ath9k: Use ah_curchan and remove sc_curchan which is redundant
[linux-2.6/kvm.git] / drivers / net / wireless / ath9k / xmit.c
blob9ea5d9333305c2379377785dd7b5734a5c229f2e
1 /*
2 * Copyright (c) 2008 Atheros Communications Inc.
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
18 * Implementation of transmit path.
21 #include "core.h"
23 #define BITS_PER_BYTE 8
24 #define OFDM_PLCP_BITS 22
25 #define HT_RC_2_MCS(_rc) ((_rc) & 0x0f)
26 #define HT_RC_2_STREAMS(_rc) ((((_rc) & 0x78) >> 3) + 1)
27 #define L_STF 8
28 #define L_LTF 8
29 #define L_SIG 4
30 #define HT_SIG 8
31 #define HT_STF 4
32 #define HT_LTF(_ns) (4 * (_ns))
33 #define SYMBOL_TIME(_ns) ((_ns) << 2) /* ns * 4 us */
34 #define SYMBOL_TIME_HALFGI(_ns) (((_ns) * 18 + 4) / 5) /* ns * 3.6 us */
35 #define NUM_SYMBOLS_PER_USEC(_usec) (_usec >> 2)
36 #define NUM_SYMBOLS_PER_USEC_HALFGI(_usec) (((_usec*5)-4)/18)
38 #define OFDM_SIFS_TIME 16
40 static u32 bits_per_symbol[][2] = {
41 /* 20MHz 40MHz */
42 { 26, 54 }, /* 0: BPSK */
43 { 52, 108 }, /* 1: QPSK 1/2 */
44 { 78, 162 }, /* 2: QPSK 3/4 */
45 { 104, 216 }, /* 3: 16-QAM 1/2 */
46 { 156, 324 }, /* 4: 16-QAM 3/4 */
47 { 208, 432 }, /* 5: 64-QAM 2/3 */
48 { 234, 486 }, /* 6: 64-QAM 3/4 */
49 { 260, 540 }, /* 7: 64-QAM 5/6 */
50 { 52, 108 }, /* 8: BPSK */
51 { 104, 216 }, /* 9: QPSK 1/2 */
52 { 156, 324 }, /* 10: QPSK 3/4 */
53 { 208, 432 }, /* 11: 16-QAM 1/2 */
54 { 312, 648 }, /* 12: 16-QAM 3/4 */
55 { 416, 864 }, /* 13: 64-QAM 2/3 */
56 { 468, 972 }, /* 14: 64-QAM 3/4 */
57 { 520, 1080 }, /* 15: 64-QAM 5/6 */
60 #define IS_HT_RATE(_rate) ((_rate) & 0x80)
63 * Insert a chain of ath_buf (descriptors) on a multicast txq
64 * but do NOT start tx DMA on this queue.
65 * NB: must be called with txq lock held
68 static void ath_tx_mcastqaddbuf(struct ath_softc *sc,
69 struct ath_txq *txq,
70 struct list_head *head)
72 struct ath_hal *ah = sc->sc_ah;
73 struct ath_buf *bf;
75 if (list_empty(head))
76 return;
79 * Insert the frame on the outbound list and
80 * pass it on to the hardware.
82 bf = list_first_entry(head, struct ath_buf, list);
85 * The CAB queue is started from the SWBA handler since
86 * frames only go out on DTIM and to avoid possible races.
88 ath9k_hw_set_interrupts(ah, 0);
91 * If there is anything in the mcastq, we want to set
92 * the "more data" bit in the last item in the queue to
93 * indicate that there is "more data". It makes sense to add
94 * it here since you are *always* going to have
95 * more data when adding to this queue, no matter where
96 * you call from.
99 if (txq->axq_depth) {
100 struct ath_buf *lbf;
101 struct ieee80211_hdr *hdr;
104 * Add the "more data flag" to the last frame
107 lbf = list_entry(txq->axq_q.prev, struct ath_buf, list);
108 hdr = (struct ieee80211_hdr *)
109 ((struct sk_buff *)(lbf->bf_mpdu))->data;
110 hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_MOREDATA);
114 * Now, concat the frame onto the queue
116 list_splice_tail_init(head, &txq->axq_q);
117 txq->axq_depth++;
118 txq->axq_totalqueued++;
119 txq->axq_linkbuf = list_entry(txq->axq_q.prev, struct ath_buf, list);
121 DPRINTF(sc, ATH_DBG_QUEUE,
122 "%s: txq depth = %d\n", __func__, txq->axq_depth);
123 if (txq->axq_link != NULL) {
124 *txq->axq_link = bf->bf_daddr;
125 DPRINTF(sc, ATH_DBG_XMIT,
126 "%s: link[%u](%p)=%llx (%p)\n",
127 __func__,
128 txq->axq_qnum, txq->axq_link,
129 ito64(bf->bf_daddr), bf->bf_desc);
131 txq->axq_link = &(bf->bf_lastbf->bf_desc->ds_link);
132 ath9k_hw_set_interrupts(ah, sc->sc_imask);
136 * Insert a chain of ath_buf (descriptors) on a txq and
137 * assume the descriptors are already chained together by caller.
138 * NB: must be called with txq lock held
141 static void ath_tx_txqaddbuf(struct ath_softc *sc,
142 struct ath_txq *txq, struct list_head *head)
144 struct ath_hal *ah = sc->sc_ah;
145 struct ath_buf *bf;
147 * Insert the frame on the outbound list and
148 * pass it on to the hardware.
151 if (list_empty(head))
152 return;
154 bf = list_first_entry(head, struct ath_buf, list);
156 list_splice_tail_init(head, &txq->axq_q);
157 txq->axq_depth++;
158 txq->axq_totalqueued++;
159 txq->axq_linkbuf = list_entry(txq->axq_q.prev, struct ath_buf, list);
161 DPRINTF(sc, ATH_DBG_QUEUE,
162 "%s: txq depth = %d\n", __func__, txq->axq_depth);
164 if (txq->axq_link == NULL) {
165 ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
166 DPRINTF(sc, ATH_DBG_XMIT,
167 "%s: TXDP[%u] = %llx (%p)\n",
168 __func__, txq->axq_qnum,
169 ito64(bf->bf_daddr), bf->bf_desc);
170 } else {
171 *txq->axq_link = bf->bf_daddr;
172 DPRINTF(sc, ATH_DBG_XMIT, "%s: link[%u] (%p)=%llx (%p)\n",
173 __func__,
174 txq->axq_qnum, txq->axq_link,
175 ito64(bf->bf_daddr), bf->bf_desc);
177 txq->axq_link = &(bf->bf_lastbf->bf_desc->ds_link);
178 ath9k_hw_txstart(ah, txq->axq_qnum);
181 /* Get transmit rate index using rate in Kbps */
183 static int ath_tx_findindex(const struct ath9k_rate_table *rt, int rate)
185 int i;
186 int ndx = 0;
188 for (i = 0; i < rt->rateCount; i++) {
189 if (rt->info[i].rateKbps == rate) {
190 ndx = i;
191 break;
195 return ndx;
198 /* Check if it's okay to send out aggregates */
200 static int ath_aggr_query(struct ath_softc *sc,
201 struct ath_node *an, u8 tidno)
203 struct ath_atx_tid *tid;
204 tid = ATH_AN_2_TID(an, tidno);
206 if (tid->addba_exchangecomplete || tid->addba_exchangeinprogress)
207 return 1;
208 else
209 return 0;
212 static enum ath9k_pkt_type get_hal_packet_type(struct ieee80211_hdr *hdr)
214 enum ath9k_pkt_type htype;
215 __le16 fc;
217 fc = hdr->frame_control;
219 /* Calculate Atheros packet type from IEEE80211 packet header */
221 if (ieee80211_is_beacon(fc))
222 htype = ATH9K_PKT_TYPE_BEACON;
223 else if (ieee80211_is_probe_resp(fc))
224 htype = ATH9K_PKT_TYPE_PROBE_RESP;
225 else if (ieee80211_is_atim(fc))
226 htype = ATH9K_PKT_TYPE_ATIM;
227 else if (ieee80211_is_pspoll(fc))
228 htype = ATH9K_PKT_TYPE_PSPOLL;
229 else
230 htype = ATH9K_PKT_TYPE_NORMAL;
232 return htype;
235 static void fill_min_rates(struct sk_buff *skb, struct ath_tx_control *txctl)
237 struct ieee80211_hdr *hdr;
238 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
239 struct ath_tx_info_priv *tx_info_priv;
240 __le16 fc;
242 hdr = (struct ieee80211_hdr *)skb->data;
243 fc = hdr->frame_control;
244 tx_info_priv = (struct ath_tx_info_priv *)tx_info->driver_data[0];
246 if (ieee80211_is_mgmt(fc) || ieee80211_is_ctl(fc)) {
247 txctl->use_minrate = 1;
248 txctl->min_rate = tx_info_priv->min_rate;
249 } else if (ieee80211_is_data(fc)) {
250 if (ieee80211_is_nullfunc(fc) ||
251 /* Port Access Entity (IEEE 802.1X) */
252 (skb->protocol == cpu_to_be16(0x888E))) {
253 txctl->use_minrate = 1;
254 txctl->min_rate = tx_info_priv->min_rate;
256 if (is_multicast_ether_addr(hdr->addr1))
257 txctl->mcast_rate = tx_info_priv->min_rate;
262 /* This function will setup additional txctl information, mostly rate stuff */
263 /* FIXME: seqno, ps */
264 static int ath_tx_prepare(struct ath_softc *sc,
265 struct sk_buff *skb,
266 struct ath_tx_control *txctl)
268 struct ieee80211_hw *hw = sc->hw;
269 struct ieee80211_hdr *hdr;
270 struct ath_rc_series *rcs;
271 struct ath_txq *txq = NULL;
272 const struct ath9k_rate_table *rt;
273 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
274 struct ath_tx_info_priv *tx_info_priv;
275 int hdrlen;
276 u8 rix, antenna;
277 __le16 fc;
278 u8 *qc;
280 memset(txctl, 0, sizeof(struct ath_tx_control));
282 txctl->dev = sc;
283 hdr = (struct ieee80211_hdr *)skb->data;
284 hdrlen = ieee80211_get_hdrlen_from_skb(skb);
285 fc = hdr->frame_control;
287 rt = sc->sc_currates;
288 BUG_ON(!rt);
290 /* Fill misc fields */
292 spin_lock_bh(&sc->node_lock);
293 txctl->an = ath_node_get(sc, hdr->addr1);
294 /* create a temp node, if the node is not there already */
295 if (!txctl->an)
296 txctl->an = ath_node_attach(sc, hdr->addr1, 0);
297 spin_unlock_bh(&sc->node_lock);
299 if (ieee80211_is_data_qos(fc)) {
300 qc = ieee80211_get_qos_ctl(hdr);
301 txctl->tidno = qc[0] & 0xf;
304 txctl->if_id = 0;
305 txctl->nextfraglen = 0;
306 txctl->frmlen = skb->len + FCS_LEN - (hdrlen & 3);
307 txctl->txpower = MAX_RATE_POWER; /* FIXME */
309 /* Fill Key related fields */
311 txctl->keytype = ATH9K_KEY_TYPE_CLEAR;
312 txctl->keyix = ATH9K_TXKEYIX_INVALID;
314 if (tx_info->control.hw_key) {
315 txctl->keyix = tx_info->control.hw_key->hw_key_idx;
316 txctl->frmlen += tx_info->control.icv_len;
318 if (sc->sc_keytype == ATH9K_CIPHER_WEP)
319 txctl->keytype = ATH9K_KEY_TYPE_WEP;
320 else if (sc->sc_keytype == ATH9K_CIPHER_TKIP)
321 txctl->keytype = ATH9K_KEY_TYPE_TKIP;
322 else if (sc->sc_keytype == ATH9K_CIPHER_AES_CCM)
323 txctl->keytype = ATH9K_KEY_TYPE_AES;
326 /* Fill packet type */
328 txctl->atype = get_hal_packet_type(hdr);
330 /* Fill qnum */
332 txctl->qnum = ath_get_hal_qnum(skb_get_queue_mapping(skb), sc);
333 txq = &sc->sc_txq[txctl->qnum];
334 spin_lock_bh(&txq->axq_lock);
336 /* Try to avoid running out of descriptors */
337 if (txq->axq_depth >= (ATH_TXBUF - 20)) {
338 DPRINTF(sc, ATH_DBG_FATAL,
339 "%s: TX queue: %d is full, depth: %d\n",
340 __func__,
341 txctl->qnum,
342 txq->axq_depth);
343 ieee80211_stop_queue(hw, skb_get_queue_mapping(skb));
344 txq->stopped = 1;
345 spin_unlock_bh(&txq->axq_lock);
346 return -1;
349 spin_unlock_bh(&txq->axq_lock);
351 /* Fill rate */
353 fill_min_rates(skb, txctl);
355 /* Fill flags */
357 txctl->flags = ATH9K_TXDESC_CLRDMASK; /* needed for crypto errors */
359 if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK)
360 tx_info->flags |= ATH9K_TXDESC_NOACK;
361 if (tx_info->flags & IEEE80211_TX_CTL_USE_RTS_CTS)
362 tx_info->flags |= ATH9K_TXDESC_RTSENA;
365 * Setup for rate calculations.
367 tx_info_priv = (struct ath_tx_info_priv *)tx_info->driver_data[0];
368 rcs = tx_info_priv->rcs;
370 if (ieee80211_is_data(fc) && !txctl->use_minrate) {
372 /* Enable HT only for DATA frames and not for EAPOL */
373 txctl->ht = (hw->conf.ht_conf.ht_supported &&
374 (tx_info->flags & IEEE80211_TX_CTL_AMPDU));
376 if (is_multicast_ether_addr(hdr->addr1)) {
377 rcs[0].rix = (u8)
378 ath_tx_findindex(rt, txctl->mcast_rate);
381 * mcast packets are not re-tried.
383 rcs[0].tries = 1;
385 /* For HT capable stations, we save tidno for later use.
386 * We also override seqno set by upper layer with the one
387 * in tx aggregation state.
389 * First, the fragmentation stat is determined.
390 * If fragmentation is on, the sequence number is
391 * not overridden, since it has been
392 * incremented by the fragmentation routine.
394 if (likely(!(txctl->flags & ATH9K_TXDESC_FRAG_IS_ON)) &&
395 txctl->ht && (sc->sc_flags & SC_OP_TXAGGR)) {
396 struct ath_atx_tid *tid;
398 tid = ATH_AN_2_TID(txctl->an, txctl->tidno);
400 hdr->seq_ctrl = cpu_to_le16(tid->seq_next <<
401 IEEE80211_SEQ_SEQ_SHIFT);
402 txctl->seqno = tid->seq_next;
403 INCR(tid->seq_next, IEEE80211_SEQ_MAX);
405 } else {
406 /* for management and control frames,
407 * or for NULL and EAPOL frames */
408 if (txctl->min_rate)
409 rcs[0].rix = ath_rate_findrateix(sc, txctl->min_rate);
410 else
411 rcs[0].rix = 0;
412 rcs[0].tries = ATH_MGT_TXMAXTRY;
414 rix = rcs[0].rix;
417 * Calculate duration. This logically belongs in the 802.11
418 * layer but it lacks sufficient information to calculate it.
420 if ((txctl->flags & ATH9K_TXDESC_NOACK) == 0 && !ieee80211_is_ctl(fc)) {
421 u16 dur;
423 * XXX not right with fragmentation.
425 if (sc->sc_flags & SC_OP_PREAMBLE_SHORT)
426 dur = rt->info[rix].spAckDuration;
427 else
428 dur = rt->info[rix].lpAckDuration;
430 if (le16_to_cpu(hdr->frame_control) &
431 IEEE80211_FCTL_MOREFRAGS) {
432 dur += dur; /* Add additional 'SIFS + ACK' */
435 ** Compute size of next fragment in order to compute
436 ** durations needed to update NAV.
437 ** The last fragment uses the ACK duration only.
438 ** Add time for next fragment.
440 dur += ath9k_hw_computetxtime(sc->sc_ah, rt,
441 txctl->nextfraglen,
442 rix,
443 (sc->sc_flags & SC_OP_PREAMBLE_SHORT));
446 if (ieee80211_has_morefrags(fc) ||
447 (le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG)) {
449 ** Force hardware to use computed duration for next
450 ** fragment by disabling multi-rate retry, which
451 ** updates duration based on the multi-rate
452 ** duration table.
454 rcs[1].tries = rcs[2].tries = rcs[3].tries = 0;
455 rcs[1].rix = rcs[2].rix = rcs[3].rix = 0;
456 /* reset tries but keep rate index */
457 rcs[0].tries = ATH_TXMAXTRY;
460 hdr->duration_id = cpu_to_le16(dur);
464 * Determine if a tx interrupt should be generated for
465 * this descriptor. We take a tx interrupt to reap
466 * descriptors when the h/w hits an EOL condition or
467 * when the descriptor is specifically marked to generate
468 * an interrupt. We periodically mark descriptors in this
469 * way to insure timely replenishing of the supply needed
470 * for sending frames. Defering interrupts reduces system
471 * load and potentially allows more concurrent work to be
472 * done but if done to aggressively can cause senders to
473 * backup.
475 * NB: use >= to deal with sc_txintrperiod changing
476 * dynamically through sysctl.
478 spin_lock_bh(&txq->axq_lock);
479 if ((++txq->axq_intrcnt >= sc->sc_txintrperiod)) {
480 txctl->flags |= ATH9K_TXDESC_INTREQ;
481 txq->axq_intrcnt = 0;
483 spin_unlock_bh(&txq->axq_lock);
485 if (is_multicast_ether_addr(hdr->addr1)) {
486 antenna = sc->sc_mcastantenna + 1;
487 sc->sc_mcastantenna = (sc->sc_mcastantenna + 1) & 0x1;
488 } else
489 antenna = sc->sc_txantenna;
491 #ifdef USE_LEGACY_HAL
492 txctl->antenna = antenna;
493 #endif
494 return 0;
497 /* To complete a chain of buffers associated a frame */
499 static void ath_tx_complete_buf(struct ath_softc *sc,
500 struct ath_buf *bf,
501 struct list_head *bf_q,
502 int txok, int sendbar)
504 struct sk_buff *skb = bf->bf_mpdu;
505 struct ath_xmit_status tx_status;
506 dma_addr_t *pa;
509 * Set retry information.
510 * NB: Don't use the information in the descriptor, because the frame
511 * could be software retried.
513 tx_status.retries = bf->bf_retries;
514 tx_status.flags = 0;
516 if (sendbar)
517 tx_status.flags = ATH_TX_BAR;
519 if (!txok) {
520 tx_status.flags |= ATH_TX_ERROR;
522 if (bf_isxretried(bf))
523 tx_status.flags |= ATH_TX_XRETRY;
525 /* Unmap this frame */
526 pa = get_dma_mem_context(bf, bf_dmacontext);
527 pci_unmap_single(sc->pdev,
528 *pa,
529 skb->len,
530 PCI_DMA_TODEVICE);
531 /* complete this frame */
532 ath_tx_complete(sc, skb, &tx_status, bf->bf_node);
535 * Return the list of ath_buf of this mpdu to free queue
537 spin_lock_bh(&sc->sc_txbuflock);
538 list_splice_tail_init(bf_q, &sc->sc_txbuf);
539 spin_unlock_bh(&sc->sc_txbuflock);
543 * queue up a dest/ac pair for tx scheduling
544 * NB: must be called with txq lock held
547 static void ath_tx_queue_tid(struct ath_txq *txq, struct ath_atx_tid *tid)
549 struct ath_atx_ac *ac = tid->ac;
552 * if tid is paused, hold off
554 if (tid->paused)
555 return;
558 * add tid to ac atmost once
560 if (tid->sched)
561 return;
563 tid->sched = true;
564 list_add_tail(&tid->list, &ac->tid_q);
567 * add node ac to txq atmost once
569 if (ac->sched)
570 return;
572 ac->sched = true;
573 list_add_tail(&ac->list, &txq->axq_acq);
576 /* pause a tid */
578 static void ath_tx_pause_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
580 struct ath_txq *txq = &sc->sc_txq[tid->ac->qnum];
582 spin_lock_bh(&txq->axq_lock);
584 tid->paused++;
586 spin_unlock_bh(&txq->axq_lock);
589 /* resume a tid and schedule aggregate */
591 void ath_tx_resume_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
593 struct ath_txq *txq = &sc->sc_txq[tid->ac->qnum];
595 ASSERT(tid->paused > 0);
596 spin_lock_bh(&txq->axq_lock);
598 tid->paused--;
600 if (tid->paused > 0)
601 goto unlock;
603 if (list_empty(&tid->buf_q))
604 goto unlock;
607 * Add this TID to scheduler and try to send out aggregates
609 ath_tx_queue_tid(txq, tid);
610 ath_txq_schedule(sc, txq);
611 unlock:
612 spin_unlock_bh(&txq->axq_lock);
615 /* Compute the number of bad frames */
617 static int ath_tx_num_badfrms(struct ath_softc *sc,
618 struct ath_buf *bf, int txok)
620 struct ath_node *an = bf->bf_node;
621 int isnodegone = (an->an_flags & ATH_NODE_CLEAN);
622 struct ath_buf *bf_last = bf->bf_lastbf;
623 struct ath_desc *ds = bf_last->bf_desc;
624 u16 seq_st = 0;
625 u32 ba[WME_BA_BMP_SIZE >> 5];
626 int ba_index;
627 int nbad = 0;
628 int isaggr = 0;
630 if (isnodegone || ds->ds_txstat.ts_flags == ATH9K_TX_SW_ABORTED)
631 return 0;
633 isaggr = bf_isaggr(bf);
634 if (isaggr) {
635 seq_st = ATH_DS_BA_SEQ(ds);
636 memcpy(ba, ATH_DS_BA_BITMAP(ds), WME_BA_BMP_SIZE >> 3);
639 while (bf) {
640 ba_index = ATH_BA_INDEX(seq_st, bf->bf_seqno);
641 if (!txok || (isaggr && !ATH_BA_ISSET(ba, ba_index)))
642 nbad++;
644 bf = bf->bf_next;
647 return nbad;
650 static void ath_tx_set_retry(struct ath_softc *sc, struct ath_buf *bf)
652 struct sk_buff *skb;
653 struct ieee80211_hdr *hdr;
655 bf->bf_state.bf_type |= BUF_RETRY;
656 bf->bf_retries++;
658 skb = bf->bf_mpdu;
659 hdr = (struct ieee80211_hdr *)skb->data;
660 hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_RETRY);
663 /* Update block ack window */
665 static void ath_tx_update_baw(struct ath_softc *sc,
666 struct ath_atx_tid *tid, int seqno)
668 int index, cindex;
670 index = ATH_BA_INDEX(tid->seq_start, seqno);
671 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
673 tid->tx_buf[cindex] = NULL;
675 while (tid->baw_head != tid->baw_tail && !tid->tx_buf[tid->baw_head]) {
676 INCR(tid->seq_start, IEEE80211_SEQ_MAX);
677 INCR(tid->baw_head, ATH_TID_MAX_BUFS);
682 * ath_pkt_dur - compute packet duration (NB: not NAV)
684 * rix - rate index
685 * pktlen - total bytes (delims + data + fcs + pads + pad delims)
686 * width - 0 for 20 MHz, 1 for 40 MHz
687 * half_gi - to use 4us v/s 3.6 us for symbol time
690 static u32 ath_pkt_duration(struct ath_softc *sc,
691 u8 rix,
692 struct ath_buf *bf,
693 int width,
694 int half_gi,
695 bool shortPreamble)
697 const struct ath9k_rate_table *rt = sc->sc_currates;
698 u32 nbits, nsymbits, duration, nsymbols;
699 u8 rc;
700 int streams, pktlen;
702 pktlen = bf_isaggr(bf) ? bf->bf_al : bf->bf_frmlen;
703 rc = rt->info[rix].rateCode;
706 * for legacy rates, use old function to compute packet duration
708 if (!IS_HT_RATE(rc))
709 return ath9k_hw_computetxtime(sc->sc_ah,
711 pktlen,
712 rix,
713 shortPreamble);
715 * find number of symbols: PLCP + data
717 nbits = (pktlen << 3) + OFDM_PLCP_BITS;
718 nsymbits = bits_per_symbol[HT_RC_2_MCS(rc)][width];
719 nsymbols = (nbits + nsymbits - 1) / nsymbits;
721 if (!half_gi)
722 duration = SYMBOL_TIME(nsymbols);
723 else
724 duration = SYMBOL_TIME_HALFGI(nsymbols);
727 * addup duration for legacy/ht training and signal fields
729 streams = HT_RC_2_STREAMS(rc);
730 duration += L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
731 return duration;
734 /* Rate module function to set rate related fields in tx descriptor */
736 static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf)
738 struct ath_hal *ah = sc->sc_ah;
739 const struct ath9k_rate_table *rt;
740 struct ath_desc *ds = bf->bf_desc;
741 struct ath_desc *lastds = bf->bf_lastbf->bf_desc;
742 struct ath9k_11n_rate_series series[4];
743 int i, flags, rtsctsena = 0, dynamic_mimops = 0;
744 u32 ctsduration = 0;
745 u8 rix = 0, cix, ctsrate = 0;
746 u32 aggr_limit_with_rts = sc->sc_rtsaggrlimit;
747 struct ath_node *an = (struct ath_node *) bf->bf_node;
750 * get the cix for the lowest valid rix.
752 rt = sc->sc_currates;
753 for (i = 4; i--;) {
754 if (bf->bf_rcs[i].tries) {
755 rix = bf->bf_rcs[i].rix;
756 break;
759 flags = (bf->bf_flags & (ATH9K_TXDESC_RTSENA | ATH9K_TXDESC_CTSENA));
760 cix = rt->info[rix].controlRate;
763 * If 802.11g protection is enabled, determine whether
764 * to use RTS/CTS or just CTS. Note that this is only
765 * done for OFDM/HT unicast frames.
767 if (sc->sc_protmode != PROT_M_NONE &&
768 (rt->info[rix].phy == PHY_OFDM ||
769 rt->info[rix].phy == PHY_HT) &&
770 (bf->bf_flags & ATH9K_TXDESC_NOACK) == 0) {
771 if (sc->sc_protmode == PROT_M_RTSCTS)
772 flags = ATH9K_TXDESC_RTSENA;
773 else if (sc->sc_protmode == PROT_M_CTSONLY)
774 flags = ATH9K_TXDESC_CTSENA;
776 cix = rt->info[sc->sc_protrix].controlRate;
777 rtsctsena = 1;
780 /* For 11n, the default behavior is to enable RTS for
781 * hw retried frames. We enable the global flag here and
782 * let rate series flags determine which rates will actually
783 * use RTS.
785 if ((ah->ah_caps.hw_caps & ATH9K_HW_CAP_HT) && bf_isdata(bf)) {
786 BUG_ON(!an);
788 * 802.11g protection not needed, use our default behavior
790 if (!rtsctsena)
791 flags = ATH9K_TXDESC_RTSENA;
793 * For dynamic MIMO PS, RTS needs to precede the first aggregate
794 * and the second aggregate should have any protection at all.
796 if (an->an_smmode == ATH_SM_PWRSAV_DYNAMIC) {
797 if (!bf_isaggrburst(bf)) {
798 flags = ATH9K_TXDESC_RTSENA;
799 dynamic_mimops = 1;
800 } else {
801 flags = 0;
807 * Set protection if aggregate protection on
809 if (sc->sc_config.ath_aggr_prot &&
810 (!bf_isaggr(bf) || (bf_isaggr(bf) && bf->bf_al < 8192))) {
811 flags = ATH9K_TXDESC_RTSENA;
812 cix = rt->info[sc->sc_protrix].controlRate;
813 rtsctsena = 1;
817 * For AR5416 - RTS cannot be followed by a frame larger than 8K.
819 if (bf_isaggr(bf) && (bf->bf_al > aggr_limit_with_rts)) {
821 * Ensure that in the case of SM Dynamic power save
822 * while we are bursting the second aggregate the
823 * RTS is cleared.
825 flags &= ~(ATH9K_TXDESC_RTSENA);
829 * CTS transmit rate is derived from the transmit rate
830 * by looking in the h/w rate table. We must also factor
831 * in whether or not a short preamble is to be used.
833 /* NB: cix is set above where RTS/CTS is enabled */
834 BUG_ON(cix == 0xff);
835 ctsrate = rt->info[cix].rateCode |
836 (bf_isshpreamble(bf) ? rt->info[cix].shortPreamble : 0);
839 * Setup HAL rate series
841 memzero(series, sizeof(struct ath9k_11n_rate_series) * 4);
843 for (i = 0; i < 4; i++) {
844 if (!bf->bf_rcs[i].tries)
845 continue;
847 rix = bf->bf_rcs[i].rix;
849 series[i].Rate = rt->info[rix].rateCode |
850 (bf_isshpreamble(bf) ? rt->info[rix].shortPreamble : 0);
852 series[i].Tries = bf->bf_rcs[i].tries;
854 series[i].RateFlags = (
855 (bf->bf_rcs[i].flags & ATH_RC_RTSCTS_FLAG) ?
856 ATH9K_RATESERIES_RTS_CTS : 0) |
857 ((bf->bf_rcs[i].flags & ATH_RC_CW40_FLAG) ?
858 ATH9K_RATESERIES_2040 : 0) |
859 ((bf->bf_rcs[i].flags & ATH_RC_SGI_FLAG) ?
860 ATH9K_RATESERIES_HALFGI : 0);
862 series[i].PktDuration = ath_pkt_duration(
863 sc, rix, bf,
864 (bf->bf_rcs[i].flags & ATH_RC_CW40_FLAG) != 0,
865 (bf->bf_rcs[i].flags & ATH_RC_SGI_FLAG),
866 bf_isshpreamble(bf));
868 if ((an->an_smmode == ATH_SM_PWRSAV_STATIC) &&
869 (bf->bf_rcs[i].flags & ATH_RC_DS_FLAG) == 0) {
871 * When sending to an HT node that has enabled static
872 * SM/MIMO power save, send at single stream rates but
873 * use maximum allowed transmit chains per user,
874 * hardware, regulatory, or country limits for
875 * better range.
877 series[i].ChSel = sc->sc_tx_chainmask;
878 } else {
879 if (bf_isht(bf))
880 series[i].ChSel =
881 ath_chainmask_sel_logic(sc, an);
882 else
883 series[i].ChSel = sc->sc_tx_chainmask;
886 if (rtsctsena)
887 series[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
890 * Set RTS for all rates if node is in dynamic powersave
891 * mode and we are using dual stream rates.
893 if (dynamic_mimops && (bf->bf_rcs[i].flags & ATH_RC_DS_FLAG))
894 series[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
898 * For non-HT devices, calculate RTS/CTS duration in software
899 * and disable multi-rate retry.
901 if (flags && !(ah->ah_caps.hw_caps & ATH9K_HW_CAP_HT)) {
903 * Compute the transmit duration based on the frame
904 * size and the size of an ACK frame. We call into the
905 * HAL to do the computation since it depends on the
906 * characteristics of the actual PHY being used.
908 * NB: CTS is assumed the same size as an ACK so we can
909 * use the precalculated ACK durations.
911 if (flags & ATH9K_TXDESC_RTSENA) { /* SIFS + CTS */
912 ctsduration += bf_isshpreamble(bf) ?
913 rt->info[cix].spAckDuration :
914 rt->info[cix].lpAckDuration;
917 ctsduration += series[0].PktDuration;
919 if ((bf->bf_flags & ATH9K_TXDESC_NOACK) == 0) { /* SIFS + ACK */
920 ctsduration += bf_isshpreamble(bf) ?
921 rt->info[rix].spAckDuration :
922 rt->info[rix].lpAckDuration;
926 * Disable multi-rate retry when using RTS/CTS by clearing
927 * series 1, 2 and 3.
929 memzero(&series[1], sizeof(struct ath9k_11n_rate_series) * 3);
933 * set dur_update_en for l-sig computation except for PS-Poll frames
935 ath9k_hw_set11n_ratescenario(ah, ds, lastds,
936 !bf_ispspoll(bf),
937 ctsrate,
938 ctsduration,
939 series, 4, flags);
940 if (sc->sc_config.ath_aggr_prot && flags)
941 ath9k_hw_set11n_burstduration(ah, ds, 8192);
945 * Function to send a normal HT (non-AMPDU) frame
946 * NB: must be called with txq lock held
949 static int ath_tx_send_normal(struct ath_softc *sc,
950 struct ath_txq *txq,
951 struct ath_atx_tid *tid,
952 struct list_head *bf_head)
954 struct ath_buf *bf;
955 struct sk_buff *skb;
956 struct ieee80211_tx_info *tx_info;
957 struct ath_tx_info_priv *tx_info_priv;
959 BUG_ON(list_empty(bf_head));
961 bf = list_first_entry(bf_head, struct ath_buf, list);
962 bf->bf_state.bf_type &= ~BUF_AMPDU; /* regular HT frame */
964 skb = (struct sk_buff *)bf->bf_mpdu;
965 tx_info = IEEE80211_SKB_CB(skb);
966 tx_info_priv = (struct ath_tx_info_priv *)tx_info->driver_data[0];
967 memcpy(bf->bf_rcs, tx_info_priv->rcs, 4 * sizeof(tx_info_priv->rcs[0]));
969 /* update starting sequence number for subsequent ADDBA request */
970 INCR(tid->seq_start, IEEE80211_SEQ_MAX);
972 /* Queue to h/w without aggregation */
973 bf->bf_nframes = 1;
974 bf->bf_lastbf = bf->bf_lastfrm; /* one single frame */
975 ath_buf_set_rate(sc, bf);
976 ath_tx_txqaddbuf(sc, txq, bf_head);
978 return 0;
981 /* flush tid's software queue and send frames as non-ampdu's */
983 static void ath_tx_flush_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
985 struct ath_txq *txq = &sc->sc_txq[tid->ac->qnum];
986 struct ath_buf *bf;
987 struct list_head bf_head;
988 INIT_LIST_HEAD(&bf_head);
990 ASSERT(tid->paused > 0);
991 spin_lock_bh(&txq->axq_lock);
993 tid->paused--;
995 if (tid->paused > 0) {
996 spin_unlock_bh(&txq->axq_lock);
997 return;
1000 while (!list_empty(&tid->buf_q)) {
1001 bf = list_first_entry(&tid->buf_q, struct ath_buf, list);
1002 ASSERT(!bf_isretried(bf));
1003 list_cut_position(&bf_head, &tid->buf_q, &bf->bf_lastfrm->list);
1004 ath_tx_send_normal(sc, txq, tid, &bf_head);
1007 spin_unlock_bh(&txq->axq_lock);
1010 /* Completion routine of an aggregate */
1012 static void ath_tx_complete_aggr_rifs(struct ath_softc *sc,
1013 struct ath_txq *txq,
1014 struct ath_buf *bf,
1015 struct list_head *bf_q,
1016 int txok)
1018 struct ath_node *an = bf->bf_node;
1019 struct ath_atx_tid *tid = ATH_AN_2_TID(an, bf->bf_tidno);
1020 struct ath_buf *bf_last = bf->bf_lastbf;
1021 struct ath_desc *ds = bf_last->bf_desc;
1022 struct ath_buf *bf_next, *bf_lastq = NULL;
1023 struct list_head bf_head, bf_pending;
1024 u16 seq_st = 0;
1025 u32 ba[WME_BA_BMP_SIZE >> 5];
1026 int isaggr, txfail, txpending, sendbar = 0, needreset = 0;
1027 int isnodegone = (an->an_flags & ATH_NODE_CLEAN);
1029 isaggr = bf_isaggr(bf);
1030 if (isaggr) {
1031 if (txok) {
1032 if (ATH_DS_TX_BA(ds)) {
1034 * extract starting sequence and
1035 * block-ack bitmap
1037 seq_st = ATH_DS_BA_SEQ(ds);
1038 memcpy(ba,
1039 ATH_DS_BA_BITMAP(ds),
1040 WME_BA_BMP_SIZE >> 3);
1041 } else {
1042 memzero(ba, WME_BA_BMP_SIZE >> 3);
1045 * AR5416 can become deaf/mute when BA
1046 * issue happens. Chip needs to be reset.
1047 * But AP code may have sychronization issues
1048 * when perform internal reset in this routine.
1049 * Only enable reset in STA mode for now.
1051 if (sc->sc_ah->ah_opmode == ATH9K_M_STA)
1052 needreset = 1;
1054 } else {
1055 memzero(ba, WME_BA_BMP_SIZE >> 3);
1059 INIT_LIST_HEAD(&bf_pending);
1060 INIT_LIST_HEAD(&bf_head);
1062 while (bf) {
1063 txfail = txpending = 0;
1064 bf_next = bf->bf_next;
1066 if (ATH_BA_ISSET(ba, ATH_BA_INDEX(seq_st, bf->bf_seqno))) {
1067 /* transmit completion, subframe is
1068 * acked by block ack */
1069 } else if (!isaggr && txok) {
1070 /* transmit completion */
1071 } else {
1073 if (!tid->cleanup_inprogress && !isnodegone &&
1074 ds->ds_txstat.ts_flags != ATH9K_TX_SW_ABORTED) {
1075 if (bf->bf_retries < ATH_MAX_SW_RETRIES) {
1076 ath_tx_set_retry(sc, bf);
1077 txpending = 1;
1078 } else {
1079 bf->bf_state.bf_type |= BUF_XRETRY;
1080 txfail = 1;
1081 sendbar = 1;
1083 } else {
1085 * cleanup in progress, just fail
1086 * the un-acked sub-frames
1088 txfail = 1;
1092 * Remove ath_buf's of this sub-frame from aggregate queue.
1094 if (bf_next == NULL) { /* last subframe in the aggregate */
1095 ASSERT(bf->bf_lastfrm == bf_last);
1098 * The last descriptor of the last sub frame could be
1099 * a holding descriptor for h/w. If that's the case,
1100 * bf->bf_lastfrm won't be in the bf_q.
1101 * Make sure we handle bf_q properly here.
1104 if (!list_empty(bf_q)) {
1105 bf_lastq = list_entry(bf_q->prev,
1106 struct ath_buf, list);
1107 list_cut_position(&bf_head,
1108 bf_q, &bf_lastq->list);
1109 } else {
1111 * XXX: if the last subframe only has one
1112 * descriptor which is also being used as
1113 * a holding descriptor. Then the ath_buf
1114 * is not in the bf_q at all.
1116 INIT_LIST_HEAD(&bf_head);
1118 } else {
1119 ASSERT(!list_empty(bf_q));
1120 list_cut_position(&bf_head,
1121 bf_q, &bf->bf_lastfrm->list);
1124 if (!txpending) {
1126 * complete the acked-ones/xretried ones; update
1127 * block-ack window
1129 spin_lock_bh(&txq->axq_lock);
1130 ath_tx_update_baw(sc, tid, bf->bf_seqno);
1131 spin_unlock_bh(&txq->axq_lock);
1133 /* complete this sub-frame */
1134 ath_tx_complete_buf(sc, bf, &bf_head, !txfail, sendbar);
1135 } else {
1137 * retry the un-acked ones
1140 * XXX: if the last descriptor is holding descriptor,
1141 * in order to requeue the frame to software queue, we
1142 * need to allocate a new descriptor and
1143 * copy the content of holding descriptor to it.
1145 if (bf->bf_next == NULL &&
1146 bf_last->bf_status & ATH_BUFSTATUS_STALE) {
1147 struct ath_buf *tbf;
1149 /* allocate new descriptor */
1150 spin_lock_bh(&sc->sc_txbuflock);
1151 ASSERT(!list_empty((&sc->sc_txbuf)));
1152 tbf = list_first_entry(&sc->sc_txbuf,
1153 struct ath_buf, list);
1154 list_del(&tbf->list);
1155 spin_unlock_bh(&sc->sc_txbuflock);
1157 ATH_TXBUF_RESET(tbf);
1159 /* copy descriptor content */
1160 tbf->bf_mpdu = bf_last->bf_mpdu;
1161 tbf->bf_node = bf_last->bf_node;
1162 tbf->bf_buf_addr = bf_last->bf_buf_addr;
1163 *(tbf->bf_desc) = *(bf_last->bf_desc);
1165 /* link it to the frame */
1166 if (bf_lastq) {
1167 bf_lastq->bf_desc->ds_link =
1168 tbf->bf_daddr;
1169 bf->bf_lastfrm = tbf;
1170 ath9k_hw_cleartxdesc(sc->sc_ah,
1171 bf->bf_lastfrm->bf_desc);
1172 } else {
1173 tbf->bf_state = bf_last->bf_state;
1174 tbf->bf_lastfrm = tbf;
1175 ath9k_hw_cleartxdesc(sc->sc_ah,
1176 tbf->bf_lastfrm->bf_desc);
1178 /* copy the DMA context */
1179 copy_dma_mem_context(
1180 get_dma_mem_context(tbf,
1181 bf_dmacontext),
1182 get_dma_mem_context(bf_last,
1183 bf_dmacontext));
1185 list_add_tail(&tbf->list, &bf_head);
1186 } else {
1188 * Clear descriptor status words for
1189 * software retry
1191 ath9k_hw_cleartxdesc(sc->sc_ah,
1192 bf->bf_lastfrm->bf_desc);
1196 * Put this buffer to the temporary pending
1197 * queue to retain ordering
1199 list_splice_tail_init(&bf_head, &bf_pending);
1202 bf = bf_next;
1206 * node is already gone. no more assocication
1207 * with the node. the node might have been freed
1208 * any node acces can result in panic.note tid
1209 * is part of the node.
1211 if (isnodegone)
1212 return;
1214 if (tid->cleanup_inprogress) {
1215 /* check to see if we're done with cleaning the h/w queue */
1216 spin_lock_bh(&txq->axq_lock);
1218 if (tid->baw_head == tid->baw_tail) {
1219 tid->addba_exchangecomplete = 0;
1220 tid->addba_exchangeattempts = 0;
1221 spin_unlock_bh(&txq->axq_lock);
1223 tid->cleanup_inprogress = false;
1225 /* send buffered frames as singles */
1226 ath_tx_flush_tid(sc, tid);
1227 } else
1228 spin_unlock_bh(&txq->axq_lock);
1230 return;
1234 * prepend un-acked frames to the beginning of the pending frame queue
1236 if (!list_empty(&bf_pending)) {
1237 spin_lock_bh(&txq->axq_lock);
1238 /* Note: we _prepend_, we _do_not_ at to
1239 * the end of the queue ! */
1240 list_splice(&bf_pending, &tid->buf_q);
1241 ath_tx_queue_tid(txq, tid);
1242 spin_unlock_bh(&txq->axq_lock);
1245 if (needreset)
1246 ath_reset(sc, false);
1248 return;
1251 /* Process completed xmit descriptors from the specified queue */
1253 static int ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
1255 struct ath_hal *ah = sc->sc_ah;
1256 struct ath_buf *bf, *lastbf, *bf_held = NULL;
1257 struct list_head bf_head;
1258 struct ath_desc *ds, *tmp_ds;
1259 struct sk_buff *skb;
1260 struct ieee80211_tx_info *tx_info;
1261 struct ath_tx_info_priv *tx_info_priv;
1262 int nacked, txok, nbad = 0, isrifs = 0;
1263 int status;
1265 DPRINTF(sc, ATH_DBG_QUEUE,
1266 "%s: tx queue %d (%x), link %p\n", __func__,
1267 txq->axq_qnum, ath9k_hw_gettxbuf(sc->sc_ah, txq->axq_qnum),
1268 txq->axq_link);
1270 nacked = 0;
1271 for (;;) {
1272 spin_lock_bh(&txq->axq_lock);
1273 txq->axq_intrcnt = 0; /* reset periodic desc intr count */
1274 if (list_empty(&txq->axq_q)) {
1275 txq->axq_link = NULL;
1276 txq->axq_linkbuf = NULL;
1277 spin_unlock_bh(&txq->axq_lock);
1278 break;
1280 bf = list_first_entry(&txq->axq_q, struct ath_buf, list);
1283 * There is a race condition that a BH gets scheduled
1284 * after sw writes TxE and before hw re-load the last
1285 * descriptor to get the newly chained one.
1286 * Software must keep the last DONE descriptor as a
1287 * holding descriptor - software does so by marking
1288 * it with the STALE flag.
1290 bf_held = NULL;
1291 if (bf->bf_status & ATH_BUFSTATUS_STALE) {
1292 bf_held = bf;
1293 if (list_is_last(&bf_held->list, &txq->axq_q)) {
1294 /* FIXME:
1295 * The holding descriptor is the last
1296 * descriptor in queue. It's safe to remove
1297 * the last holding descriptor in BH context.
1299 spin_unlock_bh(&txq->axq_lock);
1300 break;
1301 } else {
1302 /* Lets work with the next buffer now */
1303 bf = list_entry(bf_held->list.next,
1304 struct ath_buf, list);
1308 lastbf = bf->bf_lastbf;
1309 ds = lastbf->bf_desc; /* NB: last decriptor */
1311 status = ath9k_hw_txprocdesc(ah, ds);
1312 if (status == -EINPROGRESS) {
1313 spin_unlock_bh(&txq->axq_lock);
1314 break;
1316 if (bf->bf_desc == txq->axq_lastdsWithCTS)
1317 txq->axq_lastdsWithCTS = NULL;
1318 if (ds == txq->axq_gatingds)
1319 txq->axq_gatingds = NULL;
1322 * Remove ath_buf's of the same transmit unit from txq,
1323 * however leave the last descriptor back as the holding
1324 * descriptor for hw.
1326 lastbf->bf_status |= ATH_BUFSTATUS_STALE;
1327 INIT_LIST_HEAD(&bf_head);
1329 if (!list_is_singular(&lastbf->list))
1330 list_cut_position(&bf_head,
1331 &txq->axq_q, lastbf->list.prev);
1333 txq->axq_depth--;
1335 if (bf_isaggr(bf))
1336 txq->axq_aggr_depth--;
1338 txok = (ds->ds_txstat.ts_status == 0);
1340 spin_unlock_bh(&txq->axq_lock);
1342 if (bf_held) {
1343 list_del(&bf_held->list);
1344 spin_lock_bh(&sc->sc_txbuflock);
1345 list_add_tail(&bf_held->list, &sc->sc_txbuf);
1346 spin_unlock_bh(&sc->sc_txbuflock);
1349 if (!bf_isampdu(bf)) {
1351 * This frame is sent out as a single frame.
1352 * Use hardware retry status for this frame.
1354 bf->bf_retries = ds->ds_txstat.ts_longretry;
1355 if (ds->ds_txstat.ts_status & ATH9K_TXERR_XRETRY)
1356 bf->bf_state.bf_type |= BUF_XRETRY;
1357 nbad = 0;
1358 } else {
1359 nbad = ath_tx_num_badfrms(sc, bf, txok);
1361 skb = bf->bf_mpdu;
1362 tx_info = IEEE80211_SKB_CB(skb);
1363 tx_info_priv = (struct ath_tx_info_priv *)
1364 tx_info->driver_data[0];
1365 if (ds->ds_txstat.ts_status & ATH9K_TXERR_FILT)
1366 tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
1367 if ((ds->ds_txstat.ts_status & ATH9K_TXERR_FILT) == 0 &&
1368 (bf->bf_flags & ATH9K_TXDESC_NOACK) == 0) {
1369 if (ds->ds_txstat.ts_status == 0)
1370 nacked++;
1372 if (bf_isdata(bf)) {
1373 if (isrifs)
1374 tmp_ds = bf->bf_rifslast->bf_desc;
1375 else
1376 tmp_ds = ds;
1377 memcpy(&tx_info_priv->tx,
1378 &tmp_ds->ds_txstat,
1379 sizeof(tx_info_priv->tx));
1380 tx_info_priv->n_frames = bf->bf_nframes;
1381 tx_info_priv->n_bad_frames = nbad;
1386 * Complete this transmit unit
1388 if (bf_isampdu(bf))
1389 ath_tx_complete_aggr_rifs(sc, txq, bf, &bf_head, txok);
1390 else
1391 ath_tx_complete_buf(sc, bf, &bf_head, txok, 0);
1393 /* Wake up mac80211 queue */
1395 spin_lock_bh(&txq->axq_lock);
1396 if (txq->stopped && ath_txq_depth(sc, txq->axq_qnum) <=
1397 (ATH_TXBUF - 20)) {
1398 int qnum;
1399 qnum = ath_get_mac80211_qnum(txq->axq_qnum, sc);
1400 if (qnum != -1) {
1401 ieee80211_wake_queue(sc->hw, qnum);
1402 txq->stopped = 0;
1408 * schedule any pending packets if aggregation is enabled
1410 if (sc->sc_flags & SC_OP_TXAGGR)
1411 ath_txq_schedule(sc, txq);
1412 spin_unlock_bh(&txq->axq_lock);
1414 return nacked;
1417 static void ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
1419 struct ath_hal *ah = sc->sc_ah;
1421 (void) ath9k_hw_stoptxdma(ah, txq->axq_qnum);
1422 DPRINTF(sc, ATH_DBG_XMIT, "%s: tx queue [%u] %x, link %p\n",
1423 __func__, txq->axq_qnum,
1424 ath9k_hw_gettxbuf(ah, txq->axq_qnum), txq->axq_link);
1427 /* Drain only the data queues */
1429 static void ath_drain_txdataq(struct ath_softc *sc, bool retry_tx)
1431 struct ath_hal *ah = sc->sc_ah;
1432 int i;
1433 int npend = 0;
1434 enum ath9k_ht_macmode ht_macmode = ath_cwm_macmode(sc);
1436 /* XXX return value */
1437 if (!(sc->sc_flags & SC_OP_INVALID)) {
1438 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1439 if (ATH_TXQ_SETUP(sc, i)) {
1440 ath_tx_stopdma(sc, &sc->sc_txq[i]);
1442 /* The TxDMA may not really be stopped.
1443 * Double check the hal tx pending count */
1444 npend += ath9k_hw_numtxpending(ah,
1445 sc->sc_txq[i].axq_qnum);
1450 if (npend) {
1451 int status;
1453 /* TxDMA not stopped, reset the hal */
1454 DPRINTF(sc, ATH_DBG_XMIT,
1455 "%s: Unable to stop TxDMA. Reset HAL!\n", __func__);
1457 spin_lock_bh(&sc->sc_resetlock);
1458 if (!ath9k_hw_reset(ah,
1459 sc->sc_ah->ah_curchan, ht_macmode,
1460 sc->sc_tx_chainmask, sc->sc_rx_chainmask,
1461 sc->sc_ht_extprotspacing, true, &status)) {
1463 DPRINTF(sc, ATH_DBG_FATAL,
1464 "%s: unable to reset hardware; hal status %u\n",
1465 __func__,
1466 status);
1468 spin_unlock_bh(&sc->sc_resetlock);
1471 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1472 if (ATH_TXQ_SETUP(sc, i))
1473 ath_tx_draintxq(sc, &sc->sc_txq[i], retry_tx);
1477 /* Add a sub-frame to block ack window */
1479 static void ath_tx_addto_baw(struct ath_softc *sc,
1480 struct ath_atx_tid *tid,
1481 struct ath_buf *bf)
1483 int index, cindex;
1485 if (bf_isretried(bf))
1486 return;
1488 index = ATH_BA_INDEX(tid->seq_start, bf->bf_seqno);
1489 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
1491 ASSERT(tid->tx_buf[cindex] == NULL);
1492 tid->tx_buf[cindex] = bf;
1494 if (index >= ((tid->baw_tail - tid->baw_head) &
1495 (ATH_TID_MAX_BUFS - 1))) {
1496 tid->baw_tail = cindex;
1497 INCR(tid->baw_tail, ATH_TID_MAX_BUFS);
1502 * Function to send an A-MPDU
1503 * NB: must be called with txq lock held
1506 static int ath_tx_send_ampdu(struct ath_softc *sc,
1507 struct ath_txq *txq,
1508 struct ath_atx_tid *tid,
1509 struct list_head *bf_head,
1510 struct ath_tx_control *txctl)
1512 struct ath_buf *bf;
1513 struct sk_buff *skb;
1514 struct ieee80211_tx_info *tx_info;
1515 struct ath_tx_info_priv *tx_info_priv;
1517 BUG_ON(list_empty(bf_head));
1519 bf = list_first_entry(bf_head, struct ath_buf, list);
1520 bf->bf_state.bf_type |= BUF_AMPDU;
1521 bf->bf_seqno = txctl->seqno; /* save seqno and tidno in buffer */
1522 bf->bf_tidno = txctl->tidno;
1525 * Do not queue to h/w when any of the following conditions is true:
1526 * - there are pending frames in software queue
1527 * - the TID is currently paused for ADDBA/BAR request
1528 * - seqno is not within block-ack window
1529 * - h/w queue depth exceeds low water mark
1531 if (!list_empty(&tid->buf_q) || tid->paused ||
1532 !BAW_WITHIN(tid->seq_start, tid->baw_size, bf->bf_seqno) ||
1533 txq->axq_depth >= ATH_AGGR_MIN_QDEPTH) {
1535 * Add this frame to software queue for scheduling later
1536 * for aggregation.
1538 list_splice_tail_init(bf_head, &tid->buf_q);
1539 ath_tx_queue_tid(txq, tid);
1540 return 0;
1543 skb = (struct sk_buff *)bf->bf_mpdu;
1544 tx_info = IEEE80211_SKB_CB(skb);
1545 tx_info_priv = (struct ath_tx_info_priv *)tx_info->driver_data[0];
1546 memcpy(bf->bf_rcs, tx_info_priv->rcs, 4 * sizeof(tx_info_priv->rcs[0]));
1548 /* Add sub-frame to BAW */
1549 ath_tx_addto_baw(sc, tid, bf);
1551 /* Queue to h/w without aggregation */
1552 bf->bf_nframes = 1;
1553 bf->bf_lastbf = bf->bf_lastfrm; /* one single frame */
1554 ath_buf_set_rate(sc, bf);
1555 ath_tx_txqaddbuf(sc, txq, bf_head);
1556 return 0;
1560 * looks up the rate
1561 * returns aggr limit based on lowest of the rates
1564 static u32 ath_lookup_rate(struct ath_softc *sc,
1565 struct ath_buf *bf)
1567 const struct ath9k_rate_table *rt = sc->sc_currates;
1568 struct sk_buff *skb;
1569 struct ieee80211_tx_info *tx_info;
1570 struct ath_tx_info_priv *tx_info_priv;
1571 u32 max_4ms_framelen, frame_length;
1572 u16 aggr_limit, legacy = 0, maxampdu;
1573 int i;
1576 skb = (struct sk_buff *)bf->bf_mpdu;
1577 tx_info = IEEE80211_SKB_CB(skb);
1578 tx_info_priv = (struct ath_tx_info_priv *)
1579 tx_info->driver_data[0];
1580 memcpy(bf->bf_rcs,
1581 tx_info_priv->rcs, 4 * sizeof(tx_info_priv->rcs[0]));
1584 * Find the lowest frame length among the rate series that will have a
1585 * 4ms transmit duration.
1586 * TODO - TXOP limit needs to be considered.
1588 max_4ms_framelen = ATH_AMPDU_LIMIT_MAX;
1590 for (i = 0; i < 4; i++) {
1591 if (bf->bf_rcs[i].tries) {
1592 frame_length = bf->bf_rcs[i].max_4ms_framelen;
1594 if (rt->info[bf->bf_rcs[i].rix].phy != PHY_HT) {
1595 legacy = 1;
1596 break;
1599 max_4ms_framelen = min(max_4ms_framelen, frame_length);
1604 * limit aggregate size by the minimum rate if rate selected is
1605 * not a probe rate, if rate selected is a probe rate then
1606 * avoid aggregation of this packet.
1608 if (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE || legacy)
1609 return 0;
1611 aggr_limit = min(max_4ms_framelen,
1612 (u32)ATH_AMPDU_LIMIT_DEFAULT);
1615 * h/w can accept aggregates upto 16 bit lengths (65535).
1616 * The IE, however can hold upto 65536, which shows up here
1617 * as zero. Ignore 65536 since we are constrained by hw.
1619 maxampdu = sc->sc_ht_info.maxampdu;
1620 if (maxampdu)
1621 aggr_limit = min(aggr_limit, maxampdu);
1623 return aggr_limit;
1627 * returns the number of delimiters to be added to
1628 * meet the minimum required mpdudensity.
1629 * caller should make sure that the rate is HT rate .
1632 static int ath_compute_num_delims(struct ath_softc *sc,
1633 struct ath_buf *bf,
1634 u16 frmlen)
1636 const struct ath9k_rate_table *rt = sc->sc_currates;
1637 u32 nsymbits, nsymbols, mpdudensity;
1638 u16 minlen;
1639 u8 rc, flags, rix;
1640 int width, half_gi, ndelim, mindelim;
1642 /* Select standard number of delimiters based on frame length alone */
1643 ndelim = ATH_AGGR_GET_NDELIM(frmlen);
1646 * If encryption enabled, hardware requires some more padding between
1647 * subframes.
1648 * TODO - this could be improved to be dependent on the rate.
1649 * The hardware can keep up at lower rates, but not higher rates
1651 if (bf->bf_keytype != ATH9K_KEY_TYPE_CLEAR)
1652 ndelim += ATH_AGGR_ENCRYPTDELIM;
1655 * Convert desired mpdu density from microeconds to bytes based
1656 * on highest rate in rate series (i.e. first rate) to determine
1657 * required minimum length for subframe. Take into account
1658 * whether high rate is 20 or 40Mhz and half or full GI.
1660 mpdudensity = sc->sc_ht_info.mpdudensity;
1663 * If there is no mpdu density restriction, no further calculation
1664 * is needed.
1666 if (mpdudensity == 0)
1667 return ndelim;
1669 rix = bf->bf_rcs[0].rix;
1670 flags = bf->bf_rcs[0].flags;
1671 rc = rt->info[rix].rateCode;
1672 width = (flags & ATH_RC_CW40_FLAG) ? 1 : 0;
1673 half_gi = (flags & ATH_RC_SGI_FLAG) ? 1 : 0;
1675 if (half_gi)
1676 nsymbols = NUM_SYMBOLS_PER_USEC_HALFGI(mpdudensity);
1677 else
1678 nsymbols = NUM_SYMBOLS_PER_USEC(mpdudensity);
1680 if (nsymbols == 0)
1681 nsymbols = 1;
1683 nsymbits = bits_per_symbol[HT_RC_2_MCS(rc)][width];
1684 minlen = (nsymbols * nsymbits) / BITS_PER_BYTE;
1686 /* Is frame shorter than required minimum length? */
1687 if (frmlen < minlen) {
1688 /* Get the minimum number of delimiters required. */
1689 mindelim = (minlen - frmlen) / ATH_AGGR_DELIM_SZ;
1690 ndelim = max(mindelim, ndelim);
1693 return ndelim;
1697 * For aggregation from software buffer queue.
1698 * NB: must be called with txq lock held
1701 static enum ATH_AGGR_STATUS ath_tx_form_aggr(struct ath_softc *sc,
1702 struct ath_atx_tid *tid,
1703 struct list_head *bf_q,
1704 struct ath_buf **bf_last,
1705 struct aggr_rifs_param *param,
1706 int *prev_frames)
1708 #define PADBYTES(_len) ((4 - ((_len) % 4)) % 4)
1709 struct ath_buf *bf, *tbf, *bf_first, *bf_prev = NULL;
1710 struct list_head bf_head;
1711 int rl = 0, nframes = 0, ndelim;
1712 u16 aggr_limit = 0, al = 0, bpad = 0,
1713 al_delta, h_baw = tid->baw_size / 2;
1714 enum ATH_AGGR_STATUS status = ATH_AGGR_DONE;
1715 int prev_al = 0, is_ds_rate = 0;
1716 INIT_LIST_HEAD(&bf_head);
1718 BUG_ON(list_empty(&tid->buf_q));
1720 bf_first = list_first_entry(&tid->buf_q, struct ath_buf, list);
1722 do {
1723 bf = list_first_entry(&tid->buf_q, struct ath_buf, list);
1726 * do not step over block-ack window
1728 if (!BAW_WITHIN(tid->seq_start, tid->baw_size, bf->bf_seqno)) {
1729 status = ATH_AGGR_BAW_CLOSED;
1730 break;
1733 if (!rl) {
1734 aggr_limit = ath_lookup_rate(sc, bf);
1735 rl = 1;
1737 * Is rate dual stream
1739 is_ds_rate =
1740 (bf->bf_rcs[0].flags & ATH_RC_DS_FLAG) ? 1 : 0;
1744 * do not exceed aggregation limit
1746 al_delta = ATH_AGGR_DELIM_SZ + bf->bf_frmlen;
1748 if (nframes && (aggr_limit <
1749 (al + bpad + al_delta + prev_al))) {
1750 status = ATH_AGGR_LIMITED;
1751 break;
1755 * do not exceed subframe limit
1757 if ((nframes + *prev_frames) >=
1758 min((int)h_baw, ATH_AMPDU_SUBFRAME_DEFAULT)) {
1759 status = ATH_AGGR_LIMITED;
1760 break;
1764 * add padding for previous frame to aggregation length
1766 al += bpad + al_delta;
1769 * Get the delimiters needed to meet the MPDU
1770 * density for this node.
1772 ndelim = ath_compute_num_delims(sc, bf_first, bf->bf_frmlen);
1774 bpad = PADBYTES(al_delta) + (ndelim << 2);
1776 bf->bf_next = NULL;
1777 bf->bf_lastfrm->bf_desc->ds_link = 0;
1780 * this packet is part of an aggregate
1781 * - remove all descriptors belonging to this frame from
1782 * software queue
1783 * - add it to block ack window
1784 * - set up descriptors for aggregation
1786 list_cut_position(&bf_head, &tid->buf_q, &bf->bf_lastfrm->list);
1787 ath_tx_addto_baw(sc, tid, bf);
1789 list_for_each_entry(tbf, &bf_head, list) {
1790 ath9k_hw_set11n_aggr_middle(sc->sc_ah,
1791 tbf->bf_desc, ndelim);
1795 * link buffers of this frame to the aggregate
1797 list_splice_tail_init(&bf_head, bf_q);
1798 nframes++;
1800 if (bf_prev) {
1801 bf_prev->bf_next = bf;
1802 bf_prev->bf_lastfrm->bf_desc->ds_link = bf->bf_daddr;
1804 bf_prev = bf;
1806 #ifdef AGGR_NOSHORT
1808 * terminate aggregation on a small packet boundary
1810 if (bf->bf_frmlen < ATH_AGGR_MINPLEN) {
1811 status = ATH_AGGR_SHORTPKT;
1812 break;
1814 #endif
1815 } while (!list_empty(&tid->buf_q));
1817 bf_first->bf_al = al;
1818 bf_first->bf_nframes = nframes;
1819 *bf_last = bf_prev;
1820 return status;
1821 #undef PADBYTES
1825 * process pending frames possibly doing a-mpdu aggregation
1826 * NB: must be called with txq lock held
1829 static void ath_tx_sched_aggr(struct ath_softc *sc,
1830 struct ath_txq *txq, struct ath_atx_tid *tid)
1832 struct ath_buf *bf, *tbf, *bf_last, *bf_lastaggr = NULL;
1833 enum ATH_AGGR_STATUS status;
1834 struct list_head bf_q;
1835 struct aggr_rifs_param param = {0, 0, 0, 0, NULL};
1836 int prev_frames = 0;
1838 do {
1839 if (list_empty(&tid->buf_q))
1840 return;
1842 INIT_LIST_HEAD(&bf_q);
1844 status = ath_tx_form_aggr(sc, tid, &bf_q, &bf_lastaggr, &param,
1845 &prev_frames);
1848 * no frames picked up to be aggregated; block-ack
1849 * window is not open
1851 if (list_empty(&bf_q))
1852 break;
1854 bf = list_first_entry(&bf_q, struct ath_buf, list);
1855 bf_last = list_entry(bf_q.prev, struct ath_buf, list);
1856 bf->bf_lastbf = bf_last;
1859 * if only one frame, send as non-aggregate
1861 if (bf->bf_nframes == 1) {
1862 ASSERT(bf->bf_lastfrm == bf_last);
1864 bf->bf_state.bf_type &= ~BUF_AGGR;
1866 * clear aggr bits for every descriptor
1867 * XXX TODO: is there a way to optimize it?
1869 list_for_each_entry(tbf, &bf_q, list) {
1870 ath9k_hw_clr11n_aggr(sc->sc_ah, tbf->bf_desc);
1873 ath_buf_set_rate(sc, bf);
1874 ath_tx_txqaddbuf(sc, txq, &bf_q);
1875 continue;
1879 * setup first desc with rate and aggr info
1881 bf->bf_state.bf_type |= BUF_AGGR;
1882 ath_buf_set_rate(sc, bf);
1883 ath9k_hw_set11n_aggr_first(sc->sc_ah, bf->bf_desc, bf->bf_al);
1886 * anchor last frame of aggregate correctly
1888 ASSERT(bf_lastaggr);
1889 ASSERT(bf_lastaggr->bf_lastfrm == bf_last);
1890 tbf = bf_lastaggr;
1891 ath9k_hw_set11n_aggr_last(sc->sc_ah, tbf->bf_desc);
1893 /* XXX: We don't enter into this loop, consider removing this */
1894 while (!list_empty(&bf_q) && !list_is_last(&tbf->list, &bf_q)) {
1895 tbf = list_entry(tbf->list.next, struct ath_buf, list);
1896 ath9k_hw_set11n_aggr_last(sc->sc_ah, tbf->bf_desc);
1899 txq->axq_aggr_depth++;
1902 * Normal aggregate, queue to hardware
1904 ath_tx_txqaddbuf(sc, txq, &bf_q);
1906 } while (txq->axq_depth < ATH_AGGR_MIN_QDEPTH &&
1907 status != ATH_AGGR_BAW_CLOSED);
1910 /* Called with txq lock held */
1912 static void ath_tid_drain(struct ath_softc *sc,
1913 struct ath_txq *txq,
1914 struct ath_atx_tid *tid,
1915 bool bh_flag)
1917 struct ath_buf *bf;
1918 struct list_head bf_head;
1919 INIT_LIST_HEAD(&bf_head);
1921 for (;;) {
1922 if (list_empty(&tid->buf_q))
1923 break;
1924 bf = list_first_entry(&tid->buf_q, struct ath_buf, list);
1926 list_cut_position(&bf_head, &tid->buf_q, &bf->bf_lastfrm->list);
1928 /* update baw for software retried frame */
1929 if (bf_isretried(bf))
1930 ath_tx_update_baw(sc, tid, bf->bf_seqno);
1933 * do not indicate packets while holding txq spinlock.
1934 * unlock is intentional here
1936 if (likely(bh_flag))
1937 spin_unlock_bh(&txq->axq_lock);
1938 else
1939 spin_unlock(&txq->axq_lock);
1941 /* complete this sub-frame */
1942 ath_tx_complete_buf(sc, bf, &bf_head, 0, 0);
1944 if (likely(bh_flag))
1945 spin_lock_bh(&txq->axq_lock);
1946 else
1947 spin_lock(&txq->axq_lock);
1951 * TODO: For frame(s) that are in the retry state, we will reuse the
1952 * sequence number(s) without setting the retry bit. The
1953 * alternative is to give up on these and BAR the receiver's window
1954 * forward.
1956 tid->seq_next = tid->seq_start;
1957 tid->baw_tail = tid->baw_head;
1961 * Drain all pending buffers
1962 * NB: must be called with txq lock held
1965 static void ath_txq_drain_pending_buffers(struct ath_softc *sc,
1966 struct ath_txq *txq,
1967 bool bh_flag)
1969 struct ath_atx_ac *ac, *ac_tmp;
1970 struct ath_atx_tid *tid, *tid_tmp;
1972 list_for_each_entry_safe(ac, ac_tmp, &txq->axq_acq, list) {
1973 list_del(&ac->list);
1974 ac->sched = false;
1975 list_for_each_entry_safe(tid, tid_tmp, &ac->tid_q, list) {
1976 list_del(&tid->list);
1977 tid->sched = false;
1978 ath_tid_drain(sc, txq, tid, bh_flag);
1983 static int ath_tx_start_dma(struct ath_softc *sc,
1984 struct sk_buff *skb,
1985 struct scatterlist *sg,
1986 u32 n_sg,
1987 struct ath_tx_control *txctl)
1989 struct ath_node *an = txctl->an;
1990 struct ath_buf *bf = NULL;
1991 struct list_head bf_head;
1992 struct ath_desc *ds;
1993 struct ath_hal *ah = sc->sc_ah;
1994 struct ath_txq *txq = &sc->sc_txq[txctl->qnum];
1995 struct ath_tx_info_priv *tx_info_priv;
1996 struct ath_rc_series *rcs;
1997 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1998 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1999 __le16 fc = hdr->frame_control;
2001 /* For each sglist entry, allocate an ath_buf for DMA */
2002 INIT_LIST_HEAD(&bf_head);
2003 spin_lock_bh(&sc->sc_txbuflock);
2004 if (unlikely(list_empty(&sc->sc_txbuf))) {
2005 spin_unlock_bh(&sc->sc_txbuflock);
2006 return -ENOMEM;
2009 bf = list_first_entry(&sc->sc_txbuf, struct ath_buf, list);
2010 list_del(&bf->list);
2011 spin_unlock_bh(&sc->sc_txbuflock);
2013 list_add_tail(&bf->list, &bf_head);
2015 /* set up this buffer */
2016 ATH_TXBUF_RESET(bf);
2017 bf->bf_frmlen = txctl->frmlen;
2019 ieee80211_is_data(fc) ?
2020 (bf->bf_state.bf_type |= BUF_DATA) :
2021 (bf->bf_state.bf_type &= ~BUF_DATA);
2022 ieee80211_is_back_req(fc) ?
2023 (bf->bf_state.bf_type |= BUF_BAR) :
2024 (bf->bf_state.bf_type &= ~BUF_BAR);
2025 ieee80211_is_pspoll(fc) ?
2026 (bf->bf_state.bf_type |= BUF_PSPOLL) :
2027 (bf->bf_state.bf_type &= ~BUF_PSPOLL);
2028 (sc->sc_flags & SC_OP_PREAMBLE_SHORT) ?
2029 (bf->bf_state.bf_type |= BUF_SHORT_PREAMBLE) :
2030 (bf->bf_state.bf_type &= ~BUF_SHORT_PREAMBLE);
2032 bf->bf_flags = txctl->flags;
2033 bf->bf_keytype = txctl->keytype;
2034 tx_info_priv = (struct ath_tx_info_priv *)tx_info->driver_data[0];
2035 rcs = tx_info_priv->rcs;
2036 bf->bf_rcs[0] = rcs[0];
2037 bf->bf_rcs[1] = rcs[1];
2038 bf->bf_rcs[2] = rcs[2];
2039 bf->bf_rcs[3] = rcs[3];
2040 bf->bf_node = an;
2041 bf->bf_mpdu = skb;
2042 bf->bf_buf_addr = sg_dma_address(sg);
2044 /* setup descriptor */
2045 ds = bf->bf_desc;
2046 ds->ds_link = 0;
2047 ds->ds_data = bf->bf_buf_addr;
2050 * Save the DMA context in the first ath_buf
2052 copy_dma_mem_context(get_dma_mem_context(bf, bf_dmacontext),
2053 get_dma_mem_context(txctl, dmacontext));
2056 * Formulate first tx descriptor with tx controls.
2058 ath9k_hw_set11n_txdesc(ah,
2060 bf->bf_frmlen, /* frame length */
2061 txctl->atype, /* Atheros packet type */
2062 min(txctl->txpower, (u16)60), /* txpower */
2063 txctl->keyix, /* key cache index */
2064 txctl->keytype, /* key type */
2065 txctl->flags); /* flags */
2066 ath9k_hw_filltxdesc(ah,
2068 sg_dma_len(sg), /* segment length */
2069 true, /* first segment */
2070 (n_sg == 1) ? true : false, /* last segment */
2071 ds); /* first descriptor */
2073 bf->bf_lastfrm = bf;
2074 (txctl->ht) ?
2075 (bf->bf_state.bf_type |= BUF_HT) :
2076 (bf->bf_state.bf_type &= ~BUF_HT);
2078 spin_lock_bh(&txq->axq_lock);
2080 if (txctl->ht && (sc->sc_flags & SC_OP_TXAGGR)) {
2081 struct ath_atx_tid *tid = ATH_AN_2_TID(an, txctl->tidno);
2082 if (ath_aggr_query(sc, an, txctl->tidno)) {
2084 * Try aggregation if it's a unicast data frame
2085 * and the destination is HT capable.
2087 ath_tx_send_ampdu(sc, txq, tid, &bf_head, txctl);
2088 } else {
2090 * Send this frame as regular when ADDBA exchange
2091 * is neither complete nor pending.
2093 ath_tx_send_normal(sc, txq, tid, &bf_head);
2095 } else {
2096 bf->bf_lastbf = bf;
2097 bf->bf_nframes = 1;
2098 ath_buf_set_rate(sc, bf);
2100 if (ieee80211_is_back_req(fc)) {
2101 /* This is required for resuming tid
2102 * during BAR completion */
2103 bf->bf_tidno = txctl->tidno;
2106 if (is_multicast_ether_addr(hdr->addr1)) {
2107 struct ath_vap *avp = sc->sc_vaps[txctl->if_id];
2110 * When servicing one or more stations in power-save
2111 * mode (or) if there is some mcast data waiting on
2112 * mcast queue (to prevent out of order delivery of
2113 * mcast,bcast packets) multicast frames must be
2114 * buffered until after the beacon. We use the private
2115 * mcast queue for that.
2117 /* XXX? more bit in 802.11 frame header */
2118 spin_lock_bh(&avp->av_mcastq.axq_lock);
2119 if (txctl->ps || avp->av_mcastq.axq_depth)
2120 ath_tx_mcastqaddbuf(sc,
2121 &avp->av_mcastq, &bf_head);
2122 else
2123 ath_tx_txqaddbuf(sc, txq, &bf_head);
2124 spin_unlock_bh(&avp->av_mcastq.axq_lock);
2125 } else
2126 ath_tx_txqaddbuf(sc, txq, &bf_head);
2128 spin_unlock_bh(&txq->axq_lock);
2129 return 0;
2132 static void xmit_map_sg(struct ath_softc *sc,
2133 struct sk_buff *skb,
2134 dma_addr_t *pa,
2135 struct ath_tx_control *txctl)
2137 struct ath_xmit_status tx_status;
2138 struct ath_atx_tid *tid;
2139 struct scatterlist sg;
2141 *pa = pci_map_single(sc->pdev, skb->data, skb->len, PCI_DMA_TODEVICE);
2143 /* setup S/G list */
2144 memset(&sg, 0, sizeof(struct scatterlist));
2145 sg_dma_address(&sg) = *pa;
2146 sg_dma_len(&sg) = skb->len;
2148 if (ath_tx_start_dma(sc, skb, &sg, 1, txctl) != 0) {
2150 * We have to do drop frame here.
2152 pci_unmap_single(sc->pdev, *pa, skb->len, PCI_DMA_TODEVICE);
2154 tx_status.retries = 0;
2155 tx_status.flags = ATH_TX_ERROR;
2157 if (txctl->ht && (sc->sc_flags & SC_OP_TXAGGR)) {
2158 /* Reclaim the seqno. */
2159 tid = ATH_AN_2_TID((struct ath_node *)
2160 txctl->an, txctl->tidno);
2161 DECR(tid->seq_next, IEEE80211_SEQ_MAX);
2163 ath_tx_complete(sc, skb, &tx_status, txctl->an);
2167 /* Initialize TX queue and h/w */
2169 int ath_tx_init(struct ath_softc *sc, int nbufs)
2171 int error = 0;
2173 do {
2174 spin_lock_init(&sc->sc_txbuflock);
2176 /* Setup tx descriptors */
2177 error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
2178 "tx", nbufs, 1);
2179 if (error != 0) {
2180 DPRINTF(sc, ATH_DBG_FATAL,
2181 "%s: failed to allocate tx descriptors: %d\n",
2182 __func__, error);
2183 break;
2186 /* XXX allocate beacon state together with vap */
2187 error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
2188 "beacon", ATH_BCBUF, 1);
2189 if (error != 0) {
2190 DPRINTF(sc, ATH_DBG_FATAL,
2191 "%s: failed to allocate "
2192 "beacon descripotrs: %d\n",
2193 __func__, error);
2194 break;
2197 } while (0);
2199 if (error != 0)
2200 ath_tx_cleanup(sc);
2202 return error;
2205 /* Reclaim all tx queue resources */
2207 int ath_tx_cleanup(struct ath_softc *sc)
2209 /* cleanup beacon descriptors */
2210 if (sc->sc_bdma.dd_desc_len != 0)
2211 ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
2213 /* cleanup tx descriptors */
2214 if (sc->sc_txdma.dd_desc_len != 0)
2215 ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2217 return 0;
2220 /* Setup a h/w transmit queue */
2222 struct ath_txq *ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
2224 struct ath_hal *ah = sc->sc_ah;
2225 struct ath9k_tx_queue_info qi;
2226 int qnum;
2228 memzero(&qi, sizeof(qi));
2229 qi.tqi_subtype = subtype;
2230 qi.tqi_aifs = ATH9K_TXQ_USEDEFAULT;
2231 qi.tqi_cwmin = ATH9K_TXQ_USEDEFAULT;
2232 qi.tqi_cwmax = ATH9K_TXQ_USEDEFAULT;
2233 qi.tqi_physCompBuf = 0;
2236 * Enable interrupts only for EOL and DESC conditions.
2237 * We mark tx descriptors to receive a DESC interrupt
2238 * when a tx queue gets deep; otherwise waiting for the
2239 * EOL to reap descriptors. Note that this is done to
2240 * reduce interrupt load and this only defers reaping
2241 * descriptors, never transmitting frames. Aside from
2242 * reducing interrupts this also permits more concurrency.
2243 * The only potential downside is if the tx queue backs
2244 * up in which case the top half of the kernel may backup
2245 * due to a lack of tx descriptors.
2247 * The UAPSD queue is an exception, since we take a desc-
2248 * based intr on the EOSP frames.
2250 if (qtype == ATH9K_TX_QUEUE_UAPSD)
2251 qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE;
2252 else
2253 qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE |
2254 TXQ_FLAG_TXDESCINT_ENABLE;
2255 qnum = ath9k_hw_setuptxqueue(ah, qtype, &qi);
2256 if (qnum == -1) {
2258 * NB: don't print a message, this happens
2259 * normally on parts with too few tx queues
2261 return NULL;
2263 if (qnum >= ARRAY_SIZE(sc->sc_txq)) {
2264 DPRINTF(sc, ATH_DBG_FATAL,
2265 "%s: hal qnum %u out of range, max %u!\n",
2266 __func__, qnum, (unsigned int)ARRAY_SIZE(sc->sc_txq));
2267 ath9k_hw_releasetxqueue(ah, qnum);
2268 return NULL;
2270 if (!ATH_TXQ_SETUP(sc, qnum)) {
2271 struct ath_txq *txq = &sc->sc_txq[qnum];
2273 txq->axq_qnum = qnum;
2274 txq->axq_link = NULL;
2275 INIT_LIST_HEAD(&txq->axq_q);
2276 INIT_LIST_HEAD(&txq->axq_acq);
2277 spin_lock_init(&txq->axq_lock);
2278 txq->axq_depth = 0;
2279 txq->axq_aggr_depth = 0;
2280 txq->axq_totalqueued = 0;
2281 txq->axq_intrcnt = 0;
2282 txq->axq_linkbuf = NULL;
2283 sc->sc_txqsetup |= 1<<qnum;
2285 return &sc->sc_txq[qnum];
2288 /* Reclaim resources for a setup queue */
2290 void ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
2292 ath9k_hw_releasetxqueue(sc->sc_ah, txq->axq_qnum);
2293 sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
2297 * Setup a hardware data transmit queue for the specified
2298 * access control. The hal may not support all requested
2299 * queues in which case it will return a reference to a
2300 * previously setup queue. We record the mapping from ac's
2301 * to h/w queues for use by ath_tx_start and also track
2302 * the set of h/w queues being used to optimize work in the
2303 * transmit interrupt handler and related routines.
2306 int ath_tx_setup(struct ath_softc *sc, int haltype)
2308 struct ath_txq *txq;
2310 if (haltype >= ARRAY_SIZE(sc->sc_haltype2q)) {
2311 DPRINTF(sc, ATH_DBG_FATAL,
2312 "%s: HAL AC %u out of range, max %zu!\n",
2313 __func__, haltype, ARRAY_SIZE(sc->sc_haltype2q));
2314 return 0;
2316 txq = ath_txq_setup(sc, ATH9K_TX_QUEUE_DATA, haltype);
2317 if (txq != NULL) {
2318 sc->sc_haltype2q[haltype] = txq->axq_qnum;
2319 return 1;
2320 } else
2321 return 0;
2324 int ath_tx_get_qnum(struct ath_softc *sc, int qtype, int haltype)
2326 int qnum;
2328 switch (qtype) {
2329 case ATH9K_TX_QUEUE_DATA:
2330 if (haltype >= ARRAY_SIZE(sc->sc_haltype2q)) {
2331 DPRINTF(sc, ATH_DBG_FATAL,
2332 "%s: HAL AC %u out of range, max %zu!\n",
2333 __func__,
2334 haltype, ARRAY_SIZE(sc->sc_haltype2q));
2335 return -1;
2337 qnum = sc->sc_haltype2q[haltype];
2338 break;
2339 case ATH9K_TX_QUEUE_BEACON:
2340 qnum = sc->sc_bhalq;
2341 break;
2342 case ATH9K_TX_QUEUE_CAB:
2343 qnum = sc->sc_cabq->axq_qnum;
2344 break;
2345 default:
2346 qnum = -1;
2348 return qnum;
2351 /* Update parameters for a transmit queue */
2353 int ath_txq_update(struct ath_softc *sc, int qnum,
2354 struct ath9k_tx_queue_info *qinfo)
2356 struct ath_hal *ah = sc->sc_ah;
2357 int error = 0;
2358 struct ath9k_tx_queue_info qi;
2360 if (qnum == sc->sc_bhalq) {
2362 * XXX: for beacon queue, we just save the parameter.
2363 * It will be picked up by ath_beaconq_config when
2364 * it's necessary.
2366 sc->sc_beacon_qi = *qinfo;
2367 return 0;
2370 ASSERT(sc->sc_txq[qnum].axq_qnum == qnum);
2372 ath9k_hw_get_txq_props(ah, qnum, &qi);
2373 qi.tqi_aifs = qinfo->tqi_aifs;
2374 qi.tqi_cwmin = qinfo->tqi_cwmin;
2375 qi.tqi_cwmax = qinfo->tqi_cwmax;
2376 qi.tqi_burstTime = qinfo->tqi_burstTime;
2377 qi.tqi_readyTime = qinfo->tqi_readyTime;
2379 if (!ath9k_hw_set_txq_props(ah, qnum, &qi)) {
2380 DPRINTF(sc, ATH_DBG_FATAL,
2381 "%s: unable to update hardware queue %u!\n",
2382 __func__, qnum);
2383 error = -EIO;
2384 } else {
2385 ath9k_hw_resettxqueue(ah, qnum); /* push to h/w */
2388 return error;
2391 int ath_cabq_update(struct ath_softc *sc)
2393 struct ath9k_tx_queue_info qi;
2394 int qnum = sc->sc_cabq->axq_qnum;
2395 struct ath_beacon_config conf;
2397 ath9k_hw_get_txq_props(sc->sc_ah, qnum, &qi);
2399 * Ensure the readytime % is within the bounds.
2401 if (sc->sc_config.cabqReadytime < ATH9K_READY_TIME_LO_BOUND)
2402 sc->sc_config.cabqReadytime = ATH9K_READY_TIME_LO_BOUND;
2403 else if (sc->sc_config.cabqReadytime > ATH9K_READY_TIME_HI_BOUND)
2404 sc->sc_config.cabqReadytime = ATH9K_READY_TIME_HI_BOUND;
2406 ath_get_beaconconfig(sc, ATH_IF_ID_ANY, &conf);
2407 qi.tqi_readyTime =
2408 (conf.beacon_interval * sc->sc_config.cabqReadytime) / 100;
2409 ath_txq_update(sc, qnum, &qi);
2411 return 0;
2414 int ath_tx_start(struct ath_softc *sc, struct sk_buff *skb)
2416 struct ath_tx_control txctl;
2417 int error = 0;
2419 error = ath_tx_prepare(sc, skb, &txctl);
2420 if (error == 0)
2422 * Start DMA mapping.
2423 * ath_tx_start_dma() will be called either synchronously
2424 * or asynchrounsly once DMA is complete.
2426 xmit_map_sg(sc, skb,
2427 get_dma_mem_context(&txctl, dmacontext),
2428 &txctl);
2429 else
2430 ath_node_put(sc, txctl.an, ATH9K_BH_STATUS_CHANGE);
2432 /* failed packets will be dropped by the caller */
2433 return error;
2436 /* Deferred processing of transmit interrupt */
2438 void ath_tx_tasklet(struct ath_softc *sc)
2440 u64 tsf = ath9k_hw_gettsf64(sc->sc_ah);
2441 int i, nacked = 0;
2442 u32 qcumask = ((1 << ATH9K_NUM_TX_QUEUES) - 1);
2444 ath9k_hw_gettxintrtxqs(sc->sc_ah, &qcumask);
2447 * Process each active queue.
2449 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
2450 if (ATH_TXQ_SETUP(sc, i) && (qcumask & (1 << i)))
2451 nacked += ath_tx_processq(sc, &sc->sc_txq[i]);
2453 if (nacked)
2454 sc->sc_lastrx = tsf;
2457 void ath_tx_draintxq(struct ath_softc *sc,
2458 struct ath_txq *txq, bool retry_tx)
2460 struct ath_buf *bf, *lastbf;
2461 struct list_head bf_head;
2463 INIT_LIST_HEAD(&bf_head);
2466 * NB: this assumes output has been stopped and
2467 * we do not need to block ath_tx_tasklet
2469 for (;;) {
2470 spin_lock_bh(&txq->axq_lock);
2472 if (list_empty(&txq->axq_q)) {
2473 txq->axq_link = NULL;
2474 txq->axq_linkbuf = NULL;
2475 spin_unlock_bh(&txq->axq_lock);
2476 break;
2479 bf = list_first_entry(&txq->axq_q, struct ath_buf, list);
2481 if (bf->bf_status & ATH_BUFSTATUS_STALE) {
2482 list_del(&bf->list);
2483 spin_unlock_bh(&txq->axq_lock);
2485 spin_lock_bh(&sc->sc_txbuflock);
2486 list_add_tail(&bf->list, &sc->sc_txbuf);
2487 spin_unlock_bh(&sc->sc_txbuflock);
2488 continue;
2491 lastbf = bf->bf_lastbf;
2492 if (!retry_tx)
2493 lastbf->bf_desc->ds_txstat.ts_flags =
2494 ATH9K_TX_SW_ABORTED;
2496 /* remove ath_buf's of the same mpdu from txq */
2497 list_cut_position(&bf_head, &txq->axq_q, &lastbf->list);
2498 txq->axq_depth--;
2500 spin_unlock_bh(&txq->axq_lock);
2502 if (bf_isampdu(bf))
2503 ath_tx_complete_aggr_rifs(sc, txq, bf, &bf_head, 0);
2504 else
2505 ath_tx_complete_buf(sc, bf, &bf_head, 0, 0);
2508 /* flush any pending frames if aggregation is enabled */
2509 if (sc->sc_flags & SC_OP_TXAGGR) {
2510 if (!retry_tx) {
2511 spin_lock_bh(&txq->axq_lock);
2512 ath_txq_drain_pending_buffers(sc, txq,
2513 ATH9K_BH_STATUS_CHANGE);
2514 spin_unlock_bh(&txq->axq_lock);
2519 /* Drain the transmit queues and reclaim resources */
2521 void ath_draintxq(struct ath_softc *sc, bool retry_tx)
2523 /* stop beacon queue. The beacon will be freed when
2524 * we go to INIT state */
2525 if (!(sc->sc_flags & SC_OP_INVALID)) {
2526 (void) ath9k_hw_stoptxdma(sc->sc_ah, sc->sc_bhalq);
2527 DPRINTF(sc, ATH_DBG_XMIT, "%s: beacon queue %x\n", __func__,
2528 ath9k_hw_gettxbuf(sc->sc_ah, sc->sc_bhalq));
2531 ath_drain_txdataq(sc, retry_tx);
2534 u32 ath_txq_depth(struct ath_softc *sc, int qnum)
2536 return sc->sc_txq[qnum].axq_depth;
2539 u32 ath_txq_aggr_depth(struct ath_softc *sc, int qnum)
2541 return sc->sc_txq[qnum].axq_aggr_depth;
2544 /* Check if an ADDBA is required. A valid node must be passed. */
2545 enum ATH_AGGR_CHECK ath_tx_aggr_check(struct ath_softc *sc,
2546 struct ath_node *an,
2547 u8 tidno)
2549 struct ath_atx_tid *txtid;
2550 DECLARE_MAC_BUF(mac);
2552 if (!(sc->sc_flags & SC_OP_TXAGGR))
2553 return AGGR_NOT_REQUIRED;
2555 /* ADDBA exchange must be completed before sending aggregates */
2556 txtid = ATH_AN_2_TID(an, tidno);
2558 if (txtid->addba_exchangecomplete)
2559 return AGGR_EXCHANGE_DONE;
2561 if (txtid->cleanup_inprogress)
2562 return AGGR_CLEANUP_PROGRESS;
2564 if (txtid->addba_exchangeinprogress)
2565 return AGGR_EXCHANGE_PROGRESS;
2567 if (!txtid->addba_exchangecomplete) {
2568 if (!txtid->addba_exchangeinprogress &&
2569 (txtid->addba_exchangeattempts < ADDBA_EXCHANGE_ATTEMPTS)) {
2570 txtid->addba_exchangeattempts++;
2571 return AGGR_REQUIRED;
2575 return AGGR_NOT_REQUIRED;
2578 /* Start TX aggregation */
2580 int ath_tx_aggr_start(struct ath_softc *sc,
2581 const u8 *addr,
2582 u16 tid,
2583 u16 *ssn)
2585 struct ath_atx_tid *txtid;
2586 struct ath_node *an;
2588 spin_lock_bh(&sc->node_lock);
2589 an = ath_node_find(sc, (u8 *) addr);
2590 spin_unlock_bh(&sc->node_lock);
2592 if (!an) {
2593 DPRINTF(sc, ATH_DBG_AGGR,
2594 "%s: Node not found to initialize "
2595 "TX aggregation\n", __func__);
2596 return -1;
2599 if (sc->sc_flags & SC_OP_TXAGGR) {
2600 txtid = ATH_AN_2_TID(an, tid);
2601 txtid->addba_exchangeinprogress = 1;
2602 ath_tx_pause_tid(sc, txtid);
2605 return 0;
2608 /* Stop tx aggregation */
2610 int ath_tx_aggr_stop(struct ath_softc *sc,
2611 const u8 *addr,
2612 u16 tid)
2614 struct ath_node *an;
2616 spin_lock_bh(&sc->node_lock);
2617 an = ath_node_find(sc, (u8 *) addr);
2618 spin_unlock_bh(&sc->node_lock);
2620 if (!an) {
2621 DPRINTF(sc, ATH_DBG_AGGR,
2622 "%s: TX aggr stop for non-existent node\n", __func__);
2623 return -1;
2626 ath_tx_aggr_teardown(sc, an, tid);
2627 return 0;
2631 * Performs transmit side cleanup when TID changes from aggregated to
2632 * unaggregated.
2633 * - Pause the TID and mark cleanup in progress
2634 * - Discard all retry frames from the s/w queue.
2637 void ath_tx_aggr_teardown(struct ath_softc *sc,
2638 struct ath_node *an, u8 tid)
2640 struct ath_atx_tid *txtid = ATH_AN_2_TID(an, tid);
2641 struct ath_txq *txq = &sc->sc_txq[txtid->ac->qnum];
2642 struct ath_buf *bf;
2643 struct list_head bf_head;
2644 INIT_LIST_HEAD(&bf_head);
2646 DPRINTF(sc, ATH_DBG_AGGR, "%s: teardown TX aggregation\n", __func__);
2648 if (txtid->cleanup_inprogress) /* cleanup is in progress */
2649 return;
2651 if (!txtid->addba_exchangecomplete) {
2652 txtid->addba_exchangeattempts = 0;
2653 return;
2656 /* TID must be paused first */
2657 ath_tx_pause_tid(sc, txtid);
2659 /* drop all software retried frames and mark this TID */
2660 spin_lock_bh(&txq->axq_lock);
2661 while (!list_empty(&txtid->buf_q)) {
2662 bf = list_first_entry(&txtid->buf_q, struct ath_buf, list);
2663 if (!bf_isretried(bf)) {
2665 * NB: it's based on the assumption that
2666 * software retried frame will always stay
2667 * at the head of software queue.
2669 break;
2671 list_cut_position(&bf_head,
2672 &txtid->buf_q, &bf->bf_lastfrm->list);
2673 ath_tx_update_baw(sc, txtid, bf->bf_seqno);
2675 /* complete this sub-frame */
2676 ath_tx_complete_buf(sc, bf, &bf_head, 0, 0);
2679 if (txtid->baw_head != txtid->baw_tail) {
2680 spin_unlock_bh(&txq->axq_lock);
2681 txtid->cleanup_inprogress = true;
2682 } else {
2683 txtid->addba_exchangecomplete = 0;
2684 txtid->addba_exchangeattempts = 0;
2685 spin_unlock_bh(&txq->axq_lock);
2686 ath_tx_flush_tid(sc, txtid);
2691 * Tx scheduling logic
2692 * NB: must be called with txq lock held
2695 void ath_txq_schedule(struct ath_softc *sc, struct ath_txq *txq)
2697 struct ath_atx_ac *ac;
2698 struct ath_atx_tid *tid;
2700 /* nothing to schedule */
2701 if (list_empty(&txq->axq_acq))
2702 return;
2704 * get the first node/ac pair on the queue
2706 ac = list_first_entry(&txq->axq_acq, struct ath_atx_ac, list);
2707 list_del(&ac->list);
2708 ac->sched = false;
2711 * process a single tid per destination
2713 do {
2714 /* nothing to schedule */
2715 if (list_empty(&ac->tid_q))
2716 return;
2718 tid = list_first_entry(&ac->tid_q, struct ath_atx_tid, list);
2719 list_del(&tid->list);
2720 tid->sched = false;
2722 if (tid->paused) /* check next tid to keep h/w busy */
2723 continue;
2725 if (!(tid->an->an_smmode == ATH_SM_PWRSAV_DYNAMIC) ||
2726 ((txq->axq_depth % 2) == 0)) {
2727 ath_tx_sched_aggr(sc, txq, tid);
2731 * add tid to round-robin queue if more frames
2732 * are pending for the tid
2734 if (!list_empty(&tid->buf_q))
2735 ath_tx_queue_tid(txq, tid);
2737 /* only schedule one TID at a time */
2738 break;
2739 } while (!list_empty(&ac->tid_q));
2742 * schedule AC if more TIDs need processing
2744 if (!list_empty(&ac->tid_q)) {
2746 * add dest ac to txq if not already added
2748 if (!ac->sched) {
2749 ac->sched = true;
2750 list_add_tail(&ac->list, &txq->axq_acq);
2755 /* Initialize per-node transmit state */
2757 void ath_tx_node_init(struct ath_softc *sc, struct ath_node *an)
2759 if (sc->sc_flags & SC_OP_TXAGGR) {
2760 struct ath_atx_tid *tid;
2761 struct ath_atx_ac *ac;
2762 int tidno, acno;
2764 sc->sc_ht_info.maxampdu = ATH_AMPDU_LIMIT_DEFAULT;
2767 * Init per tid tx state
2769 for (tidno = 0, tid = &an->an_aggr.tx.tid[tidno];
2770 tidno < WME_NUM_TID;
2771 tidno++, tid++) {
2772 tid->an = an;
2773 tid->tidno = tidno;
2774 tid->seq_start = tid->seq_next = 0;
2775 tid->baw_size = WME_MAX_BA;
2776 tid->baw_head = tid->baw_tail = 0;
2777 tid->sched = false;
2778 tid->paused = false;
2779 tid->cleanup_inprogress = false;
2780 INIT_LIST_HEAD(&tid->buf_q);
2782 acno = TID_TO_WME_AC(tidno);
2783 tid->ac = &an->an_aggr.tx.ac[acno];
2785 /* ADDBA state */
2786 tid->addba_exchangecomplete = 0;
2787 tid->addba_exchangeinprogress = 0;
2788 tid->addba_exchangeattempts = 0;
2792 * Init per ac tx state
2794 for (acno = 0, ac = &an->an_aggr.tx.ac[acno];
2795 acno < WME_NUM_AC; acno++, ac++) {
2796 ac->sched = false;
2797 INIT_LIST_HEAD(&ac->tid_q);
2799 switch (acno) {
2800 case WME_AC_BE:
2801 ac->qnum = ath_tx_get_qnum(sc,
2802 ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_BE);
2803 break;
2804 case WME_AC_BK:
2805 ac->qnum = ath_tx_get_qnum(sc,
2806 ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_BK);
2807 break;
2808 case WME_AC_VI:
2809 ac->qnum = ath_tx_get_qnum(sc,
2810 ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_VI);
2811 break;
2812 case WME_AC_VO:
2813 ac->qnum = ath_tx_get_qnum(sc,
2814 ATH9K_TX_QUEUE_DATA, ATH9K_WME_AC_VO);
2815 break;
2821 /* Cleanupthe pending buffers for the node. */
2823 void ath_tx_node_cleanup(struct ath_softc *sc,
2824 struct ath_node *an, bool bh_flag)
2826 int i;
2827 struct ath_atx_ac *ac, *ac_tmp;
2828 struct ath_atx_tid *tid, *tid_tmp;
2829 struct ath_txq *txq;
2830 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
2831 if (ATH_TXQ_SETUP(sc, i)) {
2832 txq = &sc->sc_txq[i];
2834 if (likely(bh_flag))
2835 spin_lock_bh(&txq->axq_lock);
2836 else
2837 spin_lock(&txq->axq_lock);
2839 list_for_each_entry_safe(ac,
2840 ac_tmp, &txq->axq_acq, list) {
2841 tid = list_first_entry(&ac->tid_q,
2842 struct ath_atx_tid, list);
2843 if (tid && tid->an != an)
2844 continue;
2845 list_del(&ac->list);
2846 ac->sched = false;
2848 list_for_each_entry_safe(tid,
2849 tid_tmp, &ac->tid_q, list) {
2850 list_del(&tid->list);
2851 tid->sched = false;
2852 ath_tid_drain(sc, txq, tid, bh_flag);
2853 tid->addba_exchangecomplete = 0;
2854 tid->addba_exchangeattempts = 0;
2855 tid->cleanup_inprogress = false;
2859 if (likely(bh_flag))
2860 spin_unlock_bh(&txq->axq_lock);
2861 else
2862 spin_unlock(&txq->axq_lock);
2867 /* Cleanup per node transmit state */
2869 void ath_tx_node_free(struct ath_softc *sc, struct ath_node *an)
2871 if (sc->sc_flags & SC_OP_TXAGGR) {
2872 struct ath_atx_tid *tid;
2873 int tidno, i;
2875 /* Init per tid rx state */
2876 for (tidno = 0, tid = &an->an_aggr.tx.tid[tidno];
2877 tidno < WME_NUM_TID;
2878 tidno++, tid++) {
2880 for (i = 0; i < ATH_TID_MAX_BUFS; i++)
2881 ASSERT(tid->tx_buf[i] == NULL);