ext2/ext3/ext4: add block bitmap validation
[linux-2.6/kvm.git] / fs / ext4 / balloc.c
blobb74bf436844187c32cce9cc31ecdce1031a1cc1e
1 /*
2 * linux/fs/ext4/balloc.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
9 * Enhanced block allocation by Stephen Tweedie (sct@redhat.com), 1993
10 * Big-endian to little-endian byte-swapping/bitmaps by
11 * David S. Miller (davem@caip.rutgers.edu), 1995
14 #include <linux/time.h>
15 #include <linux/capability.h>
16 #include <linux/fs.h>
17 #include <linux/jbd2.h>
18 #include <linux/ext4_fs.h>
19 #include <linux/ext4_jbd2.h>
20 #include <linux/quotaops.h>
21 #include <linux/buffer_head.h>
24 * balloc.c contains the blocks allocation and deallocation routines
28 * Calculate the block group number and offset, given a block number
30 void ext4_get_group_no_and_offset(struct super_block *sb, ext4_fsblk_t blocknr,
31 unsigned long *blockgrpp, ext4_grpblk_t *offsetp)
33 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
34 ext4_grpblk_t offset;
36 blocknr = blocknr - le32_to_cpu(es->s_first_data_block);
37 offset = do_div(blocknr, EXT4_BLOCKS_PER_GROUP(sb));
38 if (offsetp)
39 *offsetp = offset;
40 if (blockgrpp)
41 *blockgrpp = blocknr;
46 * The free blocks are managed by bitmaps. A file system contains several
47 * blocks groups. Each group contains 1 bitmap block for blocks, 1 bitmap
48 * block for inodes, N blocks for the inode table and data blocks.
50 * The file system contains group descriptors which are located after the
51 * super block. Each descriptor contains the number of the bitmap block and
52 * the free blocks count in the block. The descriptors are loaded in memory
53 * when a file system is mounted (see ext4_fill_super).
57 #define in_range(b, first, len) ((b) >= (first) && (b) <= (first) + (len) - 1)
59 /**
60 * ext4_get_group_desc() -- load group descriptor from disk
61 * @sb: super block
62 * @block_group: given block group
63 * @bh: pointer to the buffer head to store the block
64 * group descriptor
66 struct ext4_group_desc * ext4_get_group_desc(struct super_block * sb,
67 unsigned int block_group,
68 struct buffer_head ** bh)
70 unsigned long group_desc;
71 unsigned long offset;
72 struct ext4_group_desc * desc;
73 struct ext4_sb_info *sbi = EXT4_SB(sb);
75 if (block_group >= sbi->s_groups_count) {
76 ext4_error (sb, "ext4_get_group_desc",
77 "block_group >= groups_count - "
78 "block_group = %d, groups_count = %lu",
79 block_group, sbi->s_groups_count);
81 return NULL;
83 smp_rmb();
85 group_desc = block_group >> EXT4_DESC_PER_BLOCK_BITS(sb);
86 offset = block_group & (EXT4_DESC_PER_BLOCK(sb) - 1);
87 if (!sbi->s_group_desc[group_desc]) {
88 ext4_error (sb, "ext4_get_group_desc",
89 "Group descriptor not loaded - "
90 "block_group = %d, group_desc = %lu, desc = %lu",
91 block_group, group_desc, offset);
92 return NULL;
95 desc = (struct ext4_group_desc *)(
96 (__u8 *)sbi->s_group_desc[group_desc]->b_data +
97 offset * EXT4_DESC_SIZE(sb));
98 if (bh)
99 *bh = sbi->s_group_desc[group_desc];
100 return desc;
103 static inline int
104 block_in_use(ext4_fsblk_t block, struct super_block *sb, unsigned char *map)
106 ext4_grpblk_t offset;
108 ext4_get_group_no_and_offset(sb, block, NULL, &offset);
109 return ext4_test_bit (offset, map);
113 * read_block_bitmap()
114 * @sb: super block
115 * @block_group: given block group
117 * Read the bitmap for a given block_group, reading into the specified
118 * slot in the superblock's bitmap cache.
120 * Return buffer_head on success or NULL in case of failure.
122 static struct buffer_head *
123 read_block_bitmap(struct super_block *sb, unsigned int block_group)
125 int i;
126 struct ext4_group_desc * desc;
127 struct buffer_head * bh = NULL;
128 ext4_fsblk_t bitmap_blk;
130 desc = ext4_get_group_desc (sb, block_group, NULL);
131 if (!desc)
132 return NULL;
133 bitmap_blk = ext4_block_bitmap(sb, desc);
134 bh = sb_bread(sb, bitmap_blk);
135 if (!bh)
136 ext4_error (sb, __FUNCTION__,
137 "Cannot read block bitmap - "
138 "block_group = %d, block_bitmap = %llu",
139 block_group, bitmap_blk);
141 /* check whether block bitmap block number is set */
142 if (!block_in_use(bitmap_blk, sb, bh->b_data)) {
143 /* bad block bitmap */
144 goto error_out;
147 /* check whether the inode bitmap block number is set */
148 bitmap_blk = ext4_inode_bitmap(sb, desc);
149 if (!block_in_use(bitmap_blk, sb, bh->b_data)) {
150 /* bad block bitmap */
151 goto error_out;
153 /* check whether the inode table block number is set */
154 bitmap_blk = ext4_inode_table(sb, desc);
155 for (i = 0; i < EXT4_SB(sb)->s_itb_per_group; i++, bitmap_blk++) {
156 if (!block_in_use(bitmap_blk, sb, bh->b_data)) {
157 /* bad block bitmap */
158 goto error_out;
162 return bh;
164 error_out:
165 brelse(bh);
166 ext4_error(sb, __FUNCTION__,
167 "Invalid block bitmap - "
168 "block_group = %d, block = %llu",
169 block_group, bitmap_blk);
170 return NULL;
174 * The reservation window structure operations
175 * --------------------------------------------
176 * Operations include:
177 * dump, find, add, remove, is_empty, find_next_reservable_window, etc.
179 * We use a red-black tree to represent per-filesystem reservation
180 * windows.
185 * __rsv_window_dump() -- Dump the filesystem block allocation reservation map
186 * @rb_root: root of per-filesystem reservation rb tree
187 * @verbose: verbose mode
188 * @fn: function which wishes to dump the reservation map
190 * If verbose is turned on, it will print the whole block reservation
191 * windows(start, end). Otherwise, it will only print out the "bad" windows,
192 * those windows that overlap with their immediate neighbors.
194 #if 1
195 static void __rsv_window_dump(struct rb_root *root, int verbose,
196 const char *fn)
198 struct rb_node *n;
199 struct ext4_reserve_window_node *rsv, *prev;
200 int bad;
202 restart:
203 n = rb_first(root);
204 bad = 0;
205 prev = NULL;
207 printk("Block Allocation Reservation Windows Map (%s):\n", fn);
208 while (n) {
209 rsv = rb_entry(n, struct ext4_reserve_window_node, rsv_node);
210 if (verbose)
211 printk("reservation window 0x%p "
212 "start: %llu, end: %llu\n",
213 rsv, rsv->rsv_start, rsv->rsv_end);
214 if (rsv->rsv_start && rsv->rsv_start >= rsv->rsv_end) {
215 printk("Bad reservation %p (start >= end)\n",
216 rsv);
217 bad = 1;
219 if (prev && prev->rsv_end >= rsv->rsv_start) {
220 printk("Bad reservation %p (prev->end >= start)\n",
221 rsv);
222 bad = 1;
224 if (bad) {
225 if (!verbose) {
226 printk("Restarting reservation walk in verbose mode\n");
227 verbose = 1;
228 goto restart;
231 n = rb_next(n);
232 prev = rsv;
234 printk("Window map complete.\n");
235 if (bad)
236 BUG();
238 #define rsv_window_dump(root, verbose) \
239 __rsv_window_dump((root), (verbose), __FUNCTION__)
240 #else
241 #define rsv_window_dump(root, verbose) do {} while (0)
242 #endif
245 * goal_in_my_reservation()
246 * @rsv: inode's reservation window
247 * @grp_goal: given goal block relative to the allocation block group
248 * @group: the current allocation block group
249 * @sb: filesystem super block
251 * Test if the given goal block (group relative) is within the file's
252 * own block reservation window range.
254 * If the reservation window is outside the goal allocation group, return 0;
255 * grp_goal (given goal block) could be -1, which means no specific
256 * goal block. In this case, always return 1.
257 * If the goal block is within the reservation window, return 1;
258 * otherwise, return 0;
260 static int
261 goal_in_my_reservation(struct ext4_reserve_window *rsv, ext4_grpblk_t grp_goal,
262 unsigned int group, struct super_block * sb)
264 ext4_fsblk_t group_first_block, group_last_block;
266 group_first_block = ext4_group_first_block_no(sb, group);
267 group_last_block = group_first_block + (EXT4_BLOCKS_PER_GROUP(sb) - 1);
269 if ((rsv->_rsv_start > group_last_block) ||
270 (rsv->_rsv_end < group_first_block))
271 return 0;
272 if ((grp_goal >= 0) && ((grp_goal + group_first_block < rsv->_rsv_start)
273 || (grp_goal + group_first_block > rsv->_rsv_end)))
274 return 0;
275 return 1;
279 * search_reserve_window()
280 * @rb_root: root of reservation tree
281 * @goal: target allocation block
283 * Find the reserved window which includes the goal, or the previous one
284 * if the goal is not in any window.
285 * Returns NULL if there are no windows or if all windows start after the goal.
287 static struct ext4_reserve_window_node *
288 search_reserve_window(struct rb_root *root, ext4_fsblk_t goal)
290 struct rb_node *n = root->rb_node;
291 struct ext4_reserve_window_node *rsv;
293 if (!n)
294 return NULL;
296 do {
297 rsv = rb_entry(n, struct ext4_reserve_window_node, rsv_node);
299 if (goal < rsv->rsv_start)
300 n = n->rb_left;
301 else if (goal > rsv->rsv_end)
302 n = n->rb_right;
303 else
304 return rsv;
305 } while (n);
307 * We've fallen off the end of the tree: the goal wasn't inside
308 * any particular node. OK, the previous node must be to one
309 * side of the interval containing the goal. If it's the RHS,
310 * we need to back up one.
312 if (rsv->rsv_start > goal) {
313 n = rb_prev(&rsv->rsv_node);
314 rsv = rb_entry(n, struct ext4_reserve_window_node, rsv_node);
316 return rsv;
320 * ext4_rsv_window_add() -- Insert a window to the block reservation rb tree.
321 * @sb: super block
322 * @rsv: reservation window to add
324 * Must be called with rsv_lock hold.
326 void ext4_rsv_window_add(struct super_block *sb,
327 struct ext4_reserve_window_node *rsv)
329 struct rb_root *root = &EXT4_SB(sb)->s_rsv_window_root;
330 struct rb_node *node = &rsv->rsv_node;
331 ext4_fsblk_t start = rsv->rsv_start;
333 struct rb_node ** p = &root->rb_node;
334 struct rb_node * parent = NULL;
335 struct ext4_reserve_window_node *this;
337 while (*p)
339 parent = *p;
340 this = rb_entry(parent, struct ext4_reserve_window_node, rsv_node);
342 if (start < this->rsv_start)
343 p = &(*p)->rb_left;
344 else if (start > this->rsv_end)
345 p = &(*p)->rb_right;
346 else {
347 rsv_window_dump(root, 1);
348 BUG();
352 rb_link_node(node, parent, p);
353 rb_insert_color(node, root);
357 * ext4_rsv_window_remove() -- unlink a window from the reservation rb tree
358 * @sb: super block
359 * @rsv: reservation window to remove
361 * Mark the block reservation window as not allocated, and unlink it
362 * from the filesystem reservation window rb tree. Must be called with
363 * rsv_lock hold.
365 static void rsv_window_remove(struct super_block *sb,
366 struct ext4_reserve_window_node *rsv)
368 rsv->rsv_start = EXT4_RESERVE_WINDOW_NOT_ALLOCATED;
369 rsv->rsv_end = EXT4_RESERVE_WINDOW_NOT_ALLOCATED;
370 rsv->rsv_alloc_hit = 0;
371 rb_erase(&rsv->rsv_node, &EXT4_SB(sb)->s_rsv_window_root);
375 * rsv_is_empty() -- Check if the reservation window is allocated.
376 * @rsv: given reservation window to check
378 * returns 1 if the end block is EXT4_RESERVE_WINDOW_NOT_ALLOCATED.
380 static inline int rsv_is_empty(struct ext4_reserve_window *rsv)
382 /* a valid reservation end block could not be 0 */
383 return rsv->_rsv_end == EXT4_RESERVE_WINDOW_NOT_ALLOCATED;
387 * ext4_init_block_alloc_info()
388 * @inode: file inode structure
390 * Allocate and initialize the reservation window structure, and
391 * link the window to the ext4 inode structure at last
393 * The reservation window structure is only dynamically allocated
394 * and linked to ext4 inode the first time the open file
395 * needs a new block. So, before every ext4_new_block(s) call, for
396 * regular files, we should check whether the reservation window
397 * structure exists or not. In the latter case, this function is called.
398 * Fail to do so will result in block reservation being turned off for that
399 * open file.
401 * This function is called from ext4_get_blocks_handle(), also called
402 * when setting the reservation window size through ioctl before the file
403 * is open for write (needs block allocation).
405 * Needs truncate_mutex protection prior to call this function.
407 void ext4_init_block_alloc_info(struct inode *inode)
409 struct ext4_inode_info *ei = EXT4_I(inode);
410 struct ext4_block_alloc_info *block_i = ei->i_block_alloc_info;
411 struct super_block *sb = inode->i_sb;
413 block_i = kmalloc(sizeof(*block_i), GFP_NOFS);
414 if (block_i) {
415 struct ext4_reserve_window_node *rsv = &block_i->rsv_window_node;
417 rsv->rsv_start = EXT4_RESERVE_WINDOW_NOT_ALLOCATED;
418 rsv->rsv_end = EXT4_RESERVE_WINDOW_NOT_ALLOCATED;
421 * if filesystem is mounted with NORESERVATION, the goal
422 * reservation window size is set to zero to indicate
423 * block reservation is off
425 if (!test_opt(sb, RESERVATION))
426 rsv->rsv_goal_size = 0;
427 else
428 rsv->rsv_goal_size = EXT4_DEFAULT_RESERVE_BLOCKS;
429 rsv->rsv_alloc_hit = 0;
430 block_i->last_alloc_logical_block = 0;
431 block_i->last_alloc_physical_block = 0;
433 ei->i_block_alloc_info = block_i;
437 * ext4_discard_reservation()
438 * @inode: inode
440 * Discard(free) block reservation window on last file close, or truncate
441 * or at last iput().
443 * It is being called in three cases:
444 * ext4_release_file(): last writer close the file
445 * ext4_clear_inode(): last iput(), when nobody link to this file.
446 * ext4_truncate(): when the block indirect map is about to change.
449 void ext4_discard_reservation(struct inode *inode)
451 struct ext4_inode_info *ei = EXT4_I(inode);
452 struct ext4_block_alloc_info *block_i = ei->i_block_alloc_info;
453 struct ext4_reserve_window_node *rsv;
454 spinlock_t *rsv_lock = &EXT4_SB(inode->i_sb)->s_rsv_window_lock;
456 if (!block_i)
457 return;
459 rsv = &block_i->rsv_window_node;
460 if (!rsv_is_empty(&rsv->rsv_window)) {
461 spin_lock(rsv_lock);
462 if (!rsv_is_empty(&rsv->rsv_window))
463 rsv_window_remove(inode->i_sb, rsv);
464 spin_unlock(rsv_lock);
469 * ext4_free_blocks_sb() -- Free given blocks and update quota
470 * @handle: handle to this transaction
471 * @sb: super block
472 * @block: start physcial block to free
473 * @count: number of blocks to free
474 * @pdquot_freed_blocks: pointer to quota
476 void ext4_free_blocks_sb(handle_t *handle, struct super_block *sb,
477 ext4_fsblk_t block, unsigned long count,
478 unsigned long *pdquot_freed_blocks)
480 struct buffer_head *bitmap_bh = NULL;
481 struct buffer_head *gd_bh;
482 unsigned long block_group;
483 ext4_grpblk_t bit;
484 unsigned long i;
485 unsigned long overflow;
486 struct ext4_group_desc * desc;
487 struct ext4_super_block * es;
488 struct ext4_sb_info *sbi;
489 int err = 0, ret;
490 ext4_grpblk_t group_freed;
492 *pdquot_freed_blocks = 0;
493 sbi = EXT4_SB(sb);
494 es = sbi->s_es;
495 if (block < le32_to_cpu(es->s_first_data_block) ||
496 block + count < block ||
497 block + count > ext4_blocks_count(es)) {
498 ext4_error (sb, "ext4_free_blocks",
499 "Freeing blocks not in datazone - "
500 "block = %llu, count = %lu", block, count);
501 goto error_return;
504 ext4_debug ("freeing block(s) %llu-%llu\n", block, block + count - 1);
506 do_more:
507 overflow = 0;
508 ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
510 * Check to see if we are freeing blocks across a group
511 * boundary.
513 if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) {
514 overflow = bit + count - EXT4_BLOCKS_PER_GROUP(sb);
515 count -= overflow;
517 brelse(bitmap_bh);
518 bitmap_bh = read_block_bitmap(sb, block_group);
519 if (!bitmap_bh)
520 goto error_return;
521 desc = ext4_get_group_desc (sb, block_group, &gd_bh);
522 if (!desc)
523 goto error_return;
525 if (in_range(ext4_block_bitmap(sb, desc), block, count) ||
526 in_range(ext4_inode_bitmap(sb, desc), block, count) ||
527 in_range(block, ext4_inode_table(sb, desc), sbi->s_itb_per_group) ||
528 in_range(block + count - 1, ext4_inode_table(sb, desc),
529 sbi->s_itb_per_group))
530 ext4_error (sb, "ext4_free_blocks",
531 "Freeing blocks in system zones - "
532 "Block = %llu, count = %lu",
533 block, count);
536 * We are about to start releasing blocks in the bitmap,
537 * so we need undo access.
539 /* @@@ check errors */
540 BUFFER_TRACE(bitmap_bh, "getting undo access");
541 err = ext4_journal_get_undo_access(handle, bitmap_bh);
542 if (err)
543 goto error_return;
546 * We are about to modify some metadata. Call the journal APIs
547 * to unshare ->b_data if a currently-committing transaction is
548 * using it
550 BUFFER_TRACE(gd_bh, "get_write_access");
551 err = ext4_journal_get_write_access(handle, gd_bh);
552 if (err)
553 goto error_return;
555 jbd_lock_bh_state(bitmap_bh);
557 for (i = 0, group_freed = 0; i < count; i++) {
559 * An HJ special. This is expensive...
561 #ifdef CONFIG_JBD2_DEBUG
562 jbd_unlock_bh_state(bitmap_bh);
564 struct buffer_head *debug_bh;
565 debug_bh = sb_find_get_block(sb, block + i);
566 if (debug_bh) {
567 BUFFER_TRACE(debug_bh, "Deleted!");
568 if (!bh2jh(bitmap_bh)->b_committed_data)
569 BUFFER_TRACE(debug_bh,
570 "No commited data in bitmap");
571 BUFFER_TRACE2(debug_bh, bitmap_bh, "bitmap");
572 __brelse(debug_bh);
575 jbd_lock_bh_state(bitmap_bh);
576 #endif
577 if (need_resched()) {
578 jbd_unlock_bh_state(bitmap_bh);
579 cond_resched();
580 jbd_lock_bh_state(bitmap_bh);
582 /* @@@ This prevents newly-allocated data from being
583 * freed and then reallocated within the same
584 * transaction.
586 * Ideally we would want to allow that to happen, but to
587 * do so requires making jbd2_journal_forget() capable of
588 * revoking the queued write of a data block, which
589 * implies blocking on the journal lock. *forget()
590 * cannot block due to truncate races.
592 * Eventually we can fix this by making jbd2_journal_forget()
593 * return a status indicating whether or not it was able
594 * to revoke the buffer. On successful revoke, it is
595 * safe not to set the allocation bit in the committed
596 * bitmap, because we know that there is no outstanding
597 * activity on the buffer any more and so it is safe to
598 * reallocate it.
600 BUFFER_TRACE(bitmap_bh, "set in b_committed_data");
601 J_ASSERT_BH(bitmap_bh,
602 bh2jh(bitmap_bh)->b_committed_data != NULL);
603 ext4_set_bit_atomic(sb_bgl_lock(sbi, block_group), bit + i,
604 bh2jh(bitmap_bh)->b_committed_data);
607 * We clear the bit in the bitmap after setting the committed
608 * data bit, because this is the reverse order to that which
609 * the allocator uses.
611 BUFFER_TRACE(bitmap_bh, "clear bit");
612 if (!ext4_clear_bit_atomic(sb_bgl_lock(sbi, block_group),
613 bit + i, bitmap_bh->b_data)) {
614 jbd_unlock_bh_state(bitmap_bh);
615 ext4_error(sb, __FUNCTION__,
616 "bit already cleared for block %llu",
617 (ext4_fsblk_t)(block + i));
618 jbd_lock_bh_state(bitmap_bh);
619 BUFFER_TRACE(bitmap_bh, "bit already cleared");
620 } else {
621 group_freed++;
624 jbd_unlock_bh_state(bitmap_bh);
626 spin_lock(sb_bgl_lock(sbi, block_group));
627 desc->bg_free_blocks_count =
628 cpu_to_le16(le16_to_cpu(desc->bg_free_blocks_count) +
629 group_freed);
630 spin_unlock(sb_bgl_lock(sbi, block_group));
631 percpu_counter_add(&sbi->s_freeblocks_counter, count);
633 /* We dirtied the bitmap block */
634 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
635 err = ext4_journal_dirty_metadata(handle, bitmap_bh);
637 /* And the group descriptor block */
638 BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
639 ret = ext4_journal_dirty_metadata(handle, gd_bh);
640 if (!err) err = ret;
641 *pdquot_freed_blocks += group_freed;
643 if (overflow && !err) {
644 block += count;
645 count = overflow;
646 goto do_more;
648 sb->s_dirt = 1;
649 error_return:
650 brelse(bitmap_bh);
651 ext4_std_error(sb, err);
652 return;
656 * ext4_free_blocks() -- Free given blocks and update quota
657 * @handle: handle for this transaction
658 * @inode: inode
659 * @block: start physical block to free
660 * @count: number of blocks to count
662 void ext4_free_blocks(handle_t *handle, struct inode *inode,
663 ext4_fsblk_t block, unsigned long count)
665 struct super_block * sb;
666 unsigned long dquot_freed_blocks;
668 sb = inode->i_sb;
669 if (!sb) {
670 printk ("ext4_free_blocks: nonexistent device");
671 return;
673 ext4_free_blocks_sb(handle, sb, block, count, &dquot_freed_blocks);
674 if (dquot_freed_blocks)
675 DQUOT_FREE_BLOCK(inode, dquot_freed_blocks);
676 return;
680 * ext4_test_allocatable()
681 * @nr: given allocation block group
682 * @bh: bufferhead contains the bitmap of the given block group
684 * For ext4 allocations, we must not reuse any blocks which are
685 * allocated in the bitmap buffer's "last committed data" copy. This
686 * prevents deletes from freeing up the page for reuse until we have
687 * committed the delete transaction.
689 * If we didn't do this, then deleting something and reallocating it as
690 * data would allow the old block to be overwritten before the
691 * transaction committed (because we force data to disk before commit).
692 * This would lead to corruption if we crashed between overwriting the
693 * data and committing the delete.
695 * @@@ We may want to make this allocation behaviour conditional on
696 * data-writes at some point, and disable it for metadata allocations or
697 * sync-data inodes.
699 static int ext4_test_allocatable(ext4_grpblk_t nr, struct buffer_head *bh)
701 int ret;
702 struct journal_head *jh = bh2jh(bh);
704 if (ext4_test_bit(nr, bh->b_data))
705 return 0;
707 jbd_lock_bh_state(bh);
708 if (!jh->b_committed_data)
709 ret = 1;
710 else
711 ret = !ext4_test_bit(nr, jh->b_committed_data);
712 jbd_unlock_bh_state(bh);
713 return ret;
717 * bitmap_search_next_usable_block()
718 * @start: the starting block (group relative) of the search
719 * @bh: bufferhead contains the block group bitmap
720 * @maxblocks: the ending block (group relative) of the reservation
722 * The bitmap search --- search forward alternately through the actual
723 * bitmap on disk and the last-committed copy in journal, until we find a
724 * bit free in both bitmaps.
726 static ext4_grpblk_t
727 bitmap_search_next_usable_block(ext4_grpblk_t start, struct buffer_head *bh,
728 ext4_grpblk_t maxblocks)
730 ext4_grpblk_t next;
731 struct journal_head *jh = bh2jh(bh);
733 while (start < maxblocks) {
734 next = ext4_find_next_zero_bit(bh->b_data, maxblocks, start);
735 if (next >= maxblocks)
736 return -1;
737 if (ext4_test_allocatable(next, bh))
738 return next;
739 jbd_lock_bh_state(bh);
740 if (jh->b_committed_data)
741 start = ext4_find_next_zero_bit(jh->b_committed_data,
742 maxblocks, next);
743 jbd_unlock_bh_state(bh);
745 return -1;
749 * find_next_usable_block()
750 * @start: the starting block (group relative) to find next
751 * allocatable block in bitmap.
752 * @bh: bufferhead contains the block group bitmap
753 * @maxblocks: the ending block (group relative) for the search
755 * Find an allocatable block in a bitmap. We honor both the bitmap and
756 * its last-committed copy (if that exists), and perform the "most
757 * appropriate allocation" algorithm of looking for a free block near
758 * the initial goal; then for a free byte somewhere in the bitmap; then
759 * for any free bit in the bitmap.
761 static ext4_grpblk_t
762 find_next_usable_block(ext4_grpblk_t start, struct buffer_head *bh,
763 ext4_grpblk_t maxblocks)
765 ext4_grpblk_t here, next;
766 char *p, *r;
768 if (start > 0) {
770 * The goal was occupied; search forward for a free
771 * block within the next XX blocks.
773 * end_goal is more or less random, but it has to be
774 * less than EXT4_BLOCKS_PER_GROUP. Aligning up to the
775 * next 64-bit boundary is simple..
777 ext4_grpblk_t end_goal = (start + 63) & ~63;
778 if (end_goal > maxblocks)
779 end_goal = maxblocks;
780 here = ext4_find_next_zero_bit(bh->b_data, end_goal, start);
781 if (here < end_goal && ext4_test_allocatable(here, bh))
782 return here;
783 ext4_debug("Bit not found near goal\n");
786 here = start;
787 if (here < 0)
788 here = 0;
790 p = ((char *)bh->b_data) + (here >> 3);
791 r = memscan(p, 0, ((maxblocks + 7) >> 3) - (here >> 3));
792 next = (r - ((char *)bh->b_data)) << 3;
794 if (next < maxblocks && next >= start && ext4_test_allocatable(next, bh))
795 return next;
798 * The bitmap search --- search forward alternately through the actual
799 * bitmap and the last-committed copy until we find a bit free in
800 * both
802 here = bitmap_search_next_usable_block(here, bh, maxblocks);
803 return here;
807 * claim_block()
808 * @block: the free block (group relative) to allocate
809 * @bh: the bufferhead containts the block group bitmap
811 * We think we can allocate this block in this bitmap. Try to set the bit.
812 * If that succeeds then check that nobody has allocated and then freed the
813 * block since we saw that is was not marked in b_committed_data. If it _was_
814 * allocated and freed then clear the bit in the bitmap again and return
815 * zero (failure).
817 static inline int
818 claim_block(spinlock_t *lock, ext4_grpblk_t block, struct buffer_head *bh)
820 struct journal_head *jh = bh2jh(bh);
821 int ret;
823 if (ext4_set_bit_atomic(lock, block, bh->b_data))
824 return 0;
825 jbd_lock_bh_state(bh);
826 if (jh->b_committed_data && ext4_test_bit(block,jh->b_committed_data)) {
827 ext4_clear_bit_atomic(lock, block, bh->b_data);
828 ret = 0;
829 } else {
830 ret = 1;
832 jbd_unlock_bh_state(bh);
833 return ret;
837 * ext4_try_to_allocate()
838 * @sb: superblock
839 * @handle: handle to this transaction
840 * @group: given allocation block group
841 * @bitmap_bh: bufferhead holds the block bitmap
842 * @grp_goal: given target block within the group
843 * @count: target number of blocks to allocate
844 * @my_rsv: reservation window
846 * Attempt to allocate blocks within a give range. Set the range of allocation
847 * first, then find the first free bit(s) from the bitmap (within the range),
848 * and at last, allocate the blocks by claiming the found free bit as allocated.
850 * To set the range of this allocation:
851 * if there is a reservation window, only try to allocate block(s) from the
852 * file's own reservation window;
853 * Otherwise, the allocation range starts from the give goal block, ends at
854 * the block group's last block.
856 * If we failed to allocate the desired block then we may end up crossing to a
857 * new bitmap. In that case we must release write access to the old one via
858 * ext4_journal_release_buffer(), else we'll run out of credits.
860 static ext4_grpblk_t
861 ext4_try_to_allocate(struct super_block *sb, handle_t *handle, int group,
862 struct buffer_head *bitmap_bh, ext4_grpblk_t grp_goal,
863 unsigned long *count, struct ext4_reserve_window *my_rsv)
865 ext4_fsblk_t group_first_block;
866 ext4_grpblk_t start, end;
867 unsigned long num = 0;
869 /* we do allocation within the reservation window if we have a window */
870 if (my_rsv) {
871 group_first_block = ext4_group_first_block_no(sb, group);
872 if (my_rsv->_rsv_start >= group_first_block)
873 start = my_rsv->_rsv_start - group_first_block;
874 else
875 /* reservation window cross group boundary */
876 start = 0;
877 end = my_rsv->_rsv_end - group_first_block + 1;
878 if (end > EXT4_BLOCKS_PER_GROUP(sb))
879 /* reservation window crosses group boundary */
880 end = EXT4_BLOCKS_PER_GROUP(sb);
881 if ((start <= grp_goal) && (grp_goal < end))
882 start = grp_goal;
883 else
884 grp_goal = -1;
885 } else {
886 if (grp_goal > 0)
887 start = grp_goal;
888 else
889 start = 0;
890 end = EXT4_BLOCKS_PER_GROUP(sb);
893 BUG_ON(start > EXT4_BLOCKS_PER_GROUP(sb));
895 repeat:
896 if (grp_goal < 0 || !ext4_test_allocatable(grp_goal, bitmap_bh)) {
897 grp_goal = find_next_usable_block(start, bitmap_bh, end);
898 if (grp_goal < 0)
899 goto fail_access;
900 if (!my_rsv) {
901 int i;
903 for (i = 0; i < 7 && grp_goal > start &&
904 ext4_test_allocatable(grp_goal - 1,
905 bitmap_bh);
906 i++, grp_goal--)
910 start = grp_goal;
912 if (!claim_block(sb_bgl_lock(EXT4_SB(sb), group),
913 grp_goal, bitmap_bh)) {
915 * The block was allocated by another thread, or it was
916 * allocated and then freed by another thread
918 start++;
919 grp_goal++;
920 if (start >= end)
921 goto fail_access;
922 goto repeat;
924 num++;
925 grp_goal++;
926 while (num < *count && grp_goal < end
927 && ext4_test_allocatable(grp_goal, bitmap_bh)
928 && claim_block(sb_bgl_lock(EXT4_SB(sb), group),
929 grp_goal, bitmap_bh)) {
930 num++;
931 grp_goal++;
933 *count = num;
934 return grp_goal - num;
935 fail_access:
936 *count = num;
937 return -1;
941 * find_next_reservable_window():
942 * find a reservable space within the given range.
943 * It does not allocate the reservation window for now:
944 * alloc_new_reservation() will do the work later.
946 * @search_head: the head of the searching list;
947 * This is not necessarily the list head of the whole filesystem
949 * We have both head and start_block to assist the search
950 * for the reservable space. The list starts from head,
951 * but we will shift to the place where start_block is,
952 * then start from there, when looking for a reservable space.
954 * @size: the target new reservation window size
956 * @group_first_block: the first block we consider to start
957 * the real search from
959 * @last_block:
960 * the maximum block number that our goal reservable space
961 * could start from. This is normally the last block in this
962 * group. The search will end when we found the start of next
963 * possible reservable space is out of this boundary.
964 * This could handle the cross boundary reservation window
965 * request.
967 * basically we search from the given range, rather than the whole
968 * reservation double linked list, (start_block, last_block)
969 * to find a free region that is of my size and has not
970 * been reserved.
973 static int find_next_reservable_window(
974 struct ext4_reserve_window_node *search_head,
975 struct ext4_reserve_window_node *my_rsv,
976 struct super_block * sb,
977 ext4_fsblk_t start_block,
978 ext4_fsblk_t last_block)
980 struct rb_node *next;
981 struct ext4_reserve_window_node *rsv, *prev;
982 ext4_fsblk_t cur;
983 int size = my_rsv->rsv_goal_size;
985 /* TODO: make the start of the reservation window byte-aligned */
986 /* cur = *start_block & ~7;*/
987 cur = start_block;
988 rsv = search_head;
989 if (!rsv)
990 return -1;
992 while (1) {
993 if (cur <= rsv->rsv_end)
994 cur = rsv->rsv_end + 1;
996 /* TODO?
997 * in the case we could not find a reservable space
998 * that is what is expected, during the re-search, we could
999 * remember what's the largest reservable space we could have
1000 * and return that one.
1002 * For now it will fail if we could not find the reservable
1003 * space with expected-size (or more)...
1005 if (cur > last_block)
1006 return -1; /* fail */
1008 prev = rsv;
1009 next = rb_next(&rsv->rsv_node);
1010 rsv = rb_entry(next,struct ext4_reserve_window_node,rsv_node);
1013 * Reached the last reservation, we can just append to the
1014 * previous one.
1016 if (!next)
1017 break;
1019 if (cur + size <= rsv->rsv_start) {
1021 * Found a reserveable space big enough. We could
1022 * have a reservation across the group boundary here
1024 break;
1028 * we come here either :
1029 * when we reach the end of the whole list,
1030 * and there is empty reservable space after last entry in the list.
1031 * append it to the end of the list.
1033 * or we found one reservable space in the middle of the list,
1034 * return the reservation window that we could append to.
1035 * succeed.
1038 if ((prev != my_rsv) && (!rsv_is_empty(&my_rsv->rsv_window)))
1039 rsv_window_remove(sb, my_rsv);
1042 * Let's book the whole avaliable window for now. We will check the
1043 * disk bitmap later and then, if there are free blocks then we adjust
1044 * the window size if it's larger than requested.
1045 * Otherwise, we will remove this node from the tree next time
1046 * call find_next_reservable_window.
1048 my_rsv->rsv_start = cur;
1049 my_rsv->rsv_end = cur + size - 1;
1050 my_rsv->rsv_alloc_hit = 0;
1052 if (prev != my_rsv)
1053 ext4_rsv_window_add(sb, my_rsv);
1055 return 0;
1059 * alloc_new_reservation()--allocate a new reservation window
1061 * To make a new reservation, we search part of the filesystem
1062 * reservation list (the list that inside the group). We try to
1063 * allocate a new reservation window near the allocation goal,
1064 * or the beginning of the group, if there is no goal.
1066 * We first find a reservable space after the goal, then from
1067 * there, we check the bitmap for the first free block after
1068 * it. If there is no free block until the end of group, then the
1069 * whole group is full, we failed. Otherwise, check if the free
1070 * block is inside the expected reservable space, if so, we
1071 * succeed.
1072 * If the first free block is outside the reservable space, then
1073 * start from the first free block, we search for next available
1074 * space, and go on.
1076 * on succeed, a new reservation will be found and inserted into the list
1077 * It contains at least one free block, and it does not overlap with other
1078 * reservation windows.
1080 * failed: we failed to find a reservation window in this group
1082 * @rsv: the reservation
1084 * @grp_goal: The goal (group-relative). It is where the search for a
1085 * free reservable space should start from.
1086 * if we have a grp_goal(grp_goal >0 ), then start from there,
1087 * no grp_goal(grp_goal = -1), we start from the first block
1088 * of the group.
1090 * @sb: the super block
1091 * @group: the group we are trying to allocate in
1092 * @bitmap_bh: the block group block bitmap
1095 static int alloc_new_reservation(struct ext4_reserve_window_node *my_rsv,
1096 ext4_grpblk_t grp_goal, struct super_block *sb,
1097 unsigned int group, struct buffer_head *bitmap_bh)
1099 struct ext4_reserve_window_node *search_head;
1100 ext4_fsblk_t group_first_block, group_end_block, start_block;
1101 ext4_grpblk_t first_free_block;
1102 struct rb_root *fs_rsv_root = &EXT4_SB(sb)->s_rsv_window_root;
1103 unsigned long size;
1104 int ret;
1105 spinlock_t *rsv_lock = &EXT4_SB(sb)->s_rsv_window_lock;
1107 group_first_block = ext4_group_first_block_no(sb, group);
1108 group_end_block = group_first_block + (EXT4_BLOCKS_PER_GROUP(sb) - 1);
1110 if (grp_goal < 0)
1111 start_block = group_first_block;
1112 else
1113 start_block = grp_goal + group_first_block;
1115 size = my_rsv->rsv_goal_size;
1117 if (!rsv_is_empty(&my_rsv->rsv_window)) {
1119 * if the old reservation is cross group boundary
1120 * and if the goal is inside the old reservation window,
1121 * we will come here when we just failed to allocate from
1122 * the first part of the window. We still have another part
1123 * that belongs to the next group. In this case, there is no
1124 * point to discard our window and try to allocate a new one
1125 * in this group(which will fail). we should
1126 * keep the reservation window, just simply move on.
1128 * Maybe we could shift the start block of the reservation
1129 * window to the first block of next group.
1132 if ((my_rsv->rsv_start <= group_end_block) &&
1133 (my_rsv->rsv_end > group_end_block) &&
1134 (start_block >= my_rsv->rsv_start))
1135 return -1;
1137 if ((my_rsv->rsv_alloc_hit >
1138 (my_rsv->rsv_end - my_rsv->rsv_start + 1) / 2)) {
1140 * if the previously allocation hit ratio is
1141 * greater than 1/2, then we double the size of
1142 * the reservation window the next time,
1143 * otherwise we keep the same size window
1145 size = size * 2;
1146 if (size > EXT4_MAX_RESERVE_BLOCKS)
1147 size = EXT4_MAX_RESERVE_BLOCKS;
1148 my_rsv->rsv_goal_size= size;
1152 spin_lock(rsv_lock);
1154 * shift the search start to the window near the goal block
1156 search_head = search_reserve_window(fs_rsv_root, start_block);
1159 * find_next_reservable_window() simply finds a reservable window
1160 * inside the given range(start_block, group_end_block).
1162 * To make sure the reservation window has a free bit inside it, we
1163 * need to check the bitmap after we found a reservable window.
1165 retry:
1166 ret = find_next_reservable_window(search_head, my_rsv, sb,
1167 start_block, group_end_block);
1169 if (ret == -1) {
1170 if (!rsv_is_empty(&my_rsv->rsv_window))
1171 rsv_window_remove(sb, my_rsv);
1172 spin_unlock(rsv_lock);
1173 return -1;
1177 * On success, find_next_reservable_window() returns the
1178 * reservation window where there is a reservable space after it.
1179 * Before we reserve this reservable space, we need
1180 * to make sure there is at least a free block inside this region.
1182 * searching the first free bit on the block bitmap and copy of
1183 * last committed bitmap alternatively, until we found a allocatable
1184 * block. Search start from the start block of the reservable space
1185 * we just found.
1187 spin_unlock(rsv_lock);
1188 first_free_block = bitmap_search_next_usable_block(
1189 my_rsv->rsv_start - group_first_block,
1190 bitmap_bh, group_end_block - group_first_block + 1);
1192 if (first_free_block < 0) {
1194 * no free block left on the bitmap, no point
1195 * to reserve the space. return failed.
1197 spin_lock(rsv_lock);
1198 if (!rsv_is_empty(&my_rsv->rsv_window))
1199 rsv_window_remove(sb, my_rsv);
1200 spin_unlock(rsv_lock);
1201 return -1; /* failed */
1204 start_block = first_free_block + group_first_block;
1206 * check if the first free block is within the
1207 * free space we just reserved
1209 if (start_block >= my_rsv->rsv_start && start_block <= my_rsv->rsv_end)
1210 return 0; /* success */
1212 * if the first free bit we found is out of the reservable space
1213 * continue search for next reservable space,
1214 * start from where the free block is,
1215 * we also shift the list head to where we stopped last time
1217 search_head = my_rsv;
1218 spin_lock(rsv_lock);
1219 goto retry;
1223 * try_to_extend_reservation()
1224 * @my_rsv: given reservation window
1225 * @sb: super block
1226 * @size: the delta to extend
1228 * Attempt to expand the reservation window large enough to have
1229 * required number of free blocks
1231 * Since ext4_try_to_allocate() will always allocate blocks within
1232 * the reservation window range, if the window size is too small,
1233 * multiple blocks allocation has to stop at the end of the reservation
1234 * window. To make this more efficient, given the total number of
1235 * blocks needed and the current size of the window, we try to
1236 * expand the reservation window size if necessary on a best-effort
1237 * basis before ext4_new_blocks() tries to allocate blocks,
1239 static void try_to_extend_reservation(struct ext4_reserve_window_node *my_rsv,
1240 struct super_block *sb, int size)
1242 struct ext4_reserve_window_node *next_rsv;
1243 struct rb_node *next;
1244 spinlock_t *rsv_lock = &EXT4_SB(sb)->s_rsv_window_lock;
1246 if (!spin_trylock(rsv_lock))
1247 return;
1249 next = rb_next(&my_rsv->rsv_node);
1251 if (!next)
1252 my_rsv->rsv_end += size;
1253 else {
1254 next_rsv = rb_entry(next, struct ext4_reserve_window_node, rsv_node);
1256 if ((next_rsv->rsv_start - my_rsv->rsv_end - 1) >= size)
1257 my_rsv->rsv_end += size;
1258 else
1259 my_rsv->rsv_end = next_rsv->rsv_start - 1;
1261 spin_unlock(rsv_lock);
1265 * ext4_try_to_allocate_with_rsv()
1266 * @sb: superblock
1267 * @handle: handle to this transaction
1268 * @group: given allocation block group
1269 * @bitmap_bh: bufferhead holds the block bitmap
1270 * @grp_goal: given target block within the group
1271 * @count: target number of blocks to allocate
1272 * @my_rsv: reservation window
1273 * @errp: pointer to store the error code
1275 * This is the main function used to allocate a new block and its reservation
1276 * window.
1278 * Each time when a new block allocation is need, first try to allocate from
1279 * its own reservation. If it does not have a reservation window, instead of
1280 * looking for a free bit on bitmap first, then look up the reservation list to
1281 * see if it is inside somebody else's reservation window, we try to allocate a
1282 * reservation window for it starting from the goal first. Then do the block
1283 * allocation within the reservation window.
1285 * This will avoid keeping on searching the reservation list again and
1286 * again when somebody is looking for a free block (without
1287 * reservation), and there are lots of free blocks, but they are all
1288 * being reserved.
1290 * We use a red-black tree for the per-filesystem reservation list.
1293 static ext4_grpblk_t
1294 ext4_try_to_allocate_with_rsv(struct super_block *sb, handle_t *handle,
1295 unsigned int group, struct buffer_head *bitmap_bh,
1296 ext4_grpblk_t grp_goal,
1297 struct ext4_reserve_window_node * my_rsv,
1298 unsigned long *count, int *errp)
1300 ext4_fsblk_t group_first_block, group_last_block;
1301 ext4_grpblk_t ret = 0;
1302 int fatal;
1303 unsigned long num = *count;
1305 *errp = 0;
1308 * Make sure we use undo access for the bitmap, because it is critical
1309 * that we do the frozen_data COW on bitmap buffers in all cases even
1310 * if the buffer is in BJ_Forget state in the committing transaction.
1312 BUFFER_TRACE(bitmap_bh, "get undo access for new block");
1313 fatal = ext4_journal_get_undo_access(handle, bitmap_bh);
1314 if (fatal) {
1315 *errp = fatal;
1316 return -1;
1320 * we don't deal with reservation when
1321 * filesystem is mounted without reservation
1322 * or the file is not a regular file
1323 * or last attempt to allocate a block with reservation turned on failed
1325 if (my_rsv == NULL ) {
1326 ret = ext4_try_to_allocate(sb, handle, group, bitmap_bh,
1327 grp_goal, count, NULL);
1328 goto out;
1331 * grp_goal is a group relative block number (if there is a goal)
1332 * 0 <= grp_goal < EXT4_BLOCKS_PER_GROUP(sb)
1333 * first block is a filesystem wide block number
1334 * first block is the block number of the first block in this group
1336 group_first_block = ext4_group_first_block_no(sb, group);
1337 group_last_block = group_first_block + (EXT4_BLOCKS_PER_GROUP(sb) - 1);
1340 * Basically we will allocate a new block from inode's reservation
1341 * window.
1343 * We need to allocate a new reservation window, if:
1344 * a) inode does not have a reservation window; or
1345 * b) last attempt to allocate a block from existing reservation
1346 * failed; or
1347 * c) we come here with a goal and with a reservation window
1349 * We do not need to allocate a new reservation window if we come here
1350 * at the beginning with a goal and the goal is inside the window, or
1351 * we don't have a goal but already have a reservation window.
1352 * then we could go to allocate from the reservation window directly.
1354 while (1) {
1355 if (rsv_is_empty(&my_rsv->rsv_window) || (ret < 0) ||
1356 !goal_in_my_reservation(&my_rsv->rsv_window,
1357 grp_goal, group, sb)) {
1358 if (my_rsv->rsv_goal_size < *count)
1359 my_rsv->rsv_goal_size = *count;
1360 ret = alloc_new_reservation(my_rsv, grp_goal, sb,
1361 group, bitmap_bh);
1362 if (ret < 0)
1363 break; /* failed */
1365 if (!goal_in_my_reservation(&my_rsv->rsv_window,
1366 grp_goal, group, sb))
1367 grp_goal = -1;
1368 } else if (grp_goal >= 0) {
1369 int curr = my_rsv->rsv_end -
1370 (grp_goal + group_first_block) + 1;
1372 if (curr < *count)
1373 try_to_extend_reservation(my_rsv, sb,
1374 *count - curr);
1377 if ((my_rsv->rsv_start > group_last_block) ||
1378 (my_rsv->rsv_end < group_first_block)) {
1379 rsv_window_dump(&EXT4_SB(sb)->s_rsv_window_root, 1);
1380 BUG();
1382 ret = ext4_try_to_allocate(sb, handle, group, bitmap_bh,
1383 grp_goal, &num, &my_rsv->rsv_window);
1384 if (ret >= 0) {
1385 my_rsv->rsv_alloc_hit += num;
1386 *count = num;
1387 break; /* succeed */
1389 num = *count;
1391 out:
1392 if (ret >= 0) {
1393 BUFFER_TRACE(bitmap_bh, "journal_dirty_metadata for "
1394 "bitmap block");
1395 fatal = ext4_journal_dirty_metadata(handle, bitmap_bh);
1396 if (fatal) {
1397 *errp = fatal;
1398 return -1;
1400 return ret;
1403 BUFFER_TRACE(bitmap_bh, "journal_release_buffer");
1404 ext4_journal_release_buffer(handle, bitmap_bh);
1405 return ret;
1409 * ext4_has_free_blocks()
1410 * @sbi: in-core super block structure.
1412 * Check if filesystem has at least 1 free block available for allocation.
1414 static int ext4_has_free_blocks(struct ext4_sb_info *sbi)
1416 ext4_fsblk_t free_blocks, root_blocks;
1418 free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
1419 root_blocks = ext4_r_blocks_count(sbi->s_es);
1420 if (free_blocks < root_blocks + 1 && !capable(CAP_SYS_RESOURCE) &&
1421 sbi->s_resuid != current->fsuid &&
1422 (sbi->s_resgid == 0 || !in_group_p (sbi->s_resgid))) {
1423 return 0;
1425 return 1;
1429 * ext4_should_retry_alloc()
1430 * @sb: super block
1431 * @retries number of attemps has been made
1433 * ext4_should_retry_alloc() is called when ENOSPC is returned, and if
1434 * it is profitable to retry the operation, this function will wait
1435 * for the current or commiting transaction to complete, and then
1436 * return TRUE.
1438 * if the total number of retries exceed three times, return FALSE.
1440 int ext4_should_retry_alloc(struct super_block *sb, int *retries)
1442 if (!ext4_has_free_blocks(EXT4_SB(sb)) || (*retries)++ > 3)
1443 return 0;
1445 jbd_debug(1, "%s: retrying operation after ENOSPC\n", sb->s_id);
1447 return jbd2_journal_force_commit_nested(EXT4_SB(sb)->s_journal);
1451 * ext4_new_blocks() -- core block(s) allocation function
1452 * @handle: handle to this transaction
1453 * @inode: file inode
1454 * @goal: given target block(filesystem wide)
1455 * @count: target number of blocks to allocate
1456 * @errp: error code
1458 * ext4_new_blocks uses a goal block to assist allocation. It tries to
1459 * allocate block(s) from the block group contains the goal block first. If that
1460 * fails, it will try to allocate block(s) from other block groups without
1461 * any specific goal block.
1464 ext4_fsblk_t ext4_new_blocks(handle_t *handle, struct inode *inode,
1465 ext4_fsblk_t goal, unsigned long *count, int *errp)
1467 struct buffer_head *bitmap_bh = NULL;
1468 struct buffer_head *gdp_bh;
1469 unsigned long group_no;
1470 int goal_group;
1471 ext4_grpblk_t grp_target_blk; /* blockgroup relative goal block */
1472 ext4_grpblk_t grp_alloc_blk; /* blockgroup-relative allocated block*/
1473 ext4_fsblk_t ret_block; /* filesyetem-wide allocated block */
1474 int bgi; /* blockgroup iteration index */
1475 int fatal = 0, err;
1476 int performed_allocation = 0;
1477 ext4_grpblk_t free_blocks; /* number of free blocks in a group */
1478 struct super_block *sb;
1479 struct ext4_group_desc *gdp;
1480 struct ext4_super_block *es;
1481 struct ext4_sb_info *sbi;
1482 struct ext4_reserve_window_node *my_rsv = NULL;
1483 struct ext4_block_alloc_info *block_i;
1484 unsigned short windowsz = 0;
1485 #ifdef EXT4FS_DEBUG
1486 static int goal_hits, goal_attempts;
1487 #endif
1488 unsigned long ngroups;
1489 unsigned long num = *count;
1491 *errp = -ENOSPC;
1492 sb = inode->i_sb;
1493 if (!sb) {
1494 printk("ext4_new_block: nonexistent device");
1495 return 0;
1499 * Check quota for allocation of this block.
1501 if (DQUOT_ALLOC_BLOCK(inode, num)) {
1502 *errp = -EDQUOT;
1503 return 0;
1506 sbi = EXT4_SB(sb);
1507 es = EXT4_SB(sb)->s_es;
1508 ext4_debug("goal=%lu.\n", goal);
1510 * Allocate a block from reservation only when
1511 * filesystem is mounted with reservation(default,-o reservation), and
1512 * it's a regular file, and
1513 * the desired window size is greater than 0 (One could use ioctl
1514 * command EXT4_IOC_SETRSVSZ to set the window size to 0 to turn off
1515 * reservation on that particular file)
1517 block_i = EXT4_I(inode)->i_block_alloc_info;
1518 if (block_i && ((windowsz = block_i->rsv_window_node.rsv_goal_size) > 0))
1519 my_rsv = &block_i->rsv_window_node;
1521 if (!ext4_has_free_blocks(sbi)) {
1522 *errp = -ENOSPC;
1523 goto out;
1527 * First, test whether the goal block is free.
1529 if (goal < le32_to_cpu(es->s_first_data_block) ||
1530 goal >= ext4_blocks_count(es))
1531 goal = le32_to_cpu(es->s_first_data_block);
1532 ext4_get_group_no_and_offset(sb, goal, &group_no, &grp_target_blk);
1533 goal_group = group_no;
1534 retry_alloc:
1535 gdp = ext4_get_group_desc(sb, group_no, &gdp_bh);
1536 if (!gdp)
1537 goto io_error;
1539 free_blocks = le16_to_cpu(gdp->bg_free_blocks_count);
1541 * if there is not enough free blocks to make a new resevation
1542 * turn off reservation for this allocation
1544 if (my_rsv && (free_blocks < windowsz)
1545 && (rsv_is_empty(&my_rsv->rsv_window)))
1546 my_rsv = NULL;
1548 if (free_blocks > 0) {
1549 bitmap_bh = read_block_bitmap(sb, group_no);
1550 if (!bitmap_bh)
1551 goto io_error;
1552 grp_alloc_blk = ext4_try_to_allocate_with_rsv(sb, handle,
1553 group_no, bitmap_bh, grp_target_blk,
1554 my_rsv, &num, &fatal);
1555 if (fatal)
1556 goto out;
1557 if (grp_alloc_blk >= 0)
1558 goto allocated;
1561 ngroups = EXT4_SB(sb)->s_groups_count;
1562 smp_rmb();
1565 * Now search the rest of the groups. We assume that
1566 * i and gdp correctly point to the last group visited.
1568 for (bgi = 0; bgi < ngroups; bgi++) {
1569 group_no++;
1570 if (group_no >= ngroups)
1571 group_no = 0;
1572 gdp = ext4_get_group_desc(sb, group_no, &gdp_bh);
1573 if (!gdp)
1574 goto io_error;
1575 free_blocks = le16_to_cpu(gdp->bg_free_blocks_count);
1577 * skip this group if the number of
1578 * free blocks is less than half of the reservation
1579 * window size.
1581 if (free_blocks <= (windowsz/2))
1582 continue;
1584 brelse(bitmap_bh);
1585 bitmap_bh = read_block_bitmap(sb, group_no);
1586 if (!bitmap_bh)
1587 goto io_error;
1589 * try to allocate block(s) from this group, without a goal(-1).
1591 grp_alloc_blk = ext4_try_to_allocate_with_rsv(sb, handle,
1592 group_no, bitmap_bh, -1, my_rsv,
1593 &num, &fatal);
1594 if (fatal)
1595 goto out;
1596 if (grp_alloc_blk >= 0)
1597 goto allocated;
1600 * We may end up a bogus ealier ENOSPC error due to
1601 * filesystem is "full" of reservations, but
1602 * there maybe indeed free blocks avaliable on disk
1603 * In this case, we just forget about the reservations
1604 * just do block allocation as without reservations.
1606 if (my_rsv) {
1607 my_rsv = NULL;
1608 windowsz = 0;
1609 group_no = goal_group;
1610 goto retry_alloc;
1612 /* No space left on the device */
1613 *errp = -ENOSPC;
1614 goto out;
1616 allocated:
1618 ext4_debug("using block group %d(%d)\n",
1619 group_no, gdp->bg_free_blocks_count);
1621 BUFFER_TRACE(gdp_bh, "get_write_access");
1622 fatal = ext4_journal_get_write_access(handle, gdp_bh);
1623 if (fatal)
1624 goto out;
1626 ret_block = grp_alloc_blk + ext4_group_first_block_no(sb, group_no);
1628 if (in_range(ext4_block_bitmap(sb, gdp), ret_block, num) ||
1629 in_range(ext4_inode_bitmap(sb, gdp), ret_block, num) ||
1630 in_range(ret_block, ext4_inode_table(sb, gdp),
1631 EXT4_SB(sb)->s_itb_per_group) ||
1632 in_range(ret_block + num - 1, ext4_inode_table(sb, gdp),
1633 EXT4_SB(sb)->s_itb_per_group))
1634 ext4_error(sb, "ext4_new_block",
1635 "Allocating block in system zone - "
1636 "blocks from %llu, length %lu",
1637 ret_block, num);
1639 performed_allocation = 1;
1641 #ifdef CONFIG_JBD2_DEBUG
1643 struct buffer_head *debug_bh;
1645 /* Record bitmap buffer state in the newly allocated block */
1646 debug_bh = sb_find_get_block(sb, ret_block);
1647 if (debug_bh) {
1648 BUFFER_TRACE(debug_bh, "state when allocated");
1649 BUFFER_TRACE2(debug_bh, bitmap_bh, "bitmap state");
1650 brelse(debug_bh);
1653 jbd_lock_bh_state(bitmap_bh);
1654 spin_lock(sb_bgl_lock(sbi, group_no));
1655 if (buffer_jbd(bitmap_bh) && bh2jh(bitmap_bh)->b_committed_data) {
1656 int i;
1658 for (i = 0; i < num; i++) {
1659 if (ext4_test_bit(grp_alloc_blk+i,
1660 bh2jh(bitmap_bh)->b_committed_data)) {
1661 printk("%s: block was unexpectedly set in "
1662 "b_committed_data\n", __FUNCTION__);
1666 ext4_debug("found bit %d\n", grp_alloc_blk);
1667 spin_unlock(sb_bgl_lock(sbi, group_no));
1668 jbd_unlock_bh_state(bitmap_bh);
1669 #endif
1671 if (ret_block + num - 1 >= ext4_blocks_count(es)) {
1672 ext4_error(sb, "ext4_new_block",
1673 "block(%llu) >= blocks count(%llu) - "
1674 "block_group = %lu, es == %p ", ret_block,
1675 ext4_blocks_count(es), group_no, es);
1676 goto out;
1680 * It is up to the caller to add the new buffer to a journal
1681 * list of some description. We don't know in advance whether
1682 * the caller wants to use it as metadata or data.
1684 ext4_debug("allocating block %lu. Goal hits %d of %d.\n",
1685 ret_block, goal_hits, goal_attempts);
1687 spin_lock(sb_bgl_lock(sbi, group_no));
1688 gdp->bg_free_blocks_count =
1689 cpu_to_le16(le16_to_cpu(gdp->bg_free_blocks_count)-num);
1690 spin_unlock(sb_bgl_lock(sbi, group_no));
1691 percpu_counter_sub(&sbi->s_freeblocks_counter, num);
1693 BUFFER_TRACE(gdp_bh, "journal_dirty_metadata for group descriptor");
1694 err = ext4_journal_dirty_metadata(handle, gdp_bh);
1695 if (!fatal)
1696 fatal = err;
1698 sb->s_dirt = 1;
1699 if (fatal)
1700 goto out;
1702 *errp = 0;
1703 brelse(bitmap_bh);
1704 DQUOT_FREE_BLOCK(inode, *count-num);
1705 *count = num;
1706 return ret_block;
1708 io_error:
1709 *errp = -EIO;
1710 out:
1711 if (fatal) {
1712 *errp = fatal;
1713 ext4_std_error(sb, fatal);
1716 * Undo the block allocation
1718 if (!performed_allocation)
1719 DQUOT_FREE_BLOCK(inode, *count);
1720 brelse(bitmap_bh);
1721 return 0;
1724 ext4_fsblk_t ext4_new_block(handle_t *handle, struct inode *inode,
1725 ext4_fsblk_t goal, int *errp)
1727 unsigned long count = 1;
1729 return ext4_new_blocks(handle, inode, goal, &count, errp);
1733 * ext4_count_free_blocks() -- count filesystem free blocks
1734 * @sb: superblock
1736 * Adds up the number of free blocks from each block group.
1738 ext4_fsblk_t ext4_count_free_blocks(struct super_block *sb)
1740 ext4_fsblk_t desc_count;
1741 struct ext4_group_desc *gdp;
1742 int i;
1743 unsigned long ngroups = EXT4_SB(sb)->s_groups_count;
1744 #ifdef EXT4FS_DEBUG
1745 struct ext4_super_block *es;
1746 ext4_fsblk_t bitmap_count;
1747 unsigned long x;
1748 struct buffer_head *bitmap_bh = NULL;
1750 es = EXT4_SB(sb)->s_es;
1751 desc_count = 0;
1752 bitmap_count = 0;
1753 gdp = NULL;
1755 smp_rmb();
1756 for (i = 0; i < ngroups; i++) {
1757 gdp = ext4_get_group_desc(sb, i, NULL);
1758 if (!gdp)
1759 continue;
1760 desc_count += le16_to_cpu(gdp->bg_free_blocks_count);
1761 brelse(bitmap_bh);
1762 bitmap_bh = read_block_bitmap(sb, i);
1763 if (bitmap_bh == NULL)
1764 continue;
1766 x = ext4_count_free(bitmap_bh, sb->s_blocksize);
1767 printk("group %d: stored = %d, counted = %lu\n",
1768 i, le16_to_cpu(gdp->bg_free_blocks_count), x);
1769 bitmap_count += x;
1771 brelse(bitmap_bh);
1772 printk("ext4_count_free_blocks: stored = %llu"
1773 ", computed = %llu, %llu\n",
1774 EXT4_FREE_BLOCKS_COUNT(es),
1775 desc_count, bitmap_count);
1776 return bitmap_count;
1777 #else
1778 desc_count = 0;
1779 smp_rmb();
1780 for (i = 0; i < ngroups; i++) {
1781 gdp = ext4_get_group_desc(sb, i, NULL);
1782 if (!gdp)
1783 continue;
1784 desc_count += le16_to_cpu(gdp->bg_free_blocks_count);
1787 return desc_count;
1788 #endif
1791 static inline int test_root(int a, int b)
1793 int num = b;
1795 while (a > num)
1796 num *= b;
1797 return num == a;
1800 static int ext4_group_sparse(int group)
1802 if (group <= 1)
1803 return 1;
1804 if (!(group & 1))
1805 return 0;
1806 return (test_root(group, 7) || test_root(group, 5) ||
1807 test_root(group, 3));
1811 * ext4_bg_has_super - number of blocks used by the superblock in group
1812 * @sb: superblock for filesystem
1813 * @group: group number to check
1815 * Return the number of blocks used by the superblock (primary or backup)
1816 * in this group. Currently this will be only 0 or 1.
1818 int ext4_bg_has_super(struct super_block *sb, int group)
1820 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
1821 EXT4_FEATURE_RO_COMPAT_SPARSE_SUPER) &&
1822 !ext4_group_sparse(group))
1823 return 0;
1824 return 1;
1827 static unsigned long ext4_bg_num_gdb_meta(struct super_block *sb, int group)
1829 unsigned long metagroup = group / EXT4_DESC_PER_BLOCK(sb);
1830 unsigned long first = metagroup * EXT4_DESC_PER_BLOCK(sb);
1831 unsigned long last = first + EXT4_DESC_PER_BLOCK(sb) - 1;
1833 if (group == first || group == first + 1 || group == last)
1834 return 1;
1835 return 0;
1838 static unsigned long ext4_bg_num_gdb_nometa(struct super_block *sb, int group)
1840 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
1841 EXT4_FEATURE_RO_COMPAT_SPARSE_SUPER) &&
1842 !ext4_group_sparse(group))
1843 return 0;
1844 return EXT4_SB(sb)->s_gdb_count;
1848 * ext4_bg_num_gdb - number of blocks used by the group table in group
1849 * @sb: superblock for filesystem
1850 * @group: group number to check
1852 * Return the number of blocks used by the group descriptor table
1853 * (primary or backup) in this group. In the future there may be a
1854 * different number of descriptor blocks in each group.
1856 unsigned long ext4_bg_num_gdb(struct super_block *sb, int group)
1858 unsigned long first_meta_bg =
1859 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_meta_bg);
1860 unsigned long metagroup = group / EXT4_DESC_PER_BLOCK(sb);
1862 if (!EXT4_HAS_INCOMPAT_FEATURE(sb,EXT4_FEATURE_INCOMPAT_META_BG) ||
1863 metagroup < first_meta_bg)
1864 return ext4_bg_num_gdb_nometa(sb,group);
1866 return ext4_bg_num_gdb_meta(sb,group);