2 * Copyright (C) 2010 IBM Corporation
5 * Mimi Zohar <zohar@us.ibm.com>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, version 2 of the License.
11 * See Documentation/security/keys-trusted-encrypted.txt
14 #include <linux/uaccess.h>
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/parser.h>
19 #include <linux/string.h>
20 #include <linux/err.h>
21 #include <keys/user-type.h>
22 #include <keys/trusted-type.h>
23 #include <keys/encrypted-type.h>
24 #include <linux/key-type.h>
25 #include <linux/random.h>
26 #include <linux/rcupdate.h>
27 #include <linux/scatterlist.h>
28 #include <linux/crypto.h>
29 #include <crypto/hash.h>
30 #include <crypto/sha.h>
31 #include <crypto/aes.h>
33 #include "encrypted.h"
35 static const char KEY_TRUSTED_PREFIX
[] = "trusted:";
36 static const char KEY_USER_PREFIX
[] = "user:";
37 static const char hash_alg
[] = "sha256";
38 static const char hmac_alg
[] = "hmac(sha256)";
39 static const char blkcipher_alg
[] = "cbc(aes)";
40 static unsigned int ivsize
;
43 #define KEY_TRUSTED_PREFIX_LEN (sizeof (KEY_TRUSTED_PREFIX) - 1)
44 #define KEY_USER_PREFIX_LEN (sizeof (KEY_USER_PREFIX) - 1)
45 #define HASH_SIZE SHA256_DIGEST_SIZE
46 #define MAX_DATA_SIZE 4096
47 #define MIN_DATA_SIZE 20
50 struct shash_desc shash
;
54 static struct crypto_shash
*hashalg
;
55 static struct crypto_shash
*hmacalg
;
58 Opt_err
= -1, Opt_new
, Opt_load
, Opt_update
61 static const match_table_t key_tokens
= {
64 {Opt_update
, "update"},
68 static int aes_get_sizes(void)
70 struct crypto_blkcipher
*tfm
;
72 tfm
= crypto_alloc_blkcipher(blkcipher_alg
, 0, CRYPTO_ALG_ASYNC
);
74 pr_err("encrypted_key: failed to alloc_cipher (%ld)\n",
78 ivsize
= crypto_blkcipher_ivsize(tfm
);
79 blksize
= crypto_blkcipher_blocksize(tfm
);
80 crypto_free_blkcipher(tfm
);
85 * valid_master_desc - verify the 'key-type:desc' of a new/updated master-key
87 * key-type:= "trusted:" | "encrypted:"
88 * desc:= master-key description
90 * Verify that 'key-type' is valid and that 'desc' exists. On key update,
91 * only the master key description is permitted to change, not the key-type.
92 * The key-type remains constant.
94 * On success returns 0, otherwise -EINVAL.
96 static int valid_master_desc(const char *new_desc
, const char *orig_desc
)
98 if (!memcmp(new_desc
, KEY_TRUSTED_PREFIX
, KEY_TRUSTED_PREFIX_LEN
)) {
99 if (strlen(new_desc
) == KEY_TRUSTED_PREFIX_LEN
)
102 if (memcmp(new_desc
, orig_desc
, KEY_TRUSTED_PREFIX_LEN
))
104 } else if (!memcmp(new_desc
, KEY_USER_PREFIX
, KEY_USER_PREFIX_LEN
)) {
105 if (strlen(new_desc
) == KEY_USER_PREFIX_LEN
)
108 if (memcmp(new_desc
, orig_desc
, KEY_USER_PREFIX_LEN
))
118 * datablob_parse - parse the keyctl data
121 * new <master-key name> <decrypted data length>
122 * load <master-key name> <decrypted data length> <encrypted iv + data>
123 * update <new-master-key name>
125 * Tokenizes a copy of the keyctl data, returning a pointer to each token,
126 * which is null terminated.
128 * On success returns 0, otherwise -EINVAL.
130 static int datablob_parse(char *datablob
, char **master_desc
,
131 char **decrypted_datalen
, char **hex_encoded_iv
)
133 substring_t args
[MAX_OPT_ARGS
];
138 p
= strsep(&datablob
, " \t");
141 key_cmd
= match_token(p
, key_tokens
, args
);
143 *master_desc
= strsep(&datablob
, " \t");
147 if (valid_master_desc(*master_desc
, NULL
) < 0)
150 if (decrypted_datalen
) {
151 *decrypted_datalen
= strsep(&datablob
, " \t");
152 if (!*decrypted_datalen
)
158 if (!decrypted_datalen
)
163 if (!decrypted_datalen
)
165 *hex_encoded_iv
= strsep(&datablob
, " \t");
166 if (!*hex_encoded_iv
)
171 if (decrypted_datalen
)
183 * datablob_format - format as an ascii string, before copying to userspace
185 static char *datablob_format(struct encrypted_key_payload
*epayload
,
186 size_t asciiblob_len
)
188 char *ascii_buf
, *bufp
;
189 u8
*iv
= epayload
->iv
;
193 ascii_buf
= kmalloc(asciiblob_len
+ 1, GFP_KERNEL
);
197 ascii_buf
[asciiblob_len
] = '\0';
199 /* copy datablob master_desc and datalen strings */
200 len
= sprintf(ascii_buf
, "%s %s ", epayload
->master_desc
,
203 /* convert the hex encoded iv, encrypted-data and HMAC to ascii */
204 bufp
= &ascii_buf
[len
];
205 for (i
= 0; i
< (asciiblob_len
- len
) / 2; i
++)
206 bufp
= pack_hex_byte(bufp
, iv
[i
]);
212 * request_trusted_key - request the trusted key
214 * Trusted keys are sealed to PCRs and other metadata. Although userspace
215 * manages both trusted/encrypted key-types, like the encrypted key type
216 * data, trusted key type data is not visible decrypted from userspace.
218 static struct key
*request_trusted_key(const char *trusted_desc
,
219 u8
**master_key
, size_t *master_keylen
)
221 struct trusted_key_payload
*tpayload
;
224 tkey
= request_key(&key_type_trusted
, trusted_desc
, NULL
);
228 down_read(&tkey
->sem
);
229 tpayload
= rcu_dereference(tkey
->payload
.data
);
230 *master_key
= tpayload
->key
;
231 *master_keylen
= tpayload
->key_len
;
237 * request_user_key - request the user key
239 * Use a user provided key to encrypt/decrypt an encrypted-key.
241 static struct key
*request_user_key(const char *master_desc
, u8
**master_key
,
242 size_t *master_keylen
)
244 struct user_key_payload
*upayload
;
247 ukey
= request_key(&key_type_user
, master_desc
, NULL
);
251 down_read(&ukey
->sem
);
252 upayload
= rcu_dereference(ukey
->payload
.data
);
253 *master_key
= upayload
->data
;
254 *master_keylen
= upayload
->datalen
;
259 static struct sdesc
*alloc_sdesc(struct crypto_shash
*alg
)
264 size
= sizeof(struct shash_desc
) + crypto_shash_descsize(alg
);
265 sdesc
= kmalloc(size
, GFP_KERNEL
);
267 return ERR_PTR(-ENOMEM
);
268 sdesc
->shash
.tfm
= alg
;
269 sdesc
->shash
.flags
= 0x0;
273 static int calc_hmac(u8
*digest
, const u8
*key
, unsigned int keylen
,
274 const u8
*buf
, unsigned int buflen
)
279 sdesc
= alloc_sdesc(hmacalg
);
281 pr_info("encrypted_key: can't alloc %s\n", hmac_alg
);
282 return PTR_ERR(sdesc
);
285 ret
= crypto_shash_setkey(hmacalg
, key
, keylen
);
287 ret
= crypto_shash_digest(&sdesc
->shash
, buf
, buflen
, digest
);
292 static int calc_hash(u8
*digest
, const u8
*buf
, unsigned int buflen
)
297 sdesc
= alloc_sdesc(hashalg
);
299 pr_info("encrypted_key: can't alloc %s\n", hash_alg
);
300 return PTR_ERR(sdesc
);
303 ret
= crypto_shash_digest(&sdesc
->shash
, buf
, buflen
, digest
);
308 enum derived_key_type
{ ENC_KEY
, AUTH_KEY
};
310 /* Derive authentication/encryption key from trusted key */
311 static int get_derived_key(u8
*derived_key
, enum derived_key_type key_type
,
312 const u8
*master_key
, size_t master_keylen
)
315 unsigned int derived_buf_len
;
318 derived_buf_len
= strlen("AUTH_KEY") + 1 + master_keylen
;
319 if (derived_buf_len
< HASH_SIZE
)
320 derived_buf_len
= HASH_SIZE
;
322 derived_buf
= kzalloc(derived_buf_len
, GFP_KERNEL
);
324 pr_err("encrypted_key: out of memory\n");
328 strcpy(derived_buf
, "AUTH_KEY");
330 strcpy(derived_buf
, "ENC_KEY");
332 memcpy(derived_buf
+ strlen(derived_buf
) + 1, master_key
,
334 ret
= calc_hash(derived_key
, derived_buf
, derived_buf_len
);
339 static int init_blkcipher_desc(struct blkcipher_desc
*desc
, const u8
*key
,
340 unsigned int key_len
, const u8
*iv
,
345 desc
->tfm
= crypto_alloc_blkcipher(blkcipher_alg
, 0, CRYPTO_ALG_ASYNC
);
346 if (IS_ERR(desc
->tfm
)) {
347 pr_err("encrypted_key: failed to load %s transform (%ld)\n",
348 blkcipher_alg
, PTR_ERR(desc
->tfm
));
349 return PTR_ERR(desc
->tfm
);
353 ret
= crypto_blkcipher_setkey(desc
->tfm
, key
, key_len
);
355 pr_err("encrypted_key: failed to setkey (%d)\n", ret
);
356 crypto_free_blkcipher(desc
->tfm
);
359 crypto_blkcipher_set_iv(desc
->tfm
, iv
, ivsize
);
363 static struct key
*request_master_key(struct encrypted_key_payload
*epayload
,
364 u8
**master_key
, size_t *master_keylen
)
366 struct key
*mkey
= NULL
;
368 if (!strncmp(epayload
->master_desc
, KEY_TRUSTED_PREFIX
,
369 KEY_TRUSTED_PREFIX_LEN
)) {
370 mkey
= request_trusted_key(epayload
->master_desc
+
371 KEY_TRUSTED_PREFIX_LEN
,
372 master_key
, master_keylen
);
373 } else if (!strncmp(epayload
->master_desc
, KEY_USER_PREFIX
,
374 KEY_USER_PREFIX_LEN
)) {
375 mkey
= request_user_key(epayload
->master_desc
+
377 master_key
, master_keylen
);
382 pr_info("encrypted_key: key %s not found",
383 epayload
->master_desc
);
385 dump_master_key(*master_key
, *master_keylen
);
390 /* Before returning data to userspace, encrypt decrypted data. */
391 static int derived_key_encrypt(struct encrypted_key_payload
*epayload
,
392 const u8
*derived_key
,
393 unsigned int derived_keylen
)
395 struct scatterlist sg_in
[2];
396 struct scatterlist sg_out
[1];
397 struct blkcipher_desc desc
;
398 unsigned int encrypted_datalen
;
403 encrypted_datalen
= roundup(epayload
->decrypted_datalen
, blksize
);
404 padlen
= encrypted_datalen
- epayload
->decrypted_datalen
;
406 ret
= init_blkcipher_desc(&desc
, derived_key
, derived_keylen
,
407 epayload
->iv
, ivsize
);
410 dump_decrypted_data(epayload
);
412 memset(pad
, 0, sizeof pad
);
413 sg_init_table(sg_in
, 2);
414 sg_set_buf(&sg_in
[0], epayload
->decrypted_data
,
415 epayload
->decrypted_datalen
);
416 sg_set_buf(&sg_in
[1], pad
, padlen
);
418 sg_init_table(sg_out
, 1);
419 sg_set_buf(sg_out
, epayload
->encrypted_data
, encrypted_datalen
);
421 ret
= crypto_blkcipher_encrypt(&desc
, sg_out
, sg_in
, encrypted_datalen
);
422 crypto_free_blkcipher(desc
.tfm
);
424 pr_err("encrypted_key: failed to encrypt (%d)\n", ret
);
426 dump_encrypted_data(epayload
, encrypted_datalen
);
431 static int datablob_hmac_append(struct encrypted_key_payload
*epayload
,
432 const u8
*master_key
, size_t master_keylen
)
434 u8 derived_key
[HASH_SIZE
];
438 ret
= get_derived_key(derived_key
, AUTH_KEY
, master_key
, master_keylen
);
442 digest
= epayload
->master_desc
+ epayload
->datablob_len
;
443 ret
= calc_hmac(digest
, derived_key
, sizeof derived_key
,
444 epayload
->master_desc
, epayload
->datablob_len
);
446 dump_hmac(NULL
, digest
, HASH_SIZE
);
451 /* verify HMAC before decrypting encrypted key */
452 static int datablob_hmac_verify(struct encrypted_key_payload
*epayload
,
453 const u8
*master_key
, size_t master_keylen
)
455 u8 derived_key
[HASH_SIZE
];
456 u8 digest
[HASH_SIZE
];
459 ret
= get_derived_key(derived_key
, AUTH_KEY
, master_key
, master_keylen
);
463 ret
= calc_hmac(digest
, derived_key
, sizeof derived_key
,
464 epayload
->master_desc
, epayload
->datablob_len
);
467 ret
= memcmp(digest
, epayload
->master_desc
+ epayload
->datablob_len
,
471 dump_hmac("datablob",
472 epayload
->master_desc
+ epayload
->datablob_len
,
474 dump_hmac("calc", digest
, HASH_SIZE
);
480 static int derived_key_decrypt(struct encrypted_key_payload
*epayload
,
481 const u8
*derived_key
,
482 unsigned int derived_keylen
)
484 struct scatterlist sg_in
[1];
485 struct scatterlist sg_out
[2];
486 struct blkcipher_desc desc
;
487 unsigned int encrypted_datalen
;
491 encrypted_datalen
= roundup(epayload
->decrypted_datalen
, blksize
);
492 ret
= init_blkcipher_desc(&desc
, derived_key
, derived_keylen
,
493 epayload
->iv
, ivsize
);
496 dump_encrypted_data(epayload
, encrypted_datalen
);
498 memset(pad
, 0, sizeof pad
);
499 sg_init_table(sg_in
, 1);
500 sg_init_table(sg_out
, 2);
501 sg_set_buf(sg_in
, epayload
->encrypted_data
, encrypted_datalen
);
502 sg_set_buf(&sg_out
[0], epayload
->decrypted_data
,
503 epayload
->decrypted_datalen
);
504 sg_set_buf(&sg_out
[1], pad
, sizeof pad
);
506 ret
= crypto_blkcipher_decrypt(&desc
, sg_out
, sg_in
, encrypted_datalen
);
507 crypto_free_blkcipher(desc
.tfm
);
510 dump_decrypted_data(epayload
);
515 /* Allocate memory for decrypted key and datablob. */
516 static struct encrypted_key_payload
*encrypted_key_alloc(struct key
*key
,
517 const char *master_desc
,
520 struct encrypted_key_payload
*epayload
= NULL
;
521 unsigned short datablob_len
;
522 unsigned short decrypted_datalen
;
523 unsigned int encrypted_datalen
;
527 ret
= strict_strtol(datalen
, 10, &dlen
);
528 if (ret
< 0 || dlen
< MIN_DATA_SIZE
|| dlen
> MAX_DATA_SIZE
)
529 return ERR_PTR(-EINVAL
);
531 decrypted_datalen
= dlen
;
532 encrypted_datalen
= roundup(decrypted_datalen
, blksize
);
534 datablob_len
= strlen(master_desc
) + 1 + strlen(datalen
) + 1
535 + ivsize
+ 1 + encrypted_datalen
;
537 ret
= key_payload_reserve(key
, decrypted_datalen
+ datablob_len
542 epayload
= kzalloc(sizeof(*epayload
) + decrypted_datalen
+
543 datablob_len
+ HASH_SIZE
+ 1, GFP_KERNEL
);
545 return ERR_PTR(-ENOMEM
);
547 epayload
->decrypted_datalen
= decrypted_datalen
;
548 epayload
->datablob_len
= datablob_len
;
552 static int encrypted_key_decrypt(struct encrypted_key_payload
*epayload
,
553 const char *hex_encoded_iv
)
556 u8 derived_key
[HASH_SIZE
];
559 const char *hex_encoded_data
;
560 unsigned int encrypted_datalen
;
561 size_t master_keylen
;
565 encrypted_datalen
= roundup(epayload
->decrypted_datalen
, blksize
);
566 asciilen
= (ivsize
+ 1 + encrypted_datalen
+ HASH_SIZE
) * 2;
567 if (strlen(hex_encoded_iv
) != asciilen
)
570 hex_encoded_data
= hex_encoded_iv
+ (2 * ivsize
) + 2;
571 hex2bin(epayload
->iv
, hex_encoded_iv
, ivsize
);
572 hex2bin(epayload
->encrypted_data
, hex_encoded_data
, encrypted_datalen
);
574 hmac
= epayload
->master_desc
+ epayload
->datablob_len
;
575 hex2bin(hmac
, hex_encoded_data
+ (encrypted_datalen
* 2), HASH_SIZE
);
577 mkey
= request_master_key(epayload
, &master_key
, &master_keylen
);
579 return PTR_ERR(mkey
);
581 ret
= datablob_hmac_verify(epayload
, master_key
, master_keylen
);
583 pr_err("encrypted_key: bad hmac (%d)\n", ret
);
587 ret
= get_derived_key(derived_key
, ENC_KEY
, master_key
, master_keylen
);
591 ret
= derived_key_decrypt(epayload
, derived_key
, sizeof derived_key
);
593 pr_err("encrypted_key: failed to decrypt key (%d)\n", ret
);
600 static void __ekey_init(struct encrypted_key_payload
*epayload
,
601 const char *master_desc
, const char *datalen
)
603 epayload
->master_desc
= epayload
->decrypted_data
604 + epayload
->decrypted_datalen
;
605 epayload
->datalen
= epayload
->master_desc
+ strlen(master_desc
) + 1;
606 epayload
->iv
= epayload
->datalen
+ strlen(datalen
) + 1;
607 epayload
->encrypted_data
= epayload
->iv
+ ivsize
+ 1;
609 memcpy(epayload
->master_desc
, master_desc
, strlen(master_desc
));
610 memcpy(epayload
->datalen
, datalen
, strlen(datalen
));
614 * encrypted_init - initialize an encrypted key
616 * For a new key, use a random number for both the iv and data
617 * itself. For an old key, decrypt the hex encoded data.
619 static int encrypted_init(struct encrypted_key_payload
*epayload
,
620 const char *master_desc
, const char *datalen
,
621 const char *hex_encoded_iv
)
625 __ekey_init(epayload
, master_desc
, datalen
);
626 if (!hex_encoded_iv
) {
627 get_random_bytes(epayload
->iv
, ivsize
);
629 get_random_bytes(epayload
->decrypted_data
,
630 epayload
->decrypted_datalen
);
632 ret
= encrypted_key_decrypt(epayload
, hex_encoded_iv
);
637 * encrypted_instantiate - instantiate an encrypted key
639 * Decrypt an existing encrypted datablob or create a new encrypted key
640 * based on a kernel random number.
642 * On success, return 0. Otherwise return errno.
644 static int encrypted_instantiate(struct key
*key
, const void *data
,
647 struct encrypted_key_payload
*epayload
= NULL
;
648 char *datablob
= NULL
;
649 char *master_desc
= NULL
;
650 char *decrypted_datalen
= NULL
;
651 char *hex_encoded_iv
= NULL
;
654 if (datalen
<= 0 || datalen
> 32767 || !data
)
657 datablob
= kmalloc(datalen
+ 1, GFP_KERNEL
);
660 datablob
[datalen
] = 0;
661 memcpy(datablob
, data
, datalen
);
662 ret
= datablob_parse(datablob
, &master_desc
, &decrypted_datalen
,
667 epayload
= encrypted_key_alloc(key
, master_desc
, decrypted_datalen
);
668 if (IS_ERR(epayload
)) {
669 ret
= PTR_ERR(epayload
);
672 ret
= encrypted_init(epayload
, master_desc
, decrypted_datalen
,
679 rcu_assign_pointer(key
->payload
.data
, epayload
);
685 static void encrypted_rcu_free(struct rcu_head
*rcu
)
687 struct encrypted_key_payload
*epayload
;
689 epayload
= container_of(rcu
, struct encrypted_key_payload
, rcu
);
690 memset(epayload
->decrypted_data
, 0, epayload
->decrypted_datalen
);
695 * encrypted_update - update the master key description
697 * Change the master key description for an existing encrypted key.
698 * The next read will return an encrypted datablob using the new
699 * master key description.
701 * On success, return 0. Otherwise return errno.
703 static int encrypted_update(struct key
*key
, const void *data
, size_t datalen
)
705 struct encrypted_key_payload
*epayload
= key
->payload
.data
;
706 struct encrypted_key_payload
*new_epayload
;
708 char *new_master_desc
= NULL
;
711 if (datalen
<= 0 || datalen
> 32767 || !data
)
714 buf
= kmalloc(datalen
+ 1, GFP_KERNEL
);
719 memcpy(buf
, data
, datalen
);
720 ret
= datablob_parse(buf
, &new_master_desc
, NULL
, NULL
);
724 ret
= valid_master_desc(new_master_desc
, epayload
->master_desc
);
728 new_epayload
= encrypted_key_alloc(key
, new_master_desc
,
730 if (IS_ERR(new_epayload
)) {
731 ret
= PTR_ERR(new_epayload
);
735 __ekey_init(new_epayload
, new_master_desc
, epayload
->datalen
);
737 memcpy(new_epayload
->iv
, epayload
->iv
, ivsize
);
738 memcpy(new_epayload
->decrypted_data
, epayload
->decrypted_data
,
739 epayload
->decrypted_datalen
);
741 rcu_assign_pointer(key
->payload
.data
, new_epayload
);
742 call_rcu(&epayload
->rcu
, encrypted_rcu_free
);
749 * encrypted_read - format and copy the encrypted data to userspace
751 * The resulting datablob format is:
752 * <master-key name> <decrypted data length> <encrypted iv> <encrypted data>
754 * On success, return to userspace the encrypted key datablob size.
756 static long encrypted_read(const struct key
*key
, char __user
*buffer
,
759 struct encrypted_key_payload
*epayload
;
762 size_t master_keylen
;
763 char derived_key
[HASH_SIZE
];
765 size_t asciiblob_len
;
768 epayload
= rcu_dereference_key(key
);
770 /* returns the hex encoded iv, encrypted-data, and hmac as ascii */
771 asciiblob_len
= epayload
->datablob_len
+ ivsize
+ 1
772 + roundup(epayload
->decrypted_datalen
, blksize
)
775 if (!buffer
|| buflen
< asciiblob_len
)
776 return asciiblob_len
;
778 mkey
= request_master_key(epayload
, &master_key
, &master_keylen
);
780 return PTR_ERR(mkey
);
782 ret
= get_derived_key(derived_key
, ENC_KEY
, master_key
, master_keylen
);
786 ret
= derived_key_encrypt(epayload
, derived_key
, sizeof derived_key
);
790 ret
= datablob_hmac_append(epayload
, master_key
, master_keylen
);
794 ascii_buf
= datablob_format(epayload
, asciiblob_len
);
803 if (copy_to_user(buffer
, ascii_buf
, asciiblob_len
) != 0)
807 return asciiblob_len
;
815 * encrypted_destroy - before freeing the key, clear the decrypted data
817 * Before freeing the key, clear the memory containing the decrypted
820 static void encrypted_destroy(struct key
*key
)
822 struct encrypted_key_payload
*epayload
= key
->payload
.data
;
827 memset(epayload
->decrypted_data
, 0, epayload
->decrypted_datalen
);
828 kfree(key
->payload
.data
);
831 struct key_type key_type_encrypted
= {
833 .instantiate
= encrypted_instantiate
,
834 .update
= encrypted_update
,
836 .destroy
= encrypted_destroy
,
837 .describe
= user_describe
,
838 .read
= encrypted_read
,
840 EXPORT_SYMBOL_GPL(key_type_encrypted
);
842 static void encrypted_shash_release(void)
845 crypto_free_shash(hashalg
);
847 crypto_free_shash(hmacalg
);
850 static int __init
encrypted_shash_alloc(void)
854 hmacalg
= crypto_alloc_shash(hmac_alg
, 0, CRYPTO_ALG_ASYNC
);
855 if (IS_ERR(hmacalg
)) {
856 pr_info("encrypted_key: could not allocate crypto %s\n",
858 return PTR_ERR(hmacalg
);
861 hashalg
= crypto_alloc_shash(hash_alg
, 0, CRYPTO_ALG_ASYNC
);
862 if (IS_ERR(hashalg
)) {
863 pr_info("encrypted_key: could not allocate crypto %s\n",
865 ret
= PTR_ERR(hashalg
);
872 crypto_free_shash(hmacalg
);
876 static int __init
init_encrypted(void)
880 ret
= encrypted_shash_alloc();
883 ret
= register_key_type(&key_type_encrypted
);
886 return aes_get_sizes();
888 encrypted_shash_release();
893 static void __exit
cleanup_encrypted(void)
895 encrypted_shash_release();
896 unregister_key_type(&key_type_encrypted
);
899 late_initcall(init_encrypted
);
900 module_exit(cleanup_encrypted
);
902 MODULE_LICENSE("GPL");