HWIF(drive);
246 ++bytecount;
247 #if defined(CONFIG_ATARI) || defined(CONFIG_Q40)
248 if (MACH_IS_ATARI || MACH_IS_Q40) {
249 /* Atari has a byte-swapped IDE interface */
250 insw_swapw(IDE_DATA_REG, buffer, bytecount / 2);
251 return;
253 #endif /* CONFIG_ATARI || CONFIG_Q40 */
254 hwif->ata_input_data(drive, buffer, bytecount / 4);
255 if ((bytecount & 0x03) >= 2)
256 hwif->INSW(IDE_DATA_REG, ((u8 *)buffer)+(bytecount & ~0x03), 1);
259 static void atapi_output_bytes(ide_drive_t *drive, void *buffer, u32 bytecount)
261 ide_hwif_t *hwif = HWIF(drive);
263 ++bytecount;
264 #if defined(CONFIG_ATARI) || defined(CONFIG_Q40)
265 if (MACH_IS_ATARI || MACH_IS_Q40) {
266 /* Atari has a byte-swapped IDE interface */
267 outsw_swapw(IDE_DATA_REG, buffer, bytecount / 2);
268 return;
270 #endif /* CONFIG_ATARI || CONFIG_Q40 */
271 hwif->ata_output_data(drive, buffer, bytecount / 4);
272 if ((bytecount & 0x03) >= 2)
273 hwif->OUTSW(IDE_DATA_REG, ((u8*)buffer)+(bytecount & ~0x03), 1);
276 void default_hwif_transport(ide_hwif_t *hwif)
278 hwif->ata_input_data = ata_input_data;
279 hwif->ata_output_data = ata_output_data;
280 hwif->atapi_input_bytes = atapi_input_bytes;
281 hwif->atapi_output_bytes = atapi_output_bytes;
284 void ide_fix_driveid (struct hd_driveid *id)
286 #ifndef __LITTLE_ENDIAN
287 # ifdef __BIG_ENDIAN
288 int i;
289 u16 *stringcast;
291 id->config = __le16_to_cpu(id->config);
292 id->cyls = __le16_to_cpu(id->cyls);
293 id->reserved2 = __le16_to_cpu(id->reserved2);
294 id->heads = __le16_to_cpu(id->heads);
295 id->track_bytes = __le16_to_cpu(id->track_bytes);
296 id->sector_bytes = __le16_to_cpu(id->sector_bytes);
297 id->sectors = __le16_to_cpu(id->sectors);
298 id->vendor0 = __le16_to_cpu(id->vendor0);
299 id->vendor1 = __le16_to_cpu(id->vendor1);
300 id->vendor2 = __le16_to_cpu(id->vendor2);
301 stringcast = (u16 *)&id->serial_no[0];
302 for (i = 0; i < (20/2); i++)
303 stringcast[i] = __le16_to_cpu(stringcast[i]);
304 id->buf_type = __le16_to_cpu(id->buf_type);
305 id->buf_size = __le16_to_cpu(id->buf_size);
306 id->ecc_bytes = __le16_to_cpu(id->ecc_bytes);
307 stringcast = (u16 *)&id->fw_rev[0];
308 for (i = 0; i < (8/2); i++)
309 stringcast[i] = __le16_to_cpu(stringcast[i]);
310 stringcast = (u16 *)&id->model[0];
311 for (i = 0; i < (40/2); i++)
312 stringcast[i] = __le16_to_cpu(stringcast[i]);
313 id->dword_io = __le16_to_cpu(id->dword_io);
314 id->reserved50 = __le16_to_cpu(id->reserved50);
315 id->field_valid = __le16_to_cpu(id->field_valid);
316 id->cur_cyls = __le16_to_cpu(id->cur_cyls);
317 id->cur_heads = __le16_to_cpu(id->cur_heads);
318 id->cur_sectors = __le16_to_cpu(id->cur_sectors);
319 id->cur_capacity0 = __le16_to_cpu(id->cur_capacity0);
320 id->cur_capacity1 = __le16_to_cpu(id->cur_capacity1);
321 id->lba_capacity = __le32_to_cpu(id->lba_capacity);
322 id->dma_1word = __le16_to_cpu(id->dma_1word);
323 id->dma_mword = __le16_to_cpu(id->dma_mword);
324 id->eide_pio_modes = __le16_to_cpu(id->eide_pio_modes);
325 id->eide_dma_min = __le16_to_cpu(id->eide_dma_min);
326 id->eide_dma_time = __le16_to_cpu(id->eide_dma_time);
327 id->eide_pio = __le16_to_cpu(id->eide_pio);
328 id->eide_pio_iordy = __le16_to_cpu(id->eide_pio_iordy);
329 for (i = 0; i < 2; ++i)
330 id->words69_70[i] = __le16_to_cpu(id->words69_70[i]);
331 for (i = 0; i < 4; ++i)
332 id->words71_74[i] = __le16_to_cpu(id->words71_74[i]);
333 id->queue_depth = __le16_to_cpu(id->queue_depth);
334 for (i = 0; i < 4; ++i)
335 id->words76_79[i] = __le16_to_cpu(id->words76_79[i]);
336 id->major_rev_num = __le16_to_cpu(id->major_rev_num);
337 id->minor_rev_num = __le16_to_cpu(id->minor_rev_num);
338 id->command_set_1 = __le16_to_cpu(id->command_set_1);
339 id->command_set_2 = __le16_to_cpu(id->command_set_2);
340 id->cfsse = __le16_to_cpu(id->cfsse);
341 id->cfs_enable_1 = __le16_to_cpu(id->cfs_enable_1);
342 id->cfs_enable_2 = __le16_to_cpu(id->cfs_enable_2);
343 id->csf_default = __le16_to_cpu(id->csf_default);
344 id->dma_ultra = __le16_to_cpu(id->dma_ultra);
345 id->trseuc = __le16_to_cpu(id->trseuc);
346 id->trsEuc = __le16_to_cpu(id->trsEuc);
347 id->CurAPMvalues = __le16_to_cpu(id->CurAPMvalues);
348 id->mprc = __le16_to_cpu(id->mprc);
349 id->hw_config = __le16_to_cpu(id->hw_config);
350 id->acoustic = __le16_to_cpu(id->acoustic);
351 id->msrqs = __le16_to_cpu(id->msrqs);
352 id->sxfert = __le16_to_cpu(id->sxfert);
353 id->sal = __le16_to_cpu(id->sal);
354 id->spg = __le32_to_cpu(id->spg);
355 id->lba_capacity_2 = __le64_to_cpu(id->lba_capacity_2);
356 for (i = 0; i < 22; i++)
357 id->words104_125[i] = __le16_to_cpu(id->words104_125[i]);
358 id->last_lun = __le16_to_cpu(id->last_lun);
359 id->word127 = __le16_to_cpu(id->word127);
360 id->dlf = __le16_to_cpu(id->dlf);
361 id->csfo = __le16_to_cpu(id->csfo);
362 for (i = 0; i < 26; i++)
363 id->words130_155[i] = __le16_to_cpu(id->words130_155[i]);
364 id->word156 = __le16_to_cpu(id->word156);
365 for (i = 0; i < 3; i++)
366 id->words157_159[i] = __le16_to_cpu(id->words157_159[i]);
367 id->cfa_power = __le16_to_cpu(id->cfa_power);
368 for (i = 0; i < 14; i++)
369 id->words161_175[i] = __le16_to_cpu(id->words161_175[i]);
370 for (i = 0; i < 31; i++)
371 id->words176_205[i] = __le16_to_cpu(id->words176_205[i]);
372 for (i = 0; i < 48; i++)
373 id->words206_254[i] = __le16_to_cpu(id->words206_254[i]);
374 id->integrity_word = __le16_to_cpu(id->integrity_word);
375 # else
376 # error "Please fix <asm/byteorder.h>"
377 # endif
378 #endif
382 * ide_fixstring() cleans up and (optionally) byte-swaps a text string,
383 * removing leading/trailing blanks and compressing internal blanks.
384 * It is primarily used to tidy up the model name/number fields as
385 * returned by the WIN_[P]IDENTIFY commands.
388 void ide_fixstring (u8 *s, const int bytecount, const int byteswap)
390 u8 *p = s, *end = &s[bytecount & ~1]; /* bytecount must be even */
392 if (byteswap) {
393 /* convert from big-endian to host byte order */
394 for (p = end ; p != s;) {
395 unsigned short *pp = (unsigned short *) (p -= 2);
396 *pp = ntohs(*pp);
399 /* strip leading blanks */
400 while (s != end && *s == ' ')
401 ++s;
402 /* compress internal blanks and strip trailing blanks */
403 while (s != end && *s) {
404 if (*s++ != ' ' || (s != end && *s && *s != ' '))
405 *p++ = *(s-1);
407 /* wipe out trailing garbage */
408 while (p != end)
409 *p++ = '\0';
412 EXPORT_SYMBOL(ide_fixstring);
415 * Needed for PCI irq sharing
417 int drive_is_ready (ide_drive_t *drive)
419 ide_hwif_t *hwif = HWIF(drive);
420 u8 stat = 0;
422 if (drive->waiting_for_dma)
423 return hwif->ide_dma_test_irq(drive);
425 #if 0
426 /* need to guarantee 400ns since last command was issued */
427 udelay(1);
428 #endif
431 * We do a passive status test under shared PCI interrupts on
432 * cards that truly share the ATA side interrupt, but may also share
433 * an interrupt with another pci card/device. We make no assumptions
434 * about possible isa-pnp and pci-pnp issues yet.
436 if (IDE_CONTROL_REG)
437 stat = hwif->INB(IDE_ALTSTATUS_REG);
438 else
439 /* Note: this may clear a pending IRQ!! */
440 stat = hwif->INB(IDE_STATUS_REG);
442 if (stat & BUSY_STAT)
443 /* drive busy: definitely not interrupting */
444 return 0;
446 /* drive ready: *might* be interrupting */
447 return 1;
450 EXPORT_SYMBOL(drive_is_ready);
453 * This routine busy-waits for the drive status to be not "busy".
454 * It then checks the status for all of the "good" bits and none
455 * of the "bad" bits, and if all is okay it returns 0. All other
456 * cases return error -- caller may then invoke ide_error().
458 * This routine should get fixed to not hog the cpu during extra long waits..
459 * That could be done by busy-waiting for the first jiffy or two, and then
460 * setting a timer to wake up at half second intervals thereafter,
461 * until timeout is achieved, before timing out.
463 static int __ide_wait_stat(ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout, u8 *rstat)
465 ide_hwif_t *hwif = drive->hwif;
466 unsigned long flags;
467 int i;
468 u8 stat;
470 udelay(1); /* spec allows drive 400ns to assert "BUSY" */
471 if ((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) {
472 local_irq_set(flags);
473 timeout += jiffies;
474 while ((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) {
475 if (time_after(jiffies, timeout)) {
477 * One last read after the timeout in case
478 * heavy interrupt load made us not make any
479 * progress during the timeout..
481 stat = hwif->INB(IDE_STATUS_REG);
482 if (!(stat & BUSY_STAT))
483 break;
485 local_irq_restore(flags);
486 *rstat = stat;
487 return -EBUSY;
490 local_irq_restore(flags);
493 * Allow status to settle, then read it again.
494 * A few rare drives vastly violate the 400ns spec here,
495 * so we'll wait up to 10usec for a "good" status
496 * rather than expensively fail things immediately.
497 * This fix courtesy of Matthew Faupel & Niccolo Rigacci.
499 for (i = 0; i < 10; i++) {
500 udelay(1);
501 if (OK_STAT((stat = hwif->INB(IDE_STATUS_REG)), good, bad)) {
502 *rstat = stat;
503 return 0;
506 *rstat = stat;
507 return -EFAULT;
511 * In case of error returns error value after doing "*startstop = ide_error()".
512 * The caller should return the updated value of "startstop" in this case,
513 * "startstop" is unchanged when the function returns 0.
515 int ide_wait_stat(ide_startstop_t *startstop, ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout)
517 int err;
518 u8 stat;
520 /* bail early if we've exceeded max_failures */
521 if (drive->max_failures && (drive->failures > drive->max_failures)) {
522 *startstop = ide_stopped;
523 return 1;
526 err = __ide_wait_stat(drive, good, bad, timeout, &stat);
528 if (err) {
529 char *s = (err == -EBUSY) ? "status timeout" : "status error";
530 *startstop = ide_error(drive, s, stat);
533 return err;
536 EXPORT_SYMBOL(ide_wait_stat);
539 * ide_in_drive_list - look for drive in black/white list
540 * @id: drive identifier
541 * @drive_table: list to inspect
543 * Look for a drive in the blacklist and the whitelist tables
544 * Returns 1 if the drive is found in the table.
547 int ide_in_drive_list(struct hd_driveid *id, const struct drive_list_entry *drive_table)
549 for ( ; drive_table->id_model; drive_table++)
550 if ((!strcmp(drive_table->id_model, id->model)) &&
551 (!drive_table->id_firmware ||
552 strstr(id->fw_rev, drive_table->id_firmware)))
553 return 1;
554 return 0;
557 EXPORT_SYMBOL_GPL(ide_in_drive_list);
560 * Early UDMA66 devices don't set bit14 to 1, only bit13 is valid.
561 * We list them here and depend on the device side cable detection for them.
563 * Some optical devices with the buggy firmwares have the same problem.
565 static const struct drive_list_entry ivb_list[] = {
566 { "QUANTUM FIREBALLlct10 05" , "A03.0900" },
567 { "TSSTcorp CDDVDW SH-S202J" , "SB00" },
568 { "TSSTcorp CDDVDW SH-S202J" , "SB01" },
569 { "TSSTcorp CDDVDW SH-S202N" , "SB00" },
570 { "TSSTcorp CDDVDW SH-S202N" , "SB01" },
571 { NULL , NULL }
575 * All hosts that use the 80c ribbon must use!
576 * The name is derived from upper byte of word 93 and the 80c ribbon.
578 u8 eighty_ninty_three (ide_drive_t *drive)
580 ide_hwif_t *hwif = drive->hwif;
581 struct hd_driveid *id = drive->id;
582 int ivb = ide_in_drive_list(id, ivb_list);
584 if (hwif->cbl == ATA_CBL_PATA40_SHORT)
585 return 1;
587 if (ivb)
588 printk(KERN_DEBUG "%s: skipping word 93 validity check\n",
589 drive->name);
591 if (ide_dev_is_sata(id) && !ivb)
592 return 1;
594 if (hwif->cbl != ATA_CBL_PATA80 && !ivb)
595 goto no_80w;
598 * FIXME:
599 * - force bit13 (80c cable present) check also for !ivb devices
600 * (unless the slave device is pre-ATA3)
602 if ((id->hw_config & 0x4000) || (ivb && (id->hw_config & 0x2000)))
603 return 1;
605 no_80w:
606 if (drive->udma33_warned == 1)
607 return 0;
609 printk(KERN_WARNING "%s: %s side 80-wire cable detection failed, "
610 "limiting max speed to UDMA33\n",
611 drive->name,
612 hwif->cbl == ATA_CBL_PATA80 ? "drive" : "host");
614 drive->udma33_warned = 1;
616 return 0;
619 int ide_ata66_check (ide_drive_t *drive, ide_task_t *args)
621 if (args->tf.command == WIN_SETFEATURES &&
622 args->tf.nsect > XFER_UDMA_2 &&
623 args->tf.feature == SETFEATURES_XFER) {
624 if (eighty_ninty_three(drive) == 0) {
625 printk(KERN_WARNING "%s: UDMA speeds >UDMA33 cannot "
626 "be set\n", drive->name);
627 return 1;
631 return 0;
635 * Backside of HDIO_DRIVE_CMD call of SETFEATURES_XFER.
636 * 1 : Safe to update drive->id DMA registers.
637 * 0 : OOPs not allowed.
639 int set_transfer (ide_drive_t *drive, ide_task_t *args)
641 if (args->tf.command == WIN_SETFEATURES &&
642 args->tf.nsect >= XFER_SW_DMA_0 &&
643 args->tf.feature == SETFEATURES_XFER &&
644 (drive->id->dma_ultra ||
645 drive->id->dma_mword ||
646 drive->id->dma_1word))
647 return 1;
649 return 0;
652 #ifdef CONFIG_BLK_DEV_IDEDMA
653 static u8 ide_auto_reduce_xfer (ide_drive_t *drive)
655 if (!drive->crc_count)
656 return drive->current_speed;
657 drive->crc_count = 0;
659 switch(drive->current_speed) {
660 case XFER_UDMA_7: return XFER_UDMA_6;
661 case XFER_UDMA_6: return XFER_UDMA_5;
662 case XFER_UDMA_5: return XFER_UDMA_4;
663 case XFER_UDMA_4: return XFER_UDMA_3;
664 case XFER_UDMA_3: return XFER_UDMA_2;
665 case XFER_UDMA_2: return XFER_UDMA_1;
666 case XFER_UDMA_1: return XFER_UDMA_0;
668 * OOPS we do not goto non Ultra DMA modes
669 * without iCRC's available we force
670 * the system to PIO and make the user
671 * invoke the ATA-1 ATA-2 DMA modes.
673 case XFER_UDMA_0:
674 default: return XFER_PIO_4;
677 #endif /* CONFIG_BLK_DEV_IDEDMA */
679 int ide_driveid_update(ide_drive_t *drive)
681 ide_hwif_t *hwif = drive->hwif;
682 struct hd_driveid *id;
683 unsigned long timeout, flags;
686 * Re-read drive->id for possible DMA mode
687 * change (copied from ide-probe.c)
690 SELECT_MASK(drive, 1);
691 ide_set_irq(drive, 1);
692 msleep(50);
693 hwif->OUTB(WIN_IDENTIFY, IDE_COMMAND_REG);
694 timeout = jiffies + WAIT_WORSTCASE;
695 do {
696 if (time_after(jiffies, timeout)) {
697 SELECT_MASK(drive, 0);
698 return 0; /* drive timed-out */
700 msleep(50); /* give drive a breather */
701 } while (hwif->INB(IDE_ALTSTATUS_REG) & BUSY_STAT);
702 msleep(50); /* wait for IRQ and DRQ_STAT */
703 if (!OK_STAT(hwif->INB(IDE_STATUS_REG),DRQ_STAT,BAD_R_STAT)) {
704 SELECT_MASK(drive, 0);
705 printk("%s: CHECK for good STATUS\n", drive->name);
706 return 0;
708 local_irq_save(flags);
709 SELECT_MASK(drive, 0);
710 id = kmalloc(SECTOR_WORDS*4, GFP_ATOMIC);
711 if (!id) {
712 local_irq_restore(flags);
713 return 0;
715 ata_input_data(drive, id, SECTOR_WORDS);
716 (void) hwif->INB(IDE_STATUS_REG); /* clear drive IRQ */
717 local_irq_enable();
718 local_irq_restore(flags);
719 ide_fix_driveid(id);
720 if (id) {
721 drive->id->dma_ultra = id->dma_ultra;
722 drive->id->dma_mword = id->dma_mword;
723 drive->id->dma_1word = id->dma_1word;
724 /* anything more ? */
725 kfree(id);
727 if (drive->using_dma && ide_id_dma_bug(drive))
728 ide_dma_off(drive);
731 return 1;
734 int ide_config_drive_speed(ide_drive_t *drive, u8 speed)
736 ide_hwif_t *hwif = drive->hwif;
737 int error = 0;
738 u8 stat;
740 // while (HWGROUP(drive)->busy)
741 // msleep(50);
743 #ifdef CONFIG_BLK_DEV_IDEDMA
744 if (hwif->dma_host_set) /* check if host supports DMA */
745 hwif->dma_host_set(drive, 0);
746 #endif
748 /* Skip setting PIO flow-control modes on pre-EIDE drives */
749 if ((speed & 0xf8) == XFER_PIO_0 && !(drive->id->capability & 0x08))
750 goto skip;
753 * Don't use ide_wait_cmd here - it will
754 * attempt to set_geometry and recalibrate,
755 * but for some reason these don't work at
756 * this point (lost interrupt).
759 * Select the drive, and issue the SETFEATURES command
761 disable_irq_nosync(hwif->irq);
764 * FIXME: we race against the running IRQ here if
765 * this is called from non IRQ context. If we use
766 * disable_irq() we hang on the error path. Work
767 * is needed.
770 udelay(1);
771 SELECT_DRIVE(drive);
772 SELECT_MASK(drive, 0);
773 udelay(1);
774 ide_set_irq(drive, 0);
775 hwif->OUTB(speed, IDE_NSECTOR_REG);
776 hwif->OUTB(SETFEATURES_XFER, IDE_FEATURE_REG);
777 hwif->OUTBSYNC(drive, WIN_SETFEATURES, IDE_COMMAND_REG);
778 if (drive->quirk_list == 2)
779 ide_set_irq(drive, 1);
781 error = __ide_wait_stat(drive, drive->ready_stat,
782 BUSY_STAT|DRQ_STAT|ERR_STAT,
783 WAIT_CMD, &stat);
785 SELECT_MASK(drive, 0);
787 enable_irq(hwif->irq);
789 if (error) {
790 (void) ide_dump_status(drive, "set_drive_speed_status", stat);
791 return error;
794 drive->id->dma_ultra &= ~0xFF00;
795 drive->id->dma_mword &= ~0x0F00;
796 drive->id->dma_1word &= ~0x0F00;
798 skip:
799 #ifdef CONFIG_BLK_DEV_IDEDMA
800 if ((speed >= XFER_SW_DMA_0 || (hwif->host_flags & IDE_HFLAG_VDMA)) &&
801 drive->using_dma)
802 hwif->dma_host_set(drive, 1);
803 else if (hwif->dma_host_set) /* check if host supports DMA */
804 ide_dma_off_quietly(drive);
805 #endif
807 switch(speed) {
808 case XFER_UDMA_7: drive->id->dma_ultra |= 0x8080; break;
809 case XFER_UDMA_6: drive->id->dma_ultra |= 0x4040; break;
810 case XFER_UDMA_5: drive->id->dma_ultra |= 0x2020; break;
811 case XFER_UDMA_4: drive->id->dma_ultra |= 0x1010; break;
812 case XFER_UDMA_3: drive->id->dma_ultra |= 0x0808; break;
813 case XFER_UDMA_2: drive->id->dma_ultra |= 0x0404; break;
814 case XFER_UDMA_1: drive->id->dma_ultra |= 0x0202; break;
815 case XFER_UDMA_0: drive->id->dma_ultra |= 0x0101; break;
816 case XFER_MW_DMA_2: drive->id->dma_mword |= 0x0404; break;
817 case XFER_MW_DMA_1: drive->id->dma_mword |= 0x0202; break;
818 case XFER_MW_DMA_0: drive->id->dma_mword |= 0x0101; break;
819 case XFER_SW_DMA_2: drive->id->dma_1word |= 0x0404; break;
820 case XFER_SW_DMA_1: drive->id->dma_1word |= 0x0202; break;
821 case XFER_SW_DMA_0: drive->id->dma_1word |= 0x0101; break;
822 default: break;
824 if (!drive->init_speed)
825 drive->init_speed = speed;
826 drive->current_speed = speed;
827 return error;
831 * This should get invoked any time we exit the driver to
832 * wait for an interrupt response from a drive. handler() points
833 * at the appropriate code to handle the next interrupt, and a
834 * timer is started to prevent us from waiting forever in case
835 * something goes wrong (see the ide_timer_expiry() handler later on).
837 * See also ide_execute_command
839 static void __ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
840 unsigned int timeout, ide_expiry_t *expiry)
842 ide_hwgroup_t *hwgroup = HWGROUP(drive);
844 if (hwgroup->handler != NULL) {
845 printk(KERN_CRIT "%s: ide_set_handler: handler not null; "
846 "old=%p, new=%p\n",
847 drive->name, hwgroup->handler, handler);
849 hwgroup->handler = handler;
850 hwgroup->expiry = expiry;
851 hwgroup->timer.expires = jiffies + timeout;
852 hwgroup->req_gen_timer = hwgroup->req_gen;
853 add_timer(&hwgroup->timer);
856 void ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
857 unsigned int timeout, ide_expiry_t *expiry)
859 unsigned long flags;
860 spin_lock_irqsave(&ide_lock, flags);
861 __ide_set_handler(drive, handler, timeout, expiry);
862 spin_unlock_irqrestore(&ide_lock, flags);
865 EXPORT_SYMBOL(ide_set_handler);
868 * ide_execute_command - execute an IDE command
869 * @drive: IDE drive to issue the command against
870 * @command: command byte to write
871 * @handler: handler for next phase
872 * @timeout: timeout for command
873 * @expiry: handler to run on timeout
875 * Helper function to issue an IDE command. This handles the
876 * atomicity requirements, command timing and ensures that the
877 * handler and IRQ setup do not race. All IDE command kick off
878 * should go via this function or do equivalent locking.
881 void ide_execute_command(ide_drive_t *drive, u8 cmd, ide_handler_t *handler,
882 unsigned timeout, ide_expiry_t *expiry)
884 unsigned long flags;
885 ide_hwgroup_t *hwgroup = HWGROUP(drive);
886 ide_hwif_t *hwif = HWIF(drive);
888 spin_lock_irqsave(&ide_lock, flags);
890 BUG_ON(hwgroup->handler);
891 hwgroup->handler = handler;
892 hwgroup->expiry = expiry;
893 hwgroup->timer.expires = jiffies + timeout;
894 hwgroup->req_gen_timer = hwgroup->req_gen;
895 add_timer(&hwgroup->timer);
896 hwif->OUTBSYNC(drive, cmd, IDE_COMMAND_REG);
897 /* Drive takes 400nS to respond, we must avoid the IRQ being
898 serviced before that.
900 FIXME: we could skip this delay with care on non shared
901 devices
903 ndelay(400);
904 spin_unlock_irqrestore(&ide_lock, flags);
907 EXPORT_SYMBOL(ide_execute_command);
910 /* needed below */
911 static ide_startstop_t do_reset1 (ide_drive_t *, int);
914 * atapi_reset_pollfunc() gets invoked to poll the interface for completion every 50ms
915 * during an atapi drive reset operation. If the drive has not yet responded,
916 * and we have not yet hit our maximum waiting time, then the timer is restarted
917 * for another 50ms.
919 static ide_startstop_t atapi_reset_pollfunc (ide_drive_t *drive)
921 ide_hwgroup_t *hwgroup = HWGROUP(drive);
922 ide_hwif_t *hwif = HWIF(drive);
923 u8 stat;
925 SELECT_DRIVE(drive);
926 udelay (10);
928 if (OK_STAT(stat = hwif->INB(IDE_STATUS_REG), 0, BUSY_STAT)) {
929 printk("%s: ATAPI reset complete\n", drive->name);
930 } else {
931 if (time_before(jiffies, hwgroup->poll_timeout)) {
932 BUG_ON(HWGROUP(drive)->handler != NULL);
933 ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
934 /* continue polling */
935 return ide_started;
937 /* end of polling */
938 hwgroup->polling = 0;
939 printk("%s: ATAPI reset timed-out, status=0x%02x\n",
940 drive->name, stat);
941 /* do it the old fashioned way */
942 return do_reset1(drive, 1);
944 /* done polling */
945 hwgroup->polling = 0;
946 hwgroup->resetting = 0;
947 return ide_stopped;
951 * reset_pollfunc() gets invoked to poll the interface for completion every 50ms
952 * during an ide reset operation. If the drives have not yet responded,
953 * and we have not yet hit our maximum waiting time, then the timer is restarted
954 * for another 50ms.
956 static ide_startstop_t reset_pollfunc (ide_drive_t *drive)
958 ide_hwgroup_t *hwgroup = HWGROUP(drive);
959 ide_hwif_t *hwif = HWIF(drive);
960 u8 tmp;
962 if (hwif->reset_poll != NULL) {
963 if (hwif->reset_poll(drive)) {
964 printk(KERN_ERR "%s: host reset_poll failure for %s.\n",
965 hwif->name, drive->name);
966 return ide_stopped;
970 if (!OK_STAT(tmp = hwif->INB(IDE_STATUS_REG), 0, BUSY_STAT)) {
971 if (time_before(jiffies, hwgroup->poll_timeout)) {
972 BUG_ON(HWGROUP(drive)->handler != NULL);
973 ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
974 /* continue polling */
975 return ide_started;
977 printk("%s: reset timed-out, status=0x%02x\n", hwif->name, tmp);
978 drive->failures++;
979 } else {
980 printk("%s: reset: ", hwif->name);
981 if ((tmp = hwif->INB(IDE_ERROR_REG)) == 1) {
982 printk("success\n");
983 drive->failures = 0;
984 } else {
985 drive->failures++;
986 printk("master: ");
987 switch (tmp & 0x7f) {
988 case 1: printk("passed");
989 break;
990 case 2: printk("formatter device error");
991 break;
992 case 3: printk("sector buffer error");
993 break;
994 case 4: printk("ECC circuitry error");
995 break;
996 case 5: printk("controlling MPU error");
997 break;
998 default:printk("error (0x%02x?)", tmp);
1000 if (tmp & 0x80)
1001 printk("; slave: failed");
1002 printk("\n");
1005 hwgroup->polling = 0; /* done polling */
1006 hwgroup->resetting = 0; /* done reset attempt */
1007 return ide_stopped;
1010 static void check_dma_crc(ide_drive_t *drive)
1012 #ifdef CONFIG_BLK_DEV_IDEDMA
1013 if (drive->crc_count) {
1014 ide_dma_off_quietly(drive);
1015 ide_set_xfer_rate(drive, ide_auto_reduce_xfer(drive));
1016 if (drive->current_speed >= XFER_SW_DMA_0)
1017 ide_dma_on(drive);
1018 } else
1019 ide_dma_off(drive);
1020 #endif
1023 static void ide_disk_pre_reset(ide_drive_t *drive)
1025 int legacy = (drive->id->cfs_enable_2 & 0x0400) ? 0 : 1;
1027 drive->special.all = 0;
1028 drive->special.b.set_geometry = legacy;
1029 drive->special.b.recalibrate = legacy;
1030 drive->mult_count = 0;
1031 if (!drive->keep_settings && !drive->using_dma)
1032 drive->mult_req = 0;
1033 if (drive->mult_req != drive->mult_count)
1034 drive->special.b.set_multmode = 1;
1037 static void pre_reset(ide_drive_t *drive)
1039 if (drive->media == ide_disk)
1040 ide_disk_pre_reset(drive);
1041 else
1042 drive->post_reset = 1;
1044 if (!drive->keep_settings) {
1045 if (drive->using_dma) {
1046 check_dma_crc(drive);
1047 } else {
1048 drive->unmask = 0;
1049 drive->io_32bit = 0;
1051 return;
1053 if (drive->using_dma)
1054 check_dma_crc(drive);
1056 if (HWIF(drive)->pre_reset != NULL)
1057 HWIF(drive)->pre_reset(drive);
1059 if (drive->current_speed != 0xff)
1060 drive->desired_speed = drive->current_speed;
1061 drive->current_speed = 0xff;
1065 * do_reset1() attempts to recover a confused drive by resetting it.
1066 * Unfortunately, resetting a disk drive actually resets all devices on
1067 * the same interface, so it can really be thought of as resetting the
1068 * interface rather than resetting the drive.
1070 * ATAPI devices have their own reset mechanism which allows them to be
1071 * individually reset without clobbering other devices on the same interface.
1073 * Unfortunately, the IDE interface does not generate an interrupt to let
1074 * us know when the reset operation has finished, so we must poll for this.
1075 * Equally poor, though, is the fact that this may a very long time to complete,
1076 * (up to 30 seconds worstcase). So, instead of busy-waiting here for it,
1077 * we set a timer to poll at 50ms intervals.
1079 static ide_startstop_t do_reset1 (ide_drive_t *drive, int do_not_try_atapi)
1081 unsigned int unit;
1082 unsigned long flags;
1083 ide_hwif_t *hwif;
1084 ide_hwgroup_t *hwgroup;
1086 spin_lock_irqsave(&ide_lock, flags);
1087 hwif = HWIF(drive);
1088 hwgroup = HWGROUP(drive);
1090 /* We must not reset with running handlers */
1091 BUG_ON(hwgroup->handler != NULL);
1093 /* For an ATAPI device, first try an ATAPI SRST. */
1094 if (drive->media != ide_disk && !do_not_try_atapi) {
1095 hwgroup->resetting = 1;
1096 pre_reset(drive);
1097 SELECT_DRIVE(drive);
1098 udelay (20);
1099 hwif->OUTBSYNC(drive, WIN_SRST, IDE_COMMAND_REG);
1100 ndelay(400);
1101 hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
1102 hwgroup->polling = 1;
1103 __ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
1104 spin_unlock_irqrestore(&ide_lock, flags);
1105 return ide_started;
1109 * First, reset any device state data we were maintaining
1110 * for any of the drives on this interface.
1112 for (unit = 0; unit < MAX_DRIVES; ++unit)
1113 pre_reset(&hwif->drives[unit]);
1115 if (!IDE_CONTROL_REG) {
1116 spin_unlock_irqrestore(&ide_lock, flags);
1117 return ide_stopped;
1120 hwgroup->resetting = 1;
1122 * Note that we also set nIEN while resetting the device,
1123 * to mask unwanted interrupts from the interface during the reset.
1124 * However, due to the design of PC hardware, this will cause an
1125 * immediate interrupt due to the edge transition it produces.
1126 * This single interrupt gives us a "fast poll" for drives that
1127 * recover from reset very quickly, saving us the first 50ms wait time.
1129 /* set SRST and nIEN */
1130 hwif->OUTBSYNC(drive, drive->ctl|6,IDE_CONTROL_REG);
1131 /* more than enough time */
1132 udelay(10);
1133 if (drive->quirk_list == 2) {
1134 /* clear SRST and nIEN */
1135 hwif->OUTBSYNC(drive, drive->ctl, IDE_CONTROL_REG);
1136 } else {
1137 /* clear SRST, leave nIEN */
1138 hwif->OUTBSYNC(drive, drive->ctl|2, IDE_CONTROL_REG);
1140 /* more than enough time */
1141 udelay(10);
1142 hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
1143 hwgroup->polling = 1;
1144 __ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
1147 * Some weird controller like resetting themselves to a strange
1148 * state when the disks are reset this way. At least, the Winbond
1149 * 553 documentation says that
1151 if (hwif->resetproc)
1152 hwif->resetproc(drive);
1154 spin_unlock_irqrestore(&ide_lock, flags);
1155 return ide_started;
1159 * ide_do_reset() is the entry point to the drive/interface reset code.
1162 ide_startstop_t ide_do_reset (ide_drive_t *drive)
1164 return do_reset1(drive, 0);
1167 EXPORT_SYMBOL(ide_do_reset);
1170 * ide_wait_not_busy() waits for the currently selected device on the hwif
1171 * to report a non-busy status, see comments in probe_hwif().
1173 int ide_wait_not_busy(ide_hwif_t *hwif, unsigned long timeout)
1175 u8 stat = 0;
1177 while(timeout--) {
1179 * Turn this into a schedule() sleep once I'm sure
1180 * about locking issues (2.5 work ?).
1182 mdelay(1);
1183 stat = hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1184 if ((stat & BUSY_STAT) == 0)
1185 return 0;
1187 * Assume a value of 0xff means nothing is connected to
1188 * the interface and it doesn't implement the pull-down
1189 * resistor on D7.
1191 if (stat == 0xff)
1192 return -ENODEV;
1193 touch_softlockup_watchdog();
1194 touch_nmi_watchdog();
1196 return -EBUSY;
1199 EXPORT_SYMBOL_GPL(ide_wait_not_busy);