ath9k: Add helper to get ath9k specific current channel
[linux-2.6/kvm.git] / drivers / net / wireless / ath / ath9k / main.c
blob89bf07e66d10b4d10459293096b07ba14bf449e9
1 /*
2 * Copyright (c) 2008-2009 Atheros Communications Inc.
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 #include <linux/nl80211.h>
18 #include "ath9k.h"
20 #define ATH_PCI_VERSION "0.1"
22 static char *dev_info = "ath9k";
24 MODULE_AUTHOR("Atheros Communications");
25 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
26 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
27 MODULE_LICENSE("Dual BSD/GPL");
29 static int modparam_nohwcrypt;
30 module_param_named(nohwcrypt, modparam_nohwcrypt, int, 0444);
31 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption");
33 /* We use the hw_value as an index into our private channel structure */
35 #define CHAN2G(_freq, _idx) { \
36 .center_freq = (_freq), \
37 .hw_value = (_idx), \
38 .max_power = 20, \
41 #define CHAN5G(_freq, _idx) { \
42 .band = IEEE80211_BAND_5GHZ, \
43 .center_freq = (_freq), \
44 .hw_value = (_idx), \
45 .max_power = 20, \
48 /* Some 2 GHz radios are actually tunable on 2312-2732
49 * on 5 MHz steps, we support the channels which we know
50 * we have calibration data for all cards though to make
51 * this static */
52 static struct ieee80211_channel ath9k_2ghz_chantable[] = {
53 CHAN2G(2412, 0), /* Channel 1 */
54 CHAN2G(2417, 1), /* Channel 2 */
55 CHAN2G(2422, 2), /* Channel 3 */
56 CHAN2G(2427, 3), /* Channel 4 */
57 CHAN2G(2432, 4), /* Channel 5 */
58 CHAN2G(2437, 5), /* Channel 6 */
59 CHAN2G(2442, 6), /* Channel 7 */
60 CHAN2G(2447, 7), /* Channel 8 */
61 CHAN2G(2452, 8), /* Channel 9 */
62 CHAN2G(2457, 9), /* Channel 10 */
63 CHAN2G(2462, 10), /* Channel 11 */
64 CHAN2G(2467, 11), /* Channel 12 */
65 CHAN2G(2472, 12), /* Channel 13 */
66 CHAN2G(2484, 13), /* Channel 14 */
69 /* Some 5 GHz radios are actually tunable on XXXX-YYYY
70 * on 5 MHz steps, we support the channels which we know
71 * we have calibration data for all cards though to make
72 * this static */
73 static struct ieee80211_channel ath9k_5ghz_chantable[] = {
74 /* _We_ call this UNII 1 */
75 CHAN5G(5180, 14), /* Channel 36 */
76 CHAN5G(5200, 15), /* Channel 40 */
77 CHAN5G(5220, 16), /* Channel 44 */
78 CHAN5G(5240, 17), /* Channel 48 */
79 /* _We_ call this UNII 2 */
80 CHAN5G(5260, 18), /* Channel 52 */
81 CHAN5G(5280, 19), /* Channel 56 */
82 CHAN5G(5300, 20), /* Channel 60 */
83 CHAN5G(5320, 21), /* Channel 64 */
84 /* _We_ call this "Middle band" */
85 CHAN5G(5500, 22), /* Channel 100 */
86 CHAN5G(5520, 23), /* Channel 104 */
87 CHAN5G(5540, 24), /* Channel 108 */
88 CHAN5G(5560, 25), /* Channel 112 */
89 CHAN5G(5580, 26), /* Channel 116 */
90 CHAN5G(5600, 27), /* Channel 120 */
91 CHAN5G(5620, 28), /* Channel 124 */
92 CHAN5G(5640, 29), /* Channel 128 */
93 CHAN5G(5660, 30), /* Channel 132 */
94 CHAN5G(5680, 31), /* Channel 136 */
95 CHAN5G(5700, 32), /* Channel 140 */
96 /* _We_ call this UNII 3 */
97 CHAN5G(5745, 33), /* Channel 149 */
98 CHAN5G(5765, 34), /* Channel 153 */
99 CHAN5G(5785, 35), /* Channel 157 */
100 CHAN5G(5805, 36), /* Channel 161 */
101 CHAN5G(5825, 37), /* Channel 165 */
104 static void ath_cache_conf_rate(struct ath_softc *sc,
105 struct ieee80211_conf *conf)
107 switch (conf->channel->band) {
108 case IEEE80211_BAND_2GHZ:
109 if (conf_is_ht20(conf))
110 sc->cur_rate_table =
111 sc->hw_rate_table[ATH9K_MODE_11NG_HT20];
112 else if (conf_is_ht40_minus(conf))
113 sc->cur_rate_table =
114 sc->hw_rate_table[ATH9K_MODE_11NG_HT40MINUS];
115 else if (conf_is_ht40_plus(conf))
116 sc->cur_rate_table =
117 sc->hw_rate_table[ATH9K_MODE_11NG_HT40PLUS];
118 else
119 sc->cur_rate_table =
120 sc->hw_rate_table[ATH9K_MODE_11G];
121 break;
122 case IEEE80211_BAND_5GHZ:
123 if (conf_is_ht20(conf))
124 sc->cur_rate_table =
125 sc->hw_rate_table[ATH9K_MODE_11NA_HT20];
126 else if (conf_is_ht40_minus(conf))
127 sc->cur_rate_table =
128 sc->hw_rate_table[ATH9K_MODE_11NA_HT40MINUS];
129 else if (conf_is_ht40_plus(conf))
130 sc->cur_rate_table =
131 sc->hw_rate_table[ATH9K_MODE_11NA_HT40PLUS];
132 else
133 sc->cur_rate_table =
134 sc->hw_rate_table[ATH9K_MODE_11A];
135 break;
136 default:
137 BUG_ON(1);
138 break;
142 static void ath_update_txpow(struct ath_softc *sc)
144 struct ath_hw *ah = sc->sc_ah;
145 u32 txpow;
147 if (sc->curtxpow != sc->config.txpowlimit) {
148 ath9k_hw_set_txpowerlimit(ah, sc->config.txpowlimit);
149 /* read back in case value is clamped */
150 ath9k_hw_getcapability(ah, ATH9K_CAP_TXPOW, 1, &txpow);
151 sc->curtxpow = txpow;
155 static u8 parse_mpdudensity(u8 mpdudensity)
158 * 802.11n D2.0 defined values for "Minimum MPDU Start Spacing":
159 * 0 for no restriction
160 * 1 for 1/4 us
161 * 2 for 1/2 us
162 * 3 for 1 us
163 * 4 for 2 us
164 * 5 for 4 us
165 * 6 for 8 us
166 * 7 for 16 us
168 switch (mpdudensity) {
169 case 0:
170 return 0;
171 case 1:
172 case 2:
173 case 3:
174 /* Our lower layer calculations limit our precision to
175 1 microsecond */
176 return 1;
177 case 4:
178 return 2;
179 case 5:
180 return 4;
181 case 6:
182 return 8;
183 case 7:
184 return 16;
185 default:
186 return 0;
190 static void ath_setup_rates(struct ath_softc *sc, enum ieee80211_band band)
192 const struct ath_rate_table *rate_table = NULL;
193 struct ieee80211_supported_band *sband;
194 struct ieee80211_rate *rate;
195 int i, maxrates;
197 switch (band) {
198 case IEEE80211_BAND_2GHZ:
199 rate_table = sc->hw_rate_table[ATH9K_MODE_11G];
200 break;
201 case IEEE80211_BAND_5GHZ:
202 rate_table = sc->hw_rate_table[ATH9K_MODE_11A];
203 break;
204 default:
205 break;
208 if (rate_table == NULL)
209 return;
211 sband = &sc->sbands[band];
212 rate = sc->rates[band];
214 if (rate_table->rate_cnt > ATH_RATE_MAX)
215 maxrates = ATH_RATE_MAX;
216 else
217 maxrates = rate_table->rate_cnt;
219 for (i = 0; i < maxrates; i++) {
220 rate[i].bitrate = rate_table->info[i].ratekbps / 100;
221 rate[i].hw_value = rate_table->info[i].ratecode;
222 if (rate_table->info[i].short_preamble) {
223 rate[i].hw_value_short = rate_table->info[i].ratecode |
224 rate_table->info[i].short_preamble;
225 rate[i].flags = IEEE80211_RATE_SHORT_PREAMBLE;
227 sband->n_bitrates++;
229 DPRINTF(sc, ATH_DBG_CONFIG, "Rate: %2dMbps, ratecode: %2d\n",
230 rate[i].bitrate / 10, rate[i].hw_value);
234 static struct ath9k_channel *ath_get_curchannel(struct ath_softc *sc,
235 struct ieee80211_hw *hw)
237 struct ieee80211_channel *curchan = hw->conf.channel;
238 struct ath9k_channel *channel;
239 u8 chan_idx;
241 chan_idx = curchan->hw_value;
242 channel = &sc->sc_ah->channels[chan_idx];
243 ath9k_update_ichannel(sc, hw, channel);
244 return channel;
248 * Set/change channels. If the channel is really being changed, it's done
249 * by reseting the chip. To accomplish this we must first cleanup any pending
250 * DMA, then restart stuff.
252 int ath_set_channel(struct ath_softc *sc, struct ieee80211_hw *hw,
253 struct ath9k_channel *hchan)
255 struct ath_hw *ah = sc->sc_ah;
256 bool fastcc = true, stopped;
257 struct ieee80211_channel *channel = hw->conf.channel;
258 int r;
260 if (sc->sc_flags & SC_OP_INVALID)
261 return -EIO;
263 ath9k_ps_wakeup(sc);
266 * This is only performed if the channel settings have
267 * actually changed.
269 * To switch channels clear any pending DMA operations;
270 * wait long enough for the RX fifo to drain, reset the
271 * hardware at the new frequency, and then re-enable
272 * the relevant bits of the h/w.
274 ath9k_hw_set_interrupts(ah, 0);
275 ath_drain_all_txq(sc, false);
276 stopped = ath_stoprecv(sc);
278 /* XXX: do not flush receive queue here. We don't want
279 * to flush data frames already in queue because of
280 * changing channel. */
282 if (!stopped || (sc->sc_flags & SC_OP_FULL_RESET))
283 fastcc = false;
285 DPRINTF(sc, ATH_DBG_CONFIG,
286 "(%u MHz) -> (%u MHz), chanwidth: %d\n",
287 sc->sc_ah->curchan->channel,
288 channel->center_freq, sc->tx_chan_width);
290 spin_lock_bh(&sc->sc_resetlock);
292 r = ath9k_hw_reset(ah, hchan, fastcc);
293 if (r) {
294 DPRINTF(sc, ATH_DBG_FATAL,
295 "Unable to reset channel (%u Mhz) "
296 "reset status %d\n",
297 channel->center_freq, r);
298 spin_unlock_bh(&sc->sc_resetlock);
299 return r;
301 spin_unlock_bh(&sc->sc_resetlock);
303 sc->sc_flags &= ~SC_OP_FULL_RESET;
305 if (ath_startrecv(sc) != 0) {
306 DPRINTF(sc, ATH_DBG_FATAL,
307 "Unable to restart recv logic\n");
308 return -EIO;
311 ath_cache_conf_rate(sc, &hw->conf);
312 ath_update_txpow(sc);
313 ath9k_hw_set_interrupts(ah, sc->imask);
314 ath9k_ps_restore(sc);
315 return 0;
319 * This routine performs the periodic noise floor calibration function
320 * that is used to adjust and optimize the chip performance. This
321 * takes environmental changes (location, temperature) into account.
322 * When the task is complete, it reschedules itself depending on the
323 * appropriate interval that was calculated.
325 static void ath_ani_calibrate(unsigned long data)
327 struct ath_softc *sc = (struct ath_softc *)data;
328 struct ath_hw *ah = sc->sc_ah;
329 bool longcal = false;
330 bool shortcal = false;
331 bool aniflag = false;
332 unsigned int timestamp = jiffies_to_msecs(jiffies);
333 u32 cal_interval, short_cal_interval;
335 short_cal_interval = (ah->opmode == NL80211_IFTYPE_AP) ?
336 ATH_AP_SHORT_CALINTERVAL : ATH_STA_SHORT_CALINTERVAL;
339 * don't calibrate when we're scanning.
340 * we are most likely not on our home channel.
342 if (sc->sc_flags & SC_OP_SCANNING)
343 goto set_timer;
345 /* Only calibrate if awake */
346 if (sc->sc_ah->power_mode != ATH9K_PM_AWAKE)
347 goto set_timer;
349 ath9k_ps_wakeup(sc);
351 /* Long calibration runs independently of short calibration. */
352 if ((timestamp - sc->ani.longcal_timer) >= ATH_LONG_CALINTERVAL) {
353 longcal = true;
354 DPRINTF(sc, ATH_DBG_ANI, "longcal @%lu\n", jiffies);
355 sc->ani.longcal_timer = timestamp;
358 /* Short calibration applies only while caldone is false */
359 if (!sc->ani.caldone) {
360 if ((timestamp - sc->ani.shortcal_timer) >= short_cal_interval) {
361 shortcal = true;
362 DPRINTF(sc, ATH_DBG_ANI, "shortcal @%lu\n", jiffies);
363 sc->ani.shortcal_timer = timestamp;
364 sc->ani.resetcal_timer = timestamp;
366 } else {
367 if ((timestamp - sc->ani.resetcal_timer) >=
368 ATH_RESTART_CALINTERVAL) {
369 sc->ani.caldone = ath9k_hw_reset_calvalid(ah);
370 if (sc->ani.caldone)
371 sc->ani.resetcal_timer = timestamp;
375 /* Verify whether we must check ANI */
376 if ((timestamp - sc->ani.checkani_timer) >= ATH_ANI_POLLINTERVAL) {
377 aniflag = true;
378 sc->ani.checkani_timer = timestamp;
381 /* Skip all processing if there's nothing to do. */
382 if (longcal || shortcal || aniflag) {
383 /* Call ANI routine if necessary */
384 if (aniflag)
385 ath9k_hw_ani_monitor(ah, &sc->nodestats, ah->curchan);
387 /* Perform calibration if necessary */
388 if (longcal || shortcal) {
389 sc->ani.caldone = ath9k_hw_calibrate(ah, ah->curchan,
390 sc->rx_chainmask, longcal);
392 if (longcal)
393 sc->ani.noise_floor = ath9k_hw_getchan_noise(ah,
394 ah->curchan);
396 DPRINTF(sc, ATH_DBG_ANI," calibrate chan %u/%x nf: %d\n",
397 ah->curchan->channel, ah->curchan->channelFlags,
398 sc->ani.noise_floor);
402 ath9k_ps_restore(sc);
404 set_timer:
406 * Set timer interval based on previous results.
407 * The interval must be the shortest necessary to satisfy ANI,
408 * short calibration and long calibration.
410 cal_interval = ATH_LONG_CALINTERVAL;
411 if (sc->sc_ah->config.enable_ani)
412 cal_interval = min(cal_interval, (u32)ATH_ANI_POLLINTERVAL);
413 if (!sc->ani.caldone)
414 cal_interval = min(cal_interval, (u32)short_cal_interval);
416 mod_timer(&sc->ani.timer, jiffies + msecs_to_jiffies(cal_interval));
419 static void ath_start_ani(struct ath_softc *sc)
421 unsigned long timestamp = jiffies_to_msecs(jiffies);
423 sc->ani.longcal_timer = timestamp;
424 sc->ani.shortcal_timer = timestamp;
425 sc->ani.checkani_timer = timestamp;
427 mod_timer(&sc->ani.timer,
428 jiffies + msecs_to_jiffies(ATH_ANI_POLLINTERVAL));
432 * Update tx/rx chainmask. For legacy association,
433 * hard code chainmask to 1x1, for 11n association, use
434 * the chainmask configuration, for bt coexistence, use
435 * the chainmask configuration even in legacy mode.
437 void ath_update_chainmask(struct ath_softc *sc, int is_ht)
439 if (is_ht ||
440 (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_BT_COEX)) {
441 sc->tx_chainmask = sc->sc_ah->caps.tx_chainmask;
442 sc->rx_chainmask = sc->sc_ah->caps.rx_chainmask;
443 } else {
444 sc->tx_chainmask = 1;
445 sc->rx_chainmask = 1;
448 DPRINTF(sc, ATH_DBG_CONFIG, "tx chmask: %d, rx chmask: %d\n",
449 sc->tx_chainmask, sc->rx_chainmask);
452 static void ath_node_attach(struct ath_softc *sc, struct ieee80211_sta *sta)
454 struct ath_node *an;
456 an = (struct ath_node *)sta->drv_priv;
458 if (sc->sc_flags & SC_OP_TXAGGR) {
459 ath_tx_node_init(sc, an);
460 an->maxampdu = 1 << (IEEE80211_HTCAP_MAXRXAMPDU_FACTOR +
461 sta->ht_cap.ampdu_factor);
462 an->mpdudensity = parse_mpdudensity(sta->ht_cap.ampdu_density);
466 static void ath_node_detach(struct ath_softc *sc, struct ieee80211_sta *sta)
468 struct ath_node *an = (struct ath_node *)sta->drv_priv;
470 if (sc->sc_flags & SC_OP_TXAGGR)
471 ath_tx_node_cleanup(sc, an);
474 static void ath9k_tasklet(unsigned long data)
476 struct ath_softc *sc = (struct ath_softc *)data;
477 u32 status = sc->intrstatus;
479 ath9k_ps_wakeup(sc);
481 if (status & ATH9K_INT_FATAL) {
482 ath_reset(sc, false);
483 ath9k_ps_restore(sc);
484 return;
487 if (status & (ATH9K_INT_RX | ATH9K_INT_RXEOL | ATH9K_INT_RXORN)) {
488 spin_lock_bh(&sc->rx.rxflushlock);
489 ath_rx_tasklet(sc, 0);
490 spin_unlock_bh(&sc->rx.rxflushlock);
493 if (status & ATH9K_INT_TX)
494 ath_tx_tasklet(sc);
496 if ((status & ATH9K_INT_TSFOOR) &&
497 (sc->hw->conf.flags & IEEE80211_CONF_PS)) {
499 * TSF sync does not look correct; remain awake to sync with
500 * the next Beacon.
502 DPRINTF(sc, ATH_DBG_PS, "TSFOOR - Sync with next Beacon\n");
503 sc->sc_flags |= SC_OP_WAIT_FOR_BEACON | SC_OP_BEACON_SYNC;
506 /* re-enable hardware interrupt */
507 ath9k_hw_set_interrupts(sc->sc_ah, sc->imask);
508 ath9k_ps_restore(sc);
511 irqreturn_t ath_isr(int irq, void *dev)
513 #define SCHED_INTR ( \
514 ATH9K_INT_FATAL | \
515 ATH9K_INT_RXORN | \
516 ATH9K_INT_RXEOL | \
517 ATH9K_INT_RX | \
518 ATH9K_INT_TX | \
519 ATH9K_INT_BMISS | \
520 ATH9K_INT_CST | \
521 ATH9K_INT_TSFOOR)
523 struct ath_softc *sc = dev;
524 struct ath_hw *ah = sc->sc_ah;
525 enum ath9k_int status;
526 bool sched = false;
529 * The hardware is not ready/present, don't
530 * touch anything. Note this can happen early
531 * on if the IRQ is shared.
533 if (sc->sc_flags & SC_OP_INVALID)
534 return IRQ_NONE;
537 /* shared irq, not for us */
539 if (!ath9k_hw_intrpend(ah))
540 return IRQ_NONE;
543 * Figure out the reason(s) for the interrupt. Note
544 * that the hal returns a pseudo-ISR that may include
545 * bits we haven't explicitly enabled so we mask the
546 * value to insure we only process bits we requested.
548 ath9k_hw_getisr(ah, &status); /* NB: clears ISR too */
549 status &= sc->imask; /* discard unasked-for bits */
552 * If there are no status bits set, then this interrupt was not
553 * for me (should have been caught above).
555 if (!status)
556 return IRQ_NONE;
558 /* Cache the status */
559 sc->intrstatus = status;
561 if (status & SCHED_INTR)
562 sched = true;
565 * If a FATAL or RXORN interrupt is received, we have to reset the
566 * chip immediately.
568 if (status & (ATH9K_INT_FATAL | ATH9K_INT_RXORN))
569 goto chip_reset;
571 if (status & ATH9K_INT_SWBA)
572 tasklet_schedule(&sc->bcon_tasklet);
574 if (status & ATH9K_INT_TXURN)
575 ath9k_hw_updatetxtriglevel(ah, true);
577 if (status & ATH9K_INT_MIB) {
579 * Disable interrupts until we service the MIB
580 * interrupt; otherwise it will continue to
581 * fire.
583 ath9k_hw_set_interrupts(ah, 0);
585 * Let the hal handle the event. We assume
586 * it will clear whatever condition caused
587 * the interrupt.
589 ath9k_hw_procmibevent(ah, &sc->nodestats);
590 ath9k_hw_set_interrupts(ah, sc->imask);
593 if (!(ah->caps.hw_caps & ATH9K_HW_CAP_AUTOSLEEP))
594 if (status & ATH9K_INT_TIM_TIMER) {
595 /* Clear RxAbort bit so that we can
596 * receive frames */
597 ath9k_hw_setpower(ah, ATH9K_PM_AWAKE);
598 ath9k_hw_setrxabort(sc->sc_ah, 0);
599 sc->sc_flags |= SC_OP_WAIT_FOR_BEACON;
602 chip_reset:
604 ath_debug_stat_interrupt(sc, status);
606 if (sched) {
607 /* turn off every interrupt except SWBA */
608 ath9k_hw_set_interrupts(ah, (sc->imask & ATH9K_INT_SWBA));
609 tasklet_schedule(&sc->intr_tq);
612 return IRQ_HANDLED;
614 #undef SCHED_INTR
617 static u32 ath_get_extchanmode(struct ath_softc *sc,
618 struct ieee80211_channel *chan,
619 enum nl80211_channel_type channel_type)
621 u32 chanmode = 0;
623 switch (chan->band) {
624 case IEEE80211_BAND_2GHZ:
625 switch(channel_type) {
626 case NL80211_CHAN_NO_HT:
627 case NL80211_CHAN_HT20:
628 chanmode = CHANNEL_G_HT20;
629 break;
630 case NL80211_CHAN_HT40PLUS:
631 chanmode = CHANNEL_G_HT40PLUS;
632 break;
633 case NL80211_CHAN_HT40MINUS:
634 chanmode = CHANNEL_G_HT40MINUS;
635 break;
637 break;
638 case IEEE80211_BAND_5GHZ:
639 switch(channel_type) {
640 case NL80211_CHAN_NO_HT:
641 case NL80211_CHAN_HT20:
642 chanmode = CHANNEL_A_HT20;
643 break;
644 case NL80211_CHAN_HT40PLUS:
645 chanmode = CHANNEL_A_HT40PLUS;
646 break;
647 case NL80211_CHAN_HT40MINUS:
648 chanmode = CHANNEL_A_HT40MINUS;
649 break;
651 break;
652 default:
653 break;
656 return chanmode;
659 static int ath_setkey_tkip(struct ath_softc *sc, u16 keyix, const u8 *key,
660 struct ath9k_keyval *hk, const u8 *addr,
661 bool authenticator)
663 const u8 *key_rxmic;
664 const u8 *key_txmic;
666 key_txmic = key + NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY;
667 key_rxmic = key + NL80211_TKIP_DATA_OFFSET_RX_MIC_KEY;
669 if (addr == NULL) {
671 * Group key installation - only two key cache entries are used
672 * regardless of splitmic capability since group key is only
673 * used either for TX or RX.
675 if (authenticator) {
676 memcpy(hk->kv_mic, key_txmic, sizeof(hk->kv_mic));
677 memcpy(hk->kv_txmic, key_txmic, sizeof(hk->kv_mic));
678 } else {
679 memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
680 memcpy(hk->kv_txmic, key_rxmic, sizeof(hk->kv_mic));
682 return ath9k_hw_set_keycache_entry(sc->sc_ah, keyix, hk, addr);
684 if (!sc->splitmic) {
685 /* TX and RX keys share the same key cache entry. */
686 memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
687 memcpy(hk->kv_txmic, key_txmic, sizeof(hk->kv_txmic));
688 return ath9k_hw_set_keycache_entry(sc->sc_ah, keyix, hk, addr);
691 /* Separate key cache entries for TX and RX */
693 /* TX key goes at first index, RX key at +32. */
694 memcpy(hk->kv_mic, key_txmic, sizeof(hk->kv_mic));
695 if (!ath9k_hw_set_keycache_entry(sc->sc_ah, keyix, hk, NULL)) {
696 /* TX MIC entry failed. No need to proceed further */
697 DPRINTF(sc, ATH_DBG_FATAL,
698 "Setting TX MIC Key Failed\n");
699 return 0;
702 memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
703 /* XXX delete tx key on failure? */
704 return ath9k_hw_set_keycache_entry(sc->sc_ah, keyix + 32, hk, addr);
707 static int ath_reserve_key_cache_slot_tkip(struct ath_softc *sc)
709 int i;
711 for (i = IEEE80211_WEP_NKID; i < sc->keymax / 2; i++) {
712 if (test_bit(i, sc->keymap) ||
713 test_bit(i + 64, sc->keymap))
714 continue; /* At least one part of TKIP key allocated */
715 if (sc->splitmic &&
716 (test_bit(i + 32, sc->keymap) ||
717 test_bit(i + 64 + 32, sc->keymap)))
718 continue; /* At least one part of TKIP key allocated */
720 /* Found a free slot for a TKIP key */
721 return i;
723 return -1;
726 static int ath_reserve_key_cache_slot(struct ath_softc *sc)
728 int i;
730 /* First, try to find slots that would not be available for TKIP. */
731 if (sc->splitmic) {
732 for (i = IEEE80211_WEP_NKID; i < sc->keymax / 4; i++) {
733 if (!test_bit(i, sc->keymap) &&
734 (test_bit(i + 32, sc->keymap) ||
735 test_bit(i + 64, sc->keymap) ||
736 test_bit(i + 64 + 32, sc->keymap)))
737 return i;
738 if (!test_bit(i + 32, sc->keymap) &&
739 (test_bit(i, sc->keymap) ||
740 test_bit(i + 64, sc->keymap) ||
741 test_bit(i + 64 + 32, sc->keymap)))
742 return i + 32;
743 if (!test_bit(i + 64, sc->keymap) &&
744 (test_bit(i , sc->keymap) ||
745 test_bit(i + 32, sc->keymap) ||
746 test_bit(i + 64 + 32, sc->keymap)))
747 return i + 64;
748 if (!test_bit(i + 64 + 32, sc->keymap) &&
749 (test_bit(i, sc->keymap) ||
750 test_bit(i + 32, sc->keymap) ||
751 test_bit(i + 64, sc->keymap)))
752 return i + 64 + 32;
754 } else {
755 for (i = IEEE80211_WEP_NKID; i < sc->keymax / 2; i++) {
756 if (!test_bit(i, sc->keymap) &&
757 test_bit(i + 64, sc->keymap))
758 return i;
759 if (test_bit(i, sc->keymap) &&
760 !test_bit(i + 64, sc->keymap))
761 return i + 64;
765 /* No partially used TKIP slots, pick any available slot */
766 for (i = IEEE80211_WEP_NKID; i < sc->keymax; i++) {
767 /* Do not allow slots that could be needed for TKIP group keys
768 * to be used. This limitation could be removed if we know that
769 * TKIP will not be used. */
770 if (i >= 64 && i < 64 + IEEE80211_WEP_NKID)
771 continue;
772 if (sc->splitmic) {
773 if (i >= 32 && i < 32 + IEEE80211_WEP_NKID)
774 continue;
775 if (i >= 64 + 32 && i < 64 + 32 + IEEE80211_WEP_NKID)
776 continue;
779 if (!test_bit(i, sc->keymap))
780 return i; /* Found a free slot for a key */
783 /* No free slot found */
784 return -1;
787 static int ath_key_config(struct ath_softc *sc,
788 struct ieee80211_vif *vif,
789 struct ieee80211_sta *sta,
790 struct ieee80211_key_conf *key)
792 struct ath9k_keyval hk;
793 const u8 *mac = NULL;
794 int ret = 0;
795 int idx;
797 memset(&hk, 0, sizeof(hk));
799 switch (key->alg) {
800 case ALG_WEP:
801 hk.kv_type = ATH9K_CIPHER_WEP;
802 break;
803 case ALG_TKIP:
804 hk.kv_type = ATH9K_CIPHER_TKIP;
805 break;
806 case ALG_CCMP:
807 hk.kv_type = ATH9K_CIPHER_AES_CCM;
808 break;
809 default:
810 return -EOPNOTSUPP;
813 hk.kv_len = key->keylen;
814 memcpy(hk.kv_val, key->key, key->keylen);
816 if (!(key->flags & IEEE80211_KEY_FLAG_PAIRWISE)) {
817 /* For now, use the default keys for broadcast keys. This may
818 * need to change with virtual interfaces. */
819 idx = key->keyidx;
820 } else if (key->keyidx) {
821 if (WARN_ON(!sta))
822 return -EOPNOTSUPP;
823 mac = sta->addr;
825 if (vif->type != NL80211_IFTYPE_AP) {
826 /* Only keyidx 0 should be used with unicast key, but
827 * allow this for client mode for now. */
828 idx = key->keyidx;
829 } else
830 return -EIO;
831 } else {
832 if (WARN_ON(!sta))
833 return -EOPNOTSUPP;
834 mac = sta->addr;
836 if (key->alg == ALG_TKIP)
837 idx = ath_reserve_key_cache_slot_tkip(sc);
838 else
839 idx = ath_reserve_key_cache_slot(sc);
840 if (idx < 0)
841 return -ENOSPC; /* no free key cache entries */
844 if (key->alg == ALG_TKIP)
845 ret = ath_setkey_tkip(sc, idx, key->key, &hk, mac,
846 vif->type == NL80211_IFTYPE_AP);
847 else
848 ret = ath9k_hw_set_keycache_entry(sc->sc_ah, idx, &hk, mac);
850 if (!ret)
851 return -EIO;
853 set_bit(idx, sc->keymap);
854 if (key->alg == ALG_TKIP) {
855 set_bit(idx + 64, sc->keymap);
856 if (sc->splitmic) {
857 set_bit(idx + 32, sc->keymap);
858 set_bit(idx + 64 + 32, sc->keymap);
862 return idx;
865 static void ath_key_delete(struct ath_softc *sc, struct ieee80211_key_conf *key)
867 ath9k_hw_keyreset(sc->sc_ah, key->hw_key_idx);
868 if (key->hw_key_idx < IEEE80211_WEP_NKID)
869 return;
871 clear_bit(key->hw_key_idx, sc->keymap);
872 if (key->alg != ALG_TKIP)
873 return;
875 clear_bit(key->hw_key_idx + 64, sc->keymap);
876 if (sc->splitmic) {
877 clear_bit(key->hw_key_idx + 32, sc->keymap);
878 clear_bit(key->hw_key_idx + 64 + 32, sc->keymap);
882 static void setup_ht_cap(struct ath_softc *sc,
883 struct ieee80211_sta_ht_cap *ht_info)
885 #define ATH9K_HT_CAP_MAXRXAMPDU_65536 0x3 /* 2 ^ 16 */
886 #define ATH9K_HT_CAP_MPDUDENSITY_8 0x6 /* 8 usec */
888 ht_info->ht_supported = true;
889 ht_info->cap = IEEE80211_HT_CAP_SUP_WIDTH_20_40 |
890 IEEE80211_HT_CAP_SM_PS |
891 IEEE80211_HT_CAP_SGI_40 |
892 IEEE80211_HT_CAP_DSSSCCK40;
894 ht_info->ampdu_factor = ATH9K_HT_CAP_MAXRXAMPDU_65536;
895 ht_info->ampdu_density = ATH9K_HT_CAP_MPDUDENSITY_8;
897 /* set up supported mcs set */
898 memset(&ht_info->mcs, 0, sizeof(ht_info->mcs));
900 switch(sc->rx_chainmask) {
901 case 1:
902 ht_info->mcs.rx_mask[0] = 0xff;
903 break;
904 case 3:
905 case 5:
906 case 7:
907 default:
908 ht_info->mcs.rx_mask[0] = 0xff;
909 ht_info->mcs.rx_mask[1] = 0xff;
910 break;
913 ht_info->mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
916 static void ath9k_bss_assoc_info(struct ath_softc *sc,
917 struct ieee80211_vif *vif,
918 struct ieee80211_bss_conf *bss_conf)
920 struct ath_vif *avp = (void *)vif->drv_priv;
922 if (bss_conf->assoc) {
923 DPRINTF(sc, ATH_DBG_CONFIG, "Bss Info ASSOC %d, bssid: %pM\n",
924 bss_conf->aid, sc->curbssid);
926 /* New association, store aid */
927 if (avp->av_opmode == NL80211_IFTYPE_STATION) {
928 sc->curaid = bss_conf->aid;
929 ath9k_hw_write_associd(sc);
932 * Request a re-configuration of Beacon related timers
933 * on the receipt of the first Beacon frame (i.e.,
934 * after time sync with the AP).
936 sc->sc_flags |= SC_OP_BEACON_SYNC;
939 /* Configure the beacon */
940 ath_beacon_config(sc, vif);
942 /* Reset rssi stats */
943 sc->nodestats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
944 sc->nodestats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
945 sc->nodestats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
946 sc->nodestats.ns_avgtxrate = ATH_RATE_DUMMY_MARKER;
948 ath_start_ani(sc);
949 } else {
950 DPRINTF(sc, ATH_DBG_CONFIG, "Bss Info DISASSOC\n");
951 sc->curaid = 0;
955 /********************************/
956 /* LED functions */
957 /********************************/
959 static void ath_led_blink_work(struct work_struct *work)
961 struct ath_softc *sc = container_of(work, struct ath_softc,
962 ath_led_blink_work.work);
964 if (!(sc->sc_flags & SC_OP_LED_ASSOCIATED))
965 return;
967 if ((sc->led_on_duration == ATH_LED_ON_DURATION_IDLE) ||
968 (sc->led_off_duration == ATH_LED_OFF_DURATION_IDLE))
969 ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 0);
970 else
971 ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN,
972 (sc->sc_flags & SC_OP_LED_ON) ? 1 : 0);
974 queue_delayed_work(sc->hw->workqueue, &sc->ath_led_blink_work,
975 (sc->sc_flags & SC_OP_LED_ON) ?
976 msecs_to_jiffies(sc->led_off_duration) :
977 msecs_to_jiffies(sc->led_on_duration));
979 sc->led_on_duration = sc->led_on_cnt ?
980 max((ATH_LED_ON_DURATION_IDLE - sc->led_on_cnt), 25) :
981 ATH_LED_ON_DURATION_IDLE;
982 sc->led_off_duration = sc->led_off_cnt ?
983 max((ATH_LED_OFF_DURATION_IDLE - sc->led_off_cnt), 10) :
984 ATH_LED_OFF_DURATION_IDLE;
985 sc->led_on_cnt = sc->led_off_cnt = 0;
986 if (sc->sc_flags & SC_OP_LED_ON)
987 sc->sc_flags &= ~SC_OP_LED_ON;
988 else
989 sc->sc_flags |= SC_OP_LED_ON;
992 static void ath_led_brightness(struct led_classdev *led_cdev,
993 enum led_brightness brightness)
995 struct ath_led *led = container_of(led_cdev, struct ath_led, led_cdev);
996 struct ath_softc *sc = led->sc;
998 switch (brightness) {
999 case LED_OFF:
1000 if (led->led_type == ATH_LED_ASSOC ||
1001 led->led_type == ATH_LED_RADIO) {
1002 ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN,
1003 (led->led_type == ATH_LED_RADIO));
1004 sc->sc_flags &= ~SC_OP_LED_ASSOCIATED;
1005 if (led->led_type == ATH_LED_RADIO)
1006 sc->sc_flags &= ~SC_OP_LED_ON;
1007 } else {
1008 sc->led_off_cnt++;
1010 break;
1011 case LED_FULL:
1012 if (led->led_type == ATH_LED_ASSOC) {
1013 sc->sc_flags |= SC_OP_LED_ASSOCIATED;
1014 queue_delayed_work(sc->hw->workqueue,
1015 &sc->ath_led_blink_work, 0);
1016 } else if (led->led_type == ATH_LED_RADIO) {
1017 ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 0);
1018 sc->sc_flags |= SC_OP_LED_ON;
1019 } else {
1020 sc->led_on_cnt++;
1022 break;
1023 default:
1024 break;
1028 static int ath_register_led(struct ath_softc *sc, struct ath_led *led,
1029 char *trigger)
1031 int ret;
1033 led->sc = sc;
1034 led->led_cdev.name = led->name;
1035 led->led_cdev.default_trigger = trigger;
1036 led->led_cdev.brightness_set = ath_led_brightness;
1038 ret = led_classdev_register(wiphy_dev(sc->hw->wiphy), &led->led_cdev);
1039 if (ret)
1040 DPRINTF(sc, ATH_DBG_FATAL,
1041 "Failed to register led:%s", led->name);
1042 else
1043 led->registered = 1;
1044 return ret;
1047 static void ath_unregister_led(struct ath_led *led)
1049 if (led->registered) {
1050 led_classdev_unregister(&led->led_cdev);
1051 led->registered = 0;
1055 static void ath_deinit_leds(struct ath_softc *sc)
1057 cancel_delayed_work_sync(&sc->ath_led_blink_work);
1058 ath_unregister_led(&sc->assoc_led);
1059 sc->sc_flags &= ~SC_OP_LED_ASSOCIATED;
1060 ath_unregister_led(&sc->tx_led);
1061 ath_unregister_led(&sc->rx_led);
1062 ath_unregister_led(&sc->radio_led);
1063 ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 1);
1066 static void ath_init_leds(struct ath_softc *sc)
1068 char *trigger;
1069 int ret;
1071 /* Configure gpio 1 for output */
1072 ath9k_hw_cfg_output(sc->sc_ah, ATH_LED_PIN,
1073 AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1074 /* LED off, active low */
1075 ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 1);
1077 INIT_DELAYED_WORK(&sc->ath_led_blink_work, ath_led_blink_work);
1079 trigger = ieee80211_get_radio_led_name(sc->hw);
1080 snprintf(sc->radio_led.name, sizeof(sc->radio_led.name),
1081 "ath9k-%s::radio", wiphy_name(sc->hw->wiphy));
1082 ret = ath_register_led(sc, &sc->radio_led, trigger);
1083 sc->radio_led.led_type = ATH_LED_RADIO;
1084 if (ret)
1085 goto fail;
1087 trigger = ieee80211_get_assoc_led_name(sc->hw);
1088 snprintf(sc->assoc_led.name, sizeof(sc->assoc_led.name),
1089 "ath9k-%s::assoc", wiphy_name(sc->hw->wiphy));
1090 ret = ath_register_led(sc, &sc->assoc_led, trigger);
1091 sc->assoc_led.led_type = ATH_LED_ASSOC;
1092 if (ret)
1093 goto fail;
1095 trigger = ieee80211_get_tx_led_name(sc->hw);
1096 snprintf(sc->tx_led.name, sizeof(sc->tx_led.name),
1097 "ath9k-%s::tx", wiphy_name(sc->hw->wiphy));
1098 ret = ath_register_led(sc, &sc->tx_led, trigger);
1099 sc->tx_led.led_type = ATH_LED_TX;
1100 if (ret)
1101 goto fail;
1103 trigger = ieee80211_get_rx_led_name(sc->hw);
1104 snprintf(sc->rx_led.name, sizeof(sc->rx_led.name),
1105 "ath9k-%s::rx", wiphy_name(sc->hw->wiphy));
1106 ret = ath_register_led(sc, &sc->rx_led, trigger);
1107 sc->rx_led.led_type = ATH_LED_RX;
1108 if (ret)
1109 goto fail;
1111 return;
1113 fail:
1114 ath_deinit_leds(sc);
1117 void ath_radio_enable(struct ath_softc *sc)
1119 struct ath_hw *ah = sc->sc_ah;
1120 struct ieee80211_channel *channel = sc->hw->conf.channel;
1121 int r;
1123 ath9k_ps_wakeup(sc);
1124 ath9k_hw_configpcipowersave(ah, 0);
1126 spin_lock_bh(&sc->sc_resetlock);
1127 r = ath9k_hw_reset(ah, ah->curchan, false);
1128 if (r) {
1129 DPRINTF(sc, ATH_DBG_FATAL,
1130 "Unable to reset channel %u (%uMhz) ",
1131 "reset status %d\n",
1132 channel->center_freq, r);
1134 spin_unlock_bh(&sc->sc_resetlock);
1136 ath_update_txpow(sc);
1137 if (ath_startrecv(sc) != 0) {
1138 DPRINTF(sc, ATH_DBG_FATAL,
1139 "Unable to restart recv logic\n");
1140 return;
1143 if (sc->sc_flags & SC_OP_BEACONS)
1144 ath_beacon_config(sc, NULL); /* restart beacons */
1146 /* Re-Enable interrupts */
1147 ath9k_hw_set_interrupts(ah, sc->imask);
1149 /* Enable LED */
1150 ath9k_hw_cfg_output(ah, ATH_LED_PIN,
1151 AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1152 ath9k_hw_set_gpio(ah, ATH_LED_PIN, 0);
1154 ieee80211_wake_queues(sc->hw);
1155 ath9k_ps_restore(sc);
1158 void ath_radio_disable(struct ath_softc *sc)
1160 struct ath_hw *ah = sc->sc_ah;
1161 struct ieee80211_channel *channel = sc->hw->conf.channel;
1162 int r;
1164 ath9k_ps_wakeup(sc);
1165 ieee80211_stop_queues(sc->hw);
1167 /* Disable LED */
1168 ath9k_hw_set_gpio(ah, ATH_LED_PIN, 1);
1169 ath9k_hw_cfg_gpio_input(ah, ATH_LED_PIN);
1171 /* Disable interrupts */
1172 ath9k_hw_set_interrupts(ah, 0);
1174 ath_drain_all_txq(sc, false); /* clear pending tx frames */
1175 ath_stoprecv(sc); /* turn off frame recv */
1176 ath_flushrecv(sc); /* flush recv queue */
1178 spin_lock_bh(&sc->sc_resetlock);
1179 r = ath9k_hw_reset(ah, ah->curchan, false);
1180 if (r) {
1181 DPRINTF(sc, ATH_DBG_FATAL,
1182 "Unable to reset channel %u (%uMhz) "
1183 "reset status %d\n",
1184 channel->center_freq, r);
1186 spin_unlock_bh(&sc->sc_resetlock);
1188 ath9k_hw_phy_disable(ah);
1189 ath9k_hw_configpcipowersave(ah, 1);
1190 ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1191 ath9k_ps_restore(sc);
1194 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
1196 /*******************/
1197 /* Rfkill */
1198 /*******************/
1200 static bool ath_is_rfkill_set(struct ath_softc *sc)
1202 struct ath_hw *ah = sc->sc_ah;
1204 return ath9k_hw_gpio_get(ah, ah->rfkill_gpio) ==
1205 ah->rfkill_polarity;
1208 /* s/w rfkill handlers */
1209 static int ath_rfkill_set_block(void *data, bool blocked)
1211 struct ath_softc *sc = data;
1213 if (blocked)
1214 ath_radio_disable(sc);
1215 else
1216 ath_radio_enable(sc);
1218 return 0;
1221 static void ath_rfkill_poll_state(struct rfkill *rfkill, void *data)
1223 struct ath_softc *sc = data;
1224 bool blocked = !!ath_is_rfkill_set(sc);
1226 if (rfkill_set_hw_state(rfkill, blocked))
1227 ath_radio_disable(sc);
1228 else
1229 ath_radio_enable(sc);
1232 /* Init s/w rfkill */
1233 static int ath_init_sw_rfkill(struct ath_softc *sc)
1235 sc->rf_kill.ops.set_block = ath_rfkill_set_block;
1236 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1237 sc->rf_kill.ops.poll = ath_rfkill_poll_state;
1239 snprintf(sc->rf_kill.rfkill_name, sizeof(sc->rf_kill.rfkill_name),
1240 "ath9k-%s::rfkill", wiphy_name(sc->hw->wiphy));
1242 sc->rf_kill.rfkill = rfkill_alloc(sc->rf_kill.rfkill_name,
1243 wiphy_dev(sc->hw->wiphy),
1244 RFKILL_TYPE_WLAN,
1245 &sc->rf_kill.ops, sc);
1246 if (!sc->rf_kill.rfkill) {
1247 DPRINTF(sc, ATH_DBG_FATAL, "Failed to allocate rfkill\n");
1248 return -ENOMEM;
1251 return 0;
1254 /* Deinitialize rfkill */
1255 static void ath_deinit_rfkill(struct ath_softc *sc)
1257 if (sc->sc_flags & SC_OP_RFKILL_REGISTERED) {
1258 rfkill_unregister(sc->rf_kill.rfkill);
1259 rfkill_destroy(sc->rf_kill.rfkill);
1260 sc->sc_flags &= ~SC_OP_RFKILL_REGISTERED;
1264 static int ath_start_rfkill_poll(struct ath_softc *sc)
1266 if (!(sc->sc_flags & SC_OP_RFKILL_REGISTERED)) {
1267 if (rfkill_register(sc->rf_kill.rfkill)) {
1268 DPRINTF(sc, ATH_DBG_FATAL,
1269 "Unable to register rfkill\n");
1270 rfkill_destroy(sc->rf_kill.rfkill);
1272 /* Deinitialize the device */
1273 ath_cleanup(sc);
1274 return -EIO;
1275 } else {
1276 sc->sc_flags |= SC_OP_RFKILL_REGISTERED;
1280 return 0;
1282 #endif /* CONFIG_RFKILL */
1284 void ath_cleanup(struct ath_softc *sc)
1286 ath_detach(sc);
1287 free_irq(sc->irq, sc);
1288 ath_bus_cleanup(sc);
1289 kfree(sc->sec_wiphy);
1290 ieee80211_free_hw(sc->hw);
1293 void ath_detach(struct ath_softc *sc)
1295 struct ieee80211_hw *hw = sc->hw;
1296 int i = 0;
1298 ath9k_ps_wakeup(sc);
1300 DPRINTF(sc, ATH_DBG_CONFIG, "Detach ATH hw\n");
1302 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
1303 ath_deinit_rfkill(sc);
1304 #endif
1305 ath_deinit_leds(sc);
1306 cancel_work_sync(&sc->chan_work);
1307 cancel_delayed_work_sync(&sc->wiphy_work);
1309 for (i = 0; i < sc->num_sec_wiphy; i++) {
1310 struct ath_wiphy *aphy = sc->sec_wiphy[i];
1311 if (aphy == NULL)
1312 continue;
1313 sc->sec_wiphy[i] = NULL;
1314 ieee80211_unregister_hw(aphy->hw);
1315 ieee80211_free_hw(aphy->hw);
1317 ieee80211_unregister_hw(hw);
1318 ath_rx_cleanup(sc);
1319 ath_tx_cleanup(sc);
1321 tasklet_kill(&sc->intr_tq);
1322 tasklet_kill(&sc->bcon_tasklet);
1324 if (!(sc->sc_flags & SC_OP_INVALID))
1325 ath9k_hw_setpower(sc->sc_ah, ATH9K_PM_AWAKE);
1327 /* cleanup tx queues */
1328 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1329 if (ATH_TXQ_SETUP(sc, i))
1330 ath_tx_cleanupq(sc, &sc->tx.txq[i]);
1332 ath9k_hw_detach(sc->sc_ah);
1333 ath9k_exit_debug(sc);
1334 ath9k_ps_restore(sc);
1337 static int ath9k_reg_notifier(struct wiphy *wiphy,
1338 struct regulatory_request *request)
1340 struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy);
1341 struct ath_wiphy *aphy = hw->priv;
1342 struct ath_softc *sc = aphy->sc;
1343 struct ath_regulatory *reg = &sc->sc_ah->regulatory;
1345 return ath_reg_notifier_apply(wiphy, request, reg);
1348 static int ath_init(u16 devid, struct ath_softc *sc)
1350 struct ath_hw *ah = NULL;
1351 int status;
1352 int error = 0, i;
1353 int csz = 0;
1355 /* XXX: hardware will not be ready until ath_open() being called */
1356 sc->sc_flags |= SC_OP_INVALID;
1358 if (ath9k_init_debug(sc) < 0)
1359 printk(KERN_ERR "Unable to create debugfs files\n");
1361 spin_lock_init(&sc->wiphy_lock);
1362 spin_lock_init(&sc->sc_resetlock);
1363 spin_lock_init(&sc->sc_serial_rw);
1364 mutex_init(&sc->mutex);
1365 tasklet_init(&sc->intr_tq, ath9k_tasklet, (unsigned long)sc);
1366 tasklet_init(&sc->bcon_tasklet, ath_beacon_tasklet,
1367 (unsigned long)sc);
1370 * Cache line size is used to size and align various
1371 * structures used to communicate with the hardware.
1373 ath_read_cachesize(sc, &csz);
1374 /* XXX assert csz is non-zero */
1375 sc->cachelsz = csz << 2; /* convert to bytes */
1377 ah = ath9k_hw_attach(devid, sc, &status);
1378 if (ah == NULL) {
1379 DPRINTF(sc, ATH_DBG_FATAL,
1380 "Unable to attach hardware; HAL status %d\n", status);
1381 error = -ENXIO;
1382 goto bad;
1384 sc->sc_ah = ah;
1386 /* Get the hardware key cache size. */
1387 sc->keymax = ah->caps.keycache_size;
1388 if (sc->keymax > ATH_KEYMAX) {
1389 DPRINTF(sc, ATH_DBG_ANY,
1390 "Warning, using only %u entries in %u key cache\n",
1391 ATH_KEYMAX, sc->keymax);
1392 sc->keymax = ATH_KEYMAX;
1396 * Reset the key cache since some parts do not
1397 * reset the contents on initial power up.
1399 for (i = 0; i < sc->keymax; i++)
1400 ath9k_hw_keyreset(ah, (u16) i);
1402 if (error)
1403 goto bad;
1405 /* default to MONITOR mode */
1406 sc->sc_ah->opmode = NL80211_IFTYPE_MONITOR;
1408 /* Setup rate tables */
1410 ath_rate_attach(sc);
1411 ath_setup_rates(sc, IEEE80211_BAND_2GHZ);
1412 ath_setup_rates(sc, IEEE80211_BAND_5GHZ);
1415 * Allocate hardware transmit queues: one queue for
1416 * beacon frames and one data queue for each QoS
1417 * priority. Note that the hal handles reseting
1418 * these queues at the needed time.
1420 sc->beacon.beaconq = ath_beaconq_setup(ah);
1421 if (sc->beacon.beaconq == -1) {
1422 DPRINTF(sc, ATH_DBG_FATAL,
1423 "Unable to setup a beacon xmit queue\n");
1424 error = -EIO;
1425 goto bad2;
1427 sc->beacon.cabq = ath_txq_setup(sc, ATH9K_TX_QUEUE_CAB, 0);
1428 if (sc->beacon.cabq == NULL) {
1429 DPRINTF(sc, ATH_DBG_FATAL,
1430 "Unable to setup CAB xmit queue\n");
1431 error = -EIO;
1432 goto bad2;
1435 sc->config.cabqReadytime = ATH_CABQ_READY_TIME;
1436 ath_cabq_update(sc);
1438 for (i = 0; i < ARRAY_SIZE(sc->tx.hwq_map); i++)
1439 sc->tx.hwq_map[i] = -1;
1441 /* Setup data queues */
1442 /* NB: ensure BK queue is the lowest priority h/w queue */
1443 if (!ath_tx_setup(sc, ATH9K_WME_AC_BK)) {
1444 DPRINTF(sc, ATH_DBG_FATAL,
1445 "Unable to setup xmit queue for BK traffic\n");
1446 error = -EIO;
1447 goto bad2;
1450 if (!ath_tx_setup(sc, ATH9K_WME_AC_BE)) {
1451 DPRINTF(sc, ATH_DBG_FATAL,
1452 "Unable to setup xmit queue for BE traffic\n");
1453 error = -EIO;
1454 goto bad2;
1456 if (!ath_tx_setup(sc, ATH9K_WME_AC_VI)) {
1457 DPRINTF(sc, ATH_DBG_FATAL,
1458 "Unable to setup xmit queue for VI traffic\n");
1459 error = -EIO;
1460 goto bad2;
1462 if (!ath_tx_setup(sc, ATH9K_WME_AC_VO)) {
1463 DPRINTF(sc, ATH_DBG_FATAL,
1464 "Unable to setup xmit queue for VO traffic\n");
1465 error = -EIO;
1466 goto bad2;
1469 /* Initializes the noise floor to a reasonable default value.
1470 * Later on this will be updated during ANI processing. */
1472 sc->ani.noise_floor = ATH_DEFAULT_NOISE_FLOOR;
1473 setup_timer(&sc->ani.timer, ath_ani_calibrate, (unsigned long)sc);
1475 if (ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
1476 ATH9K_CIPHER_TKIP, NULL)) {
1478 * Whether we should enable h/w TKIP MIC.
1479 * XXX: if we don't support WME TKIP MIC, then we wouldn't
1480 * report WMM capable, so it's always safe to turn on
1481 * TKIP MIC in this case.
1483 ath9k_hw_setcapability(sc->sc_ah, ATH9K_CAP_TKIP_MIC,
1484 0, 1, NULL);
1488 * Check whether the separate key cache entries
1489 * are required to handle both tx+rx MIC keys.
1490 * With split mic keys the number of stations is limited
1491 * to 27 otherwise 59.
1493 if (ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
1494 ATH9K_CIPHER_TKIP, NULL)
1495 && ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
1496 ATH9K_CIPHER_MIC, NULL)
1497 && ath9k_hw_getcapability(ah, ATH9K_CAP_TKIP_SPLIT,
1498 0, NULL))
1499 sc->splitmic = 1;
1501 /* turn on mcast key search if possible */
1502 if (!ath9k_hw_getcapability(ah, ATH9K_CAP_MCAST_KEYSRCH, 0, NULL))
1503 (void)ath9k_hw_setcapability(ah, ATH9K_CAP_MCAST_KEYSRCH, 1,
1504 1, NULL);
1506 sc->config.txpowlimit = ATH_TXPOWER_MAX;
1508 /* 11n Capabilities */
1509 if (ah->caps.hw_caps & ATH9K_HW_CAP_HT) {
1510 sc->sc_flags |= SC_OP_TXAGGR;
1511 sc->sc_flags |= SC_OP_RXAGGR;
1514 sc->tx_chainmask = ah->caps.tx_chainmask;
1515 sc->rx_chainmask = ah->caps.rx_chainmask;
1517 ath9k_hw_setcapability(ah, ATH9K_CAP_DIVERSITY, 1, true, NULL);
1518 sc->rx.defant = ath9k_hw_getdefantenna(ah);
1520 if (ah->caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK)
1521 memcpy(sc->bssidmask, ath_bcast_mac, ETH_ALEN);
1523 sc->beacon.slottime = ATH9K_SLOT_TIME_9; /* default to short slot time */
1525 /* initialize beacon slots */
1526 for (i = 0; i < ARRAY_SIZE(sc->beacon.bslot); i++) {
1527 sc->beacon.bslot[i] = NULL;
1528 sc->beacon.bslot_aphy[i] = NULL;
1531 /* setup channels and rates */
1533 sc->sbands[IEEE80211_BAND_2GHZ].channels = ath9k_2ghz_chantable;
1534 sc->sbands[IEEE80211_BAND_2GHZ].bitrates =
1535 sc->rates[IEEE80211_BAND_2GHZ];
1536 sc->sbands[IEEE80211_BAND_2GHZ].band = IEEE80211_BAND_2GHZ;
1537 sc->sbands[IEEE80211_BAND_2GHZ].n_channels =
1538 ARRAY_SIZE(ath9k_2ghz_chantable);
1540 if (test_bit(ATH9K_MODE_11A, sc->sc_ah->caps.wireless_modes)) {
1541 sc->sbands[IEEE80211_BAND_5GHZ].channels = ath9k_5ghz_chantable;
1542 sc->sbands[IEEE80211_BAND_5GHZ].bitrates =
1543 sc->rates[IEEE80211_BAND_5GHZ];
1544 sc->sbands[IEEE80211_BAND_5GHZ].band = IEEE80211_BAND_5GHZ;
1545 sc->sbands[IEEE80211_BAND_5GHZ].n_channels =
1546 ARRAY_SIZE(ath9k_5ghz_chantable);
1549 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_BT_COEX)
1550 ath9k_hw_btcoex_enable(sc->sc_ah);
1552 return 0;
1553 bad2:
1554 /* cleanup tx queues */
1555 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1556 if (ATH_TXQ_SETUP(sc, i))
1557 ath_tx_cleanupq(sc, &sc->tx.txq[i]);
1558 bad:
1559 if (ah)
1560 ath9k_hw_detach(ah);
1561 ath9k_exit_debug(sc);
1563 return error;
1566 void ath_set_hw_capab(struct ath_softc *sc, struct ieee80211_hw *hw)
1568 hw->flags = IEEE80211_HW_RX_INCLUDES_FCS |
1569 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
1570 IEEE80211_HW_SIGNAL_DBM |
1571 IEEE80211_HW_AMPDU_AGGREGATION |
1572 IEEE80211_HW_SUPPORTS_PS |
1573 IEEE80211_HW_PS_NULLFUNC_STACK |
1574 IEEE80211_HW_SPECTRUM_MGMT;
1576 if (AR_SREV_9160_10_OR_LATER(sc->sc_ah) || modparam_nohwcrypt)
1577 hw->flags |= IEEE80211_HW_MFP_CAPABLE;
1579 hw->wiphy->interface_modes =
1580 BIT(NL80211_IFTYPE_AP) |
1581 BIT(NL80211_IFTYPE_STATION) |
1582 BIT(NL80211_IFTYPE_ADHOC) |
1583 BIT(NL80211_IFTYPE_MESH_POINT);
1585 hw->queues = 4;
1586 hw->max_rates = 4;
1587 hw->channel_change_time = 5000;
1588 hw->max_listen_interval = 10;
1589 hw->max_rate_tries = ATH_11N_TXMAXTRY;
1590 hw->sta_data_size = sizeof(struct ath_node);
1591 hw->vif_data_size = sizeof(struct ath_vif);
1593 hw->rate_control_algorithm = "ath9k_rate_control";
1595 hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
1596 &sc->sbands[IEEE80211_BAND_2GHZ];
1597 if (test_bit(ATH9K_MODE_11A, sc->sc_ah->caps.wireless_modes))
1598 hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
1599 &sc->sbands[IEEE80211_BAND_5GHZ];
1602 int ath_attach(u16 devid, struct ath_softc *sc)
1604 struct ieee80211_hw *hw = sc->hw;
1605 int error = 0, i;
1606 struct ath_regulatory *reg;
1608 DPRINTF(sc, ATH_DBG_CONFIG, "Attach ATH hw\n");
1610 error = ath_init(devid, sc);
1611 if (error != 0)
1612 return error;
1614 /* get mac address from hardware and set in mac80211 */
1616 SET_IEEE80211_PERM_ADDR(hw, sc->sc_ah->macaddr);
1618 ath_set_hw_capab(sc, hw);
1620 error = ath_regd_init(&sc->sc_ah->regulatory, sc->hw->wiphy,
1621 ath9k_reg_notifier);
1622 if (error)
1623 return error;
1625 reg = &sc->sc_ah->regulatory;
1627 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT) {
1628 setup_ht_cap(sc, &sc->sbands[IEEE80211_BAND_2GHZ].ht_cap);
1629 if (test_bit(ATH9K_MODE_11A, sc->sc_ah->caps.wireless_modes))
1630 setup_ht_cap(sc, &sc->sbands[IEEE80211_BAND_5GHZ].ht_cap);
1633 /* initialize tx/rx engine */
1634 error = ath_tx_init(sc, ATH_TXBUF);
1635 if (error != 0)
1636 goto error_attach;
1638 error = ath_rx_init(sc, ATH_RXBUF);
1639 if (error != 0)
1640 goto error_attach;
1642 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
1643 /* Initialize s/w rfkill */
1644 error = ath_init_sw_rfkill(sc);
1645 if (error)
1646 goto error_attach;
1647 #endif
1649 INIT_WORK(&sc->chan_work, ath9k_wiphy_chan_work);
1650 INIT_DELAYED_WORK(&sc->wiphy_work, ath9k_wiphy_work);
1651 sc->wiphy_scheduler_int = msecs_to_jiffies(500);
1653 error = ieee80211_register_hw(hw);
1655 if (!ath_is_world_regd(reg)) {
1656 error = regulatory_hint(hw->wiphy, reg->alpha2);
1657 if (error)
1658 goto error_attach;
1661 /* Initialize LED control */
1662 ath_init_leds(sc);
1665 return 0;
1667 error_attach:
1668 /* cleanup tx queues */
1669 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1670 if (ATH_TXQ_SETUP(sc, i))
1671 ath_tx_cleanupq(sc, &sc->tx.txq[i]);
1673 ath9k_hw_detach(sc->sc_ah);
1674 ath9k_exit_debug(sc);
1676 return error;
1679 int ath_reset(struct ath_softc *sc, bool retry_tx)
1681 struct ath_hw *ah = sc->sc_ah;
1682 struct ieee80211_hw *hw = sc->hw;
1683 int r;
1685 ath9k_hw_set_interrupts(ah, 0);
1686 ath_drain_all_txq(sc, retry_tx);
1687 ath_stoprecv(sc);
1688 ath_flushrecv(sc);
1690 spin_lock_bh(&sc->sc_resetlock);
1691 r = ath9k_hw_reset(ah, sc->sc_ah->curchan, false);
1692 if (r)
1693 DPRINTF(sc, ATH_DBG_FATAL,
1694 "Unable to reset hardware; reset status %d\n", r);
1695 spin_unlock_bh(&sc->sc_resetlock);
1697 if (ath_startrecv(sc) != 0)
1698 DPRINTF(sc, ATH_DBG_FATAL, "Unable to start recv logic\n");
1701 * We may be doing a reset in response to a request
1702 * that changes the channel so update any state that
1703 * might change as a result.
1705 ath_cache_conf_rate(sc, &hw->conf);
1707 ath_update_txpow(sc);
1709 if (sc->sc_flags & SC_OP_BEACONS)
1710 ath_beacon_config(sc, NULL); /* restart beacons */
1712 ath9k_hw_set_interrupts(ah, sc->imask);
1714 if (retry_tx) {
1715 int i;
1716 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1717 if (ATH_TXQ_SETUP(sc, i)) {
1718 spin_lock_bh(&sc->tx.txq[i].axq_lock);
1719 ath_txq_schedule(sc, &sc->tx.txq[i]);
1720 spin_unlock_bh(&sc->tx.txq[i].axq_lock);
1725 return r;
1729 * This function will allocate both the DMA descriptor structure, and the
1730 * buffers it contains. These are used to contain the descriptors used
1731 * by the system.
1733 int ath_descdma_setup(struct ath_softc *sc, struct ath_descdma *dd,
1734 struct list_head *head, const char *name,
1735 int nbuf, int ndesc)
1737 #define DS2PHYS(_dd, _ds) \
1738 ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
1739 #define ATH_DESC_4KB_BOUND_CHECK(_daddr) ((((_daddr) & 0xFFF) > 0xF7F) ? 1 : 0)
1740 #define ATH_DESC_4KB_BOUND_NUM_SKIPPED(_len) ((_len) / 4096)
1742 struct ath_desc *ds;
1743 struct ath_buf *bf;
1744 int i, bsize, error;
1746 DPRINTF(sc, ATH_DBG_CONFIG, "%s DMA: %u buffers %u desc/buf\n",
1747 name, nbuf, ndesc);
1749 INIT_LIST_HEAD(head);
1750 /* ath_desc must be a multiple of DWORDs */
1751 if ((sizeof(struct ath_desc) % 4) != 0) {
1752 DPRINTF(sc, ATH_DBG_FATAL, "ath_desc not DWORD aligned\n");
1753 ASSERT((sizeof(struct ath_desc) % 4) == 0);
1754 error = -ENOMEM;
1755 goto fail;
1758 dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
1761 * Need additional DMA memory because we can't use
1762 * descriptors that cross the 4K page boundary. Assume
1763 * one skipped descriptor per 4K page.
1765 if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_4KB_SPLITTRANS)) {
1766 u32 ndesc_skipped =
1767 ATH_DESC_4KB_BOUND_NUM_SKIPPED(dd->dd_desc_len);
1768 u32 dma_len;
1770 while (ndesc_skipped) {
1771 dma_len = ndesc_skipped * sizeof(struct ath_desc);
1772 dd->dd_desc_len += dma_len;
1774 ndesc_skipped = ATH_DESC_4KB_BOUND_NUM_SKIPPED(dma_len);
1778 /* allocate descriptors */
1779 dd->dd_desc = dma_alloc_coherent(sc->dev, dd->dd_desc_len,
1780 &dd->dd_desc_paddr, GFP_KERNEL);
1781 if (dd->dd_desc == NULL) {
1782 error = -ENOMEM;
1783 goto fail;
1785 ds = dd->dd_desc;
1786 DPRINTF(sc, ATH_DBG_CONFIG, "%s DMA map: %p (%u) -> %llx (%u)\n",
1787 name, ds, (u32) dd->dd_desc_len,
1788 ito64(dd->dd_desc_paddr), /*XXX*/(u32) dd->dd_desc_len);
1790 /* allocate buffers */
1791 bsize = sizeof(struct ath_buf) * nbuf;
1792 bf = kzalloc(bsize, GFP_KERNEL);
1793 if (bf == NULL) {
1794 error = -ENOMEM;
1795 goto fail2;
1797 dd->dd_bufptr = bf;
1799 for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
1800 bf->bf_desc = ds;
1801 bf->bf_daddr = DS2PHYS(dd, ds);
1803 if (!(sc->sc_ah->caps.hw_caps &
1804 ATH9K_HW_CAP_4KB_SPLITTRANS)) {
1806 * Skip descriptor addresses which can cause 4KB
1807 * boundary crossing (addr + length) with a 32 dword
1808 * descriptor fetch.
1810 while (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr)) {
1811 ASSERT((caddr_t) bf->bf_desc <
1812 ((caddr_t) dd->dd_desc +
1813 dd->dd_desc_len));
1815 ds += ndesc;
1816 bf->bf_desc = ds;
1817 bf->bf_daddr = DS2PHYS(dd, ds);
1820 list_add_tail(&bf->list, head);
1822 return 0;
1823 fail2:
1824 dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc,
1825 dd->dd_desc_paddr);
1826 fail:
1827 memset(dd, 0, sizeof(*dd));
1828 return error;
1829 #undef ATH_DESC_4KB_BOUND_CHECK
1830 #undef ATH_DESC_4KB_BOUND_NUM_SKIPPED
1831 #undef DS2PHYS
1834 void ath_descdma_cleanup(struct ath_softc *sc,
1835 struct ath_descdma *dd,
1836 struct list_head *head)
1838 dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc,
1839 dd->dd_desc_paddr);
1841 INIT_LIST_HEAD(head);
1842 kfree(dd->dd_bufptr);
1843 memset(dd, 0, sizeof(*dd));
1846 int ath_get_hal_qnum(u16 queue, struct ath_softc *sc)
1848 int qnum;
1850 switch (queue) {
1851 case 0:
1852 qnum = sc->tx.hwq_map[ATH9K_WME_AC_VO];
1853 break;
1854 case 1:
1855 qnum = sc->tx.hwq_map[ATH9K_WME_AC_VI];
1856 break;
1857 case 2:
1858 qnum = sc->tx.hwq_map[ATH9K_WME_AC_BE];
1859 break;
1860 case 3:
1861 qnum = sc->tx.hwq_map[ATH9K_WME_AC_BK];
1862 break;
1863 default:
1864 qnum = sc->tx.hwq_map[ATH9K_WME_AC_BE];
1865 break;
1868 return qnum;
1871 int ath_get_mac80211_qnum(u32 queue, struct ath_softc *sc)
1873 int qnum;
1875 switch (queue) {
1876 case ATH9K_WME_AC_VO:
1877 qnum = 0;
1878 break;
1879 case ATH9K_WME_AC_VI:
1880 qnum = 1;
1881 break;
1882 case ATH9K_WME_AC_BE:
1883 qnum = 2;
1884 break;
1885 case ATH9K_WME_AC_BK:
1886 qnum = 3;
1887 break;
1888 default:
1889 qnum = -1;
1890 break;
1893 return qnum;
1896 /* XXX: Remove me once we don't depend on ath9k_channel for all
1897 * this redundant data */
1898 void ath9k_update_ichannel(struct ath_softc *sc, struct ieee80211_hw *hw,
1899 struct ath9k_channel *ichan)
1901 struct ieee80211_channel *chan = hw->conf.channel;
1902 struct ieee80211_conf *conf = &hw->conf;
1904 ichan->channel = chan->center_freq;
1905 ichan->chan = chan;
1907 if (chan->band == IEEE80211_BAND_2GHZ) {
1908 ichan->chanmode = CHANNEL_G;
1909 ichan->channelFlags = CHANNEL_2GHZ | CHANNEL_OFDM;
1910 } else {
1911 ichan->chanmode = CHANNEL_A;
1912 ichan->channelFlags = CHANNEL_5GHZ | CHANNEL_OFDM;
1915 sc->tx_chan_width = ATH9K_HT_MACMODE_20;
1917 if (conf_is_ht(conf)) {
1918 if (conf_is_ht40(conf))
1919 sc->tx_chan_width = ATH9K_HT_MACMODE_2040;
1921 ichan->chanmode = ath_get_extchanmode(sc, chan,
1922 conf->channel_type);
1926 /**********************/
1927 /* mac80211 callbacks */
1928 /**********************/
1930 static int ath9k_start(struct ieee80211_hw *hw)
1932 struct ath_wiphy *aphy = hw->priv;
1933 struct ath_softc *sc = aphy->sc;
1934 struct ieee80211_channel *curchan = hw->conf.channel;
1935 struct ath9k_channel *init_channel;
1936 int r;
1938 DPRINTF(sc, ATH_DBG_CONFIG, "Starting driver with "
1939 "initial channel: %d MHz\n", curchan->center_freq);
1941 mutex_lock(&sc->mutex);
1943 if (ath9k_wiphy_started(sc)) {
1944 if (sc->chan_idx == curchan->hw_value) {
1946 * Already on the operational channel, the new wiphy
1947 * can be marked active.
1949 aphy->state = ATH_WIPHY_ACTIVE;
1950 ieee80211_wake_queues(hw);
1951 } else {
1953 * Another wiphy is on another channel, start the new
1954 * wiphy in paused state.
1956 aphy->state = ATH_WIPHY_PAUSED;
1957 ieee80211_stop_queues(hw);
1959 mutex_unlock(&sc->mutex);
1960 return 0;
1962 aphy->state = ATH_WIPHY_ACTIVE;
1964 /* setup initial channel */
1966 sc->chan_idx = curchan->hw_value;
1968 init_channel = ath_get_curchannel(sc, hw);
1970 /* Reset SERDES registers */
1971 ath9k_hw_configpcipowersave(sc->sc_ah, 0);
1974 * The basic interface to setting the hardware in a good
1975 * state is ``reset''. On return the hardware is known to
1976 * be powered up and with interrupts disabled. This must
1977 * be followed by initialization of the appropriate bits
1978 * and then setup of the interrupt mask.
1980 spin_lock_bh(&sc->sc_resetlock);
1981 r = ath9k_hw_reset(sc->sc_ah, init_channel, false);
1982 if (r) {
1983 DPRINTF(sc, ATH_DBG_FATAL,
1984 "Unable to reset hardware; reset status %d "
1985 "(freq %u MHz)\n", r,
1986 curchan->center_freq);
1987 spin_unlock_bh(&sc->sc_resetlock);
1988 goto mutex_unlock;
1990 spin_unlock_bh(&sc->sc_resetlock);
1993 * This is needed only to setup initial state
1994 * but it's best done after a reset.
1996 ath_update_txpow(sc);
1999 * Setup the hardware after reset:
2000 * The receive engine is set going.
2001 * Frame transmit is handled entirely
2002 * in the frame output path; there's nothing to do
2003 * here except setup the interrupt mask.
2005 if (ath_startrecv(sc) != 0) {
2006 DPRINTF(sc, ATH_DBG_FATAL, "Unable to start recv logic\n");
2007 r = -EIO;
2008 goto mutex_unlock;
2011 /* Setup our intr mask. */
2012 sc->imask = ATH9K_INT_RX | ATH9K_INT_TX
2013 | ATH9K_INT_RXEOL | ATH9K_INT_RXORN
2014 | ATH9K_INT_FATAL | ATH9K_INT_GLOBAL;
2016 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_GTT)
2017 sc->imask |= ATH9K_INT_GTT;
2019 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT)
2020 sc->imask |= ATH9K_INT_CST;
2022 ath_cache_conf_rate(sc, &hw->conf);
2024 sc->sc_flags &= ~SC_OP_INVALID;
2026 /* Disable BMISS interrupt when we're not associated */
2027 sc->imask &= ~(ATH9K_INT_SWBA | ATH9K_INT_BMISS);
2028 ath9k_hw_set_interrupts(sc->sc_ah, sc->imask);
2030 ieee80211_wake_queues(hw);
2032 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
2033 r = ath_start_rfkill_poll(sc);
2034 #endif
2036 mutex_unlock:
2037 mutex_unlock(&sc->mutex);
2039 return r;
2042 static int ath9k_tx(struct ieee80211_hw *hw,
2043 struct sk_buff *skb)
2045 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2046 struct ath_wiphy *aphy = hw->priv;
2047 struct ath_softc *sc = aphy->sc;
2048 struct ath_tx_control txctl;
2049 int hdrlen, padsize;
2051 if (aphy->state != ATH_WIPHY_ACTIVE && aphy->state != ATH_WIPHY_SCAN) {
2052 printk(KERN_DEBUG "ath9k: %s: TX in unexpected wiphy state "
2053 "%d\n", wiphy_name(hw->wiphy), aphy->state);
2054 goto exit;
2057 if (sc->hw->conf.flags & IEEE80211_CONF_PS) {
2058 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2060 * mac80211 does not set PM field for normal data frames, so we
2061 * need to update that based on the current PS mode.
2063 if (ieee80211_is_data(hdr->frame_control) &&
2064 !ieee80211_is_nullfunc(hdr->frame_control) &&
2065 !ieee80211_has_pm(hdr->frame_control)) {
2066 DPRINTF(sc, ATH_DBG_PS, "Add PM=1 for a TX frame "
2067 "while in PS mode\n");
2068 hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_PM);
2072 if (unlikely(sc->sc_ah->power_mode != ATH9K_PM_AWAKE)) {
2074 * We are using PS-Poll and mac80211 can request TX while in
2075 * power save mode. Need to wake up hardware for the TX to be
2076 * completed and if needed, also for RX of buffered frames.
2078 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2079 ath9k_ps_wakeup(sc);
2080 ath9k_hw_setrxabort(sc->sc_ah, 0);
2081 if (ieee80211_is_pspoll(hdr->frame_control)) {
2082 DPRINTF(sc, ATH_DBG_PS, "Sending PS-Poll to pick a "
2083 "buffered frame\n");
2084 sc->sc_flags |= SC_OP_WAIT_FOR_PSPOLL_DATA;
2085 } else {
2086 DPRINTF(sc, ATH_DBG_PS, "Wake up to complete TX\n");
2087 sc->sc_flags |= SC_OP_WAIT_FOR_TX_ACK;
2090 * The actual restore operation will happen only after
2091 * the sc_flags bit is cleared. We are just dropping
2092 * the ps_usecount here.
2094 ath9k_ps_restore(sc);
2097 memset(&txctl, 0, sizeof(struct ath_tx_control));
2100 * As a temporary workaround, assign seq# here; this will likely need
2101 * to be cleaned up to work better with Beacon transmission and virtual
2102 * BSSes.
2104 if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
2105 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2106 if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
2107 sc->tx.seq_no += 0x10;
2108 hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
2109 hdr->seq_ctrl |= cpu_to_le16(sc->tx.seq_no);
2112 /* Add the padding after the header if this is not already done */
2113 hdrlen = ieee80211_get_hdrlen_from_skb(skb);
2114 if (hdrlen & 3) {
2115 padsize = hdrlen % 4;
2116 if (skb_headroom(skb) < padsize)
2117 return -1;
2118 skb_push(skb, padsize);
2119 memmove(skb->data, skb->data + padsize, hdrlen);
2122 /* Check if a tx queue is available */
2124 txctl.txq = ath_test_get_txq(sc, skb);
2125 if (!txctl.txq)
2126 goto exit;
2128 DPRINTF(sc, ATH_DBG_XMIT, "transmitting packet, skb: %p\n", skb);
2130 if (ath_tx_start(hw, skb, &txctl) != 0) {
2131 DPRINTF(sc, ATH_DBG_XMIT, "TX failed\n");
2132 goto exit;
2135 return 0;
2136 exit:
2137 dev_kfree_skb_any(skb);
2138 return 0;
2141 static void ath9k_stop(struct ieee80211_hw *hw)
2143 struct ath_wiphy *aphy = hw->priv;
2144 struct ath_softc *sc = aphy->sc;
2146 aphy->state = ATH_WIPHY_INACTIVE;
2148 if (sc->sc_flags & SC_OP_INVALID) {
2149 DPRINTF(sc, ATH_DBG_ANY, "Device not present\n");
2150 return;
2153 mutex_lock(&sc->mutex);
2155 ieee80211_stop_queues(hw);
2157 if (ath9k_wiphy_started(sc)) {
2158 mutex_unlock(&sc->mutex);
2159 return; /* another wiphy still in use */
2162 /* make sure h/w will not generate any interrupt
2163 * before setting the invalid flag. */
2164 ath9k_hw_set_interrupts(sc->sc_ah, 0);
2166 if (!(sc->sc_flags & SC_OP_INVALID)) {
2167 ath_drain_all_txq(sc, false);
2168 ath_stoprecv(sc);
2169 ath9k_hw_phy_disable(sc->sc_ah);
2170 } else
2171 sc->rx.rxlink = NULL;
2173 rfkill_pause_polling(sc->rf_kill.rfkill);
2175 /* disable HAL and put h/w to sleep */
2176 ath9k_hw_disable(sc->sc_ah);
2177 ath9k_hw_configpcipowersave(sc->sc_ah, 1);
2179 sc->sc_flags |= SC_OP_INVALID;
2181 mutex_unlock(&sc->mutex);
2183 DPRINTF(sc, ATH_DBG_CONFIG, "Driver halt\n");
2186 static int ath9k_add_interface(struct ieee80211_hw *hw,
2187 struct ieee80211_if_init_conf *conf)
2189 struct ath_wiphy *aphy = hw->priv;
2190 struct ath_softc *sc = aphy->sc;
2191 struct ath_vif *avp = (void *)conf->vif->drv_priv;
2192 enum nl80211_iftype ic_opmode = NL80211_IFTYPE_UNSPECIFIED;
2193 int ret = 0;
2195 mutex_lock(&sc->mutex);
2197 if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK) &&
2198 sc->nvifs > 0) {
2199 ret = -ENOBUFS;
2200 goto out;
2203 switch (conf->type) {
2204 case NL80211_IFTYPE_STATION:
2205 ic_opmode = NL80211_IFTYPE_STATION;
2206 break;
2207 case NL80211_IFTYPE_ADHOC:
2208 case NL80211_IFTYPE_AP:
2209 case NL80211_IFTYPE_MESH_POINT:
2210 if (sc->nbcnvifs >= ATH_BCBUF) {
2211 ret = -ENOBUFS;
2212 goto out;
2214 ic_opmode = conf->type;
2215 break;
2216 default:
2217 DPRINTF(sc, ATH_DBG_FATAL,
2218 "Interface type %d not yet supported\n", conf->type);
2219 ret = -EOPNOTSUPP;
2220 goto out;
2223 DPRINTF(sc, ATH_DBG_CONFIG, "Attach a VIF of type: %d\n", ic_opmode);
2225 /* Set the VIF opmode */
2226 avp->av_opmode = ic_opmode;
2227 avp->av_bslot = -1;
2229 sc->nvifs++;
2231 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK)
2232 ath9k_set_bssid_mask(hw);
2234 if (sc->nvifs > 1)
2235 goto out; /* skip global settings for secondary vif */
2237 if (ic_opmode == NL80211_IFTYPE_AP) {
2238 ath9k_hw_set_tsfadjust(sc->sc_ah, 1);
2239 sc->sc_flags |= SC_OP_TSF_RESET;
2242 /* Set the device opmode */
2243 sc->sc_ah->opmode = ic_opmode;
2246 * Enable MIB interrupts when there are hardware phy counters.
2247 * Note we only do this (at the moment) for station mode.
2249 if ((conf->type == NL80211_IFTYPE_STATION) ||
2250 (conf->type == NL80211_IFTYPE_ADHOC) ||
2251 (conf->type == NL80211_IFTYPE_MESH_POINT)) {
2252 if (ath9k_hw_phycounters(sc->sc_ah))
2253 sc->imask |= ATH9K_INT_MIB;
2254 sc->imask |= ATH9K_INT_TSFOOR;
2257 ath9k_hw_set_interrupts(sc->sc_ah, sc->imask);
2259 if (conf->type == NL80211_IFTYPE_AP)
2260 ath_start_ani(sc);
2262 out:
2263 mutex_unlock(&sc->mutex);
2264 return ret;
2267 static void ath9k_remove_interface(struct ieee80211_hw *hw,
2268 struct ieee80211_if_init_conf *conf)
2270 struct ath_wiphy *aphy = hw->priv;
2271 struct ath_softc *sc = aphy->sc;
2272 struct ath_vif *avp = (void *)conf->vif->drv_priv;
2273 int i;
2275 DPRINTF(sc, ATH_DBG_CONFIG, "Detach Interface\n");
2277 mutex_lock(&sc->mutex);
2279 /* Stop ANI */
2280 del_timer_sync(&sc->ani.timer);
2282 /* Reclaim beacon resources */
2283 if ((sc->sc_ah->opmode == NL80211_IFTYPE_AP) ||
2284 (sc->sc_ah->opmode == NL80211_IFTYPE_ADHOC) ||
2285 (sc->sc_ah->opmode == NL80211_IFTYPE_MESH_POINT)) {
2286 ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq);
2287 ath_beacon_return(sc, avp);
2290 sc->sc_flags &= ~SC_OP_BEACONS;
2292 for (i = 0; i < ARRAY_SIZE(sc->beacon.bslot); i++) {
2293 if (sc->beacon.bslot[i] == conf->vif) {
2294 printk(KERN_DEBUG "%s: vif had allocated beacon "
2295 "slot\n", __func__);
2296 sc->beacon.bslot[i] = NULL;
2297 sc->beacon.bslot_aphy[i] = NULL;
2301 sc->nvifs--;
2303 mutex_unlock(&sc->mutex);
2306 static int ath9k_config(struct ieee80211_hw *hw, u32 changed)
2308 struct ath_wiphy *aphy = hw->priv;
2309 struct ath_softc *sc = aphy->sc;
2310 struct ieee80211_conf *conf = &hw->conf;
2311 struct ath_hw *ah = sc->sc_ah;
2313 mutex_lock(&sc->mutex);
2315 if (changed & IEEE80211_CONF_CHANGE_PS) {
2316 if (conf->flags & IEEE80211_CONF_PS) {
2317 if (!(ah->caps.hw_caps &
2318 ATH9K_HW_CAP_AUTOSLEEP)) {
2319 if ((sc->imask & ATH9K_INT_TIM_TIMER) == 0) {
2320 sc->imask |= ATH9K_INT_TIM_TIMER;
2321 ath9k_hw_set_interrupts(sc->sc_ah,
2322 sc->imask);
2324 ath9k_hw_setrxabort(sc->sc_ah, 1);
2326 ath9k_hw_setpower(sc->sc_ah, ATH9K_PM_NETWORK_SLEEP);
2327 } else {
2328 ath9k_hw_setpower(sc->sc_ah, ATH9K_PM_AWAKE);
2329 if (!(ah->caps.hw_caps &
2330 ATH9K_HW_CAP_AUTOSLEEP)) {
2331 ath9k_hw_setrxabort(sc->sc_ah, 0);
2332 sc->sc_flags &= ~(SC_OP_WAIT_FOR_BEACON |
2333 SC_OP_WAIT_FOR_CAB |
2334 SC_OP_WAIT_FOR_PSPOLL_DATA |
2335 SC_OP_WAIT_FOR_TX_ACK);
2336 if (sc->imask & ATH9K_INT_TIM_TIMER) {
2337 sc->imask &= ~ATH9K_INT_TIM_TIMER;
2338 ath9k_hw_set_interrupts(sc->sc_ah,
2339 sc->imask);
2345 if (changed & IEEE80211_CONF_CHANGE_CHANNEL) {
2346 struct ieee80211_channel *curchan = hw->conf.channel;
2347 int pos = curchan->hw_value;
2349 aphy->chan_idx = pos;
2350 aphy->chan_is_ht = conf_is_ht(conf);
2352 if (aphy->state == ATH_WIPHY_SCAN ||
2353 aphy->state == ATH_WIPHY_ACTIVE)
2354 ath9k_wiphy_pause_all_forced(sc, aphy);
2355 else {
2357 * Do not change operational channel based on a paused
2358 * wiphy changes.
2360 goto skip_chan_change;
2363 DPRINTF(sc, ATH_DBG_CONFIG, "Set channel: %d MHz\n",
2364 curchan->center_freq);
2366 /* XXX: remove me eventualy */
2367 ath9k_update_ichannel(sc, hw, &sc->sc_ah->channels[pos]);
2369 ath_update_chainmask(sc, conf_is_ht(conf));
2371 if (ath_set_channel(sc, hw, &sc->sc_ah->channels[pos]) < 0) {
2372 DPRINTF(sc, ATH_DBG_FATAL, "Unable to set channel\n");
2373 mutex_unlock(&sc->mutex);
2374 return -EINVAL;
2378 skip_chan_change:
2379 if (changed & IEEE80211_CONF_CHANGE_POWER)
2380 sc->config.txpowlimit = 2 * conf->power_level;
2382 mutex_unlock(&sc->mutex);
2384 return 0;
2387 #define SUPPORTED_FILTERS \
2388 (FIF_PROMISC_IN_BSS | \
2389 FIF_ALLMULTI | \
2390 FIF_CONTROL | \
2391 FIF_OTHER_BSS | \
2392 FIF_BCN_PRBRESP_PROMISC | \
2393 FIF_FCSFAIL)
2395 /* FIXME: sc->sc_full_reset ? */
2396 static void ath9k_configure_filter(struct ieee80211_hw *hw,
2397 unsigned int changed_flags,
2398 unsigned int *total_flags,
2399 int mc_count,
2400 struct dev_mc_list *mclist)
2402 struct ath_wiphy *aphy = hw->priv;
2403 struct ath_softc *sc = aphy->sc;
2404 u32 rfilt;
2406 changed_flags &= SUPPORTED_FILTERS;
2407 *total_flags &= SUPPORTED_FILTERS;
2409 sc->rx.rxfilter = *total_flags;
2410 ath9k_ps_wakeup(sc);
2411 rfilt = ath_calcrxfilter(sc);
2412 ath9k_hw_setrxfilter(sc->sc_ah, rfilt);
2413 ath9k_ps_restore(sc);
2415 DPRINTF(sc, ATH_DBG_CONFIG, "Set HW RX filter: 0x%x\n", sc->rx.rxfilter);
2418 static void ath9k_sta_notify(struct ieee80211_hw *hw,
2419 struct ieee80211_vif *vif,
2420 enum sta_notify_cmd cmd,
2421 struct ieee80211_sta *sta)
2423 struct ath_wiphy *aphy = hw->priv;
2424 struct ath_softc *sc = aphy->sc;
2426 switch (cmd) {
2427 case STA_NOTIFY_ADD:
2428 ath_node_attach(sc, sta);
2429 break;
2430 case STA_NOTIFY_REMOVE:
2431 ath_node_detach(sc, sta);
2432 break;
2433 default:
2434 break;
2438 static int ath9k_conf_tx(struct ieee80211_hw *hw, u16 queue,
2439 const struct ieee80211_tx_queue_params *params)
2441 struct ath_wiphy *aphy = hw->priv;
2442 struct ath_softc *sc = aphy->sc;
2443 struct ath9k_tx_queue_info qi;
2444 int ret = 0, qnum;
2446 if (queue >= WME_NUM_AC)
2447 return 0;
2449 mutex_lock(&sc->mutex);
2451 memset(&qi, 0, sizeof(struct ath9k_tx_queue_info));
2453 qi.tqi_aifs = params->aifs;
2454 qi.tqi_cwmin = params->cw_min;
2455 qi.tqi_cwmax = params->cw_max;
2456 qi.tqi_burstTime = params->txop;
2457 qnum = ath_get_hal_qnum(queue, sc);
2459 DPRINTF(sc, ATH_DBG_CONFIG,
2460 "Configure tx [queue/halq] [%d/%d], "
2461 "aifs: %d, cw_min: %d, cw_max: %d, txop: %d\n",
2462 queue, qnum, params->aifs, params->cw_min,
2463 params->cw_max, params->txop);
2465 ret = ath_txq_update(sc, qnum, &qi);
2466 if (ret)
2467 DPRINTF(sc, ATH_DBG_FATAL, "TXQ Update failed\n");
2469 mutex_unlock(&sc->mutex);
2471 return ret;
2474 static int ath9k_set_key(struct ieee80211_hw *hw,
2475 enum set_key_cmd cmd,
2476 struct ieee80211_vif *vif,
2477 struct ieee80211_sta *sta,
2478 struct ieee80211_key_conf *key)
2480 struct ath_wiphy *aphy = hw->priv;
2481 struct ath_softc *sc = aphy->sc;
2482 int ret = 0;
2484 if (modparam_nohwcrypt)
2485 return -ENOSPC;
2487 mutex_lock(&sc->mutex);
2488 ath9k_ps_wakeup(sc);
2489 DPRINTF(sc, ATH_DBG_CONFIG, "Set HW Key\n");
2491 switch (cmd) {
2492 case SET_KEY:
2493 ret = ath_key_config(sc, vif, sta, key);
2494 if (ret >= 0) {
2495 key->hw_key_idx = ret;
2496 /* push IV and Michael MIC generation to stack */
2497 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
2498 if (key->alg == ALG_TKIP)
2499 key->flags |= IEEE80211_KEY_FLAG_GENERATE_MMIC;
2500 if (sc->sc_ah->sw_mgmt_crypto && key->alg == ALG_CCMP)
2501 key->flags |= IEEE80211_KEY_FLAG_SW_MGMT;
2502 ret = 0;
2504 break;
2505 case DISABLE_KEY:
2506 ath_key_delete(sc, key);
2507 break;
2508 default:
2509 ret = -EINVAL;
2512 ath9k_ps_restore(sc);
2513 mutex_unlock(&sc->mutex);
2515 return ret;
2518 static void ath9k_bss_info_changed(struct ieee80211_hw *hw,
2519 struct ieee80211_vif *vif,
2520 struct ieee80211_bss_conf *bss_conf,
2521 u32 changed)
2523 struct ath_wiphy *aphy = hw->priv;
2524 struct ath_softc *sc = aphy->sc;
2525 struct ath_hw *ah = sc->sc_ah;
2526 struct ath_vif *avp = (void *)vif->drv_priv;
2527 u32 rfilt = 0;
2528 int error, i;
2530 mutex_lock(&sc->mutex);
2533 * TODO: Need to decide which hw opmode to use for
2534 * multi-interface cases
2535 * XXX: This belongs into add_interface!
2537 if (vif->type == NL80211_IFTYPE_AP &&
2538 ah->opmode != NL80211_IFTYPE_AP) {
2539 ah->opmode = NL80211_IFTYPE_STATION;
2540 ath9k_hw_setopmode(ah);
2541 memcpy(sc->curbssid, sc->sc_ah->macaddr, ETH_ALEN);
2542 sc->curaid = 0;
2543 ath9k_hw_write_associd(sc);
2544 /* Request full reset to get hw opmode changed properly */
2545 sc->sc_flags |= SC_OP_FULL_RESET;
2548 if ((changed & BSS_CHANGED_BSSID) &&
2549 !is_zero_ether_addr(bss_conf->bssid)) {
2550 switch (vif->type) {
2551 case NL80211_IFTYPE_STATION:
2552 case NL80211_IFTYPE_ADHOC:
2553 case NL80211_IFTYPE_MESH_POINT:
2554 /* Set BSSID */
2555 memcpy(sc->curbssid, bss_conf->bssid, ETH_ALEN);
2556 memcpy(avp->bssid, bss_conf->bssid, ETH_ALEN);
2557 sc->curaid = 0;
2558 ath9k_hw_write_associd(sc);
2560 /* Set aggregation protection mode parameters */
2561 sc->config.ath_aggr_prot = 0;
2563 DPRINTF(sc, ATH_DBG_CONFIG,
2564 "RX filter 0x%x bssid %pM aid 0x%x\n",
2565 rfilt, sc->curbssid, sc->curaid);
2567 /* need to reconfigure the beacon */
2568 sc->sc_flags &= ~SC_OP_BEACONS ;
2570 break;
2571 default:
2572 break;
2576 if ((vif->type == NL80211_IFTYPE_ADHOC) ||
2577 (vif->type == NL80211_IFTYPE_AP) ||
2578 (vif->type == NL80211_IFTYPE_MESH_POINT)) {
2579 if ((changed & BSS_CHANGED_BEACON) ||
2580 (changed & BSS_CHANGED_BEACON_ENABLED &&
2581 bss_conf->enable_beacon)) {
2583 * Allocate and setup the beacon frame.
2585 * Stop any previous beacon DMA. This may be
2586 * necessary, for example, when an ibss merge
2587 * causes reconfiguration; we may be called
2588 * with beacon transmission active.
2590 ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq);
2592 error = ath_beacon_alloc(aphy, vif);
2593 if (!error)
2594 ath_beacon_config(sc, vif);
2598 /* Check for WLAN_CAPABILITY_PRIVACY ? */
2599 if ((avp->av_opmode != NL80211_IFTYPE_STATION)) {
2600 for (i = 0; i < IEEE80211_WEP_NKID; i++)
2601 if (ath9k_hw_keyisvalid(sc->sc_ah, (u16)i))
2602 ath9k_hw_keysetmac(sc->sc_ah,
2603 (u16)i,
2604 sc->curbssid);
2607 /* Only legacy IBSS for now */
2608 if (vif->type == NL80211_IFTYPE_ADHOC)
2609 ath_update_chainmask(sc, 0);
2611 if (changed & BSS_CHANGED_ERP_PREAMBLE) {
2612 DPRINTF(sc, ATH_DBG_CONFIG, "BSS Changed PREAMBLE %d\n",
2613 bss_conf->use_short_preamble);
2614 if (bss_conf->use_short_preamble)
2615 sc->sc_flags |= SC_OP_PREAMBLE_SHORT;
2616 else
2617 sc->sc_flags &= ~SC_OP_PREAMBLE_SHORT;
2620 if (changed & BSS_CHANGED_ERP_CTS_PROT) {
2621 DPRINTF(sc, ATH_DBG_CONFIG, "BSS Changed CTS PROT %d\n",
2622 bss_conf->use_cts_prot);
2623 if (bss_conf->use_cts_prot &&
2624 hw->conf.channel->band != IEEE80211_BAND_5GHZ)
2625 sc->sc_flags |= SC_OP_PROTECT_ENABLE;
2626 else
2627 sc->sc_flags &= ~SC_OP_PROTECT_ENABLE;
2630 if (changed & BSS_CHANGED_ASSOC) {
2631 DPRINTF(sc, ATH_DBG_CONFIG, "BSS Changed ASSOC %d\n",
2632 bss_conf->assoc);
2633 ath9k_bss_assoc_info(sc, vif, bss_conf);
2637 * The HW TSF has to be reset when the beacon interval changes.
2638 * We set the flag here, and ath_beacon_config_ap() would take this
2639 * into account when it gets called through the subsequent
2640 * config_interface() call - with IFCC_BEACON in the changed field.
2643 if (changed & BSS_CHANGED_BEACON_INT) {
2644 sc->sc_flags |= SC_OP_TSF_RESET;
2645 sc->beacon_interval = bss_conf->beacon_int;
2648 mutex_unlock(&sc->mutex);
2651 static u64 ath9k_get_tsf(struct ieee80211_hw *hw)
2653 u64 tsf;
2654 struct ath_wiphy *aphy = hw->priv;
2655 struct ath_softc *sc = aphy->sc;
2657 mutex_lock(&sc->mutex);
2658 tsf = ath9k_hw_gettsf64(sc->sc_ah);
2659 mutex_unlock(&sc->mutex);
2661 return tsf;
2664 static void ath9k_set_tsf(struct ieee80211_hw *hw, u64 tsf)
2666 struct ath_wiphy *aphy = hw->priv;
2667 struct ath_softc *sc = aphy->sc;
2669 mutex_lock(&sc->mutex);
2670 ath9k_hw_settsf64(sc->sc_ah, tsf);
2671 mutex_unlock(&sc->mutex);
2674 static void ath9k_reset_tsf(struct ieee80211_hw *hw)
2676 struct ath_wiphy *aphy = hw->priv;
2677 struct ath_softc *sc = aphy->sc;
2679 mutex_lock(&sc->mutex);
2680 ath9k_hw_reset_tsf(sc->sc_ah);
2681 mutex_unlock(&sc->mutex);
2684 static int ath9k_ampdu_action(struct ieee80211_hw *hw,
2685 enum ieee80211_ampdu_mlme_action action,
2686 struct ieee80211_sta *sta,
2687 u16 tid, u16 *ssn)
2689 struct ath_wiphy *aphy = hw->priv;
2690 struct ath_softc *sc = aphy->sc;
2691 int ret = 0;
2693 switch (action) {
2694 case IEEE80211_AMPDU_RX_START:
2695 if (!(sc->sc_flags & SC_OP_RXAGGR))
2696 ret = -ENOTSUPP;
2697 break;
2698 case IEEE80211_AMPDU_RX_STOP:
2699 break;
2700 case IEEE80211_AMPDU_TX_START:
2701 ret = ath_tx_aggr_start(sc, sta, tid, ssn);
2702 if (ret < 0)
2703 DPRINTF(sc, ATH_DBG_FATAL,
2704 "Unable to start TX aggregation\n");
2705 else
2706 ieee80211_start_tx_ba_cb_irqsafe(hw, sta->addr, tid);
2707 break;
2708 case IEEE80211_AMPDU_TX_STOP:
2709 ret = ath_tx_aggr_stop(sc, sta, tid);
2710 if (ret < 0)
2711 DPRINTF(sc, ATH_DBG_FATAL,
2712 "Unable to stop TX aggregation\n");
2714 ieee80211_stop_tx_ba_cb_irqsafe(hw, sta->addr, tid);
2715 break;
2716 case IEEE80211_AMPDU_TX_OPERATIONAL:
2717 ath_tx_aggr_resume(sc, sta, tid);
2718 break;
2719 default:
2720 DPRINTF(sc, ATH_DBG_FATAL, "Unknown AMPDU action\n");
2723 return ret;
2726 static void ath9k_sw_scan_start(struct ieee80211_hw *hw)
2728 struct ath_wiphy *aphy = hw->priv;
2729 struct ath_softc *sc = aphy->sc;
2731 if (ath9k_wiphy_scanning(sc)) {
2732 printk(KERN_DEBUG "ath9k: Two wiphys trying to scan at the "
2733 "same time\n");
2735 * Do not allow the concurrent scanning state for now. This
2736 * could be improved with scanning control moved into ath9k.
2738 return;
2741 aphy->state = ATH_WIPHY_SCAN;
2742 ath9k_wiphy_pause_all_forced(sc, aphy);
2744 mutex_lock(&sc->mutex);
2745 sc->sc_flags |= SC_OP_SCANNING;
2746 mutex_unlock(&sc->mutex);
2749 static void ath9k_sw_scan_complete(struct ieee80211_hw *hw)
2751 struct ath_wiphy *aphy = hw->priv;
2752 struct ath_softc *sc = aphy->sc;
2754 mutex_lock(&sc->mutex);
2755 aphy->state = ATH_WIPHY_ACTIVE;
2756 sc->sc_flags &= ~SC_OP_SCANNING;
2757 sc->sc_flags |= SC_OP_FULL_RESET;
2758 mutex_unlock(&sc->mutex);
2761 struct ieee80211_ops ath9k_ops = {
2762 .tx = ath9k_tx,
2763 .start = ath9k_start,
2764 .stop = ath9k_stop,
2765 .add_interface = ath9k_add_interface,
2766 .remove_interface = ath9k_remove_interface,
2767 .config = ath9k_config,
2768 .configure_filter = ath9k_configure_filter,
2769 .sta_notify = ath9k_sta_notify,
2770 .conf_tx = ath9k_conf_tx,
2771 .bss_info_changed = ath9k_bss_info_changed,
2772 .set_key = ath9k_set_key,
2773 .get_tsf = ath9k_get_tsf,
2774 .set_tsf = ath9k_set_tsf,
2775 .reset_tsf = ath9k_reset_tsf,
2776 .ampdu_action = ath9k_ampdu_action,
2777 .sw_scan_start = ath9k_sw_scan_start,
2778 .sw_scan_complete = ath9k_sw_scan_complete,
2781 static struct {
2782 u32 version;
2783 const char * name;
2784 } ath_mac_bb_names[] = {
2785 { AR_SREV_VERSION_5416_PCI, "5416" },
2786 { AR_SREV_VERSION_5416_PCIE, "5418" },
2787 { AR_SREV_VERSION_9100, "9100" },
2788 { AR_SREV_VERSION_9160, "9160" },
2789 { AR_SREV_VERSION_9280, "9280" },
2790 { AR_SREV_VERSION_9285, "9285" }
2793 static struct {
2794 u16 version;
2795 const char * name;
2796 } ath_rf_names[] = {
2797 { 0, "5133" },
2798 { AR_RAD5133_SREV_MAJOR, "5133" },
2799 { AR_RAD5122_SREV_MAJOR, "5122" },
2800 { AR_RAD2133_SREV_MAJOR, "2133" },
2801 { AR_RAD2122_SREV_MAJOR, "2122" }
2805 * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
2807 const char *
2808 ath_mac_bb_name(u32 mac_bb_version)
2810 int i;
2812 for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
2813 if (ath_mac_bb_names[i].version == mac_bb_version) {
2814 return ath_mac_bb_names[i].name;
2818 return "????";
2822 * Return the RF name. "????" is returned if the RF is unknown.
2824 const char *
2825 ath_rf_name(u16 rf_version)
2827 int i;
2829 for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
2830 if (ath_rf_names[i].version == rf_version) {
2831 return ath_rf_names[i].name;
2835 return "????";
2838 static int __init ath9k_init(void)
2840 int error;
2842 /* Register rate control algorithm */
2843 error = ath_rate_control_register();
2844 if (error != 0) {
2845 printk(KERN_ERR
2846 "ath9k: Unable to register rate control "
2847 "algorithm: %d\n",
2848 error);
2849 goto err_out;
2852 error = ath9k_debug_create_root();
2853 if (error) {
2854 printk(KERN_ERR
2855 "ath9k: Unable to create debugfs root: %d\n",
2856 error);
2857 goto err_rate_unregister;
2860 error = ath_pci_init();
2861 if (error < 0) {
2862 printk(KERN_ERR
2863 "ath9k: No PCI devices found, driver not installed.\n");
2864 error = -ENODEV;
2865 goto err_remove_root;
2868 error = ath_ahb_init();
2869 if (error < 0) {
2870 error = -ENODEV;
2871 goto err_pci_exit;
2874 return 0;
2876 err_pci_exit:
2877 ath_pci_exit();
2879 err_remove_root:
2880 ath9k_debug_remove_root();
2881 err_rate_unregister:
2882 ath_rate_control_unregister();
2883 err_out:
2884 return error;
2886 module_init(ath9k_init);
2888 static void __exit ath9k_exit(void)
2890 ath_ahb_exit();
2891 ath_pci_exit();
2892 ath9k_debug_remove_root();
2893 ath_rate_control_unregister();
2894 printk(KERN_INFO "%s: Driver unloaded\n", dev_info);
2896 module_exit(ath9k_exit);