[MIPS] Add support for TIF_RESTORE_SIGMASK.
[linux-2.6/kvm.git] / arch / mips / kernel / vpe.c
blobae83b755cf4aae68c24fe36b80f339665f9d42fd
1 /*
2 * Copyright (C) 2004, 2005 MIPS Technologies, Inc. All rights reserved.
4 * This program is free software; you can distribute it and/or modify it
5 * under the terms of the GNU General Public License (Version 2) as
6 * published by the Free Software Foundation.
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
11 * for more details.
13 * You should have received a copy of the GNU General Public License along
14 * with this program; if not, write to the Free Software Foundation, Inc.,
15 * 59 Temple Place - Suite 330, Boston MA 02111-1307, USA.
20 * VPE support module
22 * Provides support for loading a MIPS SP program on VPE1.
23 * The SP enviroment is rather simple, no tlb's. It needs to be relocatable
24 * (or partially linked). You should initialise your stack in the startup
25 * code. This loader looks for the symbol __start and sets up
26 * execution to resume from there. The MIPS SDE kit contains suitable examples.
28 * To load and run, simply cat a SP 'program file' to /dev/vpe1.
29 * i.e cat spapp >/dev/vpe1.
31 * You'll need to have the following device files.
32 * mknod /dev/vpe0 c 63 0
33 * mknod /dev/vpe1 c 63 1
35 #include <linux/config.h>
36 #include <linux/kernel.h>
37 #include <linux/module.h>
38 #include <linux/fs.h>
39 #include <linux/init.h>
40 #include <asm/uaccess.h>
41 #include <linux/slab.h>
42 #include <linux/list.h>
43 #include <linux/vmalloc.h>
44 #include <linux/elf.h>
45 #include <linux/seq_file.h>
46 #include <linux/syscalls.h>
47 #include <linux/moduleloader.h>
48 #include <linux/interrupt.h>
49 #include <linux/poll.h>
50 #include <linux/bootmem.h>
51 #include <asm/mipsregs.h>
52 #include <asm/mipsmtregs.h>
53 #include <asm/cacheflush.h>
54 #include <asm/atomic.h>
55 #include <asm/cpu.h>
56 #include <asm/processor.h>
57 #include <asm/system.h>
59 typedef void *vpe_handle;
61 #ifndef ARCH_SHF_SMALL
62 #define ARCH_SHF_SMALL 0
63 #endif
65 /* If this is set, the section belongs in the init part of the module */
66 #define INIT_OFFSET_MASK (1UL << (BITS_PER_LONG-1))
68 static char module_name[] = "vpe";
69 static int major;
71 /* grab the likely amount of memory we will need. */
72 #ifdef CONFIG_MIPS_VPE_LOADER_TOM
73 #define P_SIZE (2 * 1024 * 1024)
74 #else
75 /* add an overhead to the max kmalloc size for non-striped symbols/etc */
76 #define P_SIZE (256 * 1024)
77 #endif
79 #define MAX_VPES 16
81 enum vpe_state {
82 VPE_STATE_UNUSED = 0,
83 VPE_STATE_INUSE,
84 VPE_STATE_RUNNING
87 enum tc_state {
88 TC_STATE_UNUSED = 0,
89 TC_STATE_INUSE,
90 TC_STATE_RUNNING,
91 TC_STATE_DYNAMIC
94 struct vpe {
95 enum vpe_state state;
97 /* (device) minor associated with this vpe */
98 int minor;
100 /* elfloader stuff */
101 void *load_addr;
102 unsigned long len;
103 char *pbuffer;
104 unsigned long plen;
106 unsigned long __start;
108 /* tc's associated with this vpe */
109 struct list_head tc;
111 /* The list of vpe's */
112 struct list_head list;
114 /* shared symbol address */
115 void *shared_ptr;
118 struct tc {
119 enum tc_state state;
120 int index;
122 /* parent VPE */
123 struct vpe *pvpe;
125 /* The list of TC's with this VPE */
126 struct list_head tc;
128 /* The global list of tc's */
129 struct list_head list;
132 struct vpecontrol_ {
133 /* Virtual processing elements */
134 struct list_head vpe_list;
136 /* Thread contexts */
137 struct list_head tc_list;
138 } vpecontrol;
140 static void release_progmem(void *ptr);
141 static void dump_vpe(struct vpe * v);
142 extern void save_gp_address(unsigned int secbase, unsigned int rel);
144 /* get the vpe associated with this minor */
145 struct vpe *get_vpe(int minor)
147 struct vpe *v;
149 list_for_each_entry(v, &vpecontrol.vpe_list, list) {
150 if (v->minor == minor)
151 return v;
154 printk(KERN_DEBUG "VPE: get_vpe minor %d not found\n", minor);
155 return NULL;
158 /* get the vpe associated with this minor */
159 struct tc *get_tc(int index)
161 struct tc *t;
163 list_for_each_entry(t, &vpecontrol.tc_list, list) {
164 if (t->index == index)
165 return t;
168 printk(KERN_DEBUG "VPE: get_tc index %d not found\n", index);
170 return NULL;
173 struct tc *get_tc_unused(void)
175 struct tc *t;
177 list_for_each_entry(t, &vpecontrol.tc_list, list) {
178 if (t->state == TC_STATE_UNUSED)
179 return t;
182 printk(KERN_DEBUG "VPE: All TC's are in use\n");
184 return NULL;
187 /* allocate a vpe and associate it with this minor (or index) */
188 struct vpe *alloc_vpe(int minor)
190 struct vpe *v;
192 if ((v = kzalloc(sizeof(struct vpe), GFP_KERNEL)) == NULL) {
193 printk(KERN_WARNING "VPE: alloc_vpe no mem\n");
194 return NULL;
197 INIT_LIST_HEAD(&v->tc);
198 list_add_tail(&v->list, &vpecontrol.vpe_list);
200 v->minor = minor;
201 return v;
204 /* allocate a tc. At startup only tc0 is running, all other can be halted. */
205 struct tc *alloc_tc(int index)
207 struct tc *t;
209 if ((t = kzalloc(sizeof(struct tc), GFP_KERNEL)) == NULL) {
210 printk(KERN_WARNING "VPE: alloc_tc no mem\n");
211 return NULL;
214 INIT_LIST_HEAD(&t->tc);
215 list_add_tail(&t->list, &vpecontrol.tc_list);
217 t->index = index;
219 return t;
222 /* clean up and free everything */
223 void release_vpe(struct vpe *v)
225 list_del(&v->list);
226 if (v->load_addr)
227 release_progmem(v);
228 kfree(v);
231 void dump_mtregs(void)
233 unsigned long val;
235 val = read_c0_config3();
236 printk("config3 0x%lx MT %ld\n", val,
237 (val & CONFIG3_MT) >> CONFIG3_MT_SHIFT);
239 val = read_c0_mvpconf0();
240 printk("mvpconf0 0x%lx, PVPE %ld PTC %ld M %ld\n", val,
241 (val & MVPCONF0_PVPE) >> MVPCONF0_PVPE_SHIFT,
242 val & MVPCONF0_PTC, (val & MVPCONF0_M) >> MVPCONF0_M_SHIFT);
244 val = read_c0_mvpcontrol();
245 printk("MVPControl 0x%lx, STLB %ld VPC %ld EVP %ld\n", val,
246 (val & MVPCONTROL_STLB) >> MVPCONTROL_STLB_SHIFT,
247 (val & MVPCONTROL_VPC) >> MVPCONTROL_VPC_SHIFT,
248 (val & MVPCONTROL_EVP));
250 val = read_c0_vpeconf0();
251 printk("VPEConf0 0x%lx MVP %ld\n", val,
252 (val & VPECONF0_MVP) >> VPECONF0_MVP_SHIFT);
255 /* Find some VPE program space */
256 static void *alloc_progmem(unsigned long len)
258 #ifdef CONFIG_MIPS_VPE_LOADER_TOM
259 /* this means you must tell linux to use less memory than you physically have */
260 return pfn_to_kaddr(max_pfn);
261 #else
262 // simple grab some mem for now
263 return kmalloc(len, GFP_KERNEL);
264 #endif
267 static void release_progmem(void *ptr)
269 #ifndef CONFIG_MIPS_VPE_LOADER_TOM
270 kfree(ptr);
271 #endif
274 /* Update size with this section: return offset. */
275 static long get_offset(unsigned long *size, Elf_Shdr * sechdr)
277 long ret;
279 ret = ALIGN(*size, sechdr->sh_addralign ? : 1);
280 *size = ret + sechdr->sh_size;
281 return ret;
284 /* Lay out the SHF_ALLOC sections in a way not dissimilar to how ld
285 might -- code, read-only data, read-write data, small data. Tally
286 sizes, and place the offsets into sh_entsize fields: high bit means it
287 belongs in init. */
288 static void layout_sections(struct module *mod, const Elf_Ehdr * hdr,
289 Elf_Shdr * sechdrs, const char *secstrings)
291 static unsigned long const masks[][2] = {
292 /* NOTE: all executable code must be the first section
293 * in this array; otherwise modify the text_size
294 * finder in the two loops below */
295 {SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL},
296 {SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL},
297 {SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL},
298 {ARCH_SHF_SMALL | SHF_ALLOC, 0}
300 unsigned int m, i;
302 for (i = 0; i < hdr->e_shnum; i++)
303 sechdrs[i].sh_entsize = ~0UL;
305 for (m = 0; m < ARRAY_SIZE(masks); ++m) {
306 for (i = 0; i < hdr->e_shnum; ++i) {
307 Elf_Shdr *s = &sechdrs[i];
309 // || strncmp(secstrings + s->sh_name, ".init", 5) == 0)
310 if ((s->sh_flags & masks[m][0]) != masks[m][0]
311 || (s->sh_flags & masks[m][1])
312 || s->sh_entsize != ~0UL)
313 continue;
314 s->sh_entsize = get_offset(&mod->core_size, s);
317 if (m == 0)
318 mod->core_text_size = mod->core_size;
324 /* from module-elf32.c, but subverted a little */
326 struct mips_hi16 {
327 struct mips_hi16 *next;
328 Elf32_Addr *addr;
329 Elf32_Addr value;
332 static struct mips_hi16 *mips_hi16_list;
333 static unsigned int gp_offs, gp_addr;
335 static int apply_r_mips_none(struct module *me, uint32_t *location,
336 Elf32_Addr v)
338 return 0;
341 static int apply_r_mips_gprel16(struct module *me, uint32_t *location,
342 Elf32_Addr v)
344 int rel;
346 if( !(*location & 0xffff) ) {
347 rel = (int)v - gp_addr;
349 else {
350 /* .sbss + gp(relative) + offset */
351 /* kludge! */
352 rel = (int)(short)((int)v + gp_offs +
353 (int)(short)(*location & 0xffff) - gp_addr);
356 if( (rel > 32768) || (rel < -32768) ) {
357 printk(KERN_ERR
358 "apply_r_mips_gprel16: relative address out of range 0x%x %d\n",
359 rel, rel);
360 return -ENOEXEC;
363 *location = (*location & 0xffff0000) | (rel & 0xffff);
365 return 0;
368 static int apply_r_mips_pc16(struct module *me, uint32_t *location,
369 Elf32_Addr v)
371 int rel;
372 rel = (((unsigned int)v - (unsigned int)location));
373 rel >>= 2; // because the offset is in _instructions_ not bytes.
374 rel -= 1; // and one instruction less due to the branch delay slot.
376 if( (rel > 32768) || (rel < -32768) ) {
377 printk(KERN_ERR
378 "apply_r_mips_pc16: relative address out of range 0x%x\n", rel);
379 return -ENOEXEC;
382 *location = (*location & 0xffff0000) | (rel & 0xffff);
384 return 0;
387 static int apply_r_mips_32(struct module *me, uint32_t *location,
388 Elf32_Addr v)
390 *location += v;
392 return 0;
395 static int apply_r_mips_26(struct module *me, uint32_t *location,
396 Elf32_Addr v)
398 if (v % 4) {
399 printk(KERN_ERR "module %s: dangerous relocation mod4\n", me->name);
400 return -ENOEXEC;
404 * Not desperately convinced this is a good check of an overflow condition
405 * anyway. But it gets in the way of handling undefined weak symbols which
406 * we want to set to zero.
407 * if ((v & 0xf0000000) != (((unsigned long)location + 4) & 0xf0000000)) {
408 * printk(KERN_ERR
409 * "module %s: relocation overflow\n",
410 * me->name);
411 * return -ENOEXEC;
415 *location = (*location & ~0x03ffffff) |
416 ((*location + (v >> 2)) & 0x03ffffff);
417 return 0;
420 static int apply_r_mips_hi16(struct module *me, uint32_t *location,
421 Elf32_Addr v)
423 struct mips_hi16 *n;
426 * We cannot relocate this one now because we don't know the value of
427 * the carry we need to add. Save the information, and let LO16 do the
428 * actual relocation.
430 n = kmalloc(sizeof *n, GFP_KERNEL);
431 if (!n)
432 return -ENOMEM;
434 n->addr = location;
435 n->value = v;
436 n->next = mips_hi16_list;
437 mips_hi16_list = n;
439 return 0;
442 static int apply_r_mips_lo16(struct module *me, uint32_t *location,
443 Elf32_Addr v)
445 unsigned long insnlo = *location;
446 Elf32_Addr val, vallo;
448 /* Sign extend the addend we extract from the lo insn. */
449 vallo = ((insnlo & 0xffff) ^ 0x8000) - 0x8000;
451 if (mips_hi16_list != NULL) {
452 struct mips_hi16 *l;
454 l = mips_hi16_list;
455 while (l != NULL) {
456 struct mips_hi16 *next;
457 unsigned long insn;
460 * The value for the HI16 had best be the same.
462 if (v != l->value) {
463 printk("%d != %d\n", v, l->value);
464 goto out_danger;
469 * Do the HI16 relocation. Note that we actually don't
470 * need to know anything about the LO16 itself, except
471 * where to find the low 16 bits of the addend needed
472 * by the LO16.
474 insn = *l->addr;
475 val = ((insn & 0xffff) << 16) + vallo;
476 val += v;
479 * Account for the sign extension that will happen in
480 * the low bits.
482 val = ((val >> 16) + ((val & 0x8000) != 0)) & 0xffff;
484 insn = (insn & ~0xffff) | val;
485 *l->addr = insn;
487 next = l->next;
488 kfree(l);
489 l = next;
492 mips_hi16_list = NULL;
496 * Ok, we're done with the HI16 relocs. Now deal with the LO16.
498 val = v + vallo;
499 insnlo = (insnlo & ~0xffff) | (val & 0xffff);
500 *location = insnlo;
502 return 0;
504 out_danger:
505 printk(KERN_ERR "module %s: dangerous " "relocation\n", me->name);
507 return -ENOEXEC;
510 static int (*reloc_handlers[]) (struct module *me, uint32_t *location,
511 Elf32_Addr v) = {
512 [R_MIPS_NONE] = apply_r_mips_none,
513 [R_MIPS_32] = apply_r_mips_32,
514 [R_MIPS_26] = apply_r_mips_26,
515 [R_MIPS_HI16] = apply_r_mips_hi16,
516 [R_MIPS_LO16] = apply_r_mips_lo16,
517 [R_MIPS_GPREL16] = apply_r_mips_gprel16,
518 [R_MIPS_PC16] = apply_r_mips_pc16
522 int apply_relocations(Elf32_Shdr *sechdrs,
523 const char *strtab,
524 unsigned int symindex,
525 unsigned int relsec,
526 struct module *me)
528 Elf32_Rel *rel = (void *) sechdrs[relsec].sh_addr;
529 Elf32_Sym *sym;
530 uint32_t *location;
531 unsigned int i;
532 Elf32_Addr v;
533 int res;
535 for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) {
536 Elf32_Word r_info = rel[i].r_info;
538 /* This is where to make the change */
539 location = (void *)sechdrs[sechdrs[relsec].sh_info].sh_addr
540 + rel[i].r_offset;
541 /* This is the symbol it is referring to */
542 sym = (Elf32_Sym *)sechdrs[symindex].sh_addr
543 + ELF32_R_SYM(r_info);
545 if (!sym->st_value) {
546 printk(KERN_DEBUG "%s: undefined weak symbol %s\n",
547 me->name, strtab + sym->st_name);
548 /* just print the warning, dont barf */
551 v = sym->st_value;
553 res = reloc_handlers[ELF32_R_TYPE(r_info)](me, location, v);
554 if( res ) {
555 printk(KERN_DEBUG
556 "relocation error 0x%x sym refer <%s> value 0x%x "
557 "type 0x%x r_info 0x%x\n",
558 (unsigned int)location, strtab + sym->st_name, v,
559 r_info, ELF32_R_TYPE(r_info));
562 if (res)
563 return res;
566 return 0;
569 void save_gp_address(unsigned int secbase, unsigned int rel)
571 gp_addr = secbase + rel;
572 gp_offs = gp_addr - (secbase & 0xffff0000);
574 /* end module-elf32.c */
578 /* Change all symbols so that sh_value encodes the pointer directly. */
579 static int simplify_symbols(Elf_Shdr * sechdrs,
580 unsigned int symindex,
581 const char *strtab,
582 const char *secstrings,
583 unsigned int nsecs, struct module *mod)
585 Elf_Sym *sym = (void *)sechdrs[symindex].sh_addr;
586 unsigned long secbase, bssbase = 0;
587 unsigned int i, n = sechdrs[symindex].sh_size / sizeof(Elf_Sym);
588 int ret = 0, size;
590 /* find the .bss section for COMMON symbols */
591 for (i = 0; i < nsecs; i++) {
592 if (strncmp(secstrings + sechdrs[i].sh_name, ".bss", 4) == 0)
593 bssbase = sechdrs[i].sh_addr;
596 for (i = 1; i < n; i++) {
597 switch (sym[i].st_shndx) {
598 case SHN_COMMON:
599 /* Allocate space for the symbol in the .bss section. st_value is currently size.
600 We want it to have the address of the symbol. */
602 size = sym[i].st_value;
603 sym[i].st_value = bssbase;
605 bssbase += size;
606 break;
608 case SHN_ABS:
609 /* Don't need to do anything */
610 break;
612 case SHN_UNDEF:
613 /* ret = -ENOENT; */
614 break;
616 case SHN_MIPS_SCOMMON:
618 printk(KERN_DEBUG
619 "simplify_symbols: ignoring SHN_MIPS_SCOMMON symbol <%s> st_shndx %d\n",
620 strtab + sym[i].st_name, sym[i].st_shndx);
622 // .sbss section
623 break;
625 default:
626 secbase = sechdrs[sym[i].st_shndx].sh_addr;
628 if (strncmp(strtab + sym[i].st_name, "_gp", 3) == 0) {
629 save_gp_address(secbase, sym[i].st_value);
632 sym[i].st_value += secbase;
633 break;
638 return ret;
641 #ifdef DEBUG_ELFLOADER
642 static void dump_elfsymbols(Elf_Shdr * sechdrs, unsigned int symindex,
643 const char *strtab, struct module *mod)
645 Elf_Sym *sym = (void *)sechdrs[symindex].sh_addr;
646 unsigned int i, n = sechdrs[symindex].sh_size / sizeof(Elf_Sym);
648 printk(KERN_DEBUG "dump_elfsymbols: n %d\n", n);
649 for (i = 1; i < n; i++) {
650 printk(KERN_DEBUG " i %d name <%s> 0x%x\n", i,
651 strtab + sym[i].st_name, sym[i].st_value);
654 #endif
656 static void dump_tc(struct tc *t)
658 printk(KERN_WARNING "VPE: TC index %d TCStatus 0x%lx halt 0x%lx\n",
659 t->index, read_tc_c0_tcstatus(), read_tc_c0_tchalt());
660 printk(KERN_WARNING "VPE: tcrestart 0x%lx\n", read_tc_c0_tcrestart());
663 static void dump_tclist(void)
665 struct tc *t;
667 list_for_each_entry(t, &vpecontrol.tc_list, list) {
668 dump_tc(t);
672 /* We are prepared so configure and start the VPE... */
673 int vpe_run(struct vpe * v)
675 unsigned long val;
676 struct tc *t;
678 /* check we are the Master VPE */
679 val = read_c0_vpeconf0();
680 if (!(val & VPECONF0_MVP)) {
681 printk(KERN_WARNING
682 "VPE: only Master VPE's are allowed to configure MT\n");
683 return -1;
686 /* disable MT (using dvpe) */
687 dvpe();
689 /* Put MVPE's into 'configuration state' */
690 set_c0_mvpcontrol(MVPCONTROL_VPC);
692 if (!list_empty(&v->tc)) {
693 if ((t = list_entry(v->tc.next, struct tc, tc)) == NULL) {
694 printk(KERN_WARNING "VPE: TC %d is already in use.\n",
695 t->index);
696 return -ENOEXEC;
698 } else {
699 printk(KERN_WARNING "VPE: No TC's associated with VPE %d\n",
700 v->minor);
701 return -ENOEXEC;
704 settc(t->index);
706 val = read_vpe_c0_vpeconf0();
708 /* should check it is halted, and not activated */
709 if ((read_tc_c0_tcstatus() & TCSTATUS_A) || !(read_tc_c0_tchalt() & TCHALT_H)) {
710 printk(KERN_WARNING "VPE: TC %d is already doing something!\n",
711 t->index);
713 dump_tclist();
714 return -ENOEXEC;
717 /* Write the address we want it to start running from in the TCPC register. */
718 write_tc_c0_tcrestart((unsigned long)v->__start);
720 /* write the sivc_info address to tccontext */
721 write_tc_c0_tccontext((unsigned long)0);
723 /* Set up the XTC bit in vpeconf0 to point at our tc */
724 write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() | (t->index << VPECONF0_XTC_SHIFT));
726 /* mark the TC as activated, not interrupt exempt and not dynamically allocatable */
727 val = read_tc_c0_tcstatus();
728 val = (val & ~(TCSTATUS_DA | TCSTATUS_IXMT)) | TCSTATUS_A;
729 write_tc_c0_tcstatus(val);
731 write_tc_c0_tchalt(read_tc_c0_tchalt() & ~TCHALT_H);
733 /* set up VPE1 */
734 write_vpe_c0_vpecontrol(read_vpe_c0_vpecontrol() & ~VPECONTROL_TE); // no multiple TC's
735 write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() | VPECONF0_VPA); // enable this VPE
738 * The sde-kit passes 'memsize' to __start in $a3, so set something
739 * here...
740 * Or set $a3 (register 7) to zero and define DFLT_STACK_SIZE and
741 * DFLT_HEAP_SIZE when you compile your program
744 mttgpr(7, 0);
746 /* set config to be the same as vpe0, particularly kseg0 coherency alg */
747 write_vpe_c0_config(read_c0_config());
749 /* clear out any left overs from a previous program */
750 write_vpe_c0_cause(0);
752 /* take system out of configuration state */
753 clear_c0_mvpcontrol(MVPCONTROL_VPC);
755 /* clear interrupts enabled IE, ERL, EXL, and KSU from c0 status */
756 write_vpe_c0_status(read_vpe_c0_status() & ~(ST0_ERL | ST0_KSU | ST0_IE | ST0_EXL));
758 /* set it running */
759 evpe(EVPE_ENABLE);
761 return 0;
764 static unsigned long find_vpe_symbols(struct vpe * v, Elf_Shdr * sechdrs,
765 unsigned int symindex, const char *strtab,
766 struct module *mod)
768 Elf_Sym *sym = (void *)sechdrs[symindex].sh_addr;
769 unsigned int i, n = sechdrs[symindex].sh_size / sizeof(Elf_Sym);
771 for (i = 1; i < n; i++) {
772 if (strcmp(strtab + sym[i].st_name, "__start") == 0) {
773 v->__start = sym[i].st_value;
776 if (strcmp(strtab + sym[i].st_name, "vpe_shared") == 0) {
777 v->shared_ptr = (void *)sym[i].st_value;
781 return 0;
785 * Allocates a VPE with some program code space(the load address), copies
786 * the contents of the program (p)buffer performing relocatations/etc,
787 * free's it when finished.
789 int vpe_elfload(struct vpe * v)
791 Elf_Ehdr *hdr;
792 Elf_Shdr *sechdrs;
793 long err = 0;
794 char *secstrings, *strtab = NULL;
795 unsigned int len, i, symindex = 0, strindex = 0;
797 struct module mod; // so we can re-use the relocations code
799 memset(&mod, 0, sizeof(struct module));
800 strcpy(mod.name, "VPE dummy prog module");
802 hdr = (Elf_Ehdr *) v->pbuffer;
803 len = v->plen;
805 /* Sanity checks against insmoding binaries or wrong arch,
806 weird elf version */
807 if (memcmp(hdr->e_ident, ELFMAG, 4) != 0
808 || hdr->e_type != ET_REL || !elf_check_arch(hdr)
809 || hdr->e_shentsize != sizeof(*sechdrs)) {
810 printk(KERN_WARNING
811 "VPE program, wrong arch or weird elf version\n");
813 return -ENOEXEC;
816 if (len < hdr->e_shoff + hdr->e_shnum * sizeof(Elf_Shdr)) {
817 printk(KERN_ERR "VPE program length %u truncated\n", len);
818 return -ENOEXEC;
821 /* Convenience variables */
822 sechdrs = (void *)hdr + hdr->e_shoff;
823 secstrings = (void *)hdr + sechdrs[hdr->e_shstrndx].sh_offset;
824 sechdrs[0].sh_addr = 0;
826 /* And these should exist, but gcc whinges if we don't init them */
827 symindex = strindex = 0;
829 for (i = 1; i < hdr->e_shnum; i++) {
831 if (sechdrs[i].sh_type != SHT_NOBITS
832 && len < sechdrs[i].sh_offset + sechdrs[i].sh_size) {
833 printk(KERN_ERR "VPE program length %u truncated\n",
834 len);
835 return -ENOEXEC;
838 /* Mark all sections sh_addr with their address in the
839 temporary image. */
840 sechdrs[i].sh_addr = (size_t) hdr + sechdrs[i].sh_offset;
842 /* Internal symbols and strings. */
843 if (sechdrs[i].sh_type == SHT_SYMTAB) {
844 symindex = i;
845 strindex = sechdrs[i].sh_link;
846 strtab = (char *)hdr + sechdrs[strindex].sh_offset;
850 layout_sections(&mod, hdr, sechdrs, secstrings);
852 v->load_addr = alloc_progmem(mod.core_size);
853 memset(v->load_addr, 0, mod.core_size);
855 printk("VPE elf_loader: loading to %p\n", v->load_addr);
857 for (i = 0; i < hdr->e_shnum; i++) {
858 void *dest;
860 if (!(sechdrs[i].sh_flags & SHF_ALLOC))
861 continue;
863 dest = v->load_addr + sechdrs[i].sh_entsize;
865 if (sechdrs[i].sh_type != SHT_NOBITS)
866 memcpy(dest, (void *)sechdrs[i].sh_addr,
867 sechdrs[i].sh_size);
868 /* Update sh_addr to point to copy in image. */
869 sechdrs[i].sh_addr = (unsigned long)dest;
872 /* Fix up syms, so that st_value is a pointer to location. */
873 err =
874 simplify_symbols(sechdrs, symindex, strtab, secstrings,
875 hdr->e_shnum, &mod);
876 if (err < 0) {
877 printk(KERN_WARNING "VPE: unable to simplify symbols\n");
878 goto cleanup;
881 /* Now do relocations. */
882 for (i = 1; i < hdr->e_shnum; i++) {
883 const char *strtab = (char *)sechdrs[strindex].sh_addr;
884 unsigned int info = sechdrs[i].sh_info;
886 /* Not a valid relocation section? */
887 if (info >= hdr->e_shnum)
888 continue;
890 /* Don't bother with non-allocated sections */
891 if (!(sechdrs[info].sh_flags & SHF_ALLOC))
892 continue;
894 if (sechdrs[i].sh_type == SHT_REL)
895 err =
896 apply_relocations(sechdrs, strtab, symindex, i, &mod);
897 else if (sechdrs[i].sh_type == SHT_RELA)
898 err = apply_relocate_add(sechdrs, strtab, symindex, i,
899 &mod);
900 if (err < 0) {
901 printk(KERN_WARNING
902 "vpe_elfload: error in relocations err %ld\n",
903 err);
904 goto cleanup;
908 /* make sure it's physically written out */
909 flush_icache_range((unsigned long)v->load_addr,
910 (unsigned long)v->load_addr + v->len);
912 if ((find_vpe_symbols(v, sechdrs, symindex, strtab, &mod)) < 0) {
914 printk(KERN_WARNING
915 "VPE: program doesn't contain __start or vpe_shared symbols\n");
916 err = -ENOEXEC;
919 printk(" elf loaded\n");
921 cleanup:
922 return err;
925 static void dump_vpe(struct vpe * v)
927 struct tc *t;
929 printk(KERN_DEBUG "VPEControl 0x%lx\n", read_vpe_c0_vpecontrol());
930 printk(KERN_DEBUG "VPEConf0 0x%lx\n", read_vpe_c0_vpeconf0());
932 list_for_each_entry(t, &vpecontrol.tc_list, list) {
933 dump_tc(t);
937 /* checks for VPE is unused and gets ready to load program */
938 static int vpe_open(struct inode *inode, struct file *filp)
940 int minor;
941 struct vpe *v;
943 /* assume only 1 device at the mo. */
944 if ((minor = MINOR(inode->i_rdev)) != 1) {
945 printk(KERN_WARNING "VPE: only vpe1 is supported\n");
946 return -ENODEV;
949 if ((v = get_vpe(minor)) == NULL) {
950 printk(KERN_WARNING "VPE: unable to get vpe\n");
951 return -ENODEV;
954 if (v->state != VPE_STATE_UNUSED) {
955 unsigned long tmp;
956 struct tc *t;
958 printk(KERN_WARNING "VPE: device %d already in use\n", minor);
960 dvpe();
961 dump_vpe(v);
963 printk(KERN_WARNING "VPE: re-initialising %d\n", minor);
965 release_progmem(v->load_addr);
967 t = get_tc(minor);
968 settc(minor);
969 tmp = read_tc_c0_tcstatus();
971 /* mark not allocated and not dynamically allocatable */
972 tmp &= ~(TCSTATUS_A | TCSTATUS_DA);
973 tmp |= TCSTATUS_IXMT; /* interrupt exempt */
974 write_tc_c0_tcstatus(tmp);
976 write_tc_c0_tchalt(TCHALT_H);
980 // allocate it so when we get write ops we know it's expected.
981 v->state = VPE_STATE_INUSE;
983 /* this of-course trashes what was there before... */
984 v->pbuffer = vmalloc(P_SIZE);
985 v->plen = P_SIZE;
986 v->load_addr = NULL;
987 v->len = 0;
989 return 0;
992 static int vpe_release(struct inode *inode, struct file *filp)
994 int minor, ret = 0;
995 struct vpe *v;
996 Elf_Ehdr *hdr;
998 minor = MINOR(inode->i_rdev);
999 if ((v = get_vpe(minor)) == NULL)
1000 return -ENODEV;
1002 // simple case of fire and forget, so tell the VPE to run...
1004 hdr = (Elf_Ehdr *) v->pbuffer;
1005 if (memcmp(hdr->e_ident, ELFMAG, 4) == 0) {
1006 if (vpe_elfload(v) >= 0)
1007 vpe_run(v);
1008 else {
1009 printk(KERN_WARNING "VPE: ELF load failed.\n");
1010 ret = -ENOEXEC;
1012 } else {
1013 printk(KERN_WARNING "VPE: only elf files are supported\n");
1014 ret = -ENOEXEC;
1017 // cleanup any temp buffers
1018 if (v->pbuffer)
1019 vfree(v->pbuffer);
1020 v->plen = 0;
1021 return ret;
1024 static ssize_t vpe_write(struct file *file, const char __user * buffer,
1025 size_t count, loff_t * ppos)
1027 int minor;
1028 size_t ret = count;
1029 struct vpe *v;
1031 minor = MINOR(file->f_dentry->d_inode->i_rdev);
1032 if ((v = get_vpe(minor)) == NULL)
1033 return -ENODEV;
1035 if (v->pbuffer == NULL) {
1036 printk(KERN_ERR "vpe_write: no pbuffer\n");
1037 return -ENOMEM;
1040 if ((count + v->len) > v->plen) {
1041 printk(KERN_WARNING
1042 "VPE Loader: elf size too big. Perhaps strip uneeded symbols\n");
1043 return -ENOMEM;
1046 count -= copy_from_user(v->pbuffer + v->len, buffer, count);
1047 if (!count) {
1048 printk("vpe_write: copy_to_user failed\n");
1049 return -EFAULT;
1052 v->len += count;
1053 return ret;
1056 static struct file_operations vpe_fops = {
1057 .owner = THIS_MODULE,
1058 .open = vpe_open,
1059 .release = vpe_release,
1060 .write = vpe_write
1063 /* module wrapper entry points */
1064 /* give me a vpe */
1065 vpe_handle vpe_alloc(void)
1067 int i;
1068 struct vpe *v;
1070 /* find a vpe */
1071 for (i = 1; i < MAX_VPES; i++) {
1072 if ((v = get_vpe(i)) != NULL) {
1073 v->state = VPE_STATE_INUSE;
1074 return v;
1077 return NULL;
1080 EXPORT_SYMBOL(vpe_alloc);
1082 /* start running from here */
1083 int vpe_start(vpe_handle vpe, unsigned long start)
1085 struct vpe *v = vpe;
1087 v->__start = start;
1088 return vpe_run(v);
1091 EXPORT_SYMBOL(vpe_start);
1093 /* halt it for now */
1094 int vpe_stop(vpe_handle vpe)
1096 struct vpe *v = vpe;
1097 struct tc *t;
1098 unsigned int evpe_flags;
1100 evpe_flags = dvpe();
1102 if ((t = list_entry(v->tc.next, struct tc, tc)) != NULL) {
1104 settc(t->index);
1105 write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() & ~VPECONF0_VPA);
1108 evpe(evpe_flags);
1110 return 0;
1113 EXPORT_SYMBOL(vpe_stop);
1115 /* I've done with it thank you */
1116 int vpe_free(vpe_handle vpe)
1118 struct vpe *v = vpe;
1119 struct tc *t;
1120 unsigned int evpe_flags;
1122 if ((t = list_entry(v->tc.next, struct tc, tc)) == NULL) {
1123 return -ENOEXEC;
1126 evpe_flags = dvpe();
1128 /* Put MVPE's into 'configuration state' */
1129 set_c0_mvpcontrol(MVPCONTROL_VPC);
1131 settc(t->index);
1132 write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() & ~VPECONF0_VPA);
1134 /* mark the TC unallocated and halt'ed */
1135 write_tc_c0_tcstatus(read_tc_c0_tcstatus() & ~TCSTATUS_A);
1136 write_tc_c0_tchalt(TCHALT_H);
1138 v->state = VPE_STATE_UNUSED;
1140 clear_c0_mvpcontrol(MVPCONTROL_VPC);
1141 evpe(evpe_flags);
1143 return 0;
1146 EXPORT_SYMBOL(vpe_free);
1148 void *vpe_get_shared(int index)
1150 struct vpe *v;
1152 if ((v = get_vpe(index)) == NULL) {
1153 printk(KERN_WARNING "vpe: invalid vpe index %d\n", index);
1154 return NULL;
1157 return v->shared_ptr;
1160 EXPORT_SYMBOL(vpe_get_shared);
1162 static int __init vpe_module_init(void)
1164 struct vpe *v = NULL;
1165 struct tc *t;
1166 unsigned long val;
1167 int i;
1169 if (!cpu_has_mipsmt) {
1170 printk("VPE loader: not a MIPS MT capable processor\n");
1171 return -ENODEV;
1174 major = register_chrdev(0, module_name, &vpe_fops);
1175 if (major < 0) {
1176 printk("VPE loader: unable to register character device\n");
1177 return major;
1180 dmt();
1181 dvpe();
1183 /* Put MVPE's into 'configuration state' */
1184 set_c0_mvpcontrol(MVPCONTROL_VPC);
1186 /* dump_mtregs(); */
1188 INIT_LIST_HEAD(&vpecontrol.vpe_list);
1189 INIT_LIST_HEAD(&vpecontrol.tc_list);
1191 val = read_c0_mvpconf0();
1192 for (i = 0; i < ((val & MVPCONF0_PTC) + 1); i++) {
1193 t = alloc_tc(i);
1195 /* VPE's */
1196 if (i < ((val & MVPCONF0_PVPE) >> MVPCONF0_PVPE_SHIFT) + 1) {
1197 settc(i);
1199 if ((v = alloc_vpe(i)) == NULL) {
1200 printk(KERN_WARNING "VPE: unable to allocate VPE\n");
1201 return -ENODEV;
1204 list_add(&t->tc, &v->tc); /* add the tc to the list of this vpe's tc's. */
1206 /* deactivate all but vpe0 */
1207 if (i != 0) {
1208 unsigned long tmp = read_vpe_c0_vpeconf0();
1210 tmp &= ~VPECONF0_VPA;
1212 /* master VPE */
1213 tmp |= VPECONF0_MVP;
1214 write_vpe_c0_vpeconf0(tmp);
1217 /* disable multi-threading with TC's */
1218 write_vpe_c0_vpecontrol(read_vpe_c0_vpecontrol() & ~VPECONTROL_TE);
1220 if (i != 0) {
1221 write_vpe_c0_status((read_c0_status() &
1222 ~(ST0_IM | ST0_IE | ST0_KSU))
1223 | ST0_CU0);
1225 /* set config to be the same as vpe0, particularly kseg0 coherency alg */
1226 write_vpe_c0_config(read_c0_config());
1231 /* TC's */
1232 t->pvpe = v; /* set the parent vpe */
1234 if (i != 0) {
1235 unsigned long tmp;
1237 /* tc 0 will of course be running.... */
1238 if (i == 0)
1239 t->state = TC_STATE_RUNNING;
1241 settc(i);
1243 /* bind a TC to each VPE, May as well put all excess TC's
1244 on the last VPE */
1245 if (i >= (((val & MVPCONF0_PVPE) >> MVPCONF0_PVPE_SHIFT) + 1))
1246 write_tc_c0_tcbind(read_tc_c0_tcbind() |
1247 ((val & MVPCONF0_PVPE) >> MVPCONF0_PVPE_SHIFT));
1248 else
1249 write_tc_c0_tcbind(read_tc_c0_tcbind() | i);
1251 tmp = read_tc_c0_tcstatus();
1253 /* mark not allocated and not dynamically allocatable */
1254 tmp &= ~(TCSTATUS_A | TCSTATUS_DA);
1255 tmp |= TCSTATUS_IXMT; /* interrupt exempt */
1256 write_tc_c0_tcstatus(tmp);
1258 write_tc_c0_tchalt(TCHALT_H);
1262 /* release config state */
1263 clear_c0_mvpcontrol(MVPCONTROL_VPC);
1265 return 0;
1268 static void __exit vpe_module_exit(void)
1270 struct vpe *v, *n;
1272 list_for_each_entry_safe(v, n, &vpecontrol.vpe_list, list) {
1273 if (v->state != VPE_STATE_UNUSED) {
1274 release_vpe(v);
1278 unregister_chrdev(major, module_name);
1281 module_init(vpe_module_init);
1282 module_exit(vpe_module_exit);
1283 MODULE_DESCRIPTION("MIPS VPE Loader");
1284 MODULE_AUTHOR("Elizabeth Clarke, MIPS Technologies, Inc");
1285 MODULE_LICENSE("GPL");