x86/pgtable: unify pagetable accessors, #4
[linux-2.6/kvm.git] / include / asm-x86 / pgtable_32.h
blobb3e92124fc3fd891c42871a999155e78d46c75b2
1 #ifndef _I386_PGTABLE_H
2 #define _I386_PGTABLE_H
5 /*
6 * The Linux memory management assumes a three-level page table setup. On
7 * the i386, we use that, but "fold" the mid level into the top-level page
8 * table, so that we physically have the same two-level page table as the
9 * i386 mmu expects.
11 * This file contains the functions and defines necessary to modify and use
12 * the i386 page table tree.
14 #ifndef __ASSEMBLY__
15 #include <asm/processor.h>
16 #include <asm/fixmap.h>
17 #include <linux/threads.h>
18 #include <asm/paravirt.h>
20 #include <linux/bitops.h>
21 #include <linux/slab.h>
22 #include <linux/list.h>
23 #include <linux/spinlock.h>
25 struct mm_struct;
26 struct vm_area_struct;
29 * ZERO_PAGE is a global shared page that is always zero: used
30 * for zero-mapped memory areas etc..
32 #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
33 extern unsigned long empty_zero_page[1024];
34 extern pgd_t swapper_pg_dir[1024];
35 extern struct kmem_cache *pmd_cache;
36 extern spinlock_t pgd_lock;
37 extern struct page *pgd_list;
38 void check_pgt_cache(void);
40 void pmd_ctor(struct kmem_cache *, void *);
41 void pgtable_cache_init(void);
42 void paging_init(void);
46 * The Linux x86 paging architecture is 'compile-time dual-mode', it
47 * implements both the traditional 2-level x86 page tables and the
48 * newer 3-level PAE-mode page tables.
50 #ifdef CONFIG_X86_PAE
51 # include <asm/pgtable-3level-defs.h>
52 # define PMD_SIZE (1UL << PMD_SHIFT)
53 # define PMD_MASK (~(PMD_SIZE-1))
54 #else
55 # include <asm/pgtable-2level-defs.h>
56 #endif
58 #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
59 #define PGDIR_MASK (~(PGDIR_SIZE-1))
61 #define USER_PGD_PTRS (PAGE_OFFSET >> PGDIR_SHIFT)
62 #define KERNEL_PGD_PTRS (PTRS_PER_PGD-USER_PGD_PTRS)
64 #define TWOLEVEL_PGDIR_SHIFT 22
65 #define BOOT_USER_PGD_PTRS (__PAGE_OFFSET >> TWOLEVEL_PGDIR_SHIFT)
66 #define BOOT_KERNEL_PGD_PTRS (1024-BOOT_USER_PGD_PTRS)
68 /* Just any arbitrary offset to the start of the vmalloc VM area: the
69 * current 8MB value just means that there will be a 8MB "hole" after the
70 * physical memory until the kernel virtual memory starts. That means that
71 * any out-of-bounds memory accesses will hopefully be caught.
72 * The vmalloc() routines leaves a hole of 4kB between each vmalloced
73 * area for the same reason. ;)
75 #define VMALLOC_OFFSET (8*1024*1024)
76 #define VMALLOC_START (((unsigned long) high_memory + \
77 2*VMALLOC_OFFSET-1) & ~(VMALLOC_OFFSET-1))
78 #ifdef CONFIG_HIGHMEM
79 # define VMALLOC_END (PKMAP_BASE-2*PAGE_SIZE)
80 #else
81 # define VMALLOC_END (FIXADDR_START-2*PAGE_SIZE)
82 #endif
85 * Define this if things work differently on an i386 and an i486:
86 * it will (on an i486) warn about kernel memory accesses that are
87 * done without a 'access_ok(VERIFY_WRITE,..)'
89 #undef TEST_ACCESS_OK
91 /* The boot page tables (all created as a single array) */
92 extern unsigned long pg0[];
94 #define pte_present(x) ((x).pte_low & (_PAGE_PRESENT | _PAGE_PROTNONE))
96 /* To avoid harmful races, pmd_none(x) should check only the lower when PAE */
97 #define pmd_none(x) (!(unsigned long)pmd_val(x))
98 #define pmd_present(x) (pmd_val(x) & _PAGE_PRESENT)
99 #define pmd_bad(x) ((pmd_val(x) & (~PAGE_MASK & ~_PAGE_USER)) != _KERNPG_TABLE)
102 #define pages_to_mb(x) ((x) >> (20-PAGE_SHIFT))
105 * The following only work if pte_present() is true.
106 * Undefined behaviour if not..
108 static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; }
109 static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; }
110 static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_RW; }
111 static inline int pte_huge(pte_t pte) { return pte_val(pte) & _PAGE_PSE; }
114 * The following only works if pte_present() is not true.
116 static inline int pte_file(pte_t pte) { return pte_val(pte) & _PAGE_FILE; }
118 static inline pte_t pte_mkclean(pte_t pte) { return __pte(pte_val(pte) & ~_PAGE_DIRTY); }
119 static inline pte_t pte_mkold(pte_t pte) { return __pte(pte_val(pte) & ~_PAGE_ACCESSED); }
120 static inline pte_t pte_wrprotect(pte_t pte) { return __pte(pte_val(pte) & ~_PAGE_RW); }
121 static inline pte_t pte_mkdirty(pte_t pte) { return __pte(pte_val(pte) | _PAGE_DIRTY); }
122 static inline pte_t pte_mkyoung(pte_t pte) { return __pte(pte_val(pte) | _PAGE_ACCESSED); }
123 static inline pte_t pte_mkwrite(pte_t pte) { return __pte(pte_val(pte) | _PAGE_RW); }
124 static inline pte_t pte_mkhuge(pte_t pte) { return __pte(pte_val(pte) | _PAGE_PSE); }
126 static inline pte_t pte_clrhuge(pte_t pte) { return __pte(pte_val(pte) & ~_PAGE_PSE); }
127 static inline pte_t pte_mkexec(pte_t pte) { return __pte(pte_val(pte) & ~_PAGE_NX); }
129 static inline int pmd_large(pmd_t pte) {
130 return (pmd_val(pte) & (_PAGE_PSE|_PAGE_PRESENT)) ==
131 (_PAGE_PSE|_PAGE_PRESENT);
134 #ifdef CONFIG_X86_PAE
135 # include <asm/pgtable-3level.h>
136 #else
137 # include <asm/pgtable-2level.h>
138 #endif
140 #ifndef CONFIG_PARAVIRT
142 * Rules for using pte_update - it must be called after any PTE update which
143 * has not been done using the set_pte / clear_pte interfaces. It is used by
144 * shadow mode hypervisors to resynchronize the shadow page tables. Kernel PTE
145 * updates should either be sets, clears, or set_pte_atomic for P->P
146 * transitions, which means this hook should only be called for user PTEs.
147 * This hook implies a P->P protection or access change has taken place, which
148 * requires a subsequent TLB flush. The notification can optionally be delayed
149 * until the TLB flush event by using the pte_update_defer form of the
150 * interface, but care must be taken to assure that the flush happens while
151 * still holding the same page table lock so that the shadow and primary pages
152 * do not become out of sync on SMP.
154 #define pte_update(mm, addr, ptep) do { } while (0)
155 #define pte_update_defer(mm, addr, ptep) do { } while (0)
156 #endif
158 /* local pte updates need not use xchg for locking */
159 static inline pte_t native_local_ptep_get_and_clear(pte_t *ptep)
161 pte_t res = *ptep;
163 /* Pure native function needs no input for mm, addr */
164 native_pte_clear(NULL, 0, ptep);
165 return res;
169 * We only update the dirty/accessed state if we set
170 * the dirty bit by hand in the kernel, since the hardware
171 * will do the accessed bit for us, and we don't want to
172 * race with other CPU's that might be updating the dirty
173 * bit at the same time.
175 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
176 #define ptep_set_access_flags(vma, address, ptep, entry, dirty) \
177 ({ \
178 int __changed = !pte_same(*(ptep), entry); \
179 if (__changed && dirty) { \
180 (ptep)->pte_low = (entry).pte_low; \
181 pte_update_defer((vma)->vm_mm, (address), (ptep)); \
182 flush_tlb_page(vma, address); \
184 __changed; \
187 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
188 #define ptep_test_and_clear_young(vma, addr, ptep) ({ \
189 int __ret = 0; \
190 if (pte_young(*(ptep))) \
191 __ret = test_and_clear_bit(_PAGE_BIT_ACCESSED, \
192 &(ptep)->pte_low); \
193 if (__ret) \
194 pte_update((vma)->vm_mm, addr, ptep); \
195 __ret; \
198 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
199 #define ptep_clear_flush_young(vma, address, ptep) \
200 ({ \
201 int __young; \
202 __young = ptep_test_and_clear_young((vma), (address), (ptep)); \
203 if (__young) \
204 flush_tlb_page(vma, address); \
205 __young; \
208 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
209 static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
211 pte_t pte = native_ptep_get_and_clear(ptep);
212 pte_update(mm, addr, ptep);
213 return pte;
216 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
217 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm, unsigned long addr, pte_t *ptep, int full)
219 pte_t pte;
220 if (full) {
222 * Full address destruction in progress; paravirt does not
223 * care about updates and native needs no locking
225 pte = native_local_ptep_get_and_clear(ptep);
226 } else {
227 pte = ptep_get_and_clear(mm, addr, ptep);
229 return pte;
232 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
233 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
235 clear_bit(_PAGE_BIT_RW, &ptep->pte_low);
236 pte_update(mm, addr, ptep);
240 * clone_pgd_range(pgd_t *dst, pgd_t *src, int count);
242 * dst - pointer to pgd range anwhere on a pgd page
243 * src - ""
244 * count - the number of pgds to copy.
246 * dst and src can be on the same page, but the range must not overlap,
247 * and must not cross a page boundary.
249 static inline void clone_pgd_range(pgd_t *dst, pgd_t *src, int count)
251 memcpy(dst, src, count * sizeof(pgd_t));
255 * Macro to mark a page protection value as "uncacheable". On processors which do not support
256 * it, this is a no-op.
258 #define pgprot_noncached(prot) ((boot_cpu_data.x86 > 3) \
259 ? (__pgprot(pgprot_val(prot) | _PAGE_PCD | _PAGE_PWT)) : (prot))
262 * Conversion functions: convert a page and protection to a page entry,
263 * and a page entry and page directory to the page they refer to.
266 #define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot))
268 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
270 pte.pte_low &= _PAGE_CHG_MASK;
271 pte.pte_low |= pgprot_val(newprot);
272 #ifdef CONFIG_X86_PAE
274 * Chop off the NX bit (if present), and add the NX portion of
275 * the newprot (if present):
277 pte.pte_high &= ~(1 << (_PAGE_BIT_NX - 32));
278 pte.pte_high |= (pgprot_val(newprot) >> 32) & \
279 (__supported_pte_mask >> 32);
280 #endif
281 return pte;
284 #define pmd_large(pmd) \
285 ((pmd_val(pmd) & (_PAGE_PSE|_PAGE_PRESENT)) == (_PAGE_PSE|_PAGE_PRESENT))
288 * the pgd page can be thought of an array like this: pgd_t[PTRS_PER_PGD]
290 * this macro returns the index of the entry in the pgd page which would
291 * control the given virtual address
293 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
294 #define pgd_index_k(addr) pgd_index(addr)
297 * pgd_offset() returns a (pgd_t *)
298 * pgd_index() is used get the offset into the pgd page's array of pgd_t's;
300 #define pgd_offset(mm, address) ((mm)->pgd+pgd_index(address))
303 * a shortcut which implies the use of the kernel's pgd, instead
304 * of a process's
306 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
309 * the pmd page can be thought of an array like this: pmd_t[PTRS_PER_PMD]
311 * this macro returns the index of the entry in the pmd page which would
312 * control the given virtual address
314 #define pmd_index(address) \
315 (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
318 * the pte page can be thought of an array like this: pte_t[PTRS_PER_PTE]
320 * this macro returns the index of the entry in the pte page which would
321 * control the given virtual address
323 #define pte_index(address) \
324 (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
325 #define pte_offset_kernel(dir, address) \
326 ((pte_t *) pmd_page_vaddr(*(dir)) + pte_index(address))
328 #define pmd_page(pmd) (pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT))
330 #define pmd_page_vaddr(pmd) \
331 ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))
334 * Helper function that returns the kernel pagetable entry controlling
335 * the virtual address 'address'. NULL means no pagetable entry present.
336 * NOTE: the return type is pte_t but if the pmd is PSE then we return it
337 * as a pte too.
339 extern pte_t *lookup_address(unsigned long address);
342 * Make a given kernel text page executable/non-executable.
343 * Returns the previous executability setting of that page (which
344 * is used to restore the previous state). Used by the SMP bootup code.
345 * NOTE: this is an __init function for security reasons.
347 #ifdef CONFIG_X86_PAE
348 extern int set_kernel_exec(unsigned long vaddr, int enable);
349 #else
350 static inline int set_kernel_exec(unsigned long vaddr, int enable) { return 0;}
351 #endif
353 #if defined(CONFIG_HIGHPTE)
354 #define pte_offset_map(dir, address) \
355 ((pte_t *)kmap_atomic_pte(pmd_page(*(dir)),KM_PTE0) + pte_index(address))
356 #define pte_offset_map_nested(dir, address) \
357 ((pte_t *)kmap_atomic_pte(pmd_page(*(dir)),KM_PTE1) + pte_index(address))
358 #define pte_unmap(pte) kunmap_atomic(pte, KM_PTE0)
359 #define pte_unmap_nested(pte) kunmap_atomic(pte, KM_PTE1)
360 #else
361 #define pte_offset_map(dir, address) \
362 ((pte_t *)page_address(pmd_page(*(dir))) + pte_index(address))
363 #define pte_offset_map_nested(dir, address) pte_offset_map(dir, address)
364 #define pte_unmap(pte) do { } while (0)
365 #define pte_unmap_nested(pte) do { } while (0)
366 #endif
368 /* Clear a kernel PTE and flush it from the TLB */
369 #define kpte_clear_flush(ptep, vaddr) \
370 do { \
371 pte_clear(&init_mm, vaddr, ptep); \
372 __flush_tlb_one(vaddr); \
373 } while (0)
376 * The i386 doesn't have any external MMU info: the kernel page
377 * tables contain all the necessary information.
379 #define update_mmu_cache(vma,address,pte) do { } while (0)
381 void native_pagetable_setup_start(pgd_t *base);
382 void native_pagetable_setup_done(pgd_t *base);
384 #ifndef CONFIG_PARAVIRT
385 static inline void paravirt_pagetable_setup_start(pgd_t *base)
387 native_pagetable_setup_start(base);
390 static inline void paravirt_pagetable_setup_done(pgd_t *base)
392 native_pagetable_setup_done(base);
394 #endif /* !CONFIG_PARAVIRT */
396 #endif /* !__ASSEMBLY__ */
399 * kern_addr_valid() is (1) for FLATMEM and (0) for
400 * SPARSEMEM and DISCONTIGMEM
402 #ifdef CONFIG_FLATMEM
403 #define kern_addr_valid(addr) (1)
404 #else
405 #define kern_addr_valid(kaddr) (0)
406 #endif
408 #define io_remap_pfn_range(vma, vaddr, pfn, size, prot) \
409 remap_pfn_range(vma, vaddr, pfn, size, prot)
411 #include <asm-generic/pgtable.h>
413 #endif /* _I386_PGTABLE_H */