4 * Processor and Memory placement constraints for sets of tasks.
6 * Copyright (C) 2003 BULL SA.
7 * Copyright (C) 2004-2007 Silicon Graphics, Inc.
8 * Copyright (C) 2006 Google, Inc
10 * Portions derived from Patrick Mochel's sysfs code.
11 * sysfs is Copyright (c) 2001-3 Patrick Mochel
13 * 2003-10-10 Written by Simon Derr.
14 * 2003-10-22 Updates by Stephen Hemminger.
15 * 2004 May-July Rework by Paul Jackson.
16 * 2006 Rework by Paul Menage to use generic cgroups
18 * This file is subject to the terms and conditions of the GNU General Public
19 * License. See the file COPYING in the main directory of the Linux
20 * distribution for more details.
23 #include <linux/cpu.h>
24 #include <linux/cpumask.h>
25 #include <linux/cpuset.h>
26 #include <linux/err.h>
27 #include <linux/errno.h>
28 #include <linux/file.h>
30 #include <linux/init.h>
31 #include <linux/interrupt.h>
32 #include <linux/kernel.h>
33 #include <linux/kmod.h>
34 #include <linux/list.h>
35 #include <linux/mempolicy.h>
37 #include <linux/module.h>
38 #include <linux/mount.h>
39 #include <linux/namei.h>
40 #include <linux/pagemap.h>
41 #include <linux/proc_fs.h>
42 #include <linux/rcupdate.h>
43 #include <linux/sched.h>
44 #include <linux/seq_file.h>
45 #include <linux/security.h>
46 #include <linux/slab.h>
47 #include <linux/spinlock.h>
48 #include <linux/stat.h>
49 #include <linux/string.h>
50 #include <linux/time.h>
51 #include <linux/backing-dev.h>
52 #include <linux/sort.h>
54 #include <asm/uaccess.h>
55 #include <asm/atomic.h>
56 #include <linux/mutex.h>
57 #include <linux/kfifo.h>
58 #include <linux/workqueue.h>
59 #include <linux/cgroup.h>
62 * Tracks how many cpusets are currently defined in system.
63 * When there is only one cpuset (the root cpuset) we can
64 * short circuit some hooks.
66 int number_of_cpusets __read_mostly
;
68 /* Forward declare cgroup structures */
69 struct cgroup_subsys cpuset_subsys
;
72 /* See "Frequency meter" comments, below. */
75 int cnt
; /* unprocessed events count */
76 int val
; /* most recent output value */
77 time_t time
; /* clock (secs) when val computed */
78 spinlock_t lock
; /* guards read or write of above */
82 struct cgroup_subsys_state css
;
84 unsigned long flags
; /* "unsigned long" so bitops work */
85 cpumask_t cpus_allowed
; /* CPUs allowed to tasks in cpuset */
86 nodemask_t mems_allowed
; /* Memory Nodes allowed to tasks */
88 struct cpuset
*parent
; /* my parent */
91 * Copy of global cpuset_mems_generation as of the most
92 * recent time this cpuset changed its mems_allowed.
96 struct fmeter fmeter
; /* memory_pressure filter */
98 /* partition number for rebuild_sched_domains() */
101 /* used for walking a cpuset heirarchy */
102 struct list_head stack_list
;
105 /* Retrieve the cpuset for a cgroup */
106 static inline struct cpuset
*cgroup_cs(struct cgroup
*cont
)
108 return container_of(cgroup_subsys_state(cont
, cpuset_subsys_id
),
112 /* Retrieve the cpuset for a task */
113 static inline struct cpuset
*task_cs(struct task_struct
*task
)
115 return container_of(task_subsys_state(task
, cpuset_subsys_id
),
118 struct cpuset_hotplug_scanner
{
119 struct cgroup_scanner scan
;
123 /* bits in struct cpuset flags field */
128 CS_SCHED_LOAD_BALANCE
,
133 /* convenient tests for these bits */
134 static inline int is_cpu_exclusive(const struct cpuset
*cs
)
136 return test_bit(CS_CPU_EXCLUSIVE
, &cs
->flags
);
139 static inline int is_mem_exclusive(const struct cpuset
*cs
)
141 return test_bit(CS_MEM_EXCLUSIVE
, &cs
->flags
);
144 static inline int is_sched_load_balance(const struct cpuset
*cs
)
146 return test_bit(CS_SCHED_LOAD_BALANCE
, &cs
->flags
);
149 static inline int is_memory_migrate(const struct cpuset
*cs
)
151 return test_bit(CS_MEMORY_MIGRATE
, &cs
->flags
);
154 static inline int is_spread_page(const struct cpuset
*cs
)
156 return test_bit(CS_SPREAD_PAGE
, &cs
->flags
);
159 static inline int is_spread_slab(const struct cpuset
*cs
)
161 return test_bit(CS_SPREAD_SLAB
, &cs
->flags
);
165 * Increment this integer everytime any cpuset changes its
166 * mems_allowed value. Users of cpusets can track this generation
167 * number, and avoid having to lock and reload mems_allowed unless
168 * the cpuset they're using changes generation.
170 * A single, global generation is needed because cpuset_attach_task() could
171 * reattach a task to a different cpuset, which must not have its
172 * generation numbers aliased with those of that tasks previous cpuset.
174 * Generations are needed for mems_allowed because one task cannot
175 * modify another's memory placement. So we must enable every task,
176 * on every visit to __alloc_pages(), to efficiently check whether
177 * its current->cpuset->mems_allowed has changed, requiring an update
178 * of its current->mems_allowed.
180 * Since writes to cpuset_mems_generation are guarded by the cgroup lock
181 * there is no need to mark it atomic.
183 static int cpuset_mems_generation
;
185 static struct cpuset top_cpuset
= {
186 .flags
= ((1 << CS_CPU_EXCLUSIVE
) | (1 << CS_MEM_EXCLUSIVE
)),
187 .cpus_allowed
= CPU_MASK_ALL
,
188 .mems_allowed
= NODE_MASK_ALL
,
192 * There are two global mutexes guarding cpuset structures. The first
193 * is the main control groups cgroup_mutex, accessed via
194 * cgroup_lock()/cgroup_unlock(). The second is the cpuset-specific
195 * callback_mutex, below. They can nest. It is ok to first take
196 * cgroup_mutex, then nest callback_mutex. We also require taking
197 * task_lock() when dereferencing a task's cpuset pointer. See "The
198 * task_lock() exception", at the end of this comment.
200 * A task must hold both mutexes to modify cpusets. If a task
201 * holds cgroup_mutex, then it blocks others wanting that mutex,
202 * ensuring that it is the only task able to also acquire callback_mutex
203 * and be able to modify cpusets. It can perform various checks on
204 * the cpuset structure first, knowing nothing will change. It can
205 * also allocate memory while just holding cgroup_mutex. While it is
206 * performing these checks, various callback routines can briefly
207 * acquire callback_mutex to query cpusets. Once it is ready to make
208 * the changes, it takes callback_mutex, blocking everyone else.
210 * Calls to the kernel memory allocator can not be made while holding
211 * callback_mutex, as that would risk double tripping on callback_mutex
212 * from one of the callbacks into the cpuset code from within
215 * If a task is only holding callback_mutex, then it has read-only
218 * The task_struct fields mems_allowed and mems_generation may only
219 * be accessed in the context of that task, so require no locks.
221 * The cpuset_common_file_write handler for operations that modify
222 * the cpuset hierarchy holds cgroup_mutex across the entire operation,
223 * single threading all such cpuset modifications across the system.
225 * The cpuset_common_file_read() handlers only hold callback_mutex across
226 * small pieces of code, such as when reading out possibly multi-word
227 * cpumasks and nodemasks.
229 * Accessing a task's cpuset should be done in accordance with the
230 * guidelines for accessing subsystem state in kernel/cgroup.c
233 static DEFINE_MUTEX(callback_mutex
);
235 /* This is ugly, but preserves the userspace API for existing cpuset
236 * users. If someone tries to mount the "cpuset" filesystem, we
237 * silently switch it to mount "cgroup" instead */
238 static int cpuset_get_sb(struct file_system_type
*fs_type
,
239 int flags
, const char *unused_dev_name
,
240 void *data
, struct vfsmount
*mnt
)
242 struct file_system_type
*cgroup_fs
= get_fs_type("cgroup");
247 "release_agent=/sbin/cpuset_release_agent";
248 ret
= cgroup_fs
->get_sb(cgroup_fs
, flags
,
249 unused_dev_name
, mountopts
, mnt
);
250 put_filesystem(cgroup_fs
);
255 static struct file_system_type cpuset_fs_type
= {
257 .get_sb
= cpuset_get_sb
,
261 * Return in *pmask the portion of a cpusets's cpus_allowed that
262 * are online. If none are online, walk up the cpuset hierarchy
263 * until we find one that does have some online cpus. If we get
264 * all the way to the top and still haven't found any online cpus,
265 * return cpu_online_map. Or if passed a NULL cs from an exit'ing
266 * task, return cpu_online_map.
268 * One way or another, we guarantee to return some non-empty subset
271 * Call with callback_mutex held.
274 static void guarantee_online_cpus(const struct cpuset
*cs
, cpumask_t
*pmask
)
276 while (cs
&& !cpus_intersects(cs
->cpus_allowed
, cpu_online_map
))
279 cpus_and(*pmask
, cs
->cpus_allowed
, cpu_online_map
);
281 *pmask
= cpu_online_map
;
282 BUG_ON(!cpus_intersects(*pmask
, cpu_online_map
));
286 * Return in *pmask the portion of a cpusets's mems_allowed that
287 * are online, with memory. If none are online with memory, walk
288 * up the cpuset hierarchy until we find one that does have some
289 * online mems. If we get all the way to the top and still haven't
290 * found any online mems, return node_states[N_HIGH_MEMORY].
292 * One way or another, we guarantee to return some non-empty subset
293 * of node_states[N_HIGH_MEMORY].
295 * Call with callback_mutex held.
298 static void guarantee_online_mems(const struct cpuset
*cs
, nodemask_t
*pmask
)
300 while (cs
&& !nodes_intersects(cs
->mems_allowed
,
301 node_states
[N_HIGH_MEMORY
]))
304 nodes_and(*pmask
, cs
->mems_allowed
,
305 node_states
[N_HIGH_MEMORY
]);
307 *pmask
= node_states
[N_HIGH_MEMORY
];
308 BUG_ON(!nodes_intersects(*pmask
, node_states
[N_HIGH_MEMORY
]));
312 * cpuset_update_task_memory_state - update task memory placement
314 * If the current tasks cpusets mems_allowed changed behind our
315 * backs, update current->mems_allowed, mems_generation and task NUMA
316 * mempolicy to the new value.
318 * Task mempolicy is updated by rebinding it relative to the
319 * current->cpuset if a task has its memory placement changed.
320 * Do not call this routine if in_interrupt().
322 * Call without callback_mutex or task_lock() held. May be
323 * called with or without cgroup_mutex held. Thanks in part to
324 * 'the_top_cpuset_hack', the task's cpuset pointer will never
325 * be NULL. This routine also might acquire callback_mutex and
326 * current->mm->mmap_sem during call.
328 * Reading current->cpuset->mems_generation doesn't need task_lock
329 * to guard the current->cpuset derefence, because it is guarded
330 * from concurrent freeing of current->cpuset using RCU.
332 * The rcu_dereference() is technically probably not needed,
333 * as I don't actually mind if I see a new cpuset pointer but
334 * an old value of mems_generation. However this really only
335 * matters on alpha systems using cpusets heavily. If I dropped
336 * that rcu_dereference(), it would save them a memory barrier.
337 * For all other arch's, rcu_dereference is a no-op anyway, and for
338 * alpha systems not using cpusets, another planned optimization,
339 * avoiding the rcu critical section for tasks in the root cpuset
340 * which is statically allocated, so can't vanish, will make this
341 * irrelevant. Better to use RCU as intended, than to engage in
342 * some cute trick to save a memory barrier that is impossible to
343 * test, for alpha systems using cpusets heavily, which might not
346 * This routine is needed to update the per-task mems_allowed data,
347 * within the tasks context, when it is trying to allocate memory
348 * (in various mm/mempolicy.c routines) and notices that some other
349 * task has been modifying its cpuset.
352 void cpuset_update_task_memory_state(void)
354 int my_cpusets_mem_gen
;
355 struct task_struct
*tsk
= current
;
358 if (task_cs(tsk
) == &top_cpuset
) {
359 /* Don't need rcu for top_cpuset. It's never freed. */
360 my_cpusets_mem_gen
= top_cpuset
.mems_generation
;
363 my_cpusets_mem_gen
= task_cs(current
)->mems_generation
;
367 if (my_cpusets_mem_gen
!= tsk
->cpuset_mems_generation
) {
368 mutex_lock(&callback_mutex
);
370 cs
= task_cs(tsk
); /* Maybe changed when task not locked */
371 guarantee_online_mems(cs
, &tsk
->mems_allowed
);
372 tsk
->cpuset_mems_generation
= cs
->mems_generation
;
373 if (is_spread_page(cs
))
374 tsk
->flags
|= PF_SPREAD_PAGE
;
376 tsk
->flags
&= ~PF_SPREAD_PAGE
;
377 if (is_spread_slab(cs
))
378 tsk
->flags
|= PF_SPREAD_SLAB
;
380 tsk
->flags
&= ~PF_SPREAD_SLAB
;
382 mutex_unlock(&callback_mutex
);
383 mpol_rebind_task(tsk
, &tsk
->mems_allowed
);
388 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
390 * One cpuset is a subset of another if all its allowed CPUs and
391 * Memory Nodes are a subset of the other, and its exclusive flags
392 * are only set if the other's are set. Call holding cgroup_mutex.
395 static int is_cpuset_subset(const struct cpuset
*p
, const struct cpuset
*q
)
397 return cpus_subset(p
->cpus_allowed
, q
->cpus_allowed
) &&
398 nodes_subset(p
->mems_allowed
, q
->mems_allowed
) &&
399 is_cpu_exclusive(p
) <= is_cpu_exclusive(q
) &&
400 is_mem_exclusive(p
) <= is_mem_exclusive(q
);
404 * validate_change() - Used to validate that any proposed cpuset change
405 * follows the structural rules for cpusets.
407 * If we replaced the flag and mask values of the current cpuset
408 * (cur) with those values in the trial cpuset (trial), would
409 * our various subset and exclusive rules still be valid? Presumes
412 * 'cur' is the address of an actual, in-use cpuset. Operations
413 * such as list traversal that depend on the actual address of the
414 * cpuset in the list must use cur below, not trial.
416 * 'trial' is the address of bulk structure copy of cur, with
417 * perhaps one or more of the fields cpus_allowed, mems_allowed,
418 * or flags changed to new, trial values.
420 * Return 0 if valid, -errno if not.
423 static int validate_change(const struct cpuset
*cur
, const struct cpuset
*trial
)
426 struct cpuset
*c
, *par
;
428 /* Each of our child cpusets must be a subset of us */
429 list_for_each_entry(cont
, &cur
->css
.cgroup
->children
, sibling
) {
430 if (!is_cpuset_subset(cgroup_cs(cont
), trial
))
434 /* Remaining checks don't apply to root cpuset */
435 if (cur
== &top_cpuset
)
440 /* We must be a subset of our parent cpuset */
441 if (!is_cpuset_subset(trial
, par
))
445 * If either I or some sibling (!= me) is exclusive, we can't
448 list_for_each_entry(cont
, &par
->css
.cgroup
->children
, sibling
) {
450 if ((is_cpu_exclusive(trial
) || is_cpu_exclusive(c
)) &&
452 cpus_intersects(trial
->cpus_allowed
, c
->cpus_allowed
))
454 if ((is_mem_exclusive(trial
) || is_mem_exclusive(c
)) &&
456 nodes_intersects(trial
->mems_allowed
, c
->mems_allowed
))
460 /* Cpusets with tasks can't have empty cpus_allowed or mems_allowed */
461 if (cgroup_task_count(cur
->css
.cgroup
)) {
462 if (cpus_empty(trial
->cpus_allowed
) ||
463 nodes_empty(trial
->mems_allowed
)) {
472 * Helper routine for rebuild_sched_domains().
473 * Do cpusets a, b have overlapping cpus_allowed masks?
476 static int cpusets_overlap(struct cpuset
*a
, struct cpuset
*b
)
478 return cpus_intersects(a
->cpus_allowed
, b
->cpus_allowed
);
482 * rebuild_sched_domains()
484 * If the flag 'sched_load_balance' of any cpuset with non-empty
485 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
486 * which has that flag enabled, or if any cpuset with a non-empty
487 * 'cpus' is removed, then call this routine to rebuild the
488 * scheduler's dynamic sched domains.
490 * This routine builds a partial partition of the systems CPUs
491 * (the set of non-overlappping cpumask_t's in the array 'part'
492 * below), and passes that partial partition to the kernel/sched.c
493 * partition_sched_domains() routine, which will rebuild the
494 * schedulers load balancing domains (sched domains) as specified
495 * by that partial partition. A 'partial partition' is a set of
496 * non-overlapping subsets whose union is a subset of that set.
498 * See "What is sched_load_balance" in Documentation/cpusets.txt
499 * for a background explanation of this.
501 * Does not return errors, on the theory that the callers of this
502 * routine would rather not worry about failures to rebuild sched
503 * domains when operating in the severe memory shortage situations
504 * that could cause allocation failures below.
506 * Call with cgroup_mutex held. May take callback_mutex during
507 * call due to the kfifo_alloc() and kmalloc() calls. May nest
508 * a call to the get_online_cpus()/put_online_cpus() pair.
509 * Must not be called holding callback_mutex, because we must not
510 * call get_online_cpus() while holding callback_mutex. Elsewhere
511 * the kernel nests callback_mutex inside get_online_cpus() calls.
512 * So the reverse nesting would risk an ABBA deadlock.
514 * The three key local variables below are:
515 * q - a kfifo queue of cpuset pointers, used to implement a
516 * top-down scan of all cpusets. This scan loads a pointer
517 * to each cpuset marked is_sched_load_balance into the
518 * array 'csa'. For our purposes, rebuilding the schedulers
519 * sched domains, we can ignore !is_sched_load_balance cpusets.
520 * csa - (for CpuSet Array) Array of pointers to all the cpusets
521 * that need to be load balanced, for convenient iterative
522 * access by the subsequent code that finds the best partition,
523 * i.e the set of domains (subsets) of CPUs such that the
524 * cpus_allowed of every cpuset marked is_sched_load_balance
525 * is a subset of one of these domains, while there are as
526 * many such domains as possible, each as small as possible.
527 * doms - Conversion of 'csa' to an array of cpumasks, for passing to
528 * the kernel/sched.c routine partition_sched_domains() in a
529 * convenient format, that can be easily compared to the prior
530 * value to determine what partition elements (sched domains)
531 * were changed (added or removed.)
533 * Finding the best partition (set of domains):
534 * The triple nested loops below over i, j, k scan over the
535 * load balanced cpusets (using the array of cpuset pointers in
536 * csa[]) looking for pairs of cpusets that have overlapping
537 * cpus_allowed, but which don't have the same 'pn' partition
538 * number and gives them in the same partition number. It keeps
539 * looping on the 'restart' label until it can no longer find
542 * The union of the cpus_allowed masks from the set of
543 * all cpusets having the same 'pn' value then form the one
544 * element of the partition (one sched domain) to be passed to
545 * partition_sched_domains().
548 static void rebuild_sched_domains(void)
550 struct kfifo
*q
; /* queue of cpusets to be scanned */
551 struct cpuset
*cp
; /* scans q */
552 struct cpuset
**csa
; /* array of all cpuset ptrs */
553 int csn
; /* how many cpuset ptrs in csa so far */
554 int i
, j
, k
; /* indices for partition finding loops */
555 cpumask_t
*doms
; /* resulting partition; i.e. sched domains */
556 int ndoms
; /* number of sched domains in result */
557 int nslot
; /* next empty doms[] cpumask_t slot */
563 /* Special case for the 99% of systems with one, full, sched domain */
564 if (is_sched_load_balance(&top_cpuset
)) {
566 doms
= kmalloc(sizeof(cpumask_t
), GFP_KERNEL
);
569 *doms
= top_cpuset
.cpus_allowed
;
573 q
= kfifo_alloc(number_of_cpusets
* sizeof(cp
), GFP_KERNEL
, NULL
);
576 csa
= kmalloc(number_of_cpusets
* sizeof(cp
), GFP_KERNEL
);
582 __kfifo_put(q
, (void *)&cp
, sizeof(cp
));
583 while (__kfifo_get(q
, (void *)&cp
, sizeof(cp
))) {
585 struct cpuset
*child
; /* scans child cpusets of cp */
586 if (is_sched_load_balance(cp
))
588 list_for_each_entry(cont
, &cp
->css
.cgroup
->children
, sibling
) {
589 child
= cgroup_cs(cont
);
590 __kfifo_put(q
, (void *)&child
, sizeof(cp
));
594 for (i
= 0; i
< csn
; i
++)
599 /* Find the best partition (set of sched domains) */
600 for (i
= 0; i
< csn
; i
++) {
601 struct cpuset
*a
= csa
[i
];
604 for (j
= 0; j
< csn
; j
++) {
605 struct cpuset
*b
= csa
[j
];
608 if (apn
!= bpn
&& cpusets_overlap(a
, b
)) {
609 for (k
= 0; k
< csn
; k
++) {
610 struct cpuset
*c
= csa
[k
];
615 ndoms
--; /* one less element */
621 /* Convert <csn, csa> to <ndoms, doms> */
622 doms
= kmalloc(ndoms
* sizeof(cpumask_t
), GFP_KERNEL
);
626 for (nslot
= 0, i
= 0; i
< csn
; i
++) {
627 struct cpuset
*a
= csa
[i
];
631 cpumask_t
*dp
= doms
+ nslot
;
633 if (nslot
== ndoms
) {
634 static int warnings
= 10;
637 "rebuild_sched_domains confused:"
638 " nslot %d, ndoms %d, csn %d, i %d,"
640 nslot
, ndoms
, csn
, i
, apn
);
647 for (j
= i
; j
< csn
; j
++) {
648 struct cpuset
*b
= csa
[j
];
651 cpus_or(*dp
, *dp
, b
->cpus_allowed
);
658 BUG_ON(nslot
!= ndoms
);
661 /* Have scheduler rebuild sched domains */
663 partition_sched_domains(ndoms
, doms
);
670 /* Don't kfree(doms) -- partition_sched_domains() does that. */
673 static inline int started_after_time(struct task_struct
*t1
,
674 struct timespec
*time
,
675 struct task_struct
*t2
)
677 int start_diff
= timespec_compare(&t1
->start_time
, time
);
678 if (start_diff
> 0) {
680 } else if (start_diff
< 0) {
684 * Arbitrarily, if two processes started at the same
685 * time, we'll say that the lower pointer value
686 * started first. Note that t2 may have exited by now
687 * so this may not be a valid pointer any longer, but
688 * that's fine - it still serves to distinguish
689 * between two tasks started (effectively)
696 static inline int started_after(void *p1
, void *p2
)
698 struct task_struct
*t1
= p1
;
699 struct task_struct
*t2
= p2
;
700 return started_after_time(t1
, &t2
->start_time
, t2
);
704 * cpuset_test_cpumask - test a task's cpus_allowed versus its cpuset's
706 * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
708 * Call with cgroup_mutex held. May take callback_mutex during call.
709 * Called for each task in a cgroup by cgroup_scan_tasks().
710 * Return nonzero if this tasks's cpus_allowed mask should be changed (in other
711 * words, if its mask is not equal to its cpuset's mask).
713 int cpuset_test_cpumask(struct task_struct
*tsk
, struct cgroup_scanner
*scan
)
715 return !cpus_equal(tsk
->cpus_allowed
,
716 (cgroup_cs(scan
->cg
))->cpus_allowed
);
720 * cpuset_change_cpumask - make a task's cpus_allowed the same as its cpuset's
722 * @scan: struct cgroup_scanner containing the cgroup of the task
724 * Called by cgroup_scan_tasks() for each task in a cgroup whose
725 * cpus_allowed mask needs to be changed.
727 * We don't need to re-check for the cgroup/cpuset membership, since we're
728 * holding cgroup_lock() at this point.
730 void cpuset_change_cpumask(struct task_struct
*tsk
, struct cgroup_scanner
*scan
)
732 set_cpus_allowed(tsk
, (cgroup_cs(scan
->cg
))->cpus_allowed
);
736 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
737 * @cs: the cpuset to consider
738 * @buf: buffer of cpu numbers written to this cpuset
740 static int update_cpumask(struct cpuset
*cs
, char *buf
)
742 struct cpuset trialcs
;
743 struct cgroup_scanner scan
;
744 struct ptr_heap heap
;
746 int is_load_balanced
;
748 /* top_cpuset.cpus_allowed tracks cpu_online_map; it's read-only */
749 if (cs
== &top_cpuset
)
755 * An empty cpus_allowed is ok only if the cpuset has no tasks.
756 * Since cpulist_parse() fails on an empty mask, we special case
757 * that parsing. The validate_change() call ensures that cpusets
758 * with tasks have cpus.
762 cpus_clear(trialcs
.cpus_allowed
);
764 retval
= cpulist_parse(buf
, trialcs
.cpus_allowed
);
768 cpus_and(trialcs
.cpus_allowed
, trialcs
.cpus_allowed
, cpu_online_map
);
769 retval
= validate_change(cs
, &trialcs
);
773 /* Nothing to do if the cpus didn't change */
774 if (cpus_equal(cs
->cpus_allowed
, trialcs
.cpus_allowed
))
777 retval
= heap_init(&heap
, PAGE_SIZE
, GFP_KERNEL
, &started_after
);
781 is_load_balanced
= is_sched_load_balance(&trialcs
);
783 mutex_lock(&callback_mutex
);
784 cs
->cpus_allowed
= trialcs
.cpus_allowed
;
785 mutex_unlock(&callback_mutex
);
788 * Scan tasks in the cpuset, and update the cpumasks of any
789 * that need an update.
791 scan
.cg
= cs
->css
.cgroup
;
792 scan
.test_task
= cpuset_test_cpumask
;
793 scan
.process_task
= cpuset_change_cpumask
;
795 cgroup_scan_tasks(&scan
);
798 if (is_load_balanced
)
799 rebuild_sched_domains();
806 * Migrate memory region from one set of nodes to another.
808 * Temporarilly set tasks mems_allowed to target nodes of migration,
809 * so that the migration code can allocate pages on these nodes.
811 * Call holding cgroup_mutex, so current's cpuset won't change
812 * during this call, as manage_mutex holds off any cpuset_attach()
813 * calls. Therefore we don't need to take task_lock around the
814 * call to guarantee_online_mems(), as we know no one is changing
817 * Hold callback_mutex around the two modifications of our tasks
818 * mems_allowed to synchronize with cpuset_mems_allowed().
820 * While the mm_struct we are migrating is typically from some
821 * other task, the task_struct mems_allowed that we are hacking
822 * is for our current task, which must allocate new pages for that
823 * migrating memory region.
825 * We call cpuset_update_task_memory_state() before hacking
826 * our tasks mems_allowed, so that we are assured of being in
827 * sync with our tasks cpuset, and in particular, callbacks to
828 * cpuset_update_task_memory_state() from nested page allocations
829 * won't see any mismatch of our cpuset and task mems_generation
830 * values, so won't overwrite our hacked tasks mems_allowed
834 static void cpuset_migrate_mm(struct mm_struct
*mm
, const nodemask_t
*from
,
835 const nodemask_t
*to
)
837 struct task_struct
*tsk
= current
;
839 cpuset_update_task_memory_state();
841 mutex_lock(&callback_mutex
);
842 tsk
->mems_allowed
= *to
;
843 mutex_unlock(&callback_mutex
);
845 do_migrate_pages(mm
, from
, to
, MPOL_MF_MOVE_ALL
);
847 mutex_lock(&callback_mutex
);
848 guarantee_online_mems(task_cs(tsk
),&tsk
->mems_allowed
);
849 mutex_unlock(&callback_mutex
);
853 * Handle user request to change the 'mems' memory placement
854 * of a cpuset. Needs to validate the request, update the
855 * cpusets mems_allowed and mems_generation, and for each
856 * task in the cpuset, rebind any vma mempolicies and if
857 * the cpuset is marked 'memory_migrate', migrate the tasks
858 * pages to the new memory.
860 * Call with cgroup_mutex held. May take callback_mutex during call.
861 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
862 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
863 * their mempolicies to the cpusets new mems_allowed.
866 static void *cpuset_being_rebound
;
868 static int update_nodemask(struct cpuset
*cs
, char *buf
)
870 struct cpuset trialcs
;
872 struct task_struct
*p
;
873 struct mm_struct
**mmarray
;
878 struct cgroup_iter it
;
881 * top_cpuset.mems_allowed tracks node_stats[N_HIGH_MEMORY];
884 if (cs
== &top_cpuset
)
890 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
891 * Since nodelist_parse() fails on an empty mask, we special case
892 * that parsing. The validate_change() call ensures that cpusets
893 * with tasks have memory.
897 nodes_clear(trialcs
.mems_allowed
);
899 retval
= nodelist_parse(buf
, trialcs
.mems_allowed
);
903 nodes_and(trialcs
.mems_allowed
, trialcs
.mems_allowed
,
904 node_states
[N_HIGH_MEMORY
]);
905 oldmem
= cs
->mems_allowed
;
906 if (nodes_equal(oldmem
, trialcs
.mems_allowed
)) {
907 retval
= 0; /* Too easy - nothing to do */
910 retval
= validate_change(cs
, &trialcs
);
914 mutex_lock(&callback_mutex
);
915 cs
->mems_allowed
= trialcs
.mems_allowed
;
916 cs
->mems_generation
= cpuset_mems_generation
++;
917 mutex_unlock(&callback_mutex
);
919 cpuset_being_rebound
= cs
; /* causes mpol_copy() rebind */
921 fudge
= 10; /* spare mmarray[] slots */
922 fudge
+= cpus_weight(cs
->cpus_allowed
); /* imagine one fork-bomb/cpu */
926 * Allocate mmarray[] to hold mm reference for each task
927 * in cpuset cs. Can't kmalloc GFP_KERNEL while holding
928 * tasklist_lock. We could use GFP_ATOMIC, but with a
929 * few more lines of code, we can retry until we get a big
930 * enough mmarray[] w/o using GFP_ATOMIC.
933 ntasks
= cgroup_task_count(cs
->css
.cgroup
); /* guess */
935 mmarray
= kmalloc(ntasks
* sizeof(*mmarray
), GFP_KERNEL
);
938 read_lock(&tasklist_lock
); /* block fork */
939 if (cgroup_task_count(cs
->css
.cgroup
) <= ntasks
)
940 break; /* got enough */
941 read_unlock(&tasklist_lock
); /* try again */
947 /* Load up mmarray[] with mm reference for each task in cpuset. */
948 cgroup_iter_start(cs
->css
.cgroup
, &it
);
949 while ((p
= cgroup_iter_next(cs
->css
.cgroup
, &it
))) {
950 struct mm_struct
*mm
;
954 "Cpuset mempolicy rebind incomplete.\n");
962 cgroup_iter_end(cs
->css
.cgroup
, &it
);
963 read_unlock(&tasklist_lock
);
966 * Now that we've dropped the tasklist spinlock, we can
967 * rebind the vma mempolicies of each mm in mmarray[] to their
968 * new cpuset, and release that mm. The mpol_rebind_mm()
969 * call takes mmap_sem, which we couldn't take while holding
970 * tasklist_lock. Forks can happen again now - the mpol_copy()
971 * cpuset_being_rebound check will catch such forks, and rebind
972 * their vma mempolicies too. Because we still hold the global
973 * cgroup_mutex, we know that no other rebind effort will
974 * be contending for the global variable cpuset_being_rebound.
975 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
976 * is idempotent. Also migrate pages in each mm to new nodes.
978 migrate
= is_memory_migrate(cs
);
979 for (i
= 0; i
< n
; i
++) {
980 struct mm_struct
*mm
= mmarray
[i
];
982 mpol_rebind_mm(mm
, &cs
->mems_allowed
);
984 cpuset_migrate_mm(mm
, &oldmem
, &cs
->mems_allowed
);
988 /* We're done rebinding vmas to this cpuset's new mems_allowed. */
990 cpuset_being_rebound
= NULL
;
996 int current_cpuset_is_being_rebound(void)
998 return task_cs(current
) == cpuset_being_rebound
;
1002 * Call with cgroup_mutex held.
1005 static int update_memory_pressure_enabled(struct cpuset
*cs
, char *buf
)
1007 if (simple_strtoul(buf
, NULL
, 10) != 0)
1008 cpuset_memory_pressure_enabled
= 1;
1010 cpuset_memory_pressure_enabled
= 0;
1015 * update_flag - read a 0 or a 1 in a file and update associated flag
1016 * bit: the bit to update (CS_CPU_EXCLUSIVE, CS_MEM_EXCLUSIVE,
1017 * CS_SCHED_LOAD_BALANCE,
1018 * CS_NOTIFY_ON_RELEASE, CS_MEMORY_MIGRATE,
1019 * CS_SPREAD_PAGE, CS_SPREAD_SLAB)
1020 * cs: the cpuset to update
1021 * buf: the buffer where we read the 0 or 1
1023 * Call with cgroup_mutex held.
1026 static int update_flag(cpuset_flagbits_t bit
, struct cpuset
*cs
, char *buf
)
1029 struct cpuset trialcs
;
1031 int cpus_nonempty
, balance_flag_changed
;
1033 turning_on
= (simple_strtoul(buf
, NULL
, 10) != 0);
1037 set_bit(bit
, &trialcs
.flags
);
1039 clear_bit(bit
, &trialcs
.flags
);
1041 err
= validate_change(cs
, &trialcs
);
1045 cpus_nonempty
= !cpus_empty(trialcs
.cpus_allowed
);
1046 balance_flag_changed
= (is_sched_load_balance(cs
) !=
1047 is_sched_load_balance(&trialcs
));
1049 mutex_lock(&callback_mutex
);
1050 cs
->flags
= trialcs
.flags
;
1051 mutex_unlock(&callback_mutex
);
1053 if (cpus_nonempty
&& balance_flag_changed
)
1054 rebuild_sched_domains();
1060 * Frequency meter - How fast is some event occurring?
1062 * These routines manage a digitally filtered, constant time based,
1063 * event frequency meter. There are four routines:
1064 * fmeter_init() - initialize a frequency meter.
1065 * fmeter_markevent() - called each time the event happens.
1066 * fmeter_getrate() - returns the recent rate of such events.
1067 * fmeter_update() - internal routine used to update fmeter.
1069 * A common data structure is passed to each of these routines,
1070 * which is used to keep track of the state required to manage the
1071 * frequency meter and its digital filter.
1073 * The filter works on the number of events marked per unit time.
1074 * The filter is single-pole low-pass recursive (IIR). The time unit
1075 * is 1 second. Arithmetic is done using 32-bit integers scaled to
1076 * simulate 3 decimal digits of precision (multiplied by 1000).
1078 * With an FM_COEF of 933, and a time base of 1 second, the filter
1079 * has a half-life of 10 seconds, meaning that if the events quit
1080 * happening, then the rate returned from the fmeter_getrate()
1081 * will be cut in half each 10 seconds, until it converges to zero.
1083 * It is not worth doing a real infinitely recursive filter. If more
1084 * than FM_MAXTICKS ticks have elapsed since the last filter event,
1085 * just compute FM_MAXTICKS ticks worth, by which point the level
1088 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
1089 * arithmetic overflow in the fmeter_update() routine.
1091 * Given the simple 32 bit integer arithmetic used, this meter works
1092 * best for reporting rates between one per millisecond (msec) and
1093 * one per 32 (approx) seconds. At constant rates faster than one
1094 * per msec it maxes out at values just under 1,000,000. At constant
1095 * rates between one per msec, and one per second it will stabilize
1096 * to a value N*1000, where N is the rate of events per second.
1097 * At constant rates between one per second and one per 32 seconds,
1098 * it will be choppy, moving up on the seconds that have an event,
1099 * and then decaying until the next event. At rates slower than
1100 * about one in 32 seconds, it decays all the way back to zero between
1104 #define FM_COEF 933 /* coefficient for half-life of 10 secs */
1105 #define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
1106 #define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
1107 #define FM_SCALE 1000 /* faux fixed point scale */
1109 /* Initialize a frequency meter */
1110 static void fmeter_init(struct fmeter
*fmp
)
1115 spin_lock_init(&fmp
->lock
);
1118 /* Internal meter update - process cnt events and update value */
1119 static void fmeter_update(struct fmeter
*fmp
)
1121 time_t now
= get_seconds();
1122 time_t ticks
= now
- fmp
->time
;
1127 ticks
= min(FM_MAXTICKS
, ticks
);
1129 fmp
->val
= (FM_COEF
* fmp
->val
) / FM_SCALE
;
1132 fmp
->val
+= ((FM_SCALE
- FM_COEF
) * fmp
->cnt
) / FM_SCALE
;
1136 /* Process any previous ticks, then bump cnt by one (times scale). */
1137 static void fmeter_markevent(struct fmeter
*fmp
)
1139 spin_lock(&fmp
->lock
);
1141 fmp
->cnt
= min(FM_MAXCNT
, fmp
->cnt
+ FM_SCALE
);
1142 spin_unlock(&fmp
->lock
);
1145 /* Process any previous ticks, then return current value. */
1146 static int fmeter_getrate(struct fmeter
*fmp
)
1150 spin_lock(&fmp
->lock
);
1153 spin_unlock(&fmp
->lock
);
1157 /* Called by cgroups to determine if a cpuset is usable; cgroup_mutex held */
1158 static int cpuset_can_attach(struct cgroup_subsys
*ss
,
1159 struct cgroup
*cont
, struct task_struct
*tsk
)
1161 struct cpuset
*cs
= cgroup_cs(cont
);
1163 if (cpus_empty(cs
->cpus_allowed
) || nodes_empty(cs
->mems_allowed
))
1166 return security_task_setscheduler(tsk
, 0, NULL
);
1169 static void cpuset_attach(struct cgroup_subsys
*ss
,
1170 struct cgroup
*cont
, struct cgroup
*oldcont
,
1171 struct task_struct
*tsk
)
1174 nodemask_t from
, to
;
1175 struct mm_struct
*mm
;
1176 struct cpuset
*cs
= cgroup_cs(cont
);
1177 struct cpuset
*oldcs
= cgroup_cs(oldcont
);
1179 mutex_lock(&callback_mutex
);
1180 guarantee_online_cpus(cs
, &cpus
);
1181 set_cpus_allowed(tsk
, cpus
);
1182 mutex_unlock(&callback_mutex
);
1184 from
= oldcs
->mems_allowed
;
1185 to
= cs
->mems_allowed
;
1186 mm
= get_task_mm(tsk
);
1188 mpol_rebind_mm(mm
, &to
);
1189 if (is_memory_migrate(cs
))
1190 cpuset_migrate_mm(mm
, &from
, &to
);
1196 /* The various types of files and directories in a cpuset file system */
1199 FILE_MEMORY_MIGRATE
,
1204 FILE_SCHED_LOAD_BALANCE
,
1205 FILE_MEMORY_PRESSURE_ENABLED
,
1206 FILE_MEMORY_PRESSURE
,
1209 } cpuset_filetype_t
;
1211 static ssize_t
cpuset_common_file_write(struct cgroup
*cont
,
1214 const char __user
*userbuf
,
1215 size_t nbytes
, loff_t
*unused_ppos
)
1217 struct cpuset
*cs
= cgroup_cs(cont
);
1218 cpuset_filetype_t type
= cft
->private;
1222 /* Crude upper limit on largest legitimate cpulist user might write. */
1223 if (nbytes
> 100U + 6 * max(NR_CPUS
, MAX_NUMNODES
))
1226 /* +1 for nul-terminator */
1227 if ((buffer
= kmalloc(nbytes
+ 1, GFP_KERNEL
)) == 0)
1230 if (copy_from_user(buffer
, userbuf
, nbytes
)) {
1234 buffer
[nbytes
] = 0; /* nul-terminate */
1238 if (cgroup_is_removed(cont
)) {
1245 retval
= update_cpumask(cs
, buffer
);
1248 retval
= update_nodemask(cs
, buffer
);
1250 case FILE_CPU_EXCLUSIVE
:
1251 retval
= update_flag(CS_CPU_EXCLUSIVE
, cs
, buffer
);
1253 case FILE_MEM_EXCLUSIVE
:
1254 retval
= update_flag(CS_MEM_EXCLUSIVE
, cs
, buffer
);
1256 case FILE_SCHED_LOAD_BALANCE
:
1257 retval
= update_flag(CS_SCHED_LOAD_BALANCE
, cs
, buffer
);
1259 case FILE_MEMORY_MIGRATE
:
1260 retval
= update_flag(CS_MEMORY_MIGRATE
, cs
, buffer
);
1262 case FILE_MEMORY_PRESSURE_ENABLED
:
1263 retval
= update_memory_pressure_enabled(cs
, buffer
);
1265 case FILE_MEMORY_PRESSURE
:
1268 case FILE_SPREAD_PAGE
:
1269 retval
= update_flag(CS_SPREAD_PAGE
, cs
, buffer
);
1270 cs
->mems_generation
= cpuset_mems_generation
++;
1272 case FILE_SPREAD_SLAB
:
1273 retval
= update_flag(CS_SPREAD_SLAB
, cs
, buffer
);
1274 cs
->mems_generation
= cpuset_mems_generation
++;
1291 * These ascii lists should be read in a single call, by using a user
1292 * buffer large enough to hold the entire map. If read in smaller
1293 * chunks, there is no guarantee of atomicity. Since the display format
1294 * used, list of ranges of sequential numbers, is variable length,
1295 * and since these maps can change value dynamically, one could read
1296 * gibberish by doing partial reads while a list was changing.
1297 * A single large read to a buffer that crosses a page boundary is
1298 * ok, because the result being copied to user land is not recomputed
1299 * across a page fault.
1302 static int cpuset_sprintf_cpulist(char *page
, struct cpuset
*cs
)
1306 mutex_lock(&callback_mutex
);
1307 mask
= cs
->cpus_allowed
;
1308 mutex_unlock(&callback_mutex
);
1310 return cpulist_scnprintf(page
, PAGE_SIZE
, mask
);
1313 static int cpuset_sprintf_memlist(char *page
, struct cpuset
*cs
)
1317 mutex_lock(&callback_mutex
);
1318 mask
= cs
->mems_allowed
;
1319 mutex_unlock(&callback_mutex
);
1321 return nodelist_scnprintf(page
, PAGE_SIZE
, mask
);
1324 static ssize_t
cpuset_common_file_read(struct cgroup
*cont
,
1328 size_t nbytes
, loff_t
*ppos
)
1330 struct cpuset
*cs
= cgroup_cs(cont
);
1331 cpuset_filetype_t type
= cft
->private;
1336 if (!(page
= (char *)__get_free_page(GFP_TEMPORARY
)))
1343 s
+= cpuset_sprintf_cpulist(s
, cs
);
1346 s
+= cpuset_sprintf_memlist(s
, cs
);
1348 case FILE_CPU_EXCLUSIVE
:
1349 *s
++ = is_cpu_exclusive(cs
) ? '1' : '0';
1351 case FILE_MEM_EXCLUSIVE
:
1352 *s
++ = is_mem_exclusive(cs
) ? '1' : '0';
1354 case FILE_SCHED_LOAD_BALANCE
:
1355 *s
++ = is_sched_load_balance(cs
) ? '1' : '0';
1357 case FILE_MEMORY_MIGRATE
:
1358 *s
++ = is_memory_migrate(cs
) ? '1' : '0';
1360 case FILE_MEMORY_PRESSURE_ENABLED
:
1361 *s
++ = cpuset_memory_pressure_enabled
? '1' : '0';
1363 case FILE_MEMORY_PRESSURE
:
1364 s
+= sprintf(s
, "%d", fmeter_getrate(&cs
->fmeter
));
1366 case FILE_SPREAD_PAGE
:
1367 *s
++ = is_spread_page(cs
) ? '1' : '0';
1369 case FILE_SPREAD_SLAB
:
1370 *s
++ = is_spread_slab(cs
) ? '1' : '0';
1378 retval
= simple_read_from_buffer(buf
, nbytes
, ppos
, page
, s
- page
);
1380 free_page((unsigned long)page
);
1389 * for the common functions, 'private' gives the type of file
1392 static struct cftype cft_cpus
= {
1394 .read
= cpuset_common_file_read
,
1395 .write
= cpuset_common_file_write
,
1396 .private = FILE_CPULIST
,
1399 static struct cftype cft_mems
= {
1401 .read
= cpuset_common_file_read
,
1402 .write
= cpuset_common_file_write
,
1403 .private = FILE_MEMLIST
,
1406 static struct cftype cft_cpu_exclusive
= {
1407 .name
= "cpu_exclusive",
1408 .read
= cpuset_common_file_read
,
1409 .write
= cpuset_common_file_write
,
1410 .private = FILE_CPU_EXCLUSIVE
,
1413 static struct cftype cft_mem_exclusive
= {
1414 .name
= "mem_exclusive",
1415 .read
= cpuset_common_file_read
,
1416 .write
= cpuset_common_file_write
,
1417 .private = FILE_MEM_EXCLUSIVE
,
1420 static struct cftype cft_sched_load_balance
= {
1421 .name
= "sched_load_balance",
1422 .read
= cpuset_common_file_read
,
1423 .write
= cpuset_common_file_write
,
1424 .private = FILE_SCHED_LOAD_BALANCE
,
1427 static struct cftype cft_memory_migrate
= {
1428 .name
= "memory_migrate",
1429 .read
= cpuset_common_file_read
,
1430 .write
= cpuset_common_file_write
,
1431 .private = FILE_MEMORY_MIGRATE
,
1434 static struct cftype cft_memory_pressure_enabled
= {
1435 .name
= "memory_pressure_enabled",
1436 .read
= cpuset_common_file_read
,
1437 .write
= cpuset_common_file_write
,
1438 .private = FILE_MEMORY_PRESSURE_ENABLED
,
1441 static struct cftype cft_memory_pressure
= {
1442 .name
= "memory_pressure",
1443 .read
= cpuset_common_file_read
,
1444 .write
= cpuset_common_file_write
,
1445 .private = FILE_MEMORY_PRESSURE
,
1448 static struct cftype cft_spread_page
= {
1449 .name
= "memory_spread_page",
1450 .read
= cpuset_common_file_read
,
1451 .write
= cpuset_common_file_write
,
1452 .private = FILE_SPREAD_PAGE
,
1455 static struct cftype cft_spread_slab
= {
1456 .name
= "memory_spread_slab",
1457 .read
= cpuset_common_file_read
,
1458 .write
= cpuset_common_file_write
,
1459 .private = FILE_SPREAD_SLAB
,
1462 static int cpuset_populate(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
1466 if ((err
= cgroup_add_file(cont
, ss
, &cft_cpus
)) < 0)
1468 if ((err
= cgroup_add_file(cont
, ss
, &cft_mems
)) < 0)
1470 if ((err
= cgroup_add_file(cont
, ss
, &cft_cpu_exclusive
)) < 0)
1472 if ((err
= cgroup_add_file(cont
, ss
, &cft_mem_exclusive
)) < 0)
1474 if ((err
= cgroup_add_file(cont
, ss
, &cft_memory_migrate
)) < 0)
1476 if ((err
= cgroup_add_file(cont
, ss
, &cft_sched_load_balance
)) < 0)
1478 if ((err
= cgroup_add_file(cont
, ss
, &cft_memory_pressure
)) < 0)
1480 if ((err
= cgroup_add_file(cont
, ss
, &cft_spread_page
)) < 0)
1482 if ((err
= cgroup_add_file(cont
, ss
, &cft_spread_slab
)) < 0)
1484 /* memory_pressure_enabled is in root cpuset only */
1485 if (err
== 0 && !cont
->parent
)
1486 err
= cgroup_add_file(cont
, ss
,
1487 &cft_memory_pressure_enabled
);
1492 * post_clone() is called at the end of cgroup_clone().
1493 * 'cgroup' was just created automatically as a result of
1494 * a cgroup_clone(), and the current task is about to
1495 * be moved into 'cgroup'.
1497 * Currently we refuse to set up the cgroup - thereby
1498 * refusing the task to be entered, and as a result refusing
1499 * the sys_unshare() or clone() which initiated it - if any
1500 * sibling cpusets have exclusive cpus or mem.
1502 * If this becomes a problem for some users who wish to
1503 * allow that scenario, then cpuset_post_clone() could be
1504 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
1505 * (and likewise for mems) to the new cgroup. Called with cgroup_mutex
1508 static void cpuset_post_clone(struct cgroup_subsys
*ss
,
1509 struct cgroup
*cgroup
)
1511 struct cgroup
*parent
, *child
;
1512 struct cpuset
*cs
, *parent_cs
;
1514 parent
= cgroup
->parent
;
1515 list_for_each_entry(child
, &parent
->children
, sibling
) {
1516 cs
= cgroup_cs(child
);
1517 if (is_mem_exclusive(cs
) || is_cpu_exclusive(cs
))
1520 cs
= cgroup_cs(cgroup
);
1521 parent_cs
= cgroup_cs(parent
);
1523 cs
->mems_allowed
= parent_cs
->mems_allowed
;
1524 cs
->cpus_allowed
= parent_cs
->cpus_allowed
;
1529 * cpuset_create - create a cpuset
1530 * ss: cpuset cgroup subsystem
1531 * cont: control group that the new cpuset will be part of
1534 static struct cgroup_subsys_state
*cpuset_create(
1535 struct cgroup_subsys
*ss
,
1536 struct cgroup
*cont
)
1539 struct cpuset
*parent
;
1541 if (!cont
->parent
) {
1542 /* This is early initialization for the top cgroup */
1543 top_cpuset
.mems_generation
= cpuset_mems_generation
++;
1544 return &top_cpuset
.css
;
1546 parent
= cgroup_cs(cont
->parent
);
1547 cs
= kmalloc(sizeof(*cs
), GFP_KERNEL
);
1549 return ERR_PTR(-ENOMEM
);
1551 cpuset_update_task_memory_state();
1553 if (is_spread_page(parent
))
1554 set_bit(CS_SPREAD_PAGE
, &cs
->flags
);
1555 if (is_spread_slab(parent
))
1556 set_bit(CS_SPREAD_SLAB
, &cs
->flags
);
1557 set_bit(CS_SCHED_LOAD_BALANCE
, &cs
->flags
);
1558 cs
->cpus_allowed
= CPU_MASK_NONE
;
1559 cs
->mems_allowed
= NODE_MASK_NONE
;
1560 cs
->mems_generation
= cpuset_mems_generation
++;
1561 fmeter_init(&cs
->fmeter
);
1563 cs
->parent
= parent
;
1564 number_of_cpusets
++;
1569 * Locking note on the strange update_flag() call below:
1571 * If the cpuset being removed has its flag 'sched_load_balance'
1572 * enabled, then simulate turning sched_load_balance off, which
1573 * will call rebuild_sched_domains(). The get_online_cpus()
1574 * call in rebuild_sched_domains() must not be made while holding
1575 * callback_mutex. Elsewhere the kernel nests callback_mutex inside
1576 * get_online_cpus() calls. So the reverse nesting would risk an
1580 static void cpuset_destroy(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
1582 struct cpuset
*cs
= cgroup_cs(cont
);
1584 cpuset_update_task_memory_state();
1586 if (is_sched_load_balance(cs
))
1587 update_flag(CS_SCHED_LOAD_BALANCE
, cs
, "0");
1589 number_of_cpusets
--;
1593 struct cgroup_subsys cpuset_subsys
= {
1595 .create
= cpuset_create
,
1596 .destroy
= cpuset_destroy
,
1597 .can_attach
= cpuset_can_attach
,
1598 .attach
= cpuset_attach
,
1599 .populate
= cpuset_populate
,
1600 .post_clone
= cpuset_post_clone
,
1601 .subsys_id
= cpuset_subsys_id
,
1606 * cpuset_init_early - just enough so that the calls to
1607 * cpuset_update_task_memory_state() in early init code
1611 int __init
cpuset_init_early(void)
1613 top_cpuset
.mems_generation
= cpuset_mems_generation
++;
1619 * cpuset_init - initialize cpusets at system boot
1621 * Description: Initialize top_cpuset and the cpuset internal file system,
1624 int __init
cpuset_init(void)
1628 top_cpuset
.cpus_allowed
= CPU_MASK_ALL
;
1629 top_cpuset
.mems_allowed
= NODE_MASK_ALL
;
1631 fmeter_init(&top_cpuset
.fmeter
);
1632 top_cpuset
.mems_generation
= cpuset_mems_generation
++;
1633 set_bit(CS_SCHED_LOAD_BALANCE
, &top_cpuset
.flags
);
1635 err
= register_filesystem(&cpuset_fs_type
);
1639 number_of_cpusets
= 1;
1644 * cpuset_do_move_task - move a given task to another cpuset
1645 * @tsk: pointer to task_struct the task to move
1646 * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
1648 * Called by cgroup_scan_tasks() for each task in a cgroup.
1649 * Return nonzero to stop the walk through the tasks.
1651 void cpuset_do_move_task(struct task_struct
*tsk
, struct cgroup_scanner
*scan
)
1653 struct cpuset_hotplug_scanner
*chsp
;
1655 chsp
= container_of(scan
, struct cpuset_hotplug_scanner
, scan
);
1656 cgroup_attach_task(chsp
->to
, tsk
);
1660 * move_member_tasks_to_cpuset - move tasks from one cpuset to another
1661 * @from: cpuset in which the tasks currently reside
1662 * @to: cpuset to which the tasks will be moved
1664 * Called with cgroup_mutex held
1665 * callback_mutex must not be held, as cpuset_attach() will take it.
1667 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
1668 * calling callback functions for each.
1670 static void move_member_tasks_to_cpuset(struct cpuset
*from
, struct cpuset
*to
)
1672 struct cpuset_hotplug_scanner scan
;
1674 scan
.scan
.cg
= from
->css
.cgroup
;
1675 scan
.scan
.test_task
= NULL
; /* select all tasks in cgroup */
1676 scan
.scan
.process_task
= cpuset_do_move_task
;
1677 scan
.scan
.heap
= NULL
;
1678 scan
.to
= to
->css
.cgroup
;
1680 if (cgroup_scan_tasks((struct cgroup_scanner
*)&scan
))
1681 printk(KERN_ERR
"move_member_tasks_to_cpuset: "
1682 "cgroup_scan_tasks failed\n");
1686 * If common_cpu_mem_hotplug_unplug(), below, unplugs any CPUs
1687 * or memory nodes, we need to walk over the cpuset hierarchy,
1688 * removing that CPU or node from all cpusets. If this removes the
1689 * last CPU or node from a cpuset, then move the tasks in the empty
1690 * cpuset to its next-highest non-empty parent.
1692 * Called with cgroup_mutex held
1693 * callback_mutex must not be held, as cpuset_attach() will take it.
1695 static void remove_tasks_in_empty_cpuset(struct cpuset
*cs
)
1697 struct cpuset
*parent
;
1700 * The cgroup's css_sets list is in use if there are tasks
1701 * in the cpuset; the list is empty if there are none;
1702 * the cs->css.refcnt seems always 0.
1704 if (list_empty(&cs
->css
.cgroup
->css_sets
))
1708 * Find its next-highest non-empty parent, (top cpuset
1709 * has online cpus, so can't be empty).
1711 parent
= cs
->parent
;
1712 while (cpus_empty(parent
->cpus_allowed
) ||
1713 nodes_empty(parent
->mems_allowed
))
1714 parent
= parent
->parent
;
1716 move_member_tasks_to_cpuset(cs
, parent
);
1720 * Walk the specified cpuset subtree and look for empty cpusets.
1721 * The tasks of such cpuset must be moved to a parent cpuset.
1723 * Called with cgroup_mutex held. We take callback_mutex to modify
1724 * cpus_allowed and mems_allowed.
1726 * This walk processes the tree from top to bottom, completing one layer
1727 * before dropping down to the next. It always processes a node before
1728 * any of its children.
1730 * For now, since we lack memory hot unplug, we'll never see a cpuset
1731 * that has tasks along with an empty 'mems'. But if we did see such
1732 * a cpuset, we'd handle it just like we do if its 'cpus' was empty.
1734 static void scan_for_empty_cpusets(const struct cpuset
*root
)
1736 struct cpuset
*cp
; /* scans cpusets being updated */
1737 struct cpuset
*child
; /* scans child cpusets of cp */
1738 struct list_head queue
;
1739 struct cgroup
*cont
;
1741 INIT_LIST_HEAD(&queue
);
1743 list_add_tail((struct list_head
*)&root
->stack_list
, &queue
);
1745 while (!list_empty(&queue
)) {
1746 cp
= container_of(queue
.next
, struct cpuset
, stack_list
);
1747 list_del(queue
.next
);
1748 list_for_each_entry(cont
, &cp
->css
.cgroup
->children
, sibling
) {
1749 child
= cgroup_cs(cont
);
1750 list_add_tail(&child
->stack_list
, &queue
);
1752 cont
= cp
->css
.cgroup
;
1754 /* Continue past cpusets with all cpus, mems online */
1755 if (cpus_subset(cp
->cpus_allowed
, cpu_online_map
) &&
1756 nodes_subset(cp
->mems_allowed
, node_states
[N_HIGH_MEMORY
]))
1759 /* Remove offline cpus and mems from this cpuset. */
1760 mutex_lock(&callback_mutex
);
1761 cpus_and(cp
->cpus_allowed
, cp
->cpus_allowed
, cpu_online_map
);
1762 nodes_and(cp
->mems_allowed
, cp
->mems_allowed
,
1763 node_states
[N_HIGH_MEMORY
]);
1764 mutex_unlock(&callback_mutex
);
1766 /* Move tasks from the empty cpuset to a parent */
1767 if (cpus_empty(cp
->cpus_allowed
) ||
1768 nodes_empty(cp
->mems_allowed
))
1769 remove_tasks_in_empty_cpuset(cp
);
1774 * The cpus_allowed and mems_allowed nodemasks in the top_cpuset track
1775 * cpu_online_map and node_states[N_HIGH_MEMORY]. Force the top cpuset to
1776 * track what's online after any CPU or memory node hotplug or unplug event.
1778 * Since there are two callers of this routine, one for CPU hotplug
1779 * events and one for memory node hotplug events, we could have coded
1780 * two separate routines here. We code it as a single common routine
1781 * in order to minimize text size.
1784 static void common_cpu_mem_hotplug_unplug(void)
1788 top_cpuset
.cpus_allowed
= cpu_online_map
;
1789 top_cpuset
.mems_allowed
= node_states
[N_HIGH_MEMORY
];
1790 scan_for_empty_cpusets(&top_cpuset
);
1796 * The top_cpuset tracks what CPUs and Memory Nodes are online,
1797 * period. This is necessary in order to make cpusets transparent
1798 * (of no affect) on systems that are actively using CPU hotplug
1799 * but making no active use of cpusets.
1801 * This routine ensures that top_cpuset.cpus_allowed tracks
1802 * cpu_online_map on each CPU hotplug (cpuhp) event.
1805 static int cpuset_handle_cpuhp(struct notifier_block
*unused_nb
,
1806 unsigned long phase
, void *unused_cpu
)
1808 if (phase
== CPU_DYING
|| phase
== CPU_DYING_FROZEN
)
1811 common_cpu_mem_hotplug_unplug();
1815 #ifdef CONFIG_MEMORY_HOTPLUG
1817 * Keep top_cpuset.mems_allowed tracking node_states[N_HIGH_MEMORY].
1818 * Call this routine anytime after you change
1819 * node_states[N_HIGH_MEMORY].
1820 * See also the previous routine cpuset_handle_cpuhp().
1823 void cpuset_track_online_nodes(void)
1825 common_cpu_mem_hotplug_unplug();
1830 * cpuset_init_smp - initialize cpus_allowed
1832 * Description: Finish top cpuset after cpu, node maps are initialized
1835 void __init
cpuset_init_smp(void)
1837 top_cpuset
.cpus_allowed
= cpu_online_map
;
1838 top_cpuset
.mems_allowed
= node_states
[N_HIGH_MEMORY
];
1840 hotcpu_notifier(cpuset_handle_cpuhp
, 0);
1845 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
1846 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
1848 * Description: Returns the cpumask_t cpus_allowed of the cpuset
1849 * attached to the specified @tsk. Guaranteed to return some non-empty
1850 * subset of cpu_online_map, even if this means going outside the
1854 cpumask_t
cpuset_cpus_allowed(struct task_struct
*tsk
)
1858 mutex_lock(&callback_mutex
);
1859 mask
= cpuset_cpus_allowed_locked(tsk
);
1860 mutex_unlock(&callback_mutex
);
1866 * cpuset_cpus_allowed_locked - return cpus_allowed mask from a tasks cpuset.
1867 * Must be called with callback_mutex held.
1869 cpumask_t
cpuset_cpus_allowed_locked(struct task_struct
*tsk
)
1874 guarantee_online_cpus(task_cs(tsk
), &mask
);
1880 void cpuset_init_current_mems_allowed(void)
1882 current
->mems_allowed
= NODE_MASK_ALL
;
1886 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
1887 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
1889 * Description: Returns the nodemask_t mems_allowed of the cpuset
1890 * attached to the specified @tsk. Guaranteed to return some non-empty
1891 * subset of node_states[N_HIGH_MEMORY], even if this means going outside the
1895 nodemask_t
cpuset_mems_allowed(struct task_struct
*tsk
)
1899 mutex_lock(&callback_mutex
);
1901 guarantee_online_mems(task_cs(tsk
), &mask
);
1903 mutex_unlock(&callback_mutex
);
1909 * cpuset_zonelist_valid_mems_allowed - check zonelist vs. curremt mems_allowed
1910 * @zl: the zonelist to be checked
1912 * Are any of the nodes on zonelist zl allowed in current->mems_allowed?
1914 int cpuset_zonelist_valid_mems_allowed(struct zonelist
*zl
)
1918 for (i
= 0; zl
->zones
[i
]; i
++) {
1919 int nid
= zone_to_nid(zl
->zones
[i
]);
1921 if (node_isset(nid
, current
->mems_allowed
))
1928 * nearest_exclusive_ancestor() - Returns the nearest mem_exclusive
1929 * ancestor to the specified cpuset. Call holding callback_mutex.
1930 * If no ancestor is mem_exclusive (an unusual configuration), then
1931 * returns the root cpuset.
1933 static const struct cpuset
*nearest_exclusive_ancestor(const struct cpuset
*cs
)
1935 while (!is_mem_exclusive(cs
) && cs
->parent
)
1941 * cpuset_zone_allowed_softwall - Can we allocate on zone z's memory node?
1942 * @z: is this zone on an allowed node?
1943 * @gfp_mask: memory allocation flags
1945 * If we're in interrupt, yes, we can always allocate. If
1946 * __GFP_THISNODE is set, yes, we can always allocate. If zone
1947 * z's node is in our tasks mems_allowed, yes. If it's not a
1948 * __GFP_HARDWALL request and this zone's nodes is in the nearest
1949 * mem_exclusive cpuset ancestor to this tasks cpuset, yes.
1950 * If the task has been OOM killed and has access to memory reserves
1951 * as specified by the TIF_MEMDIE flag, yes.
1954 * If __GFP_HARDWALL is set, cpuset_zone_allowed_softwall()
1955 * reduces to cpuset_zone_allowed_hardwall(). Otherwise,
1956 * cpuset_zone_allowed_softwall() might sleep, and might allow a zone
1957 * from an enclosing cpuset.
1959 * cpuset_zone_allowed_hardwall() only handles the simpler case of
1960 * hardwall cpusets, and never sleeps.
1962 * The __GFP_THISNODE placement logic is really handled elsewhere,
1963 * by forcibly using a zonelist starting at a specified node, and by
1964 * (in get_page_from_freelist()) refusing to consider the zones for
1965 * any node on the zonelist except the first. By the time any such
1966 * calls get to this routine, we should just shut up and say 'yes'.
1968 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
1969 * and do not allow allocations outside the current tasks cpuset
1970 * unless the task has been OOM killed as is marked TIF_MEMDIE.
1971 * GFP_KERNEL allocations are not so marked, so can escape to the
1972 * nearest enclosing mem_exclusive ancestor cpuset.
1974 * Scanning up parent cpusets requires callback_mutex. The
1975 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
1976 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
1977 * current tasks mems_allowed came up empty on the first pass over
1978 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
1979 * cpuset are short of memory, might require taking the callback_mutex
1982 * The first call here from mm/page_alloc:get_page_from_freelist()
1983 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
1984 * so no allocation on a node outside the cpuset is allowed (unless
1985 * in interrupt, of course).
1987 * The second pass through get_page_from_freelist() doesn't even call
1988 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
1989 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
1990 * in alloc_flags. That logic and the checks below have the combined
1992 * in_interrupt - any node ok (current task context irrelevant)
1993 * GFP_ATOMIC - any node ok
1994 * TIF_MEMDIE - any node ok
1995 * GFP_KERNEL - any node in enclosing mem_exclusive cpuset ok
1996 * GFP_USER - only nodes in current tasks mems allowed ok.
1999 * Don't call cpuset_zone_allowed_softwall if you can't sleep, unless you
2000 * pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
2001 * the code that might scan up ancestor cpusets and sleep.
2004 int __cpuset_zone_allowed_softwall(struct zone
*z
, gfp_t gfp_mask
)
2006 int node
; /* node that zone z is on */
2007 const struct cpuset
*cs
; /* current cpuset ancestors */
2008 int allowed
; /* is allocation in zone z allowed? */
2010 if (in_interrupt() || (gfp_mask
& __GFP_THISNODE
))
2012 node
= zone_to_nid(z
);
2013 might_sleep_if(!(gfp_mask
& __GFP_HARDWALL
));
2014 if (node_isset(node
, current
->mems_allowed
))
2017 * Allow tasks that have access to memory reserves because they have
2018 * been OOM killed to get memory anywhere.
2020 if (unlikely(test_thread_flag(TIF_MEMDIE
)))
2022 if (gfp_mask
& __GFP_HARDWALL
) /* If hardwall request, stop here */
2025 if (current
->flags
& PF_EXITING
) /* Let dying task have memory */
2028 /* Not hardwall and node outside mems_allowed: scan up cpusets */
2029 mutex_lock(&callback_mutex
);
2032 cs
= nearest_exclusive_ancestor(task_cs(current
));
2033 task_unlock(current
);
2035 allowed
= node_isset(node
, cs
->mems_allowed
);
2036 mutex_unlock(&callback_mutex
);
2041 * cpuset_zone_allowed_hardwall - Can we allocate on zone z's memory node?
2042 * @z: is this zone on an allowed node?
2043 * @gfp_mask: memory allocation flags
2045 * If we're in interrupt, yes, we can always allocate.
2046 * If __GFP_THISNODE is set, yes, we can always allocate. If zone
2047 * z's node is in our tasks mems_allowed, yes. If the task has been
2048 * OOM killed and has access to memory reserves as specified by the
2049 * TIF_MEMDIE flag, yes. Otherwise, no.
2051 * The __GFP_THISNODE placement logic is really handled elsewhere,
2052 * by forcibly using a zonelist starting at a specified node, and by
2053 * (in get_page_from_freelist()) refusing to consider the zones for
2054 * any node on the zonelist except the first. By the time any such
2055 * calls get to this routine, we should just shut up and say 'yes'.
2057 * Unlike the cpuset_zone_allowed_softwall() variant, above,
2058 * this variant requires that the zone be in the current tasks
2059 * mems_allowed or that we're in interrupt. It does not scan up the
2060 * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
2064 int __cpuset_zone_allowed_hardwall(struct zone
*z
, gfp_t gfp_mask
)
2066 int node
; /* node that zone z is on */
2068 if (in_interrupt() || (gfp_mask
& __GFP_THISNODE
))
2070 node
= zone_to_nid(z
);
2071 if (node_isset(node
, current
->mems_allowed
))
2074 * Allow tasks that have access to memory reserves because they have
2075 * been OOM killed to get memory anywhere.
2077 if (unlikely(test_thread_flag(TIF_MEMDIE
)))
2083 * cpuset_lock - lock out any changes to cpuset structures
2085 * The out of memory (oom) code needs to mutex_lock cpusets
2086 * from being changed while it scans the tasklist looking for a
2087 * task in an overlapping cpuset. Expose callback_mutex via this
2088 * cpuset_lock() routine, so the oom code can lock it, before
2089 * locking the task list. The tasklist_lock is a spinlock, so
2090 * must be taken inside callback_mutex.
2093 void cpuset_lock(void)
2095 mutex_lock(&callback_mutex
);
2099 * cpuset_unlock - release lock on cpuset changes
2101 * Undo the lock taken in a previous cpuset_lock() call.
2104 void cpuset_unlock(void)
2106 mutex_unlock(&callback_mutex
);
2110 * cpuset_mem_spread_node() - On which node to begin search for a page
2112 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
2113 * tasks in a cpuset with is_spread_page or is_spread_slab set),
2114 * and if the memory allocation used cpuset_mem_spread_node()
2115 * to determine on which node to start looking, as it will for
2116 * certain page cache or slab cache pages such as used for file
2117 * system buffers and inode caches, then instead of starting on the
2118 * local node to look for a free page, rather spread the starting
2119 * node around the tasks mems_allowed nodes.
2121 * We don't have to worry about the returned node being offline
2122 * because "it can't happen", and even if it did, it would be ok.
2124 * The routines calling guarantee_online_mems() are careful to
2125 * only set nodes in task->mems_allowed that are online. So it
2126 * should not be possible for the following code to return an
2127 * offline node. But if it did, that would be ok, as this routine
2128 * is not returning the node where the allocation must be, only
2129 * the node where the search should start. The zonelist passed to
2130 * __alloc_pages() will include all nodes. If the slab allocator
2131 * is passed an offline node, it will fall back to the local node.
2132 * See kmem_cache_alloc_node().
2135 int cpuset_mem_spread_node(void)
2139 node
= next_node(current
->cpuset_mem_spread_rotor
, current
->mems_allowed
);
2140 if (node
== MAX_NUMNODES
)
2141 node
= first_node(current
->mems_allowed
);
2142 current
->cpuset_mem_spread_rotor
= node
;
2145 EXPORT_SYMBOL_GPL(cpuset_mem_spread_node
);
2148 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
2149 * @tsk1: pointer to task_struct of some task.
2150 * @tsk2: pointer to task_struct of some other task.
2152 * Description: Return true if @tsk1's mems_allowed intersects the
2153 * mems_allowed of @tsk2. Used by the OOM killer to determine if
2154 * one of the task's memory usage might impact the memory available
2158 int cpuset_mems_allowed_intersects(const struct task_struct
*tsk1
,
2159 const struct task_struct
*tsk2
)
2161 return nodes_intersects(tsk1
->mems_allowed
, tsk2
->mems_allowed
);
2165 * Collection of memory_pressure is suppressed unless
2166 * this flag is enabled by writing "1" to the special
2167 * cpuset file 'memory_pressure_enabled' in the root cpuset.
2170 int cpuset_memory_pressure_enabled __read_mostly
;
2173 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
2175 * Keep a running average of the rate of synchronous (direct)
2176 * page reclaim efforts initiated by tasks in each cpuset.
2178 * This represents the rate at which some task in the cpuset
2179 * ran low on memory on all nodes it was allowed to use, and
2180 * had to enter the kernels page reclaim code in an effort to
2181 * create more free memory by tossing clean pages or swapping
2182 * or writing dirty pages.
2184 * Display to user space in the per-cpuset read-only file
2185 * "memory_pressure". Value displayed is an integer
2186 * representing the recent rate of entry into the synchronous
2187 * (direct) page reclaim by any task attached to the cpuset.
2190 void __cpuset_memory_pressure_bump(void)
2193 fmeter_markevent(&task_cs(current
)->fmeter
);
2194 task_unlock(current
);
2197 #ifdef CONFIG_PROC_PID_CPUSET
2199 * proc_cpuset_show()
2200 * - Print tasks cpuset path into seq_file.
2201 * - Used for /proc/<pid>/cpuset.
2202 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
2203 * doesn't really matter if tsk->cpuset changes after we read it,
2204 * and we take cgroup_mutex, keeping cpuset_attach() from changing it
2207 static int proc_cpuset_show(struct seq_file
*m
, void *unused_v
)
2210 struct task_struct
*tsk
;
2212 struct cgroup_subsys_state
*css
;
2216 buf
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
2222 tsk
= get_pid_task(pid
, PIDTYPE_PID
);
2228 css
= task_subsys_state(tsk
, cpuset_subsys_id
);
2229 retval
= cgroup_path(css
->cgroup
, buf
, PAGE_SIZE
);
2236 put_task_struct(tsk
);
2243 static int cpuset_open(struct inode
*inode
, struct file
*file
)
2245 struct pid
*pid
= PROC_I(inode
)->pid
;
2246 return single_open(file
, proc_cpuset_show
, pid
);
2249 const struct file_operations proc_cpuset_operations
= {
2250 .open
= cpuset_open
,
2252 .llseek
= seq_lseek
,
2253 .release
= single_release
,
2255 #endif /* CONFIG_PROC_PID_CPUSET */
2257 /* Display task cpus_allowed, mems_allowed in /proc/<pid>/status file. */
2258 char *cpuset_task_status_allowed(struct task_struct
*task
, char *buffer
)
2260 buffer
+= sprintf(buffer
, "Cpus_allowed:\t");
2261 buffer
+= cpumask_scnprintf(buffer
, PAGE_SIZE
, task
->cpus_allowed
);
2262 buffer
+= sprintf(buffer
, "\n");
2263 buffer
+= sprintf(buffer
, "Mems_allowed:\t");
2264 buffer
+= nodemask_scnprintf(buffer
, PAGE_SIZE
, task
->mems_allowed
);
2265 buffer
+= sprintf(buffer
, "\n");