ipmi: make alloc_recv_msg static
[linux-2.6/kvm.git] / drivers / char / ipmi / ipmi_msghandler.c
blob8a59aaa21be5c79e337802eba20cc0e5ac860f67
1 /*
2 * ipmi_msghandler.c
4 * Incoming and outgoing message routing for an IPMI interface.
6 * Author: MontaVista Software, Inc.
7 * Corey Minyard <minyard@mvista.com>
8 * source@mvista.com
10 * Copyright 2002 MontaVista Software Inc.
12 * This program is free software; you can redistribute it and/or modify it
13 * under the terms of the GNU General Public License as published by the
14 * Free Software Foundation; either version 2 of the License, or (at your
15 * option) any later version.
18 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
19 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
20 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
24 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
25 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
26 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
27 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 * You should have received a copy of the GNU General Public License along
30 * with this program; if not, write to the Free Software Foundation, Inc.,
31 * 675 Mass Ave, Cambridge, MA 02139, USA.
34 #include <linux/module.h>
35 #include <linux/errno.h>
36 #include <asm/system.h>
37 #include <linux/poll.h>
38 #include <linux/spinlock.h>
39 #include <linux/mutex.h>
40 #include <linux/slab.h>
41 #include <linux/ipmi.h>
42 #include <linux/ipmi_smi.h>
43 #include <linux/notifier.h>
44 #include <linux/init.h>
45 #include <linux/proc_fs.h>
46 #include <linux/rcupdate.h>
48 #define PFX "IPMI message handler: "
50 #define IPMI_DRIVER_VERSION "39.2"
52 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void);
53 static int ipmi_init_msghandler(void);
55 static int initialized;
57 #ifdef CONFIG_PROC_FS
58 static struct proc_dir_entry *proc_ipmi_root;
59 #endif /* CONFIG_PROC_FS */
61 /* Remain in auto-maintenance mode for this amount of time (in ms). */
62 #define IPMI_MAINTENANCE_MODE_TIMEOUT 30000
64 #define MAX_EVENTS_IN_QUEUE 25
67 * Don't let a message sit in a queue forever, always time it with at lest
68 * the max message timer. This is in milliseconds.
70 #define MAX_MSG_TIMEOUT 60000
73 * The main "user" data structure.
75 struct ipmi_user {
76 struct list_head link;
78 /* Set to "0" when the user is destroyed. */
79 int valid;
81 struct kref refcount;
83 /* The upper layer that handles receive messages. */
84 struct ipmi_user_hndl *handler;
85 void *handler_data;
87 /* The interface this user is bound to. */
88 ipmi_smi_t intf;
90 /* Does this interface receive IPMI events? */
91 int gets_events;
94 struct cmd_rcvr {
95 struct list_head link;
97 ipmi_user_t user;
98 unsigned char netfn;
99 unsigned char cmd;
100 unsigned int chans;
103 * This is used to form a linked lised during mass deletion.
104 * Since this is in an RCU list, we cannot use the link above
105 * or change any data until the RCU period completes. So we
106 * use this next variable during mass deletion so we can have
107 * a list and don't have to wait and restart the search on
108 * every individual deletion of a command.
110 struct cmd_rcvr *next;
113 struct seq_table {
114 unsigned int inuse : 1;
115 unsigned int broadcast : 1;
117 unsigned long timeout;
118 unsigned long orig_timeout;
119 unsigned int retries_left;
122 * To verify on an incoming send message response that this is
123 * the message that the response is for, we keep a sequence id
124 * and increment it every time we send a message.
126 long seqid;
129 * This is held so we can properly respond to the message on a
130 * timeout, and it is used to hold the temporary data for
131 * retransmission, too.
133 struct ipmi_recv_msg *recv_msg;
137 * Store the information in a msgid (long) to allow us to find a
138 * sequence table entry from the msgid.
140 #define STORE_SEQ_IN_MSGID(seq, seqid) (((seq&0xff)<<26) | (seqid&0x3ffffff))
142 #define GET_SEQ_FROM_MSGID(msgid, seq, seqid) \
143 do { \
144 seq = ((msgid >> 26) & 0x3f); \
145 seqid = (msgid & 0x3fffff); \
146 } while (0)
148 #define NEXT_SEQID(seqid) (((seqid) + 1) & 0x3fffff)
150 struct ipmi_channel {
151 unsigned char medium;
152 unsigned char protocol;
155 * My slave address. This is initialized to IPMI_BMC_SLAVE_ADDR,
156 * but may be changed by the user.
158 unsigned char address;
161 * My LUN. This should generally stay the SMS LUN, but just in
162 * case...
164 unsigned char lun;
167 #ifdef CONFIG_PROC_FS
168 struct ipmi_proc_entry {
169 char *name;
170 struct ipmi_proc_entry *next;
172 #endif
174 struct bmc_device {
175 struct platform_device *dev;
176 struct ipmi_device_id id;
177 unsigned char guid[16];
178 int guid_set;
180 struct kref refcount;
182 /* bmc device attributes */
183 struct device_attribute device_id_attr;
184 struct device_attribute provides_dev_sdrs_attr;
185 struct device_attribute revision_attr;
186 struct device_attribute firmware_rev_attr;
187 struct device_attribute version_attr;
188 struct device_attribute add_dev_support_attr;
189 struct device_attribute manufacturer_id_attr;
190 struct device_attribute product_id_attr;
191 struct device_attribute guid_attr;
192 struct device_attribute aux_firmware_rev_attr;
196 * Various statistics for IPMI, these index stats[] in the ipmi_smi
197 * structure.
199 enum ipmi_stat_indexes {
200 /* Commands we got from the user that were invalid. */
201 IPMI_STAT_sent_invalid_commands = 0,
203 /* Commands we sent to the MC. */
204 IPMI_STAT_sent_local_commands,
206 /* Responses from the MC that were delivered to a user. */
207 IPMI_STAT_handled_local_responses,
209 /* Responses from the MC that were not delivered to a user. */
210 IPMI_STAT_unhandled_local_responses,
212 /* Commands we sent out to the IPMB bus. */
213 IPMI_STAT_sent_ipmb_commands,
215 /* Commands sent on the IPMB that had errors on the SEND CMD */
216 IPMI_STAT_sent_ipmb_command_errs,
218 /* Each retransmit increments this count. */
219 IPMI_STAT_retransmitted_ipmb_commands,
222 * When a message times out (runs out of retransmits) this is
223 * incremented.
225 IPMI_STAT_timed_out_ipmb_commands,
228 * This is like above, but for broadcasts. Broadcasts are
229 * *not* included in the above count (they are expected to
230 * time out).
232 IPMI_STAT_timed_out_ipmb_broadcasts,
234 /* Responses I have sent to the IPMB bus. */
235 IPMI_STAT_sent_ipmb_responses,
237 /* The response was delivered to the user. */
238 IPMI_STAT_handled_ipmb_responses,
240 /* The response had invalid data in it. */
241 IPMI_STAT_invalid_ipmb_responses,
243 /* The response didn't have anyone waiting for it. */
244 IPMI_STAT_unhandled_ipmb_responses,
246 /* Commands we sent out to the IPMB bus. */
247 IPMI_STAT_sent_lan_commands,
249 /* Commands sent on the IPMB that had errors on the SEND CMD */
250 IPMI_STAT_sent_lan_command_errs,
252 /* Each retransmit increments this count. */
253 IPMI_STAT_retransmitted_lan_commands,
256 * When a message times out (runs out of retransmits) this is
257 * incremented.
259 IPMI_STAT_timed_out_lan_commands,
261 /* Responses I have sent to the IPMB bus. */
262 IPMI_STAT_sent_lan_responses,
264 /* The response was delivered to the user. */
265 IPMI_STAT_handled_lan_responses,
267 /* The response had invalid data in it. */
268 IPMI_STAT_invalid_lan_responses,
270 /* The response didn't have anyone waiting for it. */
271 IPMI_STAT_unhandled_lan_responses,
273 /* The command was delivered to the user. */
274 IPMI_STAT_handled_commands,
276 /* The command had invalid data in it. */
277 IPMI_STAT_invalid_commands,
279 /* The command didn't have anyone waiting for it. */
280 IPMI_STAT_unhandled_commands,
282 /* Invalid data in an event. */
283 IPMI_STAT_invalid_events,
285 /* Events that were received with the proper format. */
286 IPMI_STAT_events,
289 /* This *must* remain last, add new values above this. */
290 IPMI_NUM_STATS
294 #define IPMI_IPMB_NUM_SEQ 64
295 #define IPMI_MAX_CHANNELS 16
296 struct ipmi_smi {
297 /* What interface number are we? */
298 int intf_num;
300 struct kref refcount;
302 /* Used for a list of interfaces. */
303 struct list_head link;
306 * The list of upper layers that are using me. seq_lock
307 * protects this.
309 struct list_head users;
311 /* Information to supply to users. */
312 unsigned char ipmi_version_major;
313 unsigned char ipmi_version_minor;
315 /* Used for wake ups at startup. */
316 wait_queue_head_t waitq;
318 struct bmc_device *bmc;
319 char *my_dev_name;
320 char *sysfs_name;
323 * This is the lower-layer's sender routine. Note that you
324 * must either be holding the ipmi_interfaces_mutex or be in
325 * an umpreemptible region to use this. You must fetch the
326 * value into a local variable and make sure it is not NULL.
328 struct ipmi_smi_handlers *handlers;
329 void *send_info;
331 #ifdef CONFIG_PROC_FS
332 /* A list of proc entries for this interface. */
333 struct mutex proc_entry_lock;
334 struct ipmi_proc_entry *proc_entries;
335 #endif
337 /* Driver-model device for the system interface. */
338 struct device *si_dev;
341 * A table of sequence numbers for this interface. We use the
342 * sequence numbers for IPMB messages that go out of the
343 * interface to match them up with their responses. A routine
344 * is called periodically to time the items in this list.
346 spinlock_t seq_lock;
347 struct seq_table seq_table[IPMI_IPMB_NUM_SEQ];
348 int curr_seq;
351 * Messages that were delayed for some reason (out of memory,
352 * for instance), will go in here to be processed later in a
353 * periodic timer interrupt.
355 spinlock_t waiting_msgs_lock;
356 struct list_head waiting_msgs;
359 * The list of command receivers that are registered for commands
360 * on this interface.
362 struct mutex cmd_rcvrs_mutex;
363 struct list_head cmd_rcvrs;
366 * Events that were queues because no one was there to receive
367 * them.
369 spinlock_t events_lock; /* For dealing with event stuff. */
370 struct list_head waiting_events;
371 unsigned int waiting_events_count; /* How many events in queue? */
372 char delivering_events;
373 char event_msg_printed;
376 * The event receiver for my BMC, only really used at panic
377 * shutdown as a place to store this.
379 unsigned char event_receiver;
380 unsigned char event_receiver_lun;
381 unsigned char local_sel_device;
382 unsigned char local_event_generator;
384 /* For handling of maintenance mode. */
385 int maintenance_mode;
386 int maintenance_mode_enable;
387 int auto_maintenance_timeout;
388 spinlock_t maintenance_mode_lock; /* Used in a timer... */
391 * A cheap hack, if this is non-null and a message to an
392 * interface comes in with a NULL user, call this routine with
393 * it. Note that the message will still be freed by the
394 * caller. This only works on the system interface.
396 void (*null_user_handler)(ipmi_smi_t intf, struct ipmi_recv_msg *msg);
399 * When we are scanning the channels for an SMI, this will
400 * tell which channel we are scanning.
402 int curr_channel;
404 /* Channel information */
405 struct ipmi_channel channels[IPMI_MAX_CHANNELS];
407 /* Proc FS stuff. */
408 struct proc_dir_entry *proc_dir;
409 char proc_dir_name[10];
411 atomic_t stats[IPMI_NUM_STATS];
414 * run_to_completion duplicate of smb_info, smi_info
415 * and ipmi_serial_info structures. Used to decrease numbers of
416 * parameters passed by "low" level IPMI code.
418 int run_to_completion;
420 #define to_si_intf_from_dev(device) container_of(device, struct ipmi_smi, dev)
423 * The driver model view of the IPMI messaging driver.
425 static struct device_driver ipmidriver = {
426 .name = "ipmi",
427 .bus = &platform_bus_type
429 static DEFINE_MUTEX(ipmidriver_mutex);
431 static LIST_HEAD(ipmi_interfaces);
432 static DEFINE_MUTEX(ipmi_interfaces_mutex);
435 * List of watchers that want to know when smi's are added and deleted.
437 static LIST_HEAD(smi_watchers);
438 static DEFINE_MUTEX(smi_watchers_mutex);
441 #define ipmi_inc_stat(intf, stat) \
442 atomic_inc(&(intf)->stats[IPMI_STAT_ ## stat])
443 #define ipmi_get_stat(intf, stat) \
444 ((unsigned int) atomic_read(&(intf)->stats[IPMI_STAT_ ## stat]))
447 static void free_recv_msg_list(struct list_head *q)
449 struct ipmi_recv_msg *msg, *msg2;
451 list_for_each_entry_safe(msg, msg2, q, link) {
452 list_del(&msg->link);
453 ipmi_free_recv_msg(msg);
457 static void free_smi_msg_list(struct list_head *q)
459 struct ipmi_smi_msg *msg, *msg2;
461 list_for_each_entry_safe(msg, msg2, q, link) {
462 list_del(&msg->link);
463 ipmi_free_smi_msg(msg);
467 static void clean_up_interface_data(ipmi_smi_t intf)
469 int i;
470 struct cmd_rcvr *rcvr, *rcvr2;
471 struct list_head list;
473 free_smi_msg_list(&intf->waiting_msgs);
474 free_recv_msg_list(&intf->waiting_events);
477 * Wholesale remove all the entries from the list in the
478 * interface and wait for RCU to know that none are in use.
480 mutex_lock(&intf->cmd_rcvrs_mutex);
481 INIT_LIST_HEAD(&list);
482 list_splice_init_rcu(&intf->cmd_rcvrs, &list, synchronize_rcu);
483 mutex_unlock(&intf->cmd_rcvrs_mutex);
485 list_for_each_entry_safe(rcvr, rcvr2, &list, link)
486 kfree(rcvr);
488 for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
489 if ((intf->seq_table[i].inuse)
490 && (intf->seq_table[i].recv_msg))
491 ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
495 static void intf_free(struct kref *ref)
497 ipmi_smi_t intf = container_of(ref, struct ipmi_smi, refcount);
499 clean_up_interface_data(intf);
500 kfree(intf);
503 struct watcher_entry {
504 int intf_num;
505 ipmi_smi_t intf;
506 struct list_head link;
509 int ipmi_smi_watcher_register(struct ipmi_smi_watcher *watcher)
511 ipmi_smi_t intf;
512 LIST_HEAD(to_deliver);
513 struct watcher_entry *e, *e2;
515 mutex_lock(&smi_watchers_mutex);
517 mutex_lock(&ipmi_interfaces_mutex);
519 /* Build a list of things to deliver. */
520 list_for_each_entry(intf, &ipmi_interfaces, link) {
521 if (intf->intf_num == -1)
522 continue;
523 e = kmalloc(sizeof(*e), GFP_KERNEL);
524 if (!e)
525 goto out_err;
526 kref_get(&intf->refcount);
527 e->intf = intf;
528 e->intf_num = intf->intf_num;
529 list_add_tail(&e->link, &to_deliver);
532 /* We will succeed, so add it to the list. */
533 list_add(&watcher->link, &smi_watchers);
535 mutex_unlock(&ipmi_interfaces_mutex);
537 list_for_each_entry_safe(e, e2, &to_deliver, link) {
538 list_del(&e->link);
539 watcher->new_smi(e->intf_num, e->intf->si_dev);
540 kref_put(&e->intf->refcount, intf_free);
541 kfree(e);
544 mutex_unlock(&smi_watchers_mutex);
546 return 0;
548 out_err:
549 mutex_unlock(&ipmi_interfaces_mutex);
550 mutex_unlock(&smi_watchers_mutex);
551 list_for_each_entry_safe(e, e2, &to_deliver, link) {
552 list_del(&e->link);
553 kref_put(&e->intf->refcount, intf_free);
554 kfree(e);
556 return -ENOMEM;
558 EXPORT_SYMBOL(ipmi_smi_watcher_register);
560 int ipmi_smi_watcher_unregister(struct ipmi_smi_watcher *watcher)
562 mutex_lock(&smi_watchers_mutex);
563 list_del(&(watcher->link));
564 mutex_unlock(&smi_watchers_mutex);
565 return 0;
567 EXPORT_SYMBOL(ipmi_smi_watcher_unregister);
570 * Must be called with smi_watchers_mutex held.
572 static void
573 call_smi_watchers(int i, struct device *dev)
575 struct ipmi_smi_watcher *w;
577 list_for_each_entry(w, &smi_watchers, link) {
578 if (try_module_get(w->owner)) {
579 w->new_smi(i, dev);
580 module_put(w->owner);
585 static int
586 ipmi_addr_equal(struct ipmi_addr *addr1, struct ipmi_addr *addr2)
588 if (addr1->addr_type != addr2->addr_type)
589 return 0;
591 if (addr1->channel != addr2->channel)
592 return 0;
594 if (addr1->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
595 struct ipmi_system_interface_addr *smi_addr1
596 = (struct ipmi_system_interface_addr *) addr1;
597 struct ipmi_system_interface_addr *smi_addr2
598 = (struct ipmi_system_interface_addr *) addr2;
599 return (smi_addr1->lun == smi_addr2->lun);
602 if ((addr1->addr_type == IPMI_IPMB_ADDR_TYPE)
603 || (addr1->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE)) {
604 struct ipmi_ipmb_addr *ipmb_addr1
605 = (struct ipmi_ipmb_addr *) addr1;
606 struct ipmi_ipmb_addr *ipmb_addr2
607 = (struct ipmi_ipmb_addr *) addr2;
609 return ((ipmb_addr1->slave_addr == ipmb_addr2->slave_addr)
610 && (ipmb_addr1->lun == ipmb_addr2->lun));
613 if (addr1->addr_type == IPMI_LAN_ADDR_TYPE) {
614 struct ipmi_lan_addr *lan_addr1
615 = (struct ipmi_lan_addr *) addr1;
616 struct ipmi_lan_addr *lan_addr2
617 = (struct ipmi_lan_addr *) addr2;
619 return ((lan_addr1->remote_SWID == lan_addr2->remote_SWID)
620 && (lan_addr1->local_SWID == lan_addr2->local_SWID)
621 && (lan_addr1->session_handle
622 == lan_addr2->session_handle)
623 && (lan_addr1->lun == lan_addr2->lun));
626 return 1;
629 int ipmi_validate_addr(struct ipmi_addr *addr, int len)
631 if (len < sizeof(struct ipmi_system_interface_addr))
632 return -EINVAL;
634 if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
635 if (addr->channel != IPMI_BMC_CHANNEL)
636 return -EINVAL;
637 return 0;
640 if ((addr->channel == IPMI_BMC_CHANNEL)
641 || (addr->channel >= IPMI_MAX_CHANNELS)
642 || (addr->channel < 0))
643 return -EINVAL;
645 if ((addr->addr_type == IPMI_IPMB_ADDR_TYPE)
646 || (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE)) {
647 if (len < sizeof(struct ipmi_ipmb_addr))
648 return -EINVAL;
649 return 0;
652 if (addr->addr_type == IPMI_LAN_ADDR_TYPE) {
653 if (len < sizeof(struct ipmi_lan_addr))
654 return -EINVAL;
655 return 0;
658 return -EINVAL;
660 EXPORT_SYMBOL(ipmi_validate_addr);
662 unsigned int ipmi_addr_length(int addr_type)
664 if (addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
665 return sizeof(struct ipmi_system_interface_addr);
667 if ((addr_type == IPMI_IPMB_ADDR_TYPE)
668 || (addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE))
669 return sizeof(struct ipmi_ipmb_addr);
671 if (addr_type == IPMI_LAN_ADDR_TYPE)
672 return sizeof(struct ipmi_lan_addr);
674 return 0;
676 EXPORT_SYMBOL(ipmi_addr_length);
678 static void deliver_response(struct ipmi_recv_msg *msg)
680 if (!msg->user) {
681 ipmi_smi_t intf = msg->user_msg_data;
683 /* Special handling for NULL users. */
684 if (intf->null_user_handler) {
685 intf->null_user_handler(intf, msg);
686 ipmi_inc_stat(intf, handled_local_responses);
687 } else {
688 /* No handler, so give up. */
689 ipmi_inc_stat(intf, unhandled_local_responses);
691 ipmi_free_recv_msg(msg);
692 } else {
693 ipmi_user_t user = msg->user;
694 user->handler->ipmi_recv_hndl(msg, user->handler_data);
698 static void
699 deliver_err_response(struct ipmi_recv_msg *msg, int err)
701 msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
702 msg->msg_data[0] = err;
703 msg->msg.netfn |= 1; /* Convert to a response. */
704 msg->msg.data_len = 1;
705 msg->msg.data = msg->msg_data;
706 deliver_response(msg);
710 * Find the next sequence number not being used and add the given
711 * message with the given timeout to the sequence table. This must be
712 * called with the interface's seq_lock held.
714 static int intf_next_seq(ipmi_smi_t intf,
715 struct ipmi_recv_msg *recv_msg,
716 unsigned long timeout,
717 int retries,
718 int broadcast,
719 unsigned char *seq,
720 long *seqid)
722 int rv = 0;
723 unsigned int i;
725 for (i = intf->curr_seq; (i+1)%IPMI_IPMB_NUM_SEQ != intf->curr_seq;
726 i = (i+1)%IPMI_IPMB_NUM_SEQ) {
727 if (!intf->seq_table[i].inuse)
728 break;
731 if (!intf->seq_table[i].inuse) {
732 intf->seq_table[i].recv_msg = recv_msg;
735 * Start with the maximum timeout, when the send response
736 * comes in we will start the real timer.
738 intf->seq_table[i].timeout = MAX_MSG_TIMEOUT;
739 intf->seq_table[i].orig_timeout = timeout;
740 intf->seq_table[i].retries_left = retries;
741 intf->seq_table[i].broadcast = broadcast;
742 intf->seq_table[i].inuse = 1;
743 intf->seq_table[i].seqid = NEXT_SEQID(intf->seq_table[i].seqid);
744 *seq = i;
745 *seqid = intf->seq_table[i].seqid;
746 intf->curr_seq = (i+1)%IPMI_IPMB_NUM_SEQ;
747 } else {
748 rv = -EAGAIN;
751 return rv;
755 * Return the receive message for the given sequence number and
756 * release the sequence number so it can be reused. Some other data
757 * is passed in to be sure the message matches up correctly (to help
758 * guard against message coming in after their timeout and the
759 * sequence number being reused).
761 static int intf_find_seq(ipmi_smi_t intf,
762 unsigned char seq,
763 short channel,
764 unsigned char cmd,
765 unsigned char netfn,
766 struct ipmi_addr *addr,
767 struct ipmi_recv_msg **recv_msg)
769 int rv = -ENODEV;
770 unsigned long flags;
772 if (seq >= IPMI_IPMB_NUM_SEQ)
773 return -EINVAL;
775 spin_lock_irqsave(&(intf->seq_lock), flags);
776 if (intf->seq_table[seq].inuse) {
777 struct ipmi_recv_msg *msg = intf->seq_table[seq].recv_msg;
779 if ((msg->addr.channel == channel) && (msg->msg.cmd == cmd)
780 && (msg->msg.netfn == netfn)
781 && (ipmi_addr_equal(addr, &(msg->addr)))) {
782 *recv_msg = msg;
783 intf->seq_table[seq].inuse = 0;
784 rv = 0;
787 spin_unlock_irqrestore(&(intf->seq_lock), flags);
789 return rv;
793 /* Start the timer for a specific sequence table entry. */
794 static int intf_start_seq_timer(ipmi_smi_t intf,
795 long msgid)
797 int rv = -ENODEV;
798 unsigned long flags;
799 unsigned char seq;
800 unsigned long seqid;
803 GET_SEQ_FROM_MSGID(msgid, seq, seqid);
805 spin_lock_irqsave(&(intf->seq_lock), flags);
807 * We do this verification because the user can be deleted
808 * while a message is outstanding.
810 if ((intf->seq_table[seq].inuse)
811 && (intf->seq_table[seq].seqid == seqid)) {
812 struct seq_table *ent = &(intf->seq_table[seq]);
813 ent->timeout = ent->orig_timeout;
814 rv = 0;
816 spin_unlock_irqrestore(&(intf->seq_lock), flags);
818 return rv;
821 /* Got an error for the send message for a specific sequence number. */
822 static int intf_err_seq(ipmi_smi_t intf,
823 long msgid,
824 unsigned int err)
826 int rv = -ENODEV;
827 unsigned long flags;
828 unsigned char seq;
829 unsigned long seqid;
830 struct ipmi_recv_msg *msg = NULL;
833 GET_SEQ_FROM_MSGID(msgid, seq, seqid);
835 spin_lock_irqsave(&(intf->seq_lock), flags);
837 * We do this verification because the user can be deleted
838 * while a message is outstanding.
840 if ((intf->seq_table[seq].inuse)
841 && (intf->seq_table[seq].seqid == seqid)) {
842 struct seq_table *ent = &(intf->seq_table[seq]);
844 ent->inuse = 0;
845 msg = ent->recv_msg;
846 rv = 0;
848 spin_unlock_irqrestore(&(intf->seq_lock), flags);
850 if (msg)
851 deliver_err_response(msg, err);
853 return rv;
857 int ipmi_create_user(unsigned int if_num,
858 struct ipmi_user_hndl *handler,
859 void *handler_data,
860 ipmi_user_t *user)
862 unsigned long flags;
863 ipmi_user_t new_user;
864 int rv = 0;
865 ipmi_smi_t intf;
868 * There is no module usecount here, because it's not
869 * required. Since this can only be used by and called from
870 * other modules, they will implicitly use this module, and
871 * thus this can't be removed unless the other modules are
872 * removed.
875 if (handler == NULL)
876 return -EINVAL;
879 * Make sure the driver is actually initialized, this handles
880 * problems with initialization order.
882 if (!initialized) {
883 rv = ipmi_init_msghandler();
884 if (rv)
885 return rv;
888 * The init code doesn't return an error if it was turned
889 * off, but it won't initialize. Check that.
891 if (!initialized)
892 return -ENODEV;
895 new_user = kmalloc(sizeof(*new_user), GFP_KERNEL);
896 if (!new_user)
897 return -ENOMEM;
899 mutex_lock(&ipmi_interfaces_mutex);
900 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
901 if (intf->intf_num == if_num)
902 goto found;
904 /* Not found, return an error */
905 rv = -EINVAL;
906 goto out_kfree;
908 found:
909 /* Note that each existing user holds a refcount to the interface. */
910 kref_get(&intf->refcount);
912 kref_init(&new_user->refcount);
913 new_user->handler = handler;
914 new_user->handler_data = handler_data;
915 new_user->intf = intf;
916 new_user->gets_events = 0;
918 if (!try_module_get(intf->handlers->owner)) {
919 rv = -ENODEV;
920 goto out_kref;
923 if (intf->handlers->inc_usecount) {
924 rv = intf->handlers->inc_usecount(intf->send_info);
925 if (rv) {
926 module_put(intf->handlers->owner);
927 goto out_kref;
932 * Hold the lock so intf->handlers is guaranteed to be good
933 * until now
935 mutex_unlock(&ipmi_interfaces_mutex);
937 new_user->valid = 1;
938 spin_lock_irqsave(&intf->seq_lock, flags);
939 list_add_rcu(&new_user->link, &intf->users);
940 spin_unlock_irqrestore(&intf->seq_lock, flags);
941 *user = new_user;
942 return 0;
944 out_kref:
945 kref_put(&intf->refcount, intf_free);
946 out_kfree:
947 mutex_unlock(&ipmi_interfaces_mutex);
948 kfree(new_user);
949 return rv;
951 EXPORT_SYMBOL(ipmi_create_user);
953 static void free_user(struct kref *ref)
955 ipmi_user_t user = container_of(ref, struct ipmi_user, refcount);
956 kfree(user);
959 int ipmi_destroy_user(ipmi_user_t user)
961 ipmi_smi_t intf = user->intf;
962 int i;
963 unsigned long flags;
964 struct cmd_rcvr *rcvr;
965 struct cmd_rcvr *rcvrs = NULL;
967 user->valid = 0;
969 /* Remove the user from the interface's sequence table. */
970 spin_lock_irqsave(&intf->seq_lock, flags);
971 list_del_rcu(&user->link);
973 for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
974 if (intf->seq_table[i].inuse
975 && (intf->seq_table[i].recv_msg->user == user)) {
976 intf->seq_table[i].inuse = 0;
977 ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
980 spin_unlock_irqrestore(&intf->seq_lock, flags);
983 * Remove the user from the command receiver's table. First
984 * we build a list of everything (not using the standard link,
985 * since other things may be using it till we do
986 * synchronize_rcu()) then free everything in that list.
988 mutex_lock(&intf->cmd_rcvrs_mutex);
989 list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
990 if (rcvr->user == user) {
991 list_del_rcu(&rcvr->link);
992 rcvr->next = rcvrs;
993 rcvrs = rcvr;
996 mutex_unlock(&intf->cmd_rcvrs_mutex);
997 synchronize_rcu();
998 while (rcvrs) {
999 rcvr = rcvrs;
1000 rcvrs = rcvr->next;
1001 kfree(rcvr);
1004 mutex_lock(&ipmi_interfaces_mutex);
1005 if (intf->handlers) {
1006 module_put(intf->handlers->owner);
1007 if (intf->handlers->dec_usecount)
1008 intf->handlers->dec_usecount(intf->send_info);
1010 mutex_unlock(&ipmi_interfaces_mutex);
1012 kref_put(&intf->refcount, intf_free);
1014 kref_put(&user->refcount, free_user);
1016 return 0;
1018 EXPORT_SYMBOL(ipmi_destroy_user);
1020 void ipmi_get_version(ipmi_user_t user,
1021 unsigned char *major,
1022 unsigned char *minor)
1024 *major = user->intf->ipmi_version_major;
1025 *minor = user->intf->ipmi_version_minor;
1027 EXPORT_SYMBOL(ipmi_get_version);
1029 int ipmi_set_my_address(ipmi_user_t user,
1030 unsigned int channel,
1031 unsigned char address)
1033 if (channel >= IPMI_MAX_CHANNELS)
1034 return -EINVAL;
1035 user->intf->channels[channel].address = address;
1036 return 0;
1038 EXPORT_SYMBOL(ipmi_set_my_address);
1040 int ipmi_get_my_address(ipmi_user_t user,
1041 unsigned int channel,
1042 unsigned char *address)
1044 if (channel >= IPMI_MAX_CHANNELS)
1045 return -EINVAL;
1046 *address = user->intf->channels[channel].address;
1047 return 0;
1049 EXPORT_SYMBOL(ipmi_get_my_address);
1051 int ipmi_set_my_LUN(ipmi_user_t user,
1052 unsigned int channel,
1053 unsigned char LUN)
1055 if (channel >= IPMI_MAX_CHANNELS)
1056 return -EINVAL;
1057 user->intf->channels[channel].lun = LUN & 0x3;
1058 return 0;
1060 EXPORT_SYMBOL(ipmi_set_my_LUN);
1062 int ipmi_get_my_LUN(ipmi_user_t user,
1063 unsigned int channel,
1064 unsigned char *address)
1066 if (channel >= IPMI_MAX_CHANNELS)
1067 return -EINVAL;
1068 *address = user->intf->channels[channel].lun;
1069 return 0;
1071 EXPORT_SYMBOL(ipmi_get_my_LUN);
1073 int ipmi_get_maintenance_mode(ipmi_user_t user)
1075 int mode;
1076 unsigned long flags;
1078 spin_lock_irqsave(&user->intf->maintenance_mode_lock, flags);
1079 mode = user->intf->maintenance_mode;
1080 spin_unlock_irqrestore(&user->intf->maintenance_mode_lock, flags);
1082 return mode;
1084 EXPORT_SYMBOL(ipmi_get_maintenance_mode);
1086 static void maintenance_mode_update(ipmi_smi_t intf)
1088 if (intf->handlers->set_maintenance_mode)
1089 intf->handlers->set_maintenance_mode(
1090 intf->send_info, intf->maintenance_mode_enable);
1093 int ipmi_set_maintenance_mode(ipmi_user_t user, int mode)
1095 int rv = 0;
1096 unsigned long flags;
1097 ipmi_smi_t intf = user->intf;
1099 spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
1100 if (intf->maintenance_mode != mode) {
1101 switch (mode) {
1102 case IPMI_MAINTENANCE_MODE_AUTO:
1103 intf->maintenance_mode = mode;
1104 intf->maintenance_mode_enable
1105 = (intf->auto_maintenance_timeout > 0);
1106 break;
1108 case IPMI_MAINTENANCE_MODE_OFF:
1109 intf->maintenance_mode = mode;
1110 intf->maintenance_mode_enable = 0;
1111 break;
1113 case IPMI_MAINTENANCE_MODE_ON:
1114 intf->maintenance_mode = mode;
1115 intf->maintenance_mode_enable = 1;
1116 break;
1118 default:
1119 rv = -EINVAL;
1120 goto out_unlock;
1123 maintenance_mode_update(intf);
1125 out_unlock:
1126 spin_unlock_irqrestore(&intf->maintenance_mode_lock, flags);
1128 return rv;
1130 EXPORT_SYMBOL(ipmi_set_maintenance_mode);
1132 int ipmi_set_gets_events(ipmi_user_t user, int val)
1134 unsigned long flags;
1135 ipmi_smi_t intf = user->intf;
1136 struct ipmi_recv_msg *msg, *msg2;
1137 struct list_head msgs;
1139 INIT_LIST_HEAD(&msgs);
1141 spin_lock_irqsave(&intf->events_lock, flags);
1142 user->gets_events = val;
1144 if (intf->delivering_events)
1146 * Another thread is delivering events for this, so
1147 * let it handle any new events.
1149 goto out;
1151 /* Deliver any queued events. */
1152 while (user->gets_events && !list_empty(&intf->waiting_events)) {
1153 list_for_each_entry_safe(msg, msg2, &intf->waiting_events, link)
1154 list_move_tail(&msg->link, &msgs);
1155 intf->waiting_events_count = 0;
1156 if (intf->event_msg_printed) {
1157 printk(KERN_WARNING PFX "Event queue no longer"
1158 " full\n");
1159 intf->event_msg_printed = 0;
1162 intf->delivering_events = 1;
1163 spin_unlock_irqrestore(&intf->events_lock, flags);
1165 list_for_each_entry_safe(msg, msg2, &msgs, link) {
1166 msg->user = user;
1167 kref_get(&user->refcount);
1168 deliver_response(msg);
1171 spin_lock_irqsave(&intf->events_lock, flags);
1172 intf->delivering_events = 0;
1175 out:
1176 spin_unlock_irqrestore(&intf->events_lock, flags);
1178 return 0;
1180 EXPORT_SYMBOL(ipmi_set_gets_events);
1182 static struct cmd_rcvr *find_cmd_rcvr(ipmi_smi_t intf,
1183 unsigned char netfn,
1184 unsigned char cmd,
1185 unsigned char chan)
1187 struct cmd_rcvr *rcvr;
1189 list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
1190 if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
1191 && (rcvr->chans & (1 << chan)))
1192 return rcvr;
1194 return NULL;
1197 static int is_cmd_rcvr_exclusive(ipmi_smi_t intf,
1198 unsigned char netfn,
1199 unsigned char cmd,
1200 unsigned int chans)
1202 struct cmd_rcvr *rcvr;
1204 list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
1205 if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
1206 && (rcvr->chans & chans))
1207 return 0;
1209 return 1;
1212 int ipmi_register_for_cmd(ipmi_user_t user,
1213 unsigned char netfn,
1214 unsigned char cmd,
1215 unsigned int chans)
1217 ipmi_smi_t intf = user->intf;
1218 struct cmd_rcvr *rcvr;
1219 int rv = 0;
1222 rcvr = kmalloc(sizeof(*rcvr), GFP_KERNEL);
1223 if (!rcvr)
1224 return -ENOMEM;
1225 rcvr->cmd = cmd;
1226 rcvr->netfn = netfn;
1227 rcvr->chans = chans;
1228 rcvr->user = user;
1230 mutex_lock(&intf->cmd_rcvrs_mutex);
1231 /* Make sure the command/netfn is not already registered. */
1232 if (!is_cmd_rcvr_exclusive(intf, netfn, cmd, chans)) {
1233 rv = -EBUSY;
1234 goto out_unlock;
1237 list_add_rcu(&rcvr->link, &intf->cmd_rcvrs);
1239 out_unlock:
1240 mutex_unlock(&intf->cmd_rcvrs_mutex);
1241 if (rv)
1242 kfree(rcvr);
1244 return rv;
1246 EXPORT_SYMBOL(ipmi_register_for_cmd);
1248 int ipmi_unregister_for_cmd(ipmi_user_t user,
1249 unsigned char netfn,
1250 unsigned char cmd,
1251 unsigned int chans)
1253 ipmi_smi_t intf = user->intf;
1254 struct cmd_rcvr *rcvr;
1255 struct cmd_rcvr *rcvrs = NULL;
1256 int i, rv = -ENOENT;
1258 mutex_lock(&intf->cmd_rcvrs_mutex);
1259 for (i = 0; i < IPMI_NUM_CHANNELS; i++) {
1260 if (((1 << i) & chans) == 0)
1261 continue;
1262 rcvr = find_cmd_rcvr(intf, netfn, cmd, i);
1263 if (rcvr == NULL)
1264 continue;
1265 if (rcvr->user == user) {
1266 rv = 0;
1267 rcvr->chans &= ~chans;
1268 if (rcvr->chans == 0) {
1269 list_del_rcu(&rcvr->link);
1270 rcvr->next = rcvrs;
1271 rcvrs = rcvr;
1275 mutex_unlock(&intf->cmd_rcvrs_mutex);
1276 synchronize_rcu();
1277 while (rcvrs) {
1278 rcvr = rcvrs;
1279 rcvrs = rcvr->next;
1280 kfree(rcvr);
1282 return rv;
1284 EXPORT_SYMBOL(ipmi_unregister_for_cmd);
1286 static unsigned char
1287 ipmb_checksum(unsigned char *data, int size)
1289 unsigned char csum = 0;
1291 for (; size > 0; size--, data++)
1292 csum += *data;
1294 return -csum;
1297 static inline void format_ipmb_msg(struct ipmi_smi_msg *smi_msg,
1298 struct kernel_ipmi_msg *msg,
1299 struct ipmi_ipmb_addr *ipmb_addr,
1300 long msgid,
1301 unsigned char ipmb_seq,
1302 int broadcast,
1303 unsigned char source_address,
1304 unsigned char source_lun)
1306 int i = broadcast;
1308 /* Format the IPMB header data. */
1309 smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
1310 smi_msg->data[1] = IPMI_SEND_MSG_CMD;
1311 smi_msg->data[2] = ipmb_addr->channel;
1312 if (broadcast)
1313 smi_msg->data[3] = 0;
1314 smi_msg->data[i+3] = ipmb_addr->slave_addr;
1315 smi_msg->data[i+4] = (msg->netfn << 2) | (ipmb_addr->lun & 0x3);
1316 smi_msg->data[i+5] = ipmb_checksum(&(smi_msg->data[i+3]), 2);
1317 smi_msg->data[i+6] = source_address;
1318 smi_msg->data[i+7] = (ipmb_seq << 2) | source_lun;
1319 smi_msg->data[i+8] = msg->cmd;
1321 /* Now tack on the data to the message. */
1322 if (msg->data_len > 0)
1323 memcpy(&(smi_msg->data[i+9]), msg->data,
1324 msg->data_len);
1325 smi_msg->data_size = msg->data_len + 9;
1327 /* Now calculate the checksum and tack it on. */
1328 smi_msg->data[i+smi_msg->data_size]
1329 = ipmb_checksum(&(smi_msg->data[i+6]),
1330 smi_msg->data_size-6);
1333 * Add on the checksum size and the offset from the
1334 * broadcast.
1336 smi_msg->data_size += 1 + i;
1338 smi_msg->msgid = msgid;
1341 static inline void format_lan_msg(struct ipmi_smi_msg *smi_msg,
1342 struct kernel_ipmi_msg *msg,
1343 struct ipmi_lan_addr *lan_addr,
1344 long msgid,
1345 unsigned char ipmb_seq,
1346 unsigned char source_lun)
1348 /* Format the IPMB header data. */
1349 smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
1350 smi_msg->data[1] = IPMI_SEND_MSG_CMD;
1351 smi_msg->data[2] = lan_addr->channel;
1352 smi_msg->data[3] = lan_addr->session_handle;
1353 smi_msg->data[4] = lan_addr->remote_SWID;
1354 smi_msg->data[5] = (msg->netfn << 2) | (lan_addr->lun & 0x3);
1355 smi_msg->data[6] = ipmb_checksum(&(smi_msg->data[4]), 2);
1356 smi_msg->data[7] = lan_addr->local_SWID;
1357 smi_msg->data[8] = (ipmb_seq << 2) | source_lun;
1358 smi_msg->data[9] = msg->cmd;
1360 /* Now tack on the data to the message. */
1361 if (msg->data_len > 0)
1362 memcpy(&(smi_msg->data[10]), msg->data,
1363 msg->data_len);
1364 smi_msg->data_size = msg->data_len + 10;
1366 /* Now calculate the checksum and tack it on. */
1367 smi_msg->data[smi_msg->data_size]
1368 = ipmb_checksum(&(smi_msg->data[7]),
1369 smi_msg->data_size-7);
1372 * Add on the checksum size and the offset from the
1373 * broadcast.
1375 smi_msg->data_size += 1;
1377 smi_msg->msgid = msgid;
1381 * Separate from ipmi_request so that the user does not have to be
1382 * supplied in certain circumstances (mainly at panic time). If
1383 * messages are supplied, they will be freed, even if an error
1384 * occurs.
1386 static int i_ipmi_request(ipmi_user_t user,
1387 ipmi_smi_t intf,
1388 struct ipmi_addr *addr,
1389 long msgid,
1390 struct kernel_ipmi_msg *msg,
1391 void *user_msg_data,
1392 void *supplied_smi,
1393 struct ipmi_recv_msg *supplied_recv,
1394 int priority,
1395 unsigned char source_address,
1396 unsigned char source_lun,
1397 int retries,
1398 unsigned int retry_time_ms)
1400 int rv = 0;
1401 struct ipmi_smi_msg *smi_msg;
1402 struct ipmi_recv_msg *recv_msg;
1403 unsigned long flags;
1404 struct ipmi_smi_handlers *handlers;
1407 if (supplied_recv)
1408 recv_msg = supplied_recv;
1409 else {
1410 recv_msg = ipmi_alloc_recv_msg();
1411 if (recv_msg == NULL)
1412 return -ENOMEM;
1414 recv_msg->user_msg_data = user_msg_data;
1416 if (supplied_smi)
1417 smi_msg = (struct ipmi_smi_msg *) supplied_smi;
1418 else {
1419 smi_msg = ipmi_alloc_smi_msg();
1420 if (smi_msg == NULL) {
1421 ipmi_free_recv_msg(recv_msg);
1422 return -ENOMEM;
1426 rcu_read_lock();
1427 handlers = intf->handlers;
1428 if (!handlers) {
1429 rv = -ENODEV;
1430 goto out_err;
1433 recv_msg->user = user;
1434 if (user)
1435 kref_get(&user->refcount);
1436 recv_msg->msgid = msgid;
1438 * Store the message to send in the receive message so timeout
1439 * responses can get the proper response data.
1441 recv_msg->msg = *msg;
1443 if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
1444 struct ipmi_system_interface_addr *smi_addr;
1446 if (msg->netfn & 1) {
1447 /* Responses are not allowed to the SMI. */
1448 rv = -EINVAL;
1449 goto out_err;
1452 smi_addr = (struct ipmi_system_interface_addr *) addr;
1453 if (smi_addr->lun > 3) {
1454 ipmi_inc_stat(intf, sent_invalid_commands);
1455 rv = -EINVAL;
1456 goto out_err;
1459 memcpy(&recv_msg->addr, smi_addr, sizeof(*smi_addr));
1461 if ((msg->netfn == IPMI_NETFN_APP_REQUEST)
1462 && ((msg->cmd == IPMI_SEND_MSG_CMD)
1463 || (msg->cmd == IPMI_GET_MSG_CMD)
1464 || (msg->cmd == IPMI_READ_EVENT_MSG_BUFFER_CMD))) {
1466 * We don't let the user do these, since we manage
1467 * the sequence numbers.
1469 ipmi_inc_stat(intf, sent_invalid_commands);
1470 rv = -EINVAL;
1471 goto out_err;
1474 if (((msg->netfn == IPMI_NETFN_APP_REQUEST)
1475 && ((msg->cmd == IPMI_COLD_RESET_CMD)
1476 || (msg->cmd == IPMI_WARM_RESET_CMD)))
1477 || (msg->netfn == IPMI_NETFN_FIRMWARE_REQUEST)) {
1478 spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
1479 intf->auto_maintenance_timeout
1480 = IPMI_MAINTENANCE_MODE_TIMEOUT;
1481 if (!intf->maintenance_mode
1482 && !intf->maintenance_mode_enable) {
1483 intf->maintenance_mode_enable = 1;
1484 maintenance_mode_update(intf);
1486 spin_unlock_irqrestore(&intf->maintenance_mode_lock,
1487 flags);
1490 if ((msg->data_len + 2) > IPMI_MAX_MSG_LENGTH) {
1491 ipmi_inc_stat(intf, sent_invalid_commands);
1492 rv = -EMSGSIZE;
1493 goto out_err;
1496 smi_msg->data[0] = (msg->netfn << 2) | (smi_addr->lun & 0x3);
1497 smi_msg->data[1] = msg->cmd;
1498 smi_msg->msgid = msgid;
1499 smi_msg->user_data = recv_msg;
1500 if (msg->data_len > 0)
1501 memcpy(&(smi_msg->data[2]), msg->data, msg->data_len);
1502 smi_msg->data_size = msg->data_len + 2;
1503 ipmi_inc_stat(intf, sent_local_commands);
1504 } else if ((addr->addr_type == IPMI_IPMB_ADDR_TYPE)
1505 || (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE)) {
1506 struct ipmi_ipmb_addr *ipmb_addr;
1507 unsigned char ipmb_seq;
1508 long seqid;
1509 int broadcast = 0;
1511 if (addr->channel >= IPMI_MAX_CHANNELS) {
1512 ipmi_inc_stat(intf, sent_invalid_commands);
1513 rv = -EINVAL;
1514 goto out_err;
1517 if (intf->channels[addr->channel].medium
1518 != IPMI_CHANNEL_MEDIUM_IPMB) {
1519 ipmi_inc_stat(intf, sent_invalid_commands);
1520 rv = -EINVAL;
1521 goto out_err;
1524 if (retries < 0) {
1525 if (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE)
1526 retries = 0; /* Don't retry broadcasts. */
1527 else
1528 retries = 4;
1530 if (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE) {
1532 * Broadcasts add a zero at the beginning of the
1533 * message, but otherwise is the same as an IPMB
1534 * address.
1536 addr->addr_type = IPMI_IPMB_ADDR_TYPE;
1537 broadcast = 1;
1541 /* Default to 1 second retries. */
1542 if (retry_time_ms == 0)
1543 retry_time_ms = 1000;
1546 * 9 for the header and 1 for the checksum, plus
1547 * possibly one for the broadcast.
1549 if ((msg->data_len + 10 + broadcast) > IPMI_MAX_MSG_LENGTH) {
1550 ipmi_inc_stat(intf, sent_invalid_commands);
1551 rv = -EMSGSIZE;
1552 goto out_err;
1555 ipmb_addr = (struct ipmi_ipmb_addr *) addr;
1556 if (ipmb_addr->lun > 3) {
1557 ipmi_inc_stat(intf, sent_invalid_commands);
1558 rv = -EINVAL;
1559 goto out_err;
1562 memcpy(&recv_msg->addr, ipmb_addr, sizeof(*ipmb_addr));
1564 if (recv_msg->msg.netfn & 0x1) {
1566 * It's a response, so use the user's sequence
1567 * from msgid.
1569 ipmi_inc_stat(intf, sent_ipmb_responses);
1570 format_ipmb_msg(smi_msg, msg, ipmb_addr, msgid,
1571 msgid, broadcast,
1572 source_address, source_lun);
1575 * Save the receive message so we can use it
1576 * to deliver the response.
1578 smi_msg->user_data = recv_msg;
1579 } else {
1580 /* It's a command, so get a sequence for it. */
1582 spin_lock_irqsave(&(intf->seq_lock), flags);
1584 ipmi_inc_stat(intf, sent_ipmb_commands);
1587 * Create a sequence number with a 1 second
1588 * timeout and 4 retries.
1590 rv = intf_next_seq(intf,
1591 recv_msg,
1592 retry_time_ms,
1593 retries,
1594 broadcast,
1595 &ipmb_seq,
1596 &seqid);
1597 if (rv) {
1599 * We have used up all the sequence numbers,
1600 * probably, so abort.
1602 spin_unlock_irqrestore(&(intf->seq_lock),
1603 flags);
1604 goto out_err;
1608 * Store the sequence number in the message,
1609 * so that when the send message response
1610 * comes back we can start the timer.
1612 format_ipmb_msg(smi_msg, msg, ipmb_addr,
1613 STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
1614 ipmb_seq, broadcast,
1615 source_address, source_lun);
1618 * Copy the message into the recv message data, so we
1619 * can retransmit it later if necessary.
1621 memcpy(recv_msg->msg_data, smi_msg->data,
1622 smi_msg->data_size);
1623 recv_msg->msg.data = recv_msg->msg_data;
1624 recv_msg->msg.data_len = smi_msg->data_size;
1627 * We don't unlock until here, because we need
1628 * to copy the completed message into the
1629 * recv_msg before we release the lock.
1630 * Otherwise, race conditions may bite us. I
1631 * know that's pretty paranoid, but I prefer
1632 * to be correct.
1634 spin_unlock_irqrestore(&(intf->seq_lock), flags);
1636 } else if (addr->addr_type == IPMI_LAN_ADDR_TYPE) {
1637 struct ipmi_lan_addr *lan_addr;
1638 unsigned char ipmb_seq;
1639 long seqid;
1641 if (addr->channel >= IPMI_MAX_CHANNELS) {
1642 ipmi_inc_stat(intf, sent_invalid_commands);
1643 rv = -EINVAL;
1644 goto out_err;
1647 if ((intf->channels[addr->channel].medium
1648 != IPMI_CHANNEL_MEDIUM_8023LAN)
1649 && (intf->channels[addr->channel].medium
1650 != IPMI_CHANNEL_MEDIUM_ASYNC)) {
1651 ipmi_inc_stat(intf, sent_invalid_commands);
1652 rv = -EINVAL;
1653 goto out_err;
1656 retries = 4;
1658 /* Default to 1 second retries. */
1659 if (retry_time_ms == 0)
1660 retry_time_ms = 1000;
1662 /* 11 for the header and 1 for the checksum. */
1663 if ((msg->data_len + 12) > IPMI_MAX_MSG_LENGTH) {
1664 ipmi_inc_stat(intf, sent_invalid_commands);
1665 rv = -EMSGSIZE;
1666 goto out_err;
1669 lan_addr = (struct ipmi_lan_addr *) addr;
1670 if (lan_addr->lun > 3) {
1671 ipmi_inc_stat(intf, sent_invalid_commands);
1672 rv = -EINVAL;
1673 goto out_err;
1676 memcpy(&recv_msg->addr, lan_addr, sizeof(*lan_addr));
1678 if (recv_msg->msg.netfn & 0x1) {
1680 * It's a response, so use the user's sequence
1681 * from msgid.
1683 ipmi_inc_stat(intf, sent_lan_responses);
1684 format_lan_msg(smi_msg, msg, lan_addr, msgid,
1685 msgid, source_lun);
1688 * Save the receive message so we can use it
1689 * to deliver the response.
1691 smi_msg->user_data = recv_msg;
1692 } else {
1693 /* It's a command, so get a sequence for it. */
1695 spin_lock_irqsave(&(intf->seq_lock), flags);
1697 ipmi_inc_stat(intf, sent_lan_commands);
1700 * Create a sequence number with a 1 second
1701 * timeout and 4 retries.
1703 rv = intf_next_seq(intf,
1704 recv_msg,
1705 retry_time_ms,
1706 retries,
1708 &ipmb_seq,
1709 &seqid);
1710 if (rv) {
1712 * We have used up all the sequence numbers,
1713 * probably, so abort.
1715 spin_unlock_irqrestore(&(intf->seq_lock),
1716 flags);
1717 goto out_err;
1721 * Store the sequence number in the message,
1722 * so that when the send message response
1723 * comes back we can start the timer.
1725 format_lan_msg(smi_msg, msg, lan_addr,
1726 STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
1727 ipmb_seq, source_lun);
1730 * Copy the message into the recv message data, so we
1731 * can retransmit it later if necessary.
1733 memcpy(recv_msg->msg_data, smi_msg->data,
1734 smi_msg->data_size);
1735 recv_msg->msg.data = recv_msg->msg_data;
1736 recv_msg->msg.data_len = smi_msg->data_size;
1739 * We don't unlock until here, because we need
1740 * to copy the completed message into the
1741 * recv_msg before we release the lock.
1742 * Otherwise, race conditions may bite us. I
1743 * know that's pretty paranoid, but I prefer
1744 * to be correct.
1746 spin_unlock_irqrestore(&(intf->seq_lock), flags);
1748 } else {
1749 /* Unknown address type. */
1750 ipmi_inc_stat(intf, sent_invalid_commands);
1751 rv = -EINVAL;
1752 goto out_err;
1755 #ifdef DEBUG_MSGING
1757 int m;
1758 for (m = 0; m < smi_msg->data_size; m++)
1759 printk(" %2.2x", smi_msg->data[m]);
1760 printk("\n");
1762 #endif
1764 handlers->sender(intf->send_info, smi_msg, priority);
1765 rcu_read_unlock();
1767 return 0;
1769 out_err:
1770 rcu_read_unlock();
1771 ipmi_free_smi_msg(smi_msg);
1772 ipmi_free_recv_msg(recv_msg);
1773 return rv;
1776 static int check_addr(ipmi_smi_t intf,
1777 struct ipmi_addr *addr,
1778 unsigned char *saddr,
1779 unsigned char *lun)
1781 if (addr->channel >= IPMI_MAX_CHANNELS)
1782 return -EINVAL;
1783 *lun = intf->channels[addr->channel].lun;
1784 *saddr = intf->channels[addr->channel].address;
1785 return 0;
1788 int ipmi_request_settime(ipmi_user_t user,
1789 struct ipmi_addr *addr,
1790 long msgid,
1791 struct kernel_ipmi_msg *msg,
1792 void *user_msg_data,
1793 int priority,
1794 int retries,
1795 unsigned int retry_time_ms)
1797 unsigned char saddr, lun;
1798 int rv;
1800 if (!user)
1801 return -EINVAL;
1802 rv = check_addr(user->intf, addr, &saddr, &lun);
1803 if (rv)
1804 return rv;
1805 return i_ipmi_request(user,
1806 user->intf,
1807 addr,
1808 msgid,
1809 msg,
1810 user_msg_data,
1811 NULL, NULL,
1812 priority,
1813 saddr,
1814 lun,
1815 retries,
1816 retry_time_ms);
1818 EXPORT_SYMBOL(ipmi_request_settime);
1820 int ipmi_request_supply_msgs(ipmi_user_t user,
1821 struct ipmi_addr *addr,
1822 long msgid,
1823 struct kernel_ipmi_msg *msg,
1824 void *user_msg_data,
1825 void *supplied_smi,
1826 struct ipmi_recv_msg *supplied_recv,
1827 int priority)
1829 unsigned char saddr, lun;
1830 int rv;
1832 if (!user)
1833 return -EINVAL;
1834 rv = check_addr(user->intf, addr, &saddr, &lun);
1835 if (rv)
1836 return rv;
1837 return i_ipmi_request(user,
1838 user->intf,
1839 addr,
1840 msgid,
1841 msg,
1842 user_msg_data,
1843 supplied_smi,
1844 supplied_recv,
1845 priority,
1846 saddr,
1847 lun,
1848 -1, 0);
1850 EXPORT_SYMBOL(ipmi_request_supply_msgs);
1852 #ifdef CONFIG_PROC_FS
1853 static int ipmb_file_read_proc(char *page, char **start, off_t off,
1854 int count, int *eof, void *data)
1856 char *out = (char *) page;
1857 ipmi_smi_t intf = data;
1858 int i;
1859 int rv = 0;
1861 for (i = 0; i < IPMI_MAX_CHANNELS; i++)
1862 rv += sprintf(out+rv, "%x ", intf->channels[i].address);
1863 out[rv-1] = '\n'; /* Replace the final space with a newline */
1864 out[rv] = '\0';
1865 rv++;
1866 return rv;
1869 static int version_file_read_proc(char *page, char **start, off_t off,
1870 int count, int *eof, void *data)
1872 char *out = (char *) page;
1873 ipmi_smi_t intf = data;
1875 return sprintf(out, "%u.%u\n",
1876 ipmi_version_major(&intf->bmc->id),
1877 ipmi_version_minor(&intf->bmc->id));
1880 static int stat_file_read_proc(char *page, char **start, off_t off,
1881 int count, int *eof, void *data)
1883 char *out = (char *) page;
1884 ipmi_smi_t intf = data;
1886 out += sprintf(out, "sent_invalid_commands: %u\n",
1887 ipmi_get_stat(intf, sent_invalid_commands));
1888 out += sprintf(out, "sent_local_commands: %u\n",
1889 ipmi_get_stat(intf, sent_local_commands));
1890 out += sprintf(out, "handled_local_responses: %u\n",
1891 ipmi_get_stat(intf, handled_local_responses));
1892 out += sprintf(out, "unhandled_local_responses: %u\n",
1893 ipmi_get_stat(intf, unhandled_local_responses));
1894 out += sprintf(out, "sent_ipmb_commands: %u\n",
1895 ipmi_get_stat(intf, sent_ipmb_commands));
1896 out += sprintf(out, "sent_ipmb_command_errs: %u\n",
1897 ipmi_get_stat(intf, sent_ipmb_command_errs));
1898 out += sprintf(out, "retransmitted_ipmb_commands: %u\n",
1899 ipmi_get_stat(intf, retransmitted_ipmb_commands));
1900 out += sprintf(out, "timed_out_ipmb_commands: %u\n",
1901 ipmi_get_stat(intf, timed_out_ipmb_commands));
1902 out += sprintf(out, "timed_out_ipmb_broadcasts: %u\n",
1903 ipmi_get_stat(intf, timed_out_ipmb_broadcasts));
1904 out += sprintf(out, "sent_ipmb_responses: %u\n",
1905 ipmi_get_stat(intf, sent_ipmb_responses));
1906 out += sprintf(out, "handled_ipmb_responses: %u\n",
1907 ipmi_get_stat(intf, handled_ipmb_responses));
1908 out += sprintf(out, "invalid_ipmb_responses: %u\n",
1909 ipmi_get_stat(intf, invalid_ipmb_responses));
1910 out += sprintf(out, "unhandled_ipmb_responses: %u\n",
1911 ipmi_get_stat(intf, unhandled_ipmb_responses));
1912 out += sprintf(out, "sent_lan_commands: %u\n",
1913 ipmi_get_stat(intf, sent_lan_commands));
1914 out += sprintf(out, "sent_lan_command_errs: %u\n",
1915 ipmi_get_stat(intf, sent_lan_command_errs));
1916 out += sprintf(out, "retransmitted_lan_commands: %u\n",
1917 ipmi_get_stat(intf, retransmitted_lan_commands));
1918 out += sprintf(out, "timed_out_lan_commands: %u\n",
1919 ipmi_get_stat(intf, timed_out_lan_commands));
1920 out += sprintf(out, "sent_lan_responses: %u\n",
1921 ipmi_get_stat(intf, sent_lan_responses));
1922 out += sprintf(out, "handled_lan_responses: %u\n",
1923 ipmi_get_stat(intf, handled_lan_responses));
1924 out += sprintf(out, "invalid_lan_responses: %u\n",
1925 ipmi_get_stat(intf, invalid_lan_responses));
1926 out += sprintf(out, "unhandled_lan_responses: %u\n",
1927 ipmi_get_stat(intf, unhandled_lan_responses));
1928 out += sprintf(out, "handled_commands: %u\n",
1929 ipmi_get_stat(intf, handled_commands));
1930 out += sprintf(out, "invalid_commands: %u\n",
1931 ipmi_get_stat(intf, invalid_commands));
1932 out += sprintf(out, "unhandled_commands: %u\n",
1933 ipmi_get_stat(intf, unhandled_commands));
1934 out += sprintf(out, "invalid_events: %u\n",
1935 ipmi_get_stat(intf, invalid_events));
1936 out += sprintf(out, "events: %u\n",
1937 ipmi_get_stat(intf, events));
1939 return (out - ((char *) page));
1941 #endif /* CONFIG_PROC_FS */
1943 int ipmi_smi_add_proc_entry(ipmi_smi_t smi, char *name,
1944 read_proc_t *read_proc,
1945 void *data, struct module *owner)
1947 int rv = 0;
1948 #ifdef CONFIG_PROC_FS
1949 struct proc_dir_entry *file;
1950 struct ipmi_proc_entry *entry;
1952 /* Create a list element. */
1953 entry = kmalloc(sizeof(*entry), GFP_KERNEL);
1954 if (!entry)
1955 return -ENOMEM;
1956 entry->name = kmalloc(strlen(name)+1, GFP_KERNEL);
1957 if (!entry->name) {
1958 kfree(entry);
1959 return -ENOMEM;
1961 strcpy(entry->name, name);
1963 file = create_proc_entry(name, 0, smi->proc_dir);
1964 if (!file) {
1965 kfree(entry->name);
1966 kfree(entry);
1967 rv = -ENOMEM;
1968 } else {
1969 file->data = data;
1970 file->read_proc = read_proc;
1971 file->owner = owner;
1973 mutex_lock(&smi->proc_entry_lock);
1974 /* Stick it on the list. */
1975 entry->next = smi->proc_entries;
1976 smi->proc_entries = entry;
1977 mutex_unlock(&smi->proc_entry_lock);
1979 #endif /* CONFIG_PROC_FS */
1981 return rv;
1983 EXPORT_SYMBOL(ipmi_smi_add_proc_entry);
1985 static int add_proc_entries(ipmi_smi_t smi, int num)
1987 int rv = 0;
1989 #ifdef CONFIG_PROC_FS
1990 sprintf(smi->proc_dir_name, "%d", num);
1991 smi->proc_dir = proc_mkdir(smi->proc_dir_name, proc_ipmi_root);
1992 if (!smi->proc_dir)
1993 rv = -ENOMEM;
1994 else
1995 smi->proc_dir->owner = THIS_MODULE;
1997 if (rv == 0)
1998 rv = ipmi_smi_add_proc_entry(smi, "stats",
1999 stat_file_read_proc,
2000 smi, THIS_MODULE);
2002 if (rv == 0)
2003 rv = ipmi_smi_add_proc_entry(smi, "ipmb",
2004 ipmb_file_read_proc,
2005 smi, THIS_MODULE);
2007 if (rv == 0)
2008 rv = ipmi_smi_add_proc_entry(smi, "version",
2009 version_file_read_proc,
2010 smi, THIS_MODULE);
2011 #endif /* CONFIG_PROC_FS */
2013 return rv;
2016 static void remove_proc_entries(ipmi_smi_t smi)
2018 #ifdef CONFIG_PROC_FS
2019 struct ipmi_proc_entry *entry;
2021 mutex_lock(&smi->proc_entry_lock);
2022 while (smi->proc_entries) {
2023 entry = smi->proc_entries;
2024 smi->proc_entries = entry->next;
2026 remove_proc_entry(entry->name, smi->proc_dir);
2027 kfree(entry->name);
2028 kfree(entry);
2030 mutex_unlock(&smi->proc_entry_lock);
2031 remove_proc_entry(smi->proc_dir_name, proc_ipmi_root);
2032 #endif /* CONFIG_PROC_FS */
2035 static int __find_bmc_guid(struct device *dev, void *data)
2037 unsigned char *id = data;
2038 struct bmc_device *bmc = dev_get_drvdata(dev);
2039 return memcmp(bmc->guid, id, 16) == 0;
2042 static struct bmc_device *ipmi_find_bmc_guid(struct device_driver *drv,
2043 unsigned char *guid)
2045 struct device *dev;
2047 dev = driver_find_device(drv, NULL, guid, __find_bmc_guid);
2048 if (dev)
2049 return dev_get_drvdata(dev);
2050 else
2051 return NULL;
2054 struct prod_dev_id {
2055 unsigned int product_id;
2056 unsigned char device_id;
2059 static int __find_bmc_prod_dev_id(struct device *dev, void *data)
2061 struct prod_dev_id *id = data;
2062 struct bmc_device *bmc = dev_get_drvdata(dev);
2064 return (bmc->id.product_id == id->product_id
2065 && bmc->id.device_id == id->device_id);
2068 static struct bmc_device *ipmi_find_bmc_prod_dev_id(
2069 struct device_driver *drv,
2070 unsigned int product_id, unsigned char device_id)
2072 struct prod_dev_id id = {
2073 .product_id = product_id,
2074 .device_id = device_id,
2076 struct device *dev;
2078 dev = driver_find_device(drv, NULL, &id, __find_bmc_prod_dev_id);
2079 if (dev)
2080 return dev_get_drvdata(dev);
2081 else
2082 return NULL;
2085 static ssize_t device_id_show(struct device *dev,
2086 struct device_attribute *attr,
2087 char *buf)
2089 struct bmc_device *bmc = dev_get_drvdata(dev);
2091 return snprintf(buf, 10, "%u\n", bmc->id.device_id);
2094 static ssize_t provides_dev_sdrs_show(struct device *dev,
2095 struct device_attribute *attr,
2096 char *buf)
2098 struct bmc_device *bmc = dev_get_drvdata(dev);
2100 return snprintf(buf, 10, "%u\n",
2101 (bmc->id.device_revision & 0x80) >> 7);
2104 static ssize_t revision_show(struct device *dev, struct device_attribute *attr,
2105 char *buf)
2107 struct bmc_device *bmc = dev_get_drvdata(dev);
2109 return snprintf(buf, 20, "%u\n",
2110 bmc->id.device_revision & 0x0F);
2113 static ssize_t firmware_rev_show(struct device *dev,
2114 struct device_attribute *attr,
2115 char *buf)
2117 struct bmc_device *bmc = dev_get_drvdata(dev);
2119 return snprintf(buf, 20, "%u.%x\n", bmc->id.firmware_revision_1,
2120 bmc->id.firmware_revision_2);
2123 static ssize_t ipmi_version_show(struct device *dev,
2124 struct device_attribute *attr,
2125 char *buf)
2127 struct bmc_device *bmc = dev_get_drvdata(dev);
2129 return snprintf(buf, 20, "%u.%u\n",
2130 ipmi_version_major(&bmc->id),
2131 ipmi_version_minor(&bmc->id));
2134 static ssize_t add_dev_support_show(struct device *dev,
2135 struct device_attribute *attr,
2136 char *buf)
2138 struct bmc_device *bmc = dev_get_drvdata(dev);
2140 return snprintf(buf, 10, "0x%02x\n",
2141 bmc->id.additional_device_support);
2144 static ssize_t manufacturer_id_show(struct device *dev,
2145 struct device_attribute *attr,
2146 char *buf)
2148 struct bmc_device *bmc = dev_get_drvdata(dev);
2150 return snprintf(buf, 20, "0x%6.6x\n", bmc->id.manufacturer_id);
2153 static ssize_t product_id_show(struct device *dev,
2154 struct device_attribute *attr,
2155 char *buf)
2157 struct bmc_device *bmc = dev_get_drvdata(dev);
2159 return snprintf(buf, 10, "0x%4.4x\n", bmc->id.product_id);
2162 static ssize_t aux_firmware_rev_show(struct device *dev,
2163 struct device_attribute *attr,
2164 char *buf)
2166 struct bmc_device *bmc = dev_get_drvdata(dev);
2168 return snprintf(buf, 21, "0x%02x 0x%02x 0x%02x 0x%02x\n",
2169 bmc->id.aux_firmware_revision[3],
2170 bmc->id.aux_firmware_revision[2],
2171 bmc->id.aux_firmware_revision[1],
2172 bmc->id.aux_firmware_revision[0]);
2175 static ssize_t guid_show(struct device *dev, struct device_attribute *attr,
2176 char *buf)
2178 struct bmc_device *bmc = dev_get_drvdata(dev);
2180 return snprintf(buf, 100, "%Lx%Lx\n",
2181 (long long) bmc->guid[0],
2182 (long long) bmc->guid[8]);
2185 static void remove_files(struct bmc_device *bmc)
2187 if (!bmc->dev)
2188 return;
2190 device_remove_file(&bmc->dev->dev,
2191 &bmc->device_id_attr);
2192 device_remove_file(&bmc->dev->dev,
2193 &bmc->provides_dev_sdrs_attr);
2194 device_remove_file(&bmc->dev->dev,
2195 &bmc->revision_attr);
2196 device_remove_file(&bmc->dev->dev,
2197 &bmc->firmware_rev_attr);
2198 device_remove_file(&bmc->dev->dev,
2199 &bmc->version_attr);
2200 device_remove_file(&bmc->dev->dev,
2201 &bmc->add_dev_support_attr);
2202 device_remove_file(&bmc->dev->dev,
2203 &bmc->manufacturer_id_attr);
2204 device_remove_file(&bmc->dev->dev,
2205 &bmc->product_id_attr);
2207 if (bmc->id.aux_firmware_revision_set)
2208 device_remove_file(&bmc->dev->dev,
2209 &bmc->aux_firmware_rev_attr);
2210 if (bmc->guid_set)
2211 device_remove_file(&bmc->dev->dev,
2212 &bmc->guid_attr);
2215 static void
2216 cleanup_bmc_device(struct kref *ref)
2218 struct bmc_device *bmc;
2220 bmc = container_of(ref, struct bmc_device, refcount);
2222 remove_files(bmc);
2223 platform_device_unregister(bmc->dev);
2224 kfree(bmc);
2227 static void ipmi_bmc_unregister(ipmi_smi_t intf)
2229 struct bmc_device *bmc = intf->bmc;
2231 if (intf->sysfs_name) {
2232 sysfs_remove_link(&intf->si_dev->kobj, intf->sysfs_name);
2233 kfree(intf->sysfs_name);
2234 intf->sysfs_name = NULL;
2236 if (intf->my_dev_name) {
2237 sysfs_remove_link(&bmc->dev->dev.kobj, intf->my_dev_name);
2238 kfree(intf->my_dev_name);
2239 intf->my_dev_name = NULL;
2242 mutex_lock(&ipmidriver_mutex);
2243 kref_put(&bmc->refcount, cleanup_bmc_device);
2244 intf->bmc = NULL;
2245 mutex_unlock(&ipmidriver_mutex);
2248 static int create_files(struct bmc_device *bmc)
2250 int err;
2252 bmc->device_id_attr.attr.name = "device_id";
2253 bmc->device_id_attr.attr.mode = S_IRUGO;
2254 bmc->device_id_attr.show = device_id_show;
2256 bmc->provides_dev_sdrs_attr.attr.name = "provides_device_sdrs";
2257 bmc->provides_dev_sdrs_attr.attr.mode = S_IRUGO;
2258 bmc->provides_dev_sdrs_attr.show = provides_dev_sdrs_show;
2260 bmc->revision_attr.attr.name = "revision";
2261 bmc->revision_attr.attr.mode = S_IRUGO;
2262 bmc->revision_attr.show = revision_show;
2264 bmc->firmware_rev_attr.attr.name = "firmware_revision";
2265 bmc->firmware_rev_attr.attr.mode = S_IRUGO;
2266 bmc->firmware_rev_attr.show = firmware_rev_show;
2268 bmc->version_attr.attr.name = "ipmi_version";
2269 bmc->version_attr.attr.mode = S_IRUGO;
2270 bmc->version_attr.show = ipmi_version_show;
2272 bmc->add_dev_support_attr.attr.name = "additional_device_support";
2273 bmc->add_dev_support_attr.attr.mode = S_IRUGO;
2274 bmc->add_dev_support_attr.show = add_dev_support_show;
2276 bmc->manufacturer_id_attr.attr.name = "manufacturer_id";
2277 bmc->manufacturer_id_attr.attr.mode = S_IRUGO;
2278 bmc->manufacturer_id_attr.show = manufacturer_id_show;
2280 bmc->product_id_attr.attr.name = "product_id";
2281 bmc->product_id_attr.attr.mode = S_IRUGO;
2282 bmc->product_id_attr.show = product_id_show;
2284 bmc->guid_attr.attr.name = "guid";
2285 bmc->guid_attr.attr.mode = S_IRUGO;
2286 bmc->guid_attr.show = guid_show;
2288 bmc->aux_firmware_rev_attr.attr.name = "aux_firmware_revision";
2289 bmc->aux_firmware_rev_attr.attr.mode = S_IRUGO;
2290 bmc->aux_firmware_rev_attr.show = aux_firmware_rev_show;
2292 err = device_create_file(&bmc->dev->dev,
2293 &bmc->device_id_attr);
2294 if (err)
2295 goto out;
2296 err = device_create_file(&bmc->dev->dev,
2297 &bmc->provides_dev_sdrs_attr);
2298 if (err)
2299 goto out_devid;
2300 err = device_create_file(&bmc->dev->dev,
2301 &bmc->revision_attr);
2302 if (err)
2303 goto out_sdrs;
2304 err = device_create_file(&bmc->dev->dev,
2305 &bmc->firmware_rev_attr);
2306 if (err)
2307 goto out_rev;
2308 err = device_create_file(&bmc->dev->dev,
2309 &bmc->version_attr);
2310 if (err)
2311 goto out_firm;
2312 err = device_create_file(&bmc->dev->dev,
2313 &bmc->add_dev_support_attr);
2314 if (err)
2315 goto out_version;
2316 err = device_create_file(&bmc->dev->dev,
2317 &bmc->manufacturer_id_attr);
2318 if (err)
2319 goto out_add_dev;
2320 err = device_create_file(&bmc->dev->dev,
2321 &bmc->product_id_attr);
2322 if (err)
2323 goto out_manu;
2324 if (bmc->id.aux_firmware_revision_set) {
2325 err = device_create_file(&bmc->dev->dev,
2326 &bmc->aux_firmware_rev_attr);
2327 if (err)
2328 goto out_prod_id;
2330 if (bmc->guid_set) {
2331 err = device_create_file(&bmc->dev->dev,
2332 &bmc->guid_attr);
2333 if (err)
2334 goto out_aux_firm;
2337 return 0;
2339 out_aux_firm:
2340 if (bmc->id.aux_firmware_revision_set)
2341 device_remove_file(&bmc->dev->dev,
2342 &bmc->aux_firmware_rev_attr);
2343 out_prod_id:
2344 device_remove_file(&bmc->dev->dev,
2345 &bmc->product_id_attr);
2346 out_manu:
2347 device_remove_file(&bmc->dev->dev,
2348 &bmc->manufacturer_id_attr);
2349 out_add_dev:
2350 device_remove_file(&bmc->dev->dev,
2351 &bmc->add_dev_support_attr);
2352 out_version:
2353 device_remove_file(&bmc->dev->dev,
2354 &bmc->version_attr);
2355 out_firm:
2356 device_remove_file(&bmc->dev->dev,
2357 &bmc->firmware_rev_attr);
2358 out_rev:
2359 device_remove_file(&bmc->dev->dev,
2360 &bmc->revision_attr);
2361 out_sdrs:
2362 device_remove_file(&bmc->dev->dev,
2363 &bmc->provides_dev_sdrs_attr);
2364 out_devid:
2365 device_remove_file(&bmc->dev->dev,
2366 &bmc->device_id_attr);
2367 out:
2368 return err;
2371 static int ipmi_bmc_register(ipmi_smi_t intf, int ifnum,
2372 const char *sysfs_name)
2374 int rv;
2375 struct bmc_device *bmc = intf->bmc;
2376 struct bmc_device *old_bmc;
2377 int size;
2378 char dummy[1];
2380 mutex_lock(&ipmidriver_mutex);
2383 * Try to find if there is an bmc_device struct
2384 * representing the interfaced BMC already
2386 if (bmc->guid_set)
2387 old_bmc = ipmi_find_bmc_guid(&ipmidriver, bmc->guid);
2388 else
2389 old_bmc = ipmi_find_bmc_prod_dev_id(&ipmidriver,
2390 bmc->id.product_id,
2391 bmc->id.device_id);
2394 * If there is already an bmc_device, free the new one,
2395 * otherwise register the new BMC device
2397 if (old_bmc) {
2398 kfree(bmc);
2399 intf->bmc = old_bmc;
2400 bmc = old_bmc;
2402 kref_get(&bmc->refcount);
2403 mutex_unlock(&ipmidriver_mutex);
2405 printk(KERN_INFO
2406 "ipmi: interfacing existing BMC (man_id: 0x%6.6x,"
2407 " prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
2408 bmc->id.manufacturer_id,
2409 bmc->id.product_id,
2410 bmc->id.device_id);
2411 } else {
2412 char name[14];
2413 unsigned char orig_dev_id = bmc->id.device_id;
2414 int warn_printed = 0;
2416 snprintf(name, sizeof(name),
2417 "ipmi_bmc.%4.4x", bmc->id.product_id);
2419 while (ipmi_find_bmc_prod_dev_id(&ipmidriver,
2420 bmc->id.product_id,
2421 bmc->id.device_id)) {
2422 if (!warn_printed) {
2423 printk(KERN_WARNING PFX
2424 "This machine has two different BMCs"
2425 " with the same product id and device"
2426 " id. This is an error in the"
2427 " firmware, but incrementing the"
2428 " device id to work around the problem."
2429 " Prod ID = 0x%x, Dev ID = 0x%x\n",
2430 bmc->id.product_id, bmc->id.device_id);
2431 warn_printed = 1;
2433 bmc->id.device_id++; /* Wraps at 255 */
2434 if (bmc->id.device_id == orig_dev_id) {
2435 printk(KERN_ERR PFX
2436 "Out of device ids!\n");
2437 break;
2441 bmc->dev = platform_device_alloc(name, bmc->id.device_id);
2442 if (!bmc->dev) {
2443 mutex_unlock(&ipmidriver_mutex);
2444 printk(KERN_ERR
2445 "ipmi_msghandler:"
2446 " Unable to allocate platform device\n");
2447 return -ENOMEM;
2449 bmc->dev->dev.driver = &ipmidriver;
2450 dev_set_drvdata(&bmc->dev->dev, bmc);
2451 kref_init(&bmc->refcount);
2453 rv = platform_device_add(bmc->dev);
2454 mutex_unlock(&ipmidriver_mutex);
2455 if (rv) {
2456 platform_device_put(bmc->dev);
2457 bmc->dev = NULL;
2458 printk(KERN_ERR
2459 "ipmi_msghandler:"
2460 " Unable to register bmc device: %d\n",
2461 rv);
2463 * Don't go to out_err, you can only do that if
2464 * the device is registered already.
2466 return rv;
2469 rv = create_files(bmc);
2470 if (rv) {
2471 mutex_lock(&ipmidriver_mutex);
2472 platform_device_unregister(bmc->dev);
2473 mutex_unlock(&ipmidriver_mutex);
2475 return rv;
2478 printk(KERN_INFO
2479 "ipmi: Found new BMC (man_id: 0x%6.6x, "
2480 " prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
2481 bmc->id.manufacturer_id,
2482 bmc->id.product_id,
2483 bmc->id.device_id);
2487 * create symlink from system interface device to bmc device
2488 * and back.
2490 intf->sysfs_name = kstrdup(sysfs_name, GFP_KERNEL);
2491 if (!intf->sysfs_name) {
2492 rv = -ENOMEM;
2493 printk(KERN_ERR
2494 "ipmi_msghandler: allocate link to BMC: %d\n",
2495 rv);
2496 goto out_err;
2499 rv = sysfs_create_link(&intf->si_dev->kobj,
2500 &bmc->dev->dev.kobj, intf->sysfs_name);
2501 if (rv) {
2502 kfree(intf->sysfs_name);
2503 intf->sysfs_name = NULL;
2504 printk(KERN_ERR
2505 "ipmi_msghandler: Unable to create bmc symlink: %d\n",
2506 rv);
2507 goto out_err;
2510 size = snprintf(dummy, 0, "ipmi%d", ifnum);
2511 intf->my_dev_name = kmalloc(size+1, GFP_KERNEL);
2512 if (!intf->my_dev_name) {
2513 kfree(intf->sysfs_name);
2514 intf->sysfs_name = NULL;
2515 rv = -ENOMEM;
2516 printk(KERN_ERR
2517 "ipmi_msghandler: allocate link from BMC: %d\n",
2518 rv);
2519 goto out_err;
2521 snprintf(intf->my_dev_name, size+1, "ipmi%d", ifnum);
2523 rv = sysfs_create_link(&bmc->dev->dev.kobj, &intf->si_dev->kobj,
2524 intf->my_dev_name);
2525 if (rv) {
2526 kfree(intf->sysfs_name);
2527 intf->sysfs_name = NULL;
2528 kfree(intf->my_dev_name);
2529 intf->my_dev_name = NULL;
2530 printk(KERN_ERR
2531 "ipmi_msghandler:"
2532 " Unable to create symlink to bmc: %d\n",
2533 rv);
2534 goto out_err;
2537 return 0;
2539 out_err:
2540 ipmi_bmc_unregister(intf);
2541 return rv;
2544 static int
2545 send_guid_cmd(ipmi_smi_t intf, int chan)
2547 struct kernel_ipmi_msg msg;
2548 struct ipmi_system_interface_addr si;
2550 si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
2551 si.channel = IPMI_BMC_CHANNEL;
2552 si.lun = 0;
2554 msg.netfn = IPMI_NETFN_APP_REQUEST;
2555 msg.cmd = IPMI_GET_DEVICE_GUID_CMD;
2556 msg.data = NULL;
2557 msg.data_len = 0;
2558 return i_ipmi_request(NULL,
2559 intf,
2560 (struct ipmi_addr *) &si,
2562 &msg,
2563 intf,
2564 NULL,
2565 NULL,
2567 intf->channels[0].address,
2568 intf->channels[0].lun,
2569 -1, 0);
2572 static void
2573 guid_handler(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
2575 if ((msg->addr.addr_type != IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
2576 || (msg->msg.netfn != IPMI_NETFN_APP_RESPONSE)
2577 || (msg->msg.cmd != IPMI_GET_DEVICE_GUID_CMD))
2578 /* Not for me */
2579 return;
2581 if (msg->msg.data[0] != 0) {
2582 /* Error from getting the GUID, the BMC doesn't have one. */
2583 intf->bmc->guid_set = 0;
2584 goto out;
2587 if (msg->msg.data_len < 17) {
2588 intf->bmc->guid_set = 0;
2589 printk(KERN_WARNING PFX
2590 "guid_handler: The GUID response from the BMC was too"
2591 " short, it was %d but should have been 17. Assuming"
2592 " GUID is not available.\n",
2593 msg->msg.data_len);
2594 goto out;
2597 memcpy(intf->bmc->guid, msg->msg.data, 16);
2598 intf->bmc->guid_set = 1;
2599 out:
2600 wake_up(&intf->waitq);
2603 static void
2604 get_guid(ipmi_smi_t intf)
2606 int rv;
2608 intf->bmc->guid_set = 0x2;
2609 intf->null_user_handler = guid_handler;
2610 rv = send_guid_cmd(intf, 0);
2611 if (rv)
2612 /* Send failed, no GUID available. */
2613 intf->bmc->guid_set = 0;
2614 wait_event(intf->waitq, intf->bmc->guid_set != 2);
2615 intf->null_user_handler = NULL;
2618 static int
2619 send_channel_info_cmd(ipmi_smi_t intf, int chan)
2621 struct kernel_ipmi_msg msg;
2622 unsigned char data[1];
2623 struct ipmi_system_interface_addr si;
2625 si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
2626 si.channel = IPMI_BMC_CHANNEL;
2627 si.lun = 0;
2629 msg.netfn = IPMI_NETFN_APP_REQUEST;
2630 msg.cmd = IPMI_GET_CHANNEL_INFO_CMD;
2631 msg.data = data;
2632 msg.data_len = 1;
2633 data[0] = chan;
2634 return i_ipmi_request(NULL,
2635 intf,
2636 (struct ipmi_addr *) &si,
2638 &msg,
2639 intf,
2640 NULL,
2641 NULL,
2643 intf->channels[0].address,
2644 intf->channels[0].lun,
2645 -1, 0);
2648 static void
2649 channel_handler(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
2651 int rv = 0;
2652 int chan;
2654 if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
2655 && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
2656 && (msg->msg.cmd == IPMI_GET_CHANNEL_INFO_CMD)) {
2657 /* It's the one we want */
2658 if (msg->msg.data[0] != 0) {
2659 /* Got an error from the channel, just go on. */
2661 if (msg->msg.data[0] == IPMI_INVALID_COMMAND_ERR) {
2663 * If the MC does not support this
2664 * command, that is legal. We just
2665 * assume it has one IPMB at channel
2666 * zero.
2668 intf->channels[0].medium
2669 = IPMI_CHANNEL_MEDIUM_IPMB;
2670 intf->channels[0].protocol
2671 = IPMI_CHANNEL_PROTOCOL_IPMB;
2672 rv = -ENOSYS;
2674 intf->curr_channel = IPMI_MAX_CHANNELS;
2675 wake_up(&intf->waitq);
2676 goto out;
2678 goto next_channel;
2680 if (msg->msg.data_len < 4) {
2681 /* Message not big enough, just go on. */
2682 goto next_channel;
2684 chan = intf->curr_channel;
2685 intf->channels[chan].medium = msg->msg.data[2] & 0x7f;
2686 intf->channels[chan].protocol = msg->msg.data[3] & 0x1f;
2688 next_channel:
2689 intf->curr_channel++;
2690 if (intf->curr_channel >= IPMI_MAX_CHANNELS)
2691 wake_up(&intf->waitq);
2692 else
2693 rv = send_channel_info_cmd(intf, intf->curr_channel);
2695 if (rv) {
2696 /* Got an error somehow, just give up. */
2697 intf->curr_channel = IPMI_MAX_CHANNELS;
2698 wake_up(&intf->waitq);
2700 printk(KERN_WARNING PFX
2701 "Error sending channel information: %d\n",
2702 rv);
2705 out:
2706 return;
2709 void ipmi_poll_interface(ipmi_user_t user)
2711 ipmi_smi_t intf = user->intf;
2713 if (intf->handlers->poll)
2714 intf->handlers->poll(intf->send_info);
2716 EXPORT_SYMBOL(ipmi_poll_interface);
2718 int ipmi_register_smi(struct ipmi_smi_handlers *handlers,
2719 void *send_info,
2720 struct ipmi_device_id *device_id,
2721 struct device *si_dev,
2722 const char *sysfs_name,
2723 unsigned char slave_addr)
2725 int i, j;
2726 int rv;
2727 ipmi_smi_t intf;
2728 ipmi_smi_t tintf;
2729 struct list_head *link;
2732 * Make sure the driver is actually initialized, this handles
2733 * problems with initialization order.
2735 if (!initialized) {
2736 rv = ipmi_init_msghandler();
2737 if (rv)
2738 return rv;
2740 * The init code doesn't return an error if it was turned
2741 * off, but it won't initialize. Check that.
2743 if (!initialized)
2744 return -ENODEV;
2747 intf = kzalloc(sizeof(*intf), GFP_KERNEL);
2748 if (!intf)
2749 return -ENOMEM;
2751 intf->ipmi_version_major = ipmi_version_major(device_id);
2752 intf->ipmi_version_minor = ipmi_version_minor(device_id);
2754 intf->bmc = kzalloc(sizeof(*intf->bmc), GFP_KERNEL);
2755 if (!intf->bmc) {
2756 kfree(intf);
2757 return -ENOMEM;
2759 intf->intf_num = -1; /* Mark it invalid for now. */
2760 kref_init(&intf->refcount);
2761 intf->bmc->id = *device_id;
2762 intf->si_dev = si_dev;
2763 for (j = 0; j < IPMI_MAX_CHANNELS; j++) {
2764 intf->channels[j].address = IPMI_BMC_SLAVE_ADDR;
2765 intf->channels[j].lun = 2;
2767 if (slave_addr != 0)
2768 intf->channels[0].address = slave_addr;
2769 INIT_LIST_HEAD(&intf->users);
2770 intf->handlers = handlers;
2771 intf->send_info = send_info;
2772 spin_lock_init(&intf->seq_lock);
2773 for (j = 0; j < IPMI_IPMB_NUM_SEQ; j++) {
2774 intf->seq_table[j].inuse = 0;
2775 intf->seq_table[j].seqid = 0;
2777 intf->curr_seq = 0;
2778 #ifdef CONFIG_PROC_FS
2779 mutex_init(&intf->proc_entry_lock);
2780 #endif
2781 spin_lock_init(&intf->waiting_msgs_lock);
2782 INIT_LIST_HEAD(&intf->waiting_msgs);
2783 spin_lock_init(&intf->events_lock);
2784 INIT_LIST_HEAD(&intf->waiting_events);
2785 intf->waiting_events_count = 0;
2786 mutex_init(&intf->cmd_rcvrs_mutex);
2787 spin_lock_init(&intf->maintenance_mode_lock);
2788 INIT_LIST_HEAD(&intf->cmd_rcvrs);
2789 init_waitqueue_head(&intf->waitq);
2790 for (i = 0; i < IPMI_NUM_STATS; i++)
2791 atomic_set(&intf->stats[i], 0);
2793 intf->proc_dir = NULL;
2795 mutex_lock(&smi_watchers_mutex);
2796 mutex_lock(&ipmi_interfaces_mutex);
2797 /* Look for a hole in the numbers. */
2798 i = 0;
2799 link = &ipmi_interfaces;
2800 list_for_each_entry_rcu(tintf, &ipmi_interfaces, link) {
2801 if (tintf->intf_num != i) {
2802 link = &tintf->link;
2803 break;
2805 i++;
2807 /* Add the new interface in numeric order. */
2808 if (i == 0)
2809 list_add_rcu(&intf->link, &ipmi_interfaces);
2810 else
2811 list_add_tail_rcu(&intf->link, link);
2813 rv = handlers->start_processing(send_info, intf);
2814 if (rv)
2815 goto out;
2817 get_guid(intf);
2819 if ((intf->ipmi_version_major > 1)
2820 || ((intf->ipmi_version_major == 1)
2821 && (intf->ipmi_version_minor >= 5))) {
2823 * Start scanning the channels to see what is
2824 * available.
2826 intf->null_user_handler = channel_handler;
2827 intf->curr_channel = 0;
2828 rv = send_channel_info_cmd(intf, 0);
2829 if (rv)
2830 goto out;
2832 /* Wait for the channel info to be read. */
2833 wait_event(intf->waitq,
2834 intf->curr_channel >= IPMI_MAX_CHANNELS);
2835 intf->null_user_handler = NULL;
2836 } else {
2837 /* Assume a single IPMB channel at zero. */
2838 intf->channels[0].medium = IPMI_CHANNEL_MEDIUM_IPMB;
2839 intf->channels[0].protocol = IPMI_CHANNEL_PROTOCOL_IPMB;
2842 if (rv == 0)
2843 rv = add_proc_entries(intf, i);
2845 rv = ipmi_bmc_register(intf, i, sysfs_name);
2847 out:
2848 if (rv) {
2849 if (intf->proc_dir)
2850 remove_proc_entries(intf);
2851 intf->handlers = NULL;
2852 list_del_rcu(&intf->link);
2853 mutex_unlock(&ipmi_interfaces_mutex);
2854 mutex_unlock(&smi_watchers_mutex);
2855 synchronize_rcu();
2856 kref_put(&intf->refcount, intf_free);
2857 } else {
2859 * Keep memory order straight for RCU readers. Make
2860 * sure everything else is committed to memory before
2861 * setting intf_num to mark the interface valid.
2863 smp_wmb();
2864 intf->intf_num = i;
2865 mutex_unlock(&ipmi_interfaces_mutex);
2866 /* After this point the interface is legal to use. */
2867 call_smi_watchers(i, intf->si_dev);
2868 mutex_unlock(&smi_watchers_mutex);
2871 return rv;
2873 EXPORT_SYMBOL(ipmi_register_smi);
2875 static void cleanup_smi_msgs(ipmi_smi_t intf)
2877 int i;
2878 struct seq_table *ent;
2880 /* No need for locks, the interface is down. */
2881 for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
2882 ent = &(intf->seq_table[i]);
2883 if (!ent->inuse)
2884 continue;
2885 deliver_err_response(ent->recv_msg, IPMI_ERR_UNSPECIFIED);
2889 int ipmi_unregister_smi(ipmi_smi_t intf)
2891 struct ipmi_smi_watcher *w;
2892 int intf_num = intf->intf_num;
2894 ipmi_bmc_unregister(intf);
2896 mutex_lock(&smi_watchers_mutex);
2897 mutex_lock(&ipmi_interfaces_mutex);
2898 intf->intf_num = -1;
2899 intf->handlers = NULL;
2900 list_del_rcu(&intf->link);
2901 mutex_unlock(&ipmi_interfaces_mutex);
2902 synchronize_rcu();
2904 cleanup_smi_msgs(intf);
2906 remove_proc_entries(intf);
2909 * Call all the watcher interfaces to tell them that
2910 * an interface is gone.
2912 list_for_each_entry(w, &smi_watchers, link)
2913 w->smi_gone(intf_num);
2914 mutex_unlock(&smi_watchers_mutex);
2916 kref_put(&intf->refcount, intf_free);
2917 return 0;
2919 EXPORT_SYMBOL(ipmi_unregister_smi);
2921 static int handle_ipmb_get_msg_rsp(ipmi_smi_t intf,
2922 struct ipmi_smi_msg *msg)
2924 struct ipmi_ipmb_addr ipmb_addr;
2925 struct ipmi_recv_msg *recv_msg;
2928 * This is 11, not 10, because the response must contain a
2929 * completion code.
2931 if (msg->rsp_size < 11) {
2932 /* Message not big enough, just ignore it. */
2933 ipmi_inc_stat(intf, invalid_ipmb_responses);
2934 return 0;
2937 if (msg->rsp[2] != 0) {
2938 /* An error getting the response, just ignore it. */
2939 return 0;
2942 ipmb_addr.addr_type = IPMI_IPMB_ADDR_TYPE;
2943 ipmb_addr.slave_addr = msg->rsp[6];
2944 ipmb_addr.channel = msg->rsp[3] & 0x0f;
2945 ipmb_addr.lun = msg->rsp[7] & 3;
2948 * It's a response from a remote entity. Look up the sequence
2949 * number and handle the response.
2951 if (intf_find_seq(intf,
2952 msg->rsp[7] >> 2,
2953 msg->rsp[3] & 0x0f,
2954 msg->rsp[8],
2955 (msg->rsp[4] >> 2) & (~1),
2956 (struct ipmi_addr *) &(ipmb_addr),
2957 &recv_msg)) {
2959 * We were unable to find the sequence number,
2960 * so just nuke the message.
2962 ipmi_inc_stat(intf, unhandled_ipmb_responses);
2963 return 0;
2966 memcpy(recv_msg->msg_data,
2967 &(msg->rsp[9]),
2968 msg->rsp_size - 9);
2970 * The other fields matched, so no need to set them, except
2971 * for netfn, which needs to be the response that was
2972 * returned, not the request value.
2974 recv_msg->msg.netfn = msg->rsp[4] >> 2;
2975 recv_msg->msg.data = recv_msg->msg_data;
2976 recv_msg->msg.data_len = msg->rsp_size - 10;
2977 recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
2978 ipmi_inc_stat(intf, handled_ipmb_responses);
2979 deliver_response(recv_msg);
2981 return 0;
2984 static int handle_ipmb_get_msg_cmd(ipmi_smi_t intf,
2985 struct ipmi_smi_msg *msg)
2987 struct cmd_rcvr *rcvr;
2988 int rv = 0;
2989 unsigned char netfn;
2990 unsigned char cmd;
2991 unsigned char chan;
2992 ipmi_user_t user = NULL;
2993 struct ipmi_ipmb_addr *ipmb_addr;
2994 struct ipmi_recv_msg *recv_msg;
2995 struct ipmi_smi_handlers *handlers;
2997 if (msg->rsp_size < 10) {
2998 /* Message not big enough, just ignore it. */
2999 ipmi_inc_stat(intf, invalid_commands);
3000 return 0;
3003 if (msg->rsp[2] != 0) {
3004 /* An error getting the response, just ignore it. */
3005 return 0;
3008 netfn = msg->rsp[4] >> 2;
3009 cmd = msg->rsp[8];
3010 chan = msg->rsp[3] & 0xf;
3012 rcu_read_lock();
3013 rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3014 if (rcvr) {
3015 user = rcvr->user;
3016 kref_get(&user->refcount);
3017 } else
3018 user = NULL;
3019 rcu_read_unlock();
3021 if (user == NULL) {
3022 /* We didn't find a user, deliver an error response. */
3023 ipmi_inc_stat(intf, unhandled_commands);
3025 msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
3026 msg->data[1] = IPMI_SEND_MSG_CMD;
3027 msg->data[2] = msg->rsp[3];
3028 msg->data[3] = msg->rsp[6];
3029 msg->data[4] = ((netfn + 1) << 2) | (msg->rsp[7] & 0x3);
3030 msg->data[5] = ipmb_checksum(&(msg->data[3]), 2);
3031 msg->data[6] = intf->channels[msg->rsp[3] & 0xf].address;
3032 /* rqseq/lun */
3033 msg->data[7] = (msg->rsp[7] & 0xfc) | (msg->rsp[4] & 0x3);
3034 msg->data[8] = msg->rsp[8]; /* cmd */
3035 msg->data[9] = IPMI_INVALID_CMD_COMPLETION_CODE;
3036 msg->data[10] = ipmb_checksum(&(msg->data[6]), 4);
3037 msg->data_size = 11;
3039 #ifdef DEBUG_MSGING
3041 int m;
3042 printk("Invalid command:");
3043 for (m = 0; m < msg->data_size; m++)
3044 printk(" %2.2x", msg->data[m]);
3045 printk("\n");
3047 #endif
3048 rcu_read_lock();
3049 handlers = intf->handlers;
3050 if (handlers) {
3051 handlers->sender(intf->send_info, msg, 0);
3053 * We used the message, so return the value
3054 * that causes it to not be freed or
3055 * queued.
3057 rv = -1;
3059 rcu_read_unlock();
3060 } else {
3061 /* Deliver the message to the user. */
3062 ipmi_inc_stat(intf, handled_commands);
3064 recv_msg = ipmi_alloc_recv_msg();
3065 if (!recv_msg) {
3067 * We couldn't allocate memory for the
3068 * message, so requeue it for handling
3069 * later.
3071 rv = 1;
3072 kref_put(&user->refcount, free_user);
3073 } else {
3074 /* Extract the source address from the data. */
3075 ipmb_addr = (struct ipmi_ipmb_addr *) &recv_msg->addr;
3076 ipmb_addr->addr_type = IPMI_IPMB_ADDR_TYPE;
3077 ipmb_addr->slave_addr = msg->rsp[6];
3078 ipmb_addr->lun = msg->rsp[7] & 3;
3079 ipmb_addr->channel = msg->rsp[3] & 0xf;
3082 * Extract the rest of the message information
3083 * from the IPMB header.
3085 recv_msg->user = user;
3086 recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
3087 recv_msg->msgid = msg->rsp[7] >> 2;
3088 recv_msg->msg.netfn = msg->rsp[4] >> 2;
3089 recv_msg->msg.cmd = msg->rsp[8];
3090 recv_msg->msg.data = recv_msg->msg_data;
3093 * We chop off 10, not 9 bytes because the checksum
3094 * at the end also needs to be removed.
3096 recv_msg->msg.data_len = msg->rsp_size - 10;
3097 memcpy(recv_msg->msg_data,
3098 &(msg->rsp[9]),
3099 msg->rsp_size - 10);
3100 deliver_response(recv_msg);
3104 return rv;
3107 static int handle_lan_get_msg_rsp(ipmi_smi_t intf,
3108 struct ipmi_smi_msg *msg)
3110 struct ipmi_lan_addr lan_addr;
3111 struct ipmi_recv_msg *recv_msg;
3115 * This is 13, not 12, because the response must contain a
3116 * completion code.
3118 if (msg->rsp_size < 13) {
3119 /* Message not big enough, just ignore it. */
3120 ipmi_inc_stat(intf, invalid_lan_responses);
3121 return 0;
3124 if (msg->rsp[2] != 0) {
3125 /* An error getting the response, just ignore it. */
3126 return 0;
3129 lan_addr.addr_type = IPMI_LAN_ADDR_TYPE;
3130 lan_addr.session_handle = msg->rsp[4];
3131 lan_addr.remote_SWID = msg->rsp[8];
3132 lan_addr.local_SWID = msg->rsp[5];
3133 lan_addr.channel = msg->rsp[3] & 0x0f;
3134 lan_addr.privilege = msg->rsp[3] >> 4;
3135 lan_addr.lun = msg->rsp[9] & 3;
3138 * It's a response from a remote entity. Look up the sequence
3139 * number and handle the response.
3141 if (intf_find_seq(intf,
3142 msg->rsp[9] >> 2,
3143 msg->rsp[3] & 0x0f,
3144 msg->rsp[10],
3145 (msg->rsp[6] >> 2) & (~1),
3146 (struct ipmi_addr *) &(lan_addr),
3147 &recv_msg)) {
3149 * We were unable to find the sequence number,
3150 * so just nuke the message.
3152 ipmi_inc_stat(intf, unhandled_lan_responses);
3153 return 0;
3156 memcpy(recv_msg->msg_data,
3157 &(msg->rsp[11]),
3158 msg->rsp_size - 11);
3160 * The other fields matched, so no need to set them, except
3161 * for netfn, which needs to be the response that was
3162 * returned, not the request value.
3164 recv_msg->msg.netfn = msg->rsp[6] >> 2;
3165 recv_msg->msg.data = recv_msg->msg_data;
3166 recv_msg->msg.data_len = msg->rsp_size - 12;
3167 recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3168 ipmi_inc_stat(intf, handled_lan_responses);
3169 deliver_response(recv_msg);
3171 return 0;
3174 static int handle_lan_get_msg_cmd(ipmi_smi_t intf,
3175 struct ipmi_smi_msg *msg)
3177 struct cmd_rcvr *rcvr;
3178 int rv = 0;
3179 unsigned char netfn;
3180 unsigned char cmd;
3181 unsigned char chan;
3182 ipmi_user_t user = NULL;
3183 struct ipmi_lan_addr *lan_addr;
3184 struct ipmi_recv_msg *recv_msg;
3186 if (msg->rsp_size < 12) {
3187 /* Message not big enough, just ignore it. */
3188 ipmi_inc_stat(intf, invalid_commands);
3189 return 0;
3192 if (msg->rsp[2] != 0) {
3193 /* An error getting the response, just ignore it. */
3194 return 0;
3197 netfn = msg->rsp[6] >> 2;
3198 cmd = msg->rsp[10];
3199 chan = msg->rsp[3] & 0xf;
3201 rcu_read_lock();
3202 rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3203 if (rcvr) {
3204 user = rcvr->user;
3205 kref_get(&user->refcount);
3206 } else
3207 user = NULL;
3208 rcu_read_unlock();
3210 if (user == NULL) {
3211 /* We didn't find a user, just give up. */
3212 ipmi_inc_stat(intf, unhandled_commands);
3215 * Don't do anything with these messages, just allow
3216 * them to be freed.
3218 rv = 0;
3219 } else {
3220 /* Deliver the message to the user. */
3221 ipmi_inc_stat(intf, handled_commands);
3223 recv_msg = ipmi_alloc_recv_msg();
3224 if (!recv_msg) {
3226 * We couldn't allocate memory for the
3227 * message, so requeue it for handling later.
3229 rv = 1;
3230 kref_put(&user->refcount, free_user);
3231 } else {
3232 /* Extract the source address from the data. */
3233 lan_addr = (struct ipmi_lan_addr *) &recv_msg->addr;
3234 lan_addr->addr_type = IPMI_LAN_ADDR_TYPE;
3235 lan_addr->session_handle = msg->rsp[4];
3236 lan_addr->remote_SWID = msg->rsp[8];
3237 lan_addr->local_SWID = msg->rsp[5];
3238 lan_addr->lun = msg->rsp[9] & 3;
3239 lan_addr->channel = msg->rsp[3] & 0xf;
3240 lan_addr->privilege = msg->rsp[3] >> 4;
3243 * Extract the rest of the message information
3244 * from the IPMB header.
3246 recv_msg->user = user;
3247 recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
3248 recv_msg->msgid = msg->rsp[9] >> 2;
3249 recv_msg->msg.netfn = msg->rsp[6] >> 2;
3250 recv_msg->msg.cmd = msg->rsp[10];
3251 recv_msg->msg.data = recv_msg->msg_data;
3254 * We chop off 12, not 11 bytes because the checksum
3255 * at the end also needs to be removed.
3257 recv_msg->msg.data_len = msg->rsp_size - 12;
3258 memcpy(recv_msg->msg_data,
3259 &(msg->rsp[11]),
3260 msg->rsp_size - 12);
3261 deliver_response(recv_msg);
3265 return rv;
3268 static void copy_event_into_recv_msg(struct ipmi_recv_msg *recv_msg,
3269 struct ipmi_smi_msg *msg)
3271 struct ipmi_system_interface_addr *smi_addr;
3273 recv_msg->msgid = 0;
3274 smi_addr = (struct ipmi_system_interface_addr *) &(recv_msg->addr);
3275 smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3276 smi_addr->channel = IPMI_BMC_CHANNEL;
3277 smi_addr->lun = msg->rsp[0] & 3;
3278 recv_msg->recv_type = IPMI_ASYNC_EVENT_RECV_TYPE;
3279 recv_msg->msg.netfn = msg->rsp[0] >> 2;
3280 recv_msg->msg.cmd = msg->rsp[1];
3281 memcpy(recv_msg->msg_data, &(msg->rsp[3]), msg->rsp_size - 3);
3282 recv_msg->msg.data = recv_msg->msg_data;
3283 recv_msg->msg.data_len = msg->rsp_size - 3;
3286 static int handle_read_event_rsp(ipmi_smi_t intf,
3287 struct ipmi_smi_msg *msg)
3289 struct ipmi_recv_msg *recv_msg, *recv_msg2;
3290 struct list_head msgs;
3291 ipmi_user_t user;
3292 int rv = 0;
3293 int deliver_count = 0;
3294 unsigned long flags;
3296 if (msg->rsp_size < 19) {
3297 /* Message is too small to be an IPMB event. */
3298 ipmi_inc_stat(intf, invalid_events);
3299 return 0;
3302 if (msg->rsp[2] != 0) {
3303 /* An error getting the event, just ignore it. */
3304 return 0;
3307 INIT_LIST_HEAD(&msgs);
3309 spin_lock_irqsave(&intf->events_lock, flags);
3311 ipmi_inc_stat(intf, events);
3314 * Allocate and fill in one message for every user that is
3315 * getting events.
3317 rcu_read_lock();
3318 list_for_each_entry_rcu(user, &intf->users, link) {
3319 if (!user->gets_events)
3320 continue;
3322 recv_msg = ipmi_alloc_recv_msg();
3323 if (!recv_msg) {
3324 rcu_read_unlock();
3325 list_for_each_entry_safe(recv_msg, recv_msg2, &msgs,
3326 link) {
3327 list_del(&recv_msg->link);
3328 ipmi_free_recv_msg(recv_msg);
3331 * We couldn't allocate memory for the
3332 * message, so requeue it for handling
3333 * later.
3335 rv = 1;
3336 goto out;
3339 deliver_count++;
3341 copy_event_into_recv_msg(recv_msg, msg);
3342 recv_msg->user = user;
3343 kref_get(&user->refcount);
3344 list_add_tail(&(recv_msg->link), &msgs);
3346 rcu_read_unlock();
3348 if (deliver_count) {
3349 /* Now deliver all the messages. */
3350 list_for_each_entry_safe(recv_msg, recv_msg2, &msgs, link) {
3351 list_del(&recv_msg->link);
3352 deliver_response(recv_msg);
3354 } else if (intf->waiting_events_count < MAX_EVENTS_IN_QUEUE) {
3356 * No one to receive the message, put it in queue if there's
3357 * not already too many things in the queue.
3359 recv_msg = ipmi_alloc_recv_msg();
3360 if (!recv_msg) {
3362 * We couldn't allocate memory for the
3363 * message, so requeue it for handling
3364 * later.
3366 rv = 1;
3367 goto out;
3370 copy_event_into_recv_msg(recv_msg, msg);
3371 list_add_tail(&(recv_msg->link), &(intf->waiting_events));
3372 intf->waiting_events_count++;
3373 } else if (!intf->event_msg_printed) {
3375 * There's too many things in the queue, discard this
3376 * message.
3378 printk(KERN_WARNING PFX "Event queue full, discarding"
3379 " incoming events\n");
3380 intf->event_msg_printed = 1;
3383 out:
3384 spin_unlock_irqrestore(&(intf->events_lock), flags);
3386 return rv;
3389 static int handle_bmc_rsp(ipmi_smi_t intf,
3390 struct ipmi_smi_msg *msg)
3392 struct ipmi_recv_msg *recv_msg;
3393 struct ipmi_user *user;
3395 recv_msg = (struct ipmi_recv_msg *) msg->user_data;
3396 if (recv_msg == NULL) {
3397 printk(KERN_WARNING
3398 "IPMI message received with no owner. This\n"
3399 "could be because of a malformed message, or\n"
3400 "because of a hardware error. Contact your\n"
3401 "hardware vender for assistance\n");
3402 return 0;
3405 user = recv_msg->user;
3406 /* Make sure the user still exists. */
3407 if (user && !user->valid) {
3408 /* The user for the message went away, so give up. */
3409 ipmi_inc_stat(intf, unhandled_local_responses);
3410 ipmi_free_recv_msg(recv_msg);
3411 } else {
3412 struct ipmi_system_interface_addr *smi_addr;
3414 ipmi_inc_stat(intf, handled_local_responses);
3415 recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3416 recv_msg->msgid = msg->msgid;
3417 smi_addr = ((struct ipmi_system_interface_addr *)
3418 &(recv_msg->addr));
3419 smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3420 smi_addr->channel = IPMI_BMC_CHANNEL;
3421 smi_addr->lun = msg->rsp[0] & 3;
3422 recv_msg->msg.netfn = msg->rsp[0] >> 2;
3423 recv_msg->msg.cmd = msg->rsp[1];
3424 memcpy(recv_msg->msg_data,
3425 &(msg->rsp[2]),
3426 msg->rsp_size - 2);
3427 recv_msg->msg.data = recv_msg->msg_data;
3428 recv_msg->msg.data_len = msg->rsp_size - 2;
3429 deliver_response(recv_msg);
3432 return 0;
3436 * Handle a new message. Return 1 if the message should be requeued,
3437 * 0 if the message should be freed, or -1 if the message should not
3438 * be freed or requeued.
3440 static int handle_new_recv_msg(ipmi_smi_t intf,
3441 struct ipmi_smi_msg *msg)
3443 int requeue;
3444 int chan;
3446 #ifdef DEBUG_MSGING
3447 int m;
3448 printk("Recv:");
3449 for (m = 0; m < msg->rsp_size; m++)
3450 printk(" %2.2x", msg->rsp[m]);
3451 printk("\n");
3452 #endif
3453 if (msg->rsp_size < 2) {
3454 /* Message is too small to be correct. */
3455 printk(KERN_WARNING PFX "BMC returned to small a message"
3456 " for netfn %x cmd %x, got %d bytes\n",
3457 (msg->data[0] >> 2) | 1, msg->data[1], msg->rsp_size);
3459 /* Generate an error response for the message. */
3460 msg->rsp[0] = msg->data[0] | (1 << 2);
3461 msg->rsp[1] = msg->data[1];
3462 msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
3463 msg->rsp_size = 3;
3464 } else if (((msg->rsp[0] >> 2) != ((msg->data[0] >> 2) | 1))
3465 || (msg->rsp[1] != msg->data[1])) {
3467 * The NetFN and Command in the response is not even
3468 * marginally correct.
3470 printk(KERN_WARNING PFX "BMC returned incorrect response,"
3471 " expected netfn %x cmd %x, got netfn %x cmd %x\n",
3472 (msg->data[0] >> 2) | 1, msg->data[1],
3473 msg->rsp[0] >> 2, msg->rsp[1]);
3475 /* Generate an error response for the message. */
3476 msg->rsp[0] = msg->data[0] | (1 << 2);
3477 msg->rsp[1] = msg->data[1];
3478 msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
3479 msg->rsp_size = 3;
3482 if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
3483 && (msg->rsp[1] == IPMI_SEND_MSG_CMD)
3484 && (msg->user_data != NULL)) {
3486 * It's a response to a response we sent. For this we
3487 * deliver a send message response to the user.
3489 struct ipmi_recv_msg *recv_msg = msg->user_data;
3491 requeue = 0;
3492 if (msg->rsp_size < 2)
3493 /* Message is too small to be correct. */
3494 goto out;
3496 chan = msg->data[2] & 0x0f;
3497 if (chan >= IPMI_MAX_CHANNELS)
3498 /* Invalid channel number */
3499 goto out;
3501 if (!recv_msg)
3502 goto out;
3504 /* Make sure the user still exists. */
3505 if (!recv_msg->user || !recv_msg->user->valid)
3506 goto out;
3508 recv_msg->recv_type = IPMI_RESPONSE_RESPONSE_TYPE;
3509 recv_msg->msg.data = recv_msg->msg_data;
3510 recv_msg->msg.data_len = 1;
3511 recv_msg->msg_data[0] = msg->rsp[2];
3512 deliver_response(recv_msg);
3513 } else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
3514 && (msg->rsp[1] == IPMI_GET_MSG_CMD)) {
3515 /* It's from the receive queue. */
3516 chan = msg->rsp[3] & 0xf;
3517 if (chan >= IPMI_MAX_CHANNELS) {
3518 /* Invalid channel number */
3519 requeue = 0;
3520 goto out;
3523 switch (intf->channels[chan].medium) {
3524 case IPMI_CHANNEL_MEDIUM_IPMB:
3525 if (msg->rsp[4] & 0x04) {
3527 * It's a response, so find the
3528 * requesting message and send it up.
3530 requeue = handle_ipmb_get_msg_rsp(intf, msg);
3531 } else {
3533 * It's a command to the SMS from some other
3534 * entity. Handle that.
3536 requeue = handle_ipmb_get_msg_cmd(intf, msg);
3538 break;
3540 case IPMI_CHANNEL_MEDIUM_8023LAN:
3541 case IPMI_CHANNEL_MEDIUM_ASYNC:
3542 if (msg->rsp[6] & 0x04) {
3544 * It's a response, so find the
3545 * requesting message and send it up.
3547 requeue = handle_lan_get_msg_rsp(intf, msg);
3548 } else {
3550 * It's a command to the SMS from some other
3551 * entity. Handle that.
3553 requeue = handle_lan_get_msg_cmd(intf, msg);
3555 break;
3557 default:
3559 * We don't handle the channel type, so just
3560 * free the message.
3562 requeue = 0;
3565 } else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
3566 && (msg->rsp[1] == IPMI_READ_EVENT_MSG_BUFFER_CMD)) {
3567 /* It's an asyncronous event. */
3568 requeue = handle_read_event_rsp(intf, msg);
3569 } else {
3570 /* It's a response from the local BMC. */
3571 requeue = handle_bmc_rsp(intf, msg);
3574 out:
3575 return requeue;
3578 /* Handle a new message from the lower layer. */
3579 void ipmi_smi_msg_received(ipmi_smi_t intf,
3580 struct ipmi_smi_msg *msg)
3582 unsigned long flags = 0; /* keep us warning-free. */
3583 int rv;
3584 int run_to_completion;
3587 if ((msg->data_size >= 2)
3588 && (msg->data[0] == (IPMI_NETFN_APP_REQUEST << 2))
3589 && (msg->data[1] == IPMI_SEND_MSG_CMD)
3590 && (msg->user_data == NULL)) {
3592 * This is the local response to a command send, start
3593 * the timer for these. The user_data will not be
3594 * NULL if this is a response send, and we will let
3595 * response sends just go through.
3599 * Check for errors, if we get certain errors (ones
3600 * that mean basically we can try again later), we
3601 * ignore them and start the timer. Otherwise we
3602 * report the error immediately.
3604 if ((msg->rsp_size >= 3) && (msg->rsp[2] != 0)
3605 && (msg->rsp[2] != IPMI_NODE_BUSY_ERR)
3606 && (msg->rsp[2] != IPMI_LOST_ARBITRATION_ERR)
3607 && (msg->rsp[2] != IPMI_BUS_ERR)
3608 && (msg->rsp[2] != IPMI_NAK_ON_WRITE_ERR)) {
3609 int chan = msg->rsp[3] & 0xf;
3611 /* Got an error sending the message, handle it. */
3612 if (chan >= IPMI_MAX_CHANNELS)
3613 ; /* This shouldn't happen */
3614 else if ((intf->channels[chan].medium
3615 == IPMI_CHANNEL_MEDIUM_8023LAN)
3616 || (intf->channels[chan].medium
3617 == IPMI_CHANNEL_MEDIUM_ASYNC))
3618 ipmi_inc_stat(intf, sent_lan_command_errs);
3619 else
3620 ipmi_inc_stat(intf, sent_ipmb_command_errs);
3621 intf_err_seq(intf, msg->msgid, msg->rsp[2]);
3622 } else
3623 /* The message was sent, start the timer. */
3624 intf_start_seq_timer(intf, msg->msgid);
3626 ipmi_free_smi_msg(msg);
3627 goto out;
3631 * To preserve message order, if the list is not empty, we
3632 * tack this message onto the end of the list.
3634 run_to_completion = intf->run_to_completion;
3635 if (!run_to_completion)
3636 spin_lock_irqsave(&intf->waiting_msgs_lock, flags);
3637 if (!list_empty(&intf->waiting_msgs)) {
3638 list_add_tail(&msg->link, &intf->waiting_msgs);
3639 if (!run_to_completion)
3640 spin_unlock_irqrestore(&intf->waiting_msgs_lock, flags);
3641 goto out;
3643 if (!run_to_completion)
3644 spin_unlock_irqrestore(&intf->waiting_msgs_lock, flags);
3646 rv = handle_new_recv_msg(intf, msg);
3647 if (rv > 0) {
3649 * Could not handle the message now, just add it to a
3650 * list to handle later.
3652 run_to_completion = intf->run_to_completion;
3653 if (!run_to_completion)
3654 spin_lock_irqsave(&intf->waiting_msgs_lock, flags);
3655 list_add_tail(&msg->link, &intf->waiting_msgs);
3656 if (!run_to_completion)
3657 spin_unlock_irqrestore(&intf->waiting_msgs_lock, flags);
3658 } else if (rv == 0) {
3659 ipmi_free_smi_msg(msg);
3662 out:
3663 return;
3665 EXPORT_SYMBOL(ipmi_smi_msg_received);
3667 void ipmi_smi_watchdog_pretimeout(ipmi_smi_t intf)
3669 ipmi_user_t user;
3671 rcu_read_lock();
3672 list_for_each_entry_rcu(user, &intf->users, link) {
3673 if (!user->handler->ipmi_watchdog_pretimeout)
3674 continue;
3676 user->handler->ipmi_watchdog_pretimeout(user->handler_data);
3678 rcu_read_unlock();
3680 EXPORT_SYMBOL(ipmi_smi_watchdog_pretimeout);
3682 static struct ipmi_smi_msg *
3683 smi_from_recv_msg(ipmi_smi_t intf, struct ipmi_recv_msg *recv_msg,
3684 unsigned char seq, long seqid)
3686 struct ipmi_smi_msg *smi_msg = ipmi_alloc_smi_msg();
3687 if (!smi_msg)
3689 * If we can't allocate the message, then just return, we
3690 * get 4 retries, so this should be ok.
3692 return NULL;
3694 memcpy(smi_msg->data, recv_msg->msg.data, recv_msg->msg.data_len);
3695 smi_msg->data_size = recv_msg->msg.data_len;
3696 smi_msg->msgid = STORE_SEQ_IN_MSGID(seq, seqid);
3698 #ifdef DEBUG_MSGING
3700 int m;
3701 printk("Resend: ");
3702 for (m = 0; m < smi_msg->data_size; m++)
3703 printk(" %2.2x", smi_msg->data[m]);
3704 printk("\n");
3706 #endif
3707 return smi_msg;
3710 static void check_msg_timeout(ipmi_smi_t intf, struct seq_table *ent,
3711 struct list_head *timeouts, long timeout_period,
3712 int slot, unsigned long *flags)
3714 struct ipmi_recv_msg *msg;
3715 struct ipmi_smi_handlers *handlers;
3717 if (intf->intf_num == -1)
3718 return;
3720 if (!ent->inuse)
3721 return;
3723 ent->timeout -= timeout_period;
3724 if (ent->timeout > 0)
3725 return;
3727 if (ent->retries_left == 0) {
3728 /* The message has used all its retries. */
3729 ent->inuse = 0;
3730 msg = ent->recv_msg;
3731 list_add_tail(&msg->link, timeouts);
3732 if (ent->broadcast)
3733 ipmi_inc_stat(intf, timed_out_ipmb_broadcasts);
3734 else if (ent->recv_msg->addr.addr_type == IPMI_LAN_ADDR_TYPE)
3735 ipmi_inc_stat(intf, timed_out_lan_commands);
3736 else
3737 ipmi_inc_stat(intf, timed_out_ipmb_commands);
3738 } else {
3739 struct ipmi_smi_msg *smi_msg;
3740 /* More retries, send again. */
3743 * Start with the max timer, set to normal timer after
3744 * the message is sent.
3746 ent->timeout = MAX_MSG_TIMEOUT;
3747 ent->retries_left--;
3748 if (ent->recv_msg->addr.addr_type == IPMI_LAN_ADDR_TYPE)
3749 ipmi_inc_stat(intf, retransmitted_lan_commands);
3750 else
3751 ipmi_inc_stat(intf, retransmitted_ipmb_commands);
3753 smi_msg = smi_from_recv_msg(intf, ent->recv_msg, slot,
3754 ent->seqid);
3755 if (!smi_msg)
3756 return;
3758 spin_unlock_irqrestore(&intf->seq_lock, *flags);
3761 * Send the new message. We send with a zero
3762 * priority. It timed out, I doubt time is that
3763 * critical now, and high priority messages are really
3764 * only for messages to the local MC, which don't get
3765 * resent.
3767 handlers = intf->handlers;
3768 if (handlers)
3769 intf->handlers->sender(intf->send_info,
3770 smi_msg, 0);
3771 else
3772 ipmi_free_smi_msg(smi_msg);
3774 spin_lock_irqsave(&intf->seq_lock, *flags);
3778 static void ipmi_timeout_handler(long timeout_period)
3780 ipmi_smi_t intf;
3781 struct list_head timeouts;
3782 struct ipmi_recv_msg *msg, *msg2;
3783 struct ipmi_smi_msg *smi_msg, *smi_msg2;
3784 unsigned long flags;
3785 int i;
3787 rcu_read_lock();
3788 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
3789 /* See if any waiting messages need to be processed. */
3790 spin_lock_irqsave(&intf->waiting_msgs_lock, flags);
3791 list_for_each_entry_safe(smi_msg, smi_msg2,
3792 &intf->waiting_msgs, link) {
3793 if (!handle_new_recv_msg(intf, smi_msg)) {
3794 list_del(&smi_msg->link);
3795 ipmi_free_smi_msg(smi_msg);
3796 } else {
3798 * To preserve message order, quit if we
3799 * can't handle a message.
3801 break;
3804 spin_unlock_irqrestore(&intf->waiting_msgs_lock, flags);
3807 * Go through the seq table and find any messages that
3808 * have timed out, putting them in the timeouts
3809 * list.
3811 INIT_LIST_HEAD(&timeouts);
3812 spin_lock_irqsave(&intf->seq_lock, flags);
3813 for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++)
3814 check_msg_timeout(intf, &(intf->seq_table[i]),
3815 &timeouts, timeout_period, i,
3816 &flags);
3817 spin_unlock_irqrestore(&intf->seq_lock, flags);
3819 list_for_each_entry_safe(msg, msg2, &timeouts, link)
3820 deliver_err_response(msg, IPMI_TIMEOUT_COMPLETION_CODE);
3823 * Maintenance mode handling. Check the timeout
3824 * optimistically before we claim the lock. It may
3825 * mean a timeout gets missed occasionally, but that
3826 * only means the timeout gets extended by one period
3827 * in that case. No big deal, and it avoids the lock
3828 * most of the time.
3830 if (intf->auto_maintenance_timeout > 0) {
3831 spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
3832 if (intf->auto_maintenance_timeout > 0) {
3833 intf->auto_maintenance_timeout
3834 -= timeout_period;
3835 if (!intf->maintenance_mode
3836 && (intf->auto_maintenance_timeout <= 0)) {
3837 intf->maintenance_mode_enable = 0;
3838 maintenance_mode_update(intf);
3841 spin_unlock_irqrestore(&intf->maintenance_mode_lock,
3842 flags);
3845 rcu_read_unlock();
3848 static void ipmi_request_event(void)
3850 ipmi_smi_t intf;
3851 struct ipmi_smi_handlers *handlers;
3853 rcu_read_lock();
3855 * Called from the timer, no need to check if handlers is
3856 * valid.
3858 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
3859 /* No event requests when in maintenance mode. */
3860 if (intf->maintenance_mode_enable)
3861 continue;
3863 handlers = intf->handlers;
3864 if (handlers)
3865 handlers->request_events(intf->send_info);
3867 rcu_read_unlock();
3870 static struct timer_list ipmi_timer;
3872 /* Call every ~100 ms. */
3873 #define IPMI_TIMEOUT_TIME 100
3875 /* How many jiffies does it take to get to the timeout time. */
3876 #define IPMI_TIMEOUT_JIFFIES ((IPMI_TIMEOUT_TIME * HZ) / 1000)
3879 * Request events from the queue every second (this is the number of
3880 * IPMI_TIMEOUT_TIMES between event requests). Hopefully, in the
3881 * future, IPMI will add a way to know immediately if an event is in
3882 * the queue and this silliness can go away.
3884 #define IPMI_REQUEST_EV_TIME (1000 / (IPMI_TIMEOUT_TIME))
3886 static atomic_t stop_operation;
3887 static unsigned int ticks_to_req_ev = IPMI_REQUEST_EV_TIME;
3889 static void ipmi_timeout(unsigned long data)
3891 if (atomic_read(&stop_operation))
3892 return;
3894 ticks_to_req_ev--;
3895 if (ticks_to_req_ev == 0) {
3896 ipmi_request_event();
3897 ticks_to_req_ev = IPMI_REQUEST_EV_TIME;
3900 ipmi_timeout_handler(IPMI_TIMEOUT_TIME);
3902 mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
3906 static atomic_t smi_msg_inuse_count = ATOMIC_INIT(0);
3907 static atomic_t recv_msg_inuse_count = ATOMIC_INIT(0);
3909 /* FIXME - convert these to slabs. */
3910 static void free_smi_msg(struct ipmi_smi_msg *msg)
3912 atomic_dec(&smi_msg_inuse_count);
3913 kfree(msg);
3916 struct ipmi_smi_msg *ipmi_alloc_smi_msg(void)
3918 struct ipmi_smi_msg *rv;
3919 rv = kmalloc(sizeof(struct ipmi_smi_msg), GFP_ATOMIC);
3920 if (rv) {
3921 rv->done = free_smi_msg;
3922 rv->user_data = NULL;
3923 atomic_inc(&smi_msg_inuse_count);
3925 return rv;
3927 EXPORT_SYMBOL(ipmi_alloc_smi_msg);
3929 static void free_recv_msg(struct ipmi_recv_msg *msg)
3931 atomic_dec(&recv_msg_inuse_count);
3932 kfree(msg);
3935 static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void)
3937 struct ipmi_recv_msg *rv;
3939 rv = kmalloc(sizeof(struct ipmi_recv_msg), GFP_ATOMIC);
3940 if (rv) {
3941 rv->user = NULL;
3942 rv->done = free_recv_msg;
3943 atomic_inc(&recv_msg_inuse_count);
3945 return rv;
3948 void ipmi_free_recv_msg(struct ipmi_recv_msg *msg)
3950 if (msg->user)
3951 kref_put(&msg->user->refcount, free_user);
3952 msg->done(msg);
3954 EXPORT_SYMBOL(ipmi_free_recv_msg);
3956 #ifdef CONFIG_IPMI_PANIC_EVENT
3958 static void dummy_smi_done_handler(struct ipmi_smi_msg *msg)
3962 static void dummy_recv_done_handler(struct ipmi_recv_msg *msg)
3966 #ifdef CONFIG_IPMI_PANIC_STRING
3967 static void event_receiver_fetcher(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
3969 if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
3970 && (msg->msg.netfn == IPMI_NETFN_SENSOR_EVENT_RESPONSE)
3971 && (msg->msg.cmd == IPMI_GET_EVENT_RECEIVER_CMD)
3972 && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) {
3973 /* A get event receiver command, save it. */
3974 intf->event_receiver = msg->msg.data[1];
3975 intf->event_receiver_lun = msg->msg.data[2] & 0x3;
3979 static void device_id_fetcher(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
3981 if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
3982 && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
3983 && (msg->msg.cmd == IPMI_GET_DEVICE_ID_CMD)
3984 && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) {
3986 * A get device id command, save if we are an event
3987 * receiver or generator.
3989 intf->local_sel_device = (msg->msg.data[6] >> 2) & 1;
3990 intf->local_event_generator = (msg->msg.data[6] >> 5) & 1;
3993 #endif
3995 static void send_panic_events(char *str)
3997 struct kernel_ipmi_msg msg;
3998 ipmi_smi_t intf;
3999 unsigned char data[16];
4000 struct ipmi_system_interface_addr *si;
4001 struct ipmi_addr addr;
4002 struct ipmi_smi_msg smi_msg;
4003 struct ipmi_recv_msg recv_msg;
4005 si = (struct ipmi_system_interface_addr *) &addr;
4006 si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4007 si->channel = IPMI_BMC_CHANNEL;
4008 si->lun = 0;
4010 /* Fill in an event telling that we have failed. */
4011 msg.netfn = 0x04; /* Sensor or Event. */
4012 msg.cmd = 2; /* Platform event command. */
4013 msg.data = data;
4014 msg.data_len = 8;
4015 data[0] = 0x41; /* Kernel generator ID, IPMI table 5-4 */
4016 data[1] = 0x03; /* This is for IPMI 1.0. */
4017 data[2] = 0x20; /* OS Critical Stop, IPMI table 36-3 */
4018 data[4] = 0x6f; /* Sensor specific, IPMI table 36-1 */
4019 data[5] = 0xa1; /* Runtime stop OEM bytes 2 & 3. */
4022 * Put a few breadcrumbs in. Hopefully later we can add more things
4023 * to make the panic events more useful.
4025 if (str) {
4026 data[3] = str[0];
4027 data[6] = str[1];
4028 data[7] = str[2];
4031 smi_msg.done = dummy_smi_done_handler;
4032 recv_msg.done = dummy_recv_done_handler;
4034 /* For every registered interface, send the event. */
4035 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4036 if (!intf->handlers)
4037 /* Interface is not ready. */
4038 continue;
4040 intf->run_to_completion = 1;
4041 /* Send the event announcing the panic. */
4042 intf->handlers->set_run_to_completion(intf->send_info, 1);
4043 i_ipmi_request(NULL,
4044 intf,
4045 &addr,
4047 &msg,
4048 intf,
4049 &smi_msg,
4050 &recv_msg,
4052 intf->channels[0].address,
4053 intf->channels[0].lun,
4054 0, 1); /* Don't retry, and don't wait. */
4057 #ifdef CONFIG_IPMI_PANIC_STRING
4059 * On every interface, dump a bunch of OEM event holding the
4060 * string.
4062 if (!str)
4063 return;
4065 /* For every registered interface, send the event. */
4066 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4067 char *p = str;
4068 struct ipmi_ipmb_addr *ipmb;
4069 int j;
4071 if (intf->intf_num == -1)
4072 /* Interface was not ready yet. */
4073 continue;
4076 * intf_num is used as an marker to tell if the
4077 * interface is valid. Thus we need a read barrier to
4078 * make sure data fetched before checking intf_num
4079 * won't be used.
4081 smp_rmb();
4084 * First job here is to figure out where to send the
4085 * OEM events. There's no way in IPMI to send OEM
4086 * events using an event send command, so we have to
4087 * find the SEL to put them in and stick them in
4088 * there.
4091 /* Get capabilities from the get device id. */
4092 intf->local_sel_device = 0;
4093 intf->local_event_generator = 0;
4094 intf->event_receiver = 0;
4096 /* Request the device info from the local MC. */
4097 msg.netfn = IPMI_NETFN_APP_REQUEST;
4098 msg.cmd = IPMI_GET_DEVICE_ID_CMD;
4099 msg.data = NULL;
4100 msg.data_len = 0;
4101 intf->null_user_handler = device_id_fetcher;
4102 i_ipmi_request(NULL,
4103 intf,
4104 &addr,
4106 &msg,
4107 intf,
4108 &smi_msg,
4109 &recv_msg,
4111 intf->channels[0].address,
4112 intf->channels[0].lun,
4113 0, 1); /* Don't retry, and don't wait. */
4115 if (intf->local_event_generator) {
4116 /* Request the event receiver from the local MC. */
4117 msg.netfn = IPMI_NETFN_SENSOR_EVENT_REQUEST;
4118 msg.cmd = IPMI_GET_EVENT_RECEIVER_CMD;
4119 msg.data = NULL;
4120 msg.data_len = 0;
4121 intf->null_user_handler = event_receiver_fetcher;
4122 i_ipmi_request(NULL,
4123 intf,
4124 &addr,
4126 &msg,
4127 intf,
4128 &smi_msg,
4129 &recv_msg,
4131 intf->channels[0].address,
4132 intf->channels[0].lun,
4133 0, 1); /* no retry, and no wait. */
4135 intf->null_user_handler = NULL;
4138 * Validate the event receiver. The low bit must not
4139 * be 1 (it must be a valid IPMB address), it cannot
4140 * be zero, and it must not be my address.
4142 if (((intf->event_receiver & 1) == 0)
4143 && (intf->event_receiver != 0)
4144 && (intf->event_receiver != intf->channels[0].address)) {
4146 * The event receiver is valid, send an IPMB
4147 * message.
4149 ipmb = (struct ipmi_ipmb_addr *) &addr;
4150 ipmb->addr_type = IPMI_IPMB_ADDR_TYPE;
4151 ipmb->channel = 0; /* FIXME - is this right? */
4152 ipmb->lun = intf->event_receiver_lun;
4153 ipmb->slave_addr = intf->event_receiver;
4154 } else if (intf->local_sel_device) {
4156 * The event receiver was not valid (or was
4157 * me), but I am an SEL device, just dump it
4158 * in my SEL.
4160 si = (struct ipmi_system_interface_addr *) &addr;
4161 si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4162 si->channel = IPMI_BMC_CHANNEL;
4163 si->lun = 0;
4164 } else
4165 continue; /* No where to send the event. */
4167 msg.netfn = IPMI_NETFN_STORAGE_REQUEST; /* Storage. */
4168 msg.cmd = IPMI_ADD_SEL_ENTRY_CMD;
4169 msg.data = data;
4170 msg.data_len = 16;
4172 j = 0;
4173 while (*p) {
4174 int size = strlen(p);
4176 if (size > 11)
4177 size = 11;
4178 data[0] = 0;
4179 data[1] = 0;
4180 data[2] = 0xf0; /* OEM event without timestamp. */
4181 data[3] = intf->channels[0].address;
4182 data[4] = j++; /* sequence # */
4184 * Always give 11 bytes, so strncpy will fill
4185 * it with zeroes for me.
4187 strncpy(data+5, p, 11);
4188 p += size;
4190 i_ipmi_request(NULL,
4191 intf,
4192 &addr,
4194 &msg,
4195 intf,
4196 &smi_msg,
4197 &recv_msg,
4199 intf->channels[0].address,
4200 intf->channels[0].lun,
4201 0, 1); /* no retry, and no wait. */
4204 #endif /* CONFIG_IPMI_PANIC_STRING */
4206 #endif /* CONFIG_IPMI_PANIC_EVENT */
4208 static int has_panicked;
4210 static int panic_event(struct notifier_block *this,
4211 unsigned long event,
4212 void *ptr)
4214 ipmi_smi_t intf;
4216 if (has_panicked)
4217 return NOTIFY_DONE;
4218 has_panicked = 1;
4220 /* For every registered interface, set it to run to completion. */
4221 list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4222 if (!intf->handlers)
4223 /* Interface is not ready. */
4224 continue;
4226 intf->run_to_completion = 1;
4227 intf->handlers->set_run_to_completion(intf->send_info, 1);
4230 #ifdef CONFIG_IPMI_PANIC_EVENT
4231 send_panic_events(ptr);
4232 #endif
4234 return NOTIFY_DONE;
4237 static struct notifier_block panic_block = {
4238 .notifier_call = panic_event,
4239 .next = NULL,
4240 .priority = 200 /* priority: INT_MAX >= x >= 0 */
4243 static int ipmi_init_msghandler(void)
4245 int rv;
4247 if (initialized)
4248 return 0;
4250 rv = driver_register(&ipmidriver);
4251 if (rv) {
4252 printk(KERN_ERR PFX "Could not register IPMI driver\n");
4253 return rv;
4256 printk(KERN_INFO "ipmi message handler version "
4257 IPMI_DRIVER_VERSION "\n");
4259 #ifdef CONFIG_PROC_FS
4260 proc_ipmi_root = proc_mkdir("ipmi", NULL);
4261 if (!proc_ipmi_root) {
4262 printk(KERN_ERR PFX "Unable to create IPMI proc dir");
4263 return -ENOMEM;
4266 proc_ipmi_root->owner = THIS_MODULE;
4267 #endif /* CONFIG_PROC_FS */
4269 setup_timer(&ipmi_timer, ipmi_timeout, 0);
4270 mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
4272 atomic_notifier_chain_register(&panic_notifier_list, &panic_block);
4274 initialized = 1;
4276 return 0;
4279 static __init int ipmi_init_msghandler_mod(void)
4281 ipmi_init_msghandler();
4282 return 0;
4285 static __exit void cleanup_ipmi(void)
4287 int count;
4289 if (!initialized)
4290 return;
4292 atomic_notifier_chain_unregister(&panic_notifier_list, &panic_block);
4295 * This can't be called if any interfaces exist, so no worry
4296 * about shutting down the interfaces.
4300 * Tell the timer to stop, then wait for it to stop. This
4301 * avoids problems with race conditions removing the timer
4302 * here.
4304 atomic_inc(&stop_operation);
4305 del_timer_sync(&ipmi_timer);
4307 #ifdef CONFIG_PROC_FS
4308 remove_proc_entry(proc_ipmi_root->name, NULL);
4309 #endif /* CONFIG_PROC_FS */
4311 driver_unregister(&ipmidriver);
4313 initialized = 0;
4315 /* Check for buffer leaks. */
4316 count = atomic_read(&smi_msg_inuse_count);
4317 if (count != 0)
4318 printk(KERN_WARNING PFX "SMI message count %d at exit\n",
4319 count);
4320 count = atomic_read(&recv_msg_inuse_count);
4321 if (count != 0)
4322 printk(KERN_WARNING PFX "recv message count %d at exit\n",
4323 count);
4325 module_exit(cleanup_ipmi);
4327 module_init(ipmi_init_msghandler_mod);
4328 MODULE_LICENSE("GPL");
4329 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
4330 MODULE_DESCRIPTION("Incoming and outgoing message routing for an IPMI"
4331 " interface.");
4332 MODULE_VERSION(IPMI_DRIVER_VERSION);