powerpc/mm: Split hash MMU specific hugepage code into a new file
[linux-2.6/kvm.git] / arch / powerpc / mm / hugetlbpage.c
blob1bf065546fa1174ee3d2cd2374f60ab9544f910b
1 /*
2 * PPC64 (POWER4) Huge TLB Page Support for Kernel.
4 * Copyright (C) 2003 David Gibson, IBM Corporation.
6 * Based on the IA-32 version:
7 * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
8 */
10 #include <linux/mm.h>
11 #include <linux/io.h>
12 #include <linux/hugetlb.h>
13 #include <asm/pgtable.h>
14 #include <asm/pgalloc.h>
15 #include <asm/tlb.h>
17 #define PAGE_SHIFT_64K 16
18 #define PAGE_SHIFT_16M 24
19 #define PAGE_SHIFT_16G 34
21 #define MAX_NUMBER_GPAGES 1024
23 /* Tracks the 16G pages after the device tree is scanned and before the
24 * huge_boot_pages list is ready. */
25 static unsigned long gpage_freearray[MAX_NUMBER_GPAGES];
26 static unsigned nr_gpages;
28 /* Flag to mark huge PD pointers. This means pmd_bad() and pud_bad()
29 * will choke on pointers to hugepte tables, which is handy for
30 * catching screwups early. */
32 static inline int shift_to_mmu_psize(unsigned int shift)
34 int psize;
36 for (psize = 0; psize < MMU_PAGE_COUNT; ++psize)
37 if (mmu_psize_defs[psize].shift == shift)
38 return psize;
39 return -1;
42 static inline unsigned int mmu_psize_to_shift(unsigned int mmu_psize)
44 if (mmu_psize_defs[mmu_psize].shift)
45 return mmu_psize_defs[mmu_psize].shift;
46 BUG();
49 #define hugepd_none(hpd) ((hpd).pd == 0)
51 static inline pte_t *hugepd_page(hugepd_t hpd)
53 BUG_ON(!hugepd_ok(hpd));
54 return (pte_t *)((hpd.pd & ~HUGEPD_SHIFT_MASK) | 0xc000000000000000);
57 static inline unsigned int hugepd_shift(hugepd_t hpd)
59 return hpd.pd & HUGEPD_SHIFT_MASK;
62 static inline pte_t *hugepte_offset(hugepd_t *hpdp, unsigned long addr, unsigned pdshift)
64 unsigned long idx = (addr & ((1UL << pdshift) - 1)) >> hugepd_shift(*hpdp);
65 pte_t *dir = hugepd_page(*hpdp);
67 return dir + idx;
70 pte_t *find_linux_pte_or_hugepte(pgd_t *pgdir, unsigned long ea, unsigned *shift)
72 pgd_t *pg;
73 pud_t *pu;
74 pmd_t *pm;
75 hugepd_t *hpdp = NULL;
76 unsigned pdshift = PGDIR_SHIFT;
78 if (shift)
79 *shift = 0;
81 pg = pgdir + pgd_index(ea);
82 if (is_hugepd(pg)) {
83 hpdp = (hugepd_t *)pg;
84 } else if (!pgd_none(*pg)) {
85 pdshift = PUD_SHIFT;
86 pu = pud_offset(pg, ea);
87 if (is_hugepd(pu))
88 hpdp = (hugepd_t *)pu;
89 else if (!pud_none(*pu)) {
90 pdshift = PMD_SHIFT;
91 pm = pmd_offset(pu, ea);
92 if (is_hugepd(pm))
93 hpdp = (hugepd_t *)pm;
94 else if (!pmd_none(*pm)) {
95 return pte_offset_map(pm, ea);
100 if (!hpdp)
101 return NULL;
103 if (shift)
104 *shift = hugepd_shift(*hpdp);
105 return hugepte_offset(hpdp, ea, pdshift);
108 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
110 return find_linux_pte_or_hugepte(mm->pgd, addr, NULL);
113 static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp,
114 unsigned long address, unsigned pdshift, unsigned pshift)
116 pte_t *new = kmem_cache_zalloc(PGT_CACHE(pdshift - pshift),
117 GFP_KERNEL|__GFP_REPEAT);
119 BUG_ON(pshift > HUGEPD_SHIFT_MASK);
120 BUG_ON((unsigned long)new & HUGEPD_SHIFT_MASK);
122 if (! new)
123 return -ENOMEM;
125 spin_lock(&mm->page_table_lock);
126 if (!hugepd_none(*hpdp))
127 kmem_cache_free(PGT_CACHE(pdshift - pshift), new);
128 else
129 hpdp->pd = ((unsigned long)new & ~0x8000000000000000) | pshift;
130 spin_unlock(&mm->page_table_lock);
131 return 0;
134 pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz)
136 pgd_t *pg;
137 pud_t *pu;
138 pmd_t *pm;
139 hugepd_t *hpdp = NULL;
140 unsigned pshift = __ffs(sz);
141 unsigned pdshift = PGDIR_SHIFT;
143 addr &= ~(sz-1);
145 pg = pgd_offset(mm, addr);
146 if (pshift >= PUD_SHIFT) {
147 hpdp = (hugepd_t *)pg;
148 } else {
149 pdshift = PUD_SHIFT;
150 pu = pud_alloc(mm, pg, addr);
151 if (pshift >= PMD_SHIFT) {
152 hpdp = (hugepd_t *)pu;
153 } else {
154 pdshift = PMD_SHIFT;
155 pm = pmd_alloc(mm, pu, addr);
156 hpdp = (hugepd_t *)pm;
160 if (!hpdp)
161 return NULL;
163 BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp));
165 if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, pdshift, pshift))
166 return NULL;
168 return hugepte_offset(hpdp, addr, pdshift);
171 /* Build list of addresses of gigantic pages. This function is used in early
172 * boot before the buddy or bootmem allocator is setup.
174 void add_gpage(unsigned long addr, unsigned long page_size,
175 unsigned long number_of_pages)
177 if (!addr)
178 return;
179 while (number_of_pages > 0) {
180 gpage_freearray[nr_gpages] = addr;
181 nr_gpages++;
182 number_of_pages--;
183 addr += page_size;
187 /* Moves the gigantic page addresses from the temporary list to the
188 * huge_boot_pages list.
190 int alloc_bootmem_huge_page(struct hstate *hstate)
192 struct huge_bootmem_page *m;
193 if (nr_gpages == 0)
194 return 0;
195 m = phys_to_virt(gpage_freearray[--nr_gpages]);
196 gpage_freearray[nr_gpages] = 0;
197 list_add(&m->list, &huge_boot_pages);
198 m->hstate = hstate;
199 return 1;
202 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
204 return 0;
207 static void free_hugepd_range(struct mmu_gather *tlb, hugepd_t *hpdp, int pdshift,
208 unsigned long start, unsigned long end,
209 unsigned long floor, unsigned long ceiling)
211 pte_t *hugepte = hugepd_page(*hpdp);
212 unsigned shift = hugepd_shift(*hpdp);
213 unsigned long pdmask = ~((1UL << pdshift) - 1);
215 start &= pdmask;
216 if (start < floor)
217 return;
218 if (ceiling) {
219 ceiling &= pdmask;
220 if (! ceiling)
221 return;
223 if (end - 1 > ceiling - 1)
224 return;
226 hpdp->pd = 0;
227 tlb->need_flush = 1;
228 pgtable_free_tlb(tlb, hugepte, pdshift - shift);
231 static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
232 unsigned long addr, unsigned long end,
233 unsigned long floor, unsigned long ceiling)
235 pmd_t *pmd;
236 unsigned long next;
237 unsigned long start;
239 start = addr;
240 pmd = pmd_offset(pud, addr);
241 do {
242 next = pmd_addr_end(addr, end);
243 if (pmd_none(*pmd))
244 continue;
245 free_hugepd_range(tlb, (hugepd_t *)pmd, PMD_SHIFT,
246 addr, next, floor, ceiling);
247 } while (pmd++, addr = next, addr != end);
249 start &= PUD_MASK;
250 if (start < floor)
251 return;
252 if (ceiling) {
253 ceiling &= PUD_MASK;
254 if (!ceiling)
255 return;
257 if (end - 1 > ceiling - 1)
258 return;
260 pmd = pmd_offset(pud, start);
261 pud_clear(pud);
262 pmd_free_tlb(tlb, pmd, start);
265 static void hugetlb_free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
266 unsigned long addr, unsigned long end,
267 unsigned long floor, unsigned long ceiling)
269 pud_t *pud;
270 unsigned long next;
271 unsigned long start;
273 start = addr;
274 pud = pud_offset(pgd, addr);
275 do {
276 next = pud_addr_end(addr, end);
277 if (!is_hugepd(pud)) {
278 if (pud_none_or_clear_bad(pud))
279 continue;
280 hugetlb_free_pmd_range(tlb, pud, addr, next, floor,
281 ceiling);
282 } else {
283 free_hugepd_range(tlb, (hugepd_t *)pud, PUD_SHIFT,
284 addr, next, floor, ceiling);
286 } while (pud++, addr = next, addr != end);
288 start &= PGDIR_MASK;
289 if (start < floor)
290 return;
291 if (ceiling) {
292 ceiling &= PGDIR_MASK;
293 if (!ceiling)
294 return;
296 if (end - 1 > ceiling - 1)
297 return;
299 pud = pud_offset(pgd, start);
300 pgd_clear(pgd);
301 pud_free_tlb(tlb, pud, start);
305 * This function frees user-level page tables of a process.
307 * Must be called with pagetable lock held.
309 void hugetlb_free_pgd_range(struct mmu_gather *tlb,
310 unsigned long addr, unsigned long end,
311 unsigned long floor, unsigned long ceiling)
313 pgd_t *pgd;
314 unsigned long next;
317 * Because there are a number of different possible pagetable
318 * layouts for hugepage ranges, we limit knowledge of how
319 * things should be laid out to the allocation path
320 * (huge_pte_alloc(), above). Everything else works out the
321 * structure as it goes from information in the hugepd
322 * pointers. That means that we can't here use the
323 * optimization used in the normal page free_pgd_range(), of
324 * checking whether we're actually covering a large enough
325 * range to have to do anything at the top level of the walk
326 * instead of at the bottom.
328 * To make sense of this, you should probably go read the big
329 * block comment at the top of the normal free_pgd_range(),
330 * too.
333 pgd = pgd_offset(tlb->mm, addr);
334 do {
335 next = pgd_addr_end(addr, end);
336 if (!is_hugepd(pgd)) {
337 if (pgd_none_or_clear_bad(pgd))
338 continue;
339 hugetlb_free_pud_range(tlb, pgd, addr, next, floor, ceiling);
340 } else {
341 free_hugepd_range(tlb, (hugepd_t *)pgd, PGDIR_SHIFT,
342 addr, next, floor, ceiling);
344 } while (pgd++, addr = next, addr != end);
347 void set_huge_pte_at(struct mm_struct *mm, unsigned long addr,
348 pte_t *ptep, pte_t pte)
350 if (pte_present(*ptep)) {
351 /* We open-code pte_clear because we need to pass the right
352 * argument to hpte_need_flush (huge / !huge). Might not be
353 * necessary anymore if we make hpte_need_flush() get the
354 * page size from the slices
356 pte_update(mm, addr, ptep, ~0UL, 1);
358 *ptep = __pte(pte_val(pte) & ~_PAGE_HPTEFLAGS);
361 pte_t huge_ptep_get_and_clear(struct mm_struct *mm, unsigned long addr,
362 pte_t *ptep)
364 unsigned long old = pte_update(mm, addr, ptep, ~0UL, 1);
365 return __pte(old);
368 struct page *
369 follow_huge_addr(struct mm_struct *mm, unsigned long address, int write)
371 pte_t *ptep;
372 struct page *page;
373 unsigned shift;
374 unsigned long mask;
376 ptep = find_linux_pte_or_hugepte(mm->pgd, address, &shift);
378 /* Verify it is a huge page else bail. */
379 if (!ptep || !shift)
380 return ERR_PTR(-EINVAL);
382 mask = (1UL << shift) - 1;
383 page = pte_page(*ptep);
384 if (page)
385 page += (address & mask) / PAGE_SIZE;
387 return page;
390 int pmd_huge(pmd_t pmd)
392 return 0;
395 int pud_huge(pud_t pud)
397 return 0;
400 struct page *
401 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
402 pmd_t *pmd, int write)
404 BUG();
405 return NULL;
408 static noinline int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
409 unsigned long end, int write, struct page **pages, int *nr)
411 unsigned long mask;
412 unsigned long pte_end;
413 struct page *head, *page;
414 pte_t pte;
415 int refs;
417 pte_end = (addr + sz) & ~(sz-1);
418 if (pte_end < end)
419 end = pte_end;
421 pte = *ptep;
422 mask = _PAGE_PRESENT | _PAGE_USER;
423 if (write)
424 mask |= _PAGE_RW;
426 if ((pte_val(pte) & mask) != mask)
427 return 0;
429 /* hugepages are never "special" */
430 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
432 refs = 0;
433 head = pte_page(pte);
435 page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
436 do {
437 VM_BUG_ON(compound_head(page) != head);
438 pages[*nr] = page;
439 (*nr)++;
440 page++;
441 refs++;
442 } while (addr += PAGE_SIZE, addr != end);
444 if (!page_cache_add_speculative(head, refs)) {
445 *nr -= refs;
446 return 0;
449 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
450 /* Could be optimized better */
451 while (*nr) {
452 put_page(page);
453 (*nr)--;
457 return 1;
460 int gup_hugepd(hugepd_t *hugepd, unsigned pdshift,
461 unsigned long addr, unsigned long end,
462 int write, struct page **pages, int *nr)
464 pte_t *ptep;
465 unsigned long sz = 1UL << hugepd_shift(*hugepd);
467 ptep = hugepte_offset(hugepd, addr, pdshift);
468 do {
469 if (!gup_hugepte(ptep, sz, addr, end, write, pages, nr))
470 return 0;
471 } while (ptep++, addr += sz, addr != end);
473 return 1;
476 unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
477 unsigned long len, unsigned long pgoff,
478 unsigned long flags)
480 struct hstate *hstate = hstate_file(file);
481 int mmu_psize = shift_to_mmu_psize(huge_page_shift(hstate));
483 return slice_get_unmapped_area(addr, len, flags, mmu_psize, 1, 0);
486 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
488 unsigned int psize = get_slice_psize(vma->vm_mm, vma->vm_start);
490 return 1UL << mmu_psize_to_shift(psize);
493 static int __init add_huge_page_size(unsigned long long size)
495 int shift = __ffs(size);
496 int mmu_psize;
498 /* Check that it is a page size supported by the hardware and
499 * that it fits within pagetable and slice limits. */
500 if (!is_power_of_2(size)
501 || (shift > SLICE_HIGH_SHIFT) || (shift <= PAGE_SHIFT))
502 return -EINVAL;
504 if ((mmu_psize = shift_to_mmu_psize(shift)) < 0)
505 return -EINVAL;
507 #ifdef CONFIG_SPU_FS_64K_LS
508 /* Disable support for 64K huge pages when 64K SPU local store
509 * support is enabled as the current implementation conflicts.
511 if (shift == PAGE_SHIFT_64K)
512 return -EINVAL;
513 #endif /* CONFIG_SPU_FS_64K_LS */
515 BUG_ON(mmu_psize_defs[mmu_psize].shift != shift);
517 /* Return if huge page size has already been setup */
518 if (size_to_hstate(size))
519 return 0;
521 hugetlb_add_hstate(shift - PAGE_SHIFT);
523 return 0;
526 static int __init hugepage_setup_sz(char *str)
528 unsigned long long size;
530 size = memparse(str, &str);
532 if (add_huge_page_size(size) != 0)
533 printk(KERN_WARNING "Invalid huge page size specified(%llu)\n", size);
535 return 1;
537 __setup("hugepagesz=", hugepage_setup_sz);
539 static int __init hugetlbpage_init(void)
541 int psize;
543 if (!cpu_has_feature(CPU_FTR_16M_PAGE))
544 return -ENODEV;
546 for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
547 unsigned shift;
548 unsigned pdshift;
550 if (!mmu_psize_defs[psize].shift)
551 continue;
553 shift = mmu_psize_to_shift(psize);
555 if (add_huge_page_size(1ULL << shift) < 0)
556 continue;
558 if (shift < PMD_SHIFT)
559 pdshift = PMD_SHIFT;
560 else if (shift < PUD_SHIFT)
561 pdshift = PUD_SHIFT;
562 else
563 pdshift = PGDIR_SHIFT;
565 pgtable_cache_add(pdshift - shift, NULL);
566 if (!PGT_CACHE(pdshift - shift))
567 panic("hugetlbpage_init(): could not create "
568 "pgtable cache for %d bit pagesize\n", shift);
571 /* Set default large page size. Currently, we pick 16M or 1M
572 * depending on what is available
574 if (mmu_psize_defs[MMU_PAGE_16M].shift)
575 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_16M].shift;
576 else if (mmu_psize_defs[MMU_PAGE_1M].shift)
577 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_1M].shift;
579 return 0;
582 module_init(hugetlbpage_init);