mxc_nand: Add v3 (i.MX51) Support
[linux-2.6/kvm.git] / drivers / mtd / nand / mxc_nand.c
blob3657a6eb026fc80c6e5175e237e76dd857d9a396
1 /*
2 * Copyright 2004-2007 Freescale Semiconductor, Inc. All Rights Reserved.
3 * Copyright 2008 Sascha Hauer, kernel@pengutronix.de
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License
7 * as published by the Free Software Foundation; either version 2
8 * of the License, or (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
17 * MA 02110-1301, USA.
20 #include <linux/delay.h>
21 #include <linux/slab.h>
22 #include <linux/init.h>
23 #include <linux/module.h>
24 #include <linux/mtd/mtd.h>
25 #include <linux/mtd/nand.h>
26 #include <linux/mtd/partitions.h>
27 #include <linux/interrupt.h>
28 #include <linux/device.h>
29 #include <linux/platform_device.h>
30 #include <linux/clk.h>
31 #include <linux/err.h>
32 #include <linux/io.h>
34 #include <asm/mach/flash.h>
35 #include <mach/mxc_nand.h>
36 #include <mach/hardware.h>
38 #define DRIVER_NAME "mxc_nand"
40 #define nfc_is_v21() (cpu_is_mx25() || cpu_is_mx35())
41 #define nfc_is_v1() (cpu_is_mx31() || cpu_is_mx27() || cpu_is_mx21())
42 #define nfc_is_v3_2() cpu_is_mx51()
43 #define nfc_is_v3() nfc_is_v3_2()
45 /* Addresses for NFC registers */
46 #define NFC_V1_V2_BUF_SIZE (host->regs + 0x00)
47 #define NFC_V1_V2_BUF_ADDR (host->regs + 0x04)
48 #define NFC_V1_V2_FLASH_ADDR (host->regs + 0x06)
49 #define NFC_V1_V2_FLASH_CMD (host->regs + 0x08)
50 #define NFC_V1_V2_CONFIG (host->regs + 0x0a)
51 #define NFC_V1_V2_ECC_STATUS_RESULT (host->regs + 0x0c)
52 #define NFC_V1_V2_RSLTMAIN_AREA (host->regs + 0x0e)
53 #define NFC_V1_V2_RSLTSPARE_AREA (host->regs + 0x10)
54 #define NFC_V1_V2_WRPROT (host->regs + 0x12)
55 #define NFC_V1_UNLOCKSTART_BLKADDR (host->regs + 0x14)
56 #define NFC_V1_UNLOCKEND_BLKADDR (host->regs + 0x16)
57 #define NFC_V21_UNLOCKSTART_BLKADDR (host->regs + 0x20)
58 #define NFC_V21_UNLOCKEND_BLKADDR (host->regs + 0x22)
59 #define NFC_V1_V2_NF_WRPRST (host->regs + 0x18)
60 #define NFC_V1_V2_CONFIG1 (host->regs + 0x1a)
61 #define NFC_V1_V2_CONFIG2 (host->regs + 0x1c)
63 #define NFC_V2_CONFIG1_ECC_MODE_4 (1 << 0)
64 #define NFC_V1_V2_CONFIG1_SP_EN (1 << 2)
65 #define NFC_V1_V2_CONFIG1_ECC_EN (1 << 3)
66 #define NFC_V1_V2_CONFIG1_INT_MSK (1 << 4)
67 #define NFC_V1_V2_CONFIG1_BIG (1 << 5)
68 #define NFC_V1_V2_CONFIG1_RST (1 << 6)
69 #define NFC_V1_V2_CONFIG1_CE (1 << 7)
70 #define NFC_V1_V2_CONFIG1_ONE_CYCLE (1 << 8)
72 #define NFC_V1_V2_CONFIG2_INT (1 << 15)
75 * Operation modes for the NFC. Valid for v1, v2 and v3
76 * type controllers.
78 #define NFC_CMD (1 << 0)
79 #define NFC_ADDR (1 << 1)
80 #define NFC_INPUT (1 << 2)
81 #define NFC_OUTPUT (1 << 3)
82 #define NFC_ID (1 << 4)
83 #define NFC_STATUS (1 << 5)
85 #define NFC_V3_FLASH_CMD (host->regs_axi + 0x00)
86 #define NFC_V3_FLASH_ADDR0 (host->regs_axi + 0x04)
88 #define NFC_V3_CONFIG1 (host->regs_axi + 0x34)
89 #define NFC_V3_CONFIG1_SP_EN (1 << 0)
90 #define NFC_V3_CONFIG1_RBA(x) (((x) & 0x7 ) << 4)
92 #define NFC_V3_ECC_STATUS_RESULT (host->regs_axi + 0x38)
94 #define NFC_V3_LAUNCH (host->regs_axi + 0x40)
96 #define NFC_V3_WRPROT (host->regs_ip + 0x0)
97 #define NFC_V3_WRPROT_LOCK_TIGHT (1 << 0)
98 #define NFC_V3_WRPROT_LOCK (1 << 1)
99 #define NFC_V3_WRPROT_UNLOCK (1 << 2)
100 #define NFC_V3_WRPROT_BLS_UNLOCK (2 << 6)
102 #define NFC_V3_WRPROT_UNLOCK_BLK_ADD0 (host->regs_ip + 0x04)
104 #define NFC_V3_CONFIG2 (host->regs_ip + 0x24)
105 #define NFC_V3_CONFIG2_PS_512 (0 << 0)
106 #define NFC_V3_CONFIG2_PS_2048 (1 << 0)
107 #define NFC_V3_CONFIG2_PS_4096 (2 << 0)
108 #define NFC_V3_CONFIG2_ONE_CYCLE (1 << 2)
109 #define NFC_V3_CONFIG2_ECC_EN (1 << 3)
110 #define NFC_V3_CONFIG2_2CMD_PHASES (1 << 4)
111 #define NFC_V3_CONFIG2_NUM_ADDR_PHASE0 (1 << 5)
112 #define NFC_V3_CONFIG2_ECC_MODE_8 (1 << 6)
113 #define NFC_V3_CONFIG2_PPB(x) (((x) & 0x3) << 7)
114 #define NFC_V3_CONFIG2_NUM_ADDR_PHASE1(x) (((x) & 0x3) << 12)
115 #define NFC_V3_CONFIG2_INT_MSK (1 << 15)
116 #define NFC_V3_CONFIG2_ST_CMD(x) (((x) & 0xff) << 24)
117 #define NFC_V3_CONFIG2_SPAS(x) (((x) & 0xff) << 16)
119 #define NFC_V3_CONFIG3 (host->regs_ip + 0x28)
120 #define NFC_V3_CONFIG3_ADD_OP(x) (((x) & 0x3) << 0)
121 #define NFC_V3_CONFIG3_FW8 (1 << 3)
122 #define NFC_V3_CONFIG3_SBB(x) (((x) & 0x7) << 8)
123 #define NFC_V3_CONFIG3_NUM_OF_DEVICES(x) (((x) & 0x7) << 12)
124 #define NFC_V3_CONFIG3_RBB_MODE (1 << 15)
125 #define NFC_V3_CONFIG3_NO_SDMA (1 << 20)
127 #define NFC_V3_IPC (host->regs_ip + 0x2C)
128 #define NFC_V3_IPC_CREQ (1 << 0)
129 #define NFC_V3_IPC_INT (1 << 31)
131 #define NFC_V3_DELAY_LINE (host->regs_ip + 0x34)
133 struct mxc_nand_host {
134 struct mtd_info mtd;
135 struct nand_chip nand;
136 struct mtd_partition *parts;
137 struct device *dev;
139 void *spare0;
140 void *main_area0;
142 void __iomem *base;
143 void __iomem *regs;
144 void __iomem *regs_axi;
145 void __iomem *regs_ip;
146 int status_request;
147 struct clk *clk;
148 int clk_act;
149 int irq;
150 int eccsize;
152 wait_queue_head_t irq_waitq;
154 uint8_t *data_buf;
155 unsigned int buf_start;
156 int spare_len;
158 void (*preset)(struct mtd_info *);
159 void (*send_cmd)(struct mxc_nand_host *, uint16_t, int);
160 void (*send_addr)(struct mxc_nand_host *, uint16_t, int);
161 void (*send_page)(struct mtd_info *, unsigned int);
162 void (*send_read_id)(struct mxc_nand_host *);
163 uint16_t (*get_dev_status)(struct mxc_nand_host *);
164 int (*check_int)(struct mxc_nand_host *);
167 /* OOB placement block for use with hardware ecc generation */
168 static struct nand_ecclayout nandv1_hw_eccoob_smallpage = {
169 .eccbytes = 5,
170 .eccpos = {6, 7, 8, 9, 10},
171 .oobfree = {{0, 5}, {12, 4}, }
174 static struct nand_ecclayout nandv1_hw_eccoob_largepage = {
175 .eccbytes = 20,
176 .eccpos = {6, 7, 8, 9, 10, 22, 23, 24, 25, 26,
177 38, 39, 40, 41, 42, 54, 55, 56, 57, 58},
178 .oobfree = {{2, 4}, {11, 10}, {27, 10}, {43, 10}, {59, 5}, }
181 /* OOB description for 512 byte pages with 16 byte OOB */
182 static struct nand_ecclayout nandv2_hw_eccoob_smallpage = {
183 .eccbytes = 1 * 9,
184 .eccpos = {
185 7, 8, 9, 10, 11, 12, 13, 14, 15
187 .oobfree = {
188 {.offset = 0, .length = 5}
192 /* OOB description for 2048 byte pages with 64 byte OOB */
193 static struct nand_ecclayout nandv2_hw_eccoob_largepage = {
194 .eccbytes = 4 * 9,
195 .eccpos = {
196 7, 8, 9, 10, 11, 12, 13, 14, 15,
197 23, 24, 25, 26, 27, 28, 29, 30, 31,
198 39, 40, 41, 42, 43, 44, 45, 46, 47,
199 55, 56, 57, 58, 59, 60, 61, 62, 63
201 .oobfree = {
202 {.offset = 2, .length = 4},
203 {.offset = 16, .length = 7},
204 {.offset = 32, .length = 7},
205 {.offset = 48, .length = 7}
209 #ifdef CONFIG_MTD_PARTITIONS
210 static const char *part_probes[] = { "RedBoot", "cmdlinepart", NULL };
211 #endif
213 static irqreturn_t mxc_nfc_irq(int irq, void *dev_id)
215 struct mxc_nand_host *host = dev_id;
217 disable_irq_nosync(irq);
219 wake_up(&host->irq_waitq);
221 return IRQ_HANDLED;
224 static int check_int_v3(struct mxc_nand_host *host)
226 uint32_t tmp;
228 tmp = readl(NFC_V3_IPC);
229 if (!(tmp & NFC_V3_IPC_INT))
230 return 0;
232 tmp &= ~NFC_V3_IPC_INT;
233 writel(tmp, NFC_V3_IPC);
235 return 1;
238 static int check_int_v1_v2(struct mxc_nand_host *host)
240 uint32_t tmp;
242 tmp = readw(NFC_V1_V2_CONFIG2);
243 if (!(tmp & NFC_V1_V2_CONFIG2_INT))
244 return 0;
246 writew(tmp & ~NFC_V1_V2_CONFIG2_INT, NFC_V1_V2_CONFIG2);
248 return 1;
251 /* This function polls the NANDFC to wait for the basic operation to
252 * complete by checking the INT bit of config2 register.
254 static void wait_op_done(struct mxc_nand_host *host, int useirq)
256 int max_retries = 8000;
258 if (useirq) {
259 if (!host->check_int(host)) {
261 enable_irq(host->irq);
263 wait_event(host->irq_waitq, host->check_int(host));
265 } else {
266 while (max_retries-- > 0) {
267 if (host->check_int(host))
268 break;
270 udelay(1);
272 if (max_retries < 0)
273 DEBUG(MTD_DEBUG_LEVEL0, "%s: INT not set\n",
274 __func__);
278 static void send_cmd_v3(struct mxc_nand_host *host, uint16_t cmd, int useirq)
280 /* fill command */
281 writel(cmd, NFC_V3_FLASH_CMD);
283 /* send out command */
284 writel(NFC_CMD, NFC_V3_LAUNCH);
286 /* Wait for operation to complete */
287 wait_op_done(host, useirq);
290 /* This function issues the specified command to the NAND device and
291 * waits for completion. */
292 static void send_cmd_v1_v2(struct mxc_nand_host *host, uint16_t cmd, int useirq)
294 DEBUG(MTD_DEBUG_LEVEL3, "send_cmd(host, 0x%x, %d)\n", cmd, useirq);
296 writew(cmd, NFC_V1_V2_FLASH_CMD);
297 writew(NFC_CMD, NFC_V1_V2_CONFIG2);
299 if (cpu_is_mx21() && (cmd == NAND_CMD_RESET)) {
300 int max_retries = 100;
301 /* Reset completion is indicated by NFC_CONFIG2 */
302 /* being set to 0 */
303 while (max_retries-- > 0) {
304 if (readw(NFC_V1_V2_CONFIG2) == 0) {
305 break;
307 udelay(1);
309 if (max_retries < 0)
310 DEBUG(MTD_DEBUG_LEVEL0, "%s: RESET failed\n",
311 __func__);
312 } else {
313 /* Wait for operation to complete */
314 wait_op_done(host, useirq);
318 static void send_addr_v3(struct mxc_nand_host *host, uint16_t addr, int islast)
320 /* fill address */
321 writel(addr, NFC_V3_FLASH_ADDR0);
323 /* send out address */
324 writel(NFC_ADDR, NFC_V3_LAUNCH);
326 wait_op_done(host, 0);
329 /* This function sends an address (or partial address) to the
330 * NAND device. The address is used to select the source/destination for
331 * a NAND command. */
332 static void send_addr_v1_v2(struct mxc_nand_host *host, uint16_t addr, int islast)
334 DEBUG(MTD_DEBUG_LEVEL3, "send_addr(host, 0x%x %d)\n", addr, islast);
336 writew(addr, NFC_V1_V2_FLASH_ADDR);
337 writew(NFC_ADDR, NFC_V1_V2_CONFIG2);
339 /* Wait for operation to complete */
340 wait_op_done(host, islast);
343 static void send_page_v3(struct mtd_info *mtd, unsigned int ops)
345 struct nand_chip *nand_chip = mtd->priv;
346 struct mxc_nand_host *host = nand_chip->priv;
347 uint32_t tmp;
349 tmp = readl(NFC_V3_CONFIG1);
350 tmp &= ~(7 << 4);
351 writel(tmp, NFC_V3_CONFIG1);
353 /* transfer data from NFC ram to nand */
354 writel(ops, NFC_V3_LAUNCH);
356 wait_op_done(host, false);
359 static void send_page_v1_v2(struct mtd_info *mtd, unsigned int ops)
361 struct nand_chip *nand_chip = mtd->priv;
362 struct mxc_nand_host *host = nand_chip->priv;
363 int bufs, i;
365 if (nfc_is_v1() && mtd->writesize > 512)
366 bufs = 4;
367 else
368 bufs = 1;
370 for (i = 0; i < bufs; i++) {
372 /* NANDFC buffer 0 is used for page read/write */
373 writew(i, NFC_V1_V2_BUF_ADDR);
375 writew(ops, NFC_V1_V2_CONFIG2);
377 /* Wait for operation to complete */
378 wait_op_done(host, true);
382 static void send_read_id_v3(struct mxc_nand_host *host)
384 /* Read ID into main buffer */
385 writel(NFC_ID, NFC_V3_LAUNCH);
387 wait_op_done(host, true);
389 memcpy(host->data_buf, host->main_area0, 16);
392 /* Request the NANDFC to perform a read of the NAND device ID. */
393 static void send_read_id_v1_v2(struct mxc_nand_host *host)
395 struct nand_chip *this = &host->nand;
397 /* NANDFC buffer 0 is used for device ID output */
398 writew(0x0, NFC_V1_V2_BUF_ADDR);
400 writew(NFC_ID, NFC_V1_V2_CONFIG2);
402 /* Wait for operation to complete */
403 wait_op_done(host, true);
405 if (this->options & NAND_BUSWIDTH_16) {
406 void __iomem *main_buf = host->main_area0;
407 /* compress the ID info */
408 writeb(readb(main_buf + 2), main_buf + 1);
409 writeb(readb(main_buf + 4), main_buf + 2);
410 writeb(readb(main_buf + 6), main_buf + 3);
411 writeb(readb(main_buf + 8), main_buf + 4);
412 writeb(readb(main_buf + 10), main_buf + 5);
414 memcpy(host->data_buf, host->main_area0, 16);
417 static uint16_t get_dev_status_v3(struct mxc_nand_host *host)
419 writew(NFC_STATUS, NFC_V3_LAUNCH);
420 wait_op_done(host, true);
422 return readl(NFC_V3_CONFIG1) >> 16;
425 /* This function requests the NANDFC to perform a read of the
426 * NAND device status and returns the current status. */
427 static uint16_t get_dev_status_v1_v2(struct mxc_nand_host *host)
429 void __iomem *main_buf = host->main_area0;
430 uint32_t store;
431 uint16_t ret;
433 writew(0x0, NFC_V1_V2_BUF_ADDR);
436 * The device status is stored in main_area0. To
437 * prevent corruption of the buffer save the value
438 * and restore it afterwards.
440 store = readl(main_buf);
442 writew(NFC_STATUS, NFC_V1_V2_CONFIG2);
443 wait_op_done(host, true);
445 ret = readw(main_buf);
447 writel(store, main_buf);
449 return ret;
452 /* This functions is used by upper layer to checks if device is ready */
453 static int mxc_nand_dev_ready(struct mtd_info *mtd)
456 * NFC handles R/B internally. Therefore, this function
457 * always returns status as ready.
459 return 1;
462 static void mxc_nand_enable_hwecc(struct mtd_info *mtd, int mode)
465 * If HW ECC is enabled, we turn it on during init. There is
466 * no need to enable again here.
470 static int mxc_nand_correct_data_v1(struct mtd_info *mtd, u_char *dat,
471 u_char *read_ecc, u_char *calc_ecc)
473 struct nand_chip *nand_chip = mtd->priv;
474 struct mxc_nand_host *host = nand_chip->priv;
477 * 1-Bit errors are automatically corrected in HW. No need for
478 * additional correction. 2-Bit errors cannot be corrected by
479 * HW ECC, so we need to return failure
481 uint16_t ecc_status = readw(NFC_V1_V2_ECC_STATUS_RESULT);
483 if (((ecc_status & 0x3) == 2) || ((ecc_status >> 2) == 2)) {
484 DEBUG(MTD_DEBUG_LEVEL0,
485 "MXC_NAND: HWECC uncorrectable 2-bit ECC error\n");
486 return -1;
489 return 0;
492 static int mxc_nand_correct_data_v2_v3(struct mtd_info *mtd, u_char *dat,
493 u_char *read_ecc, u_char *calc_ecc)
495 struct nand_chip *nand_chip = mtd->priv;
496 struct mxc_nand_host *host = nand_chip->priv;
497 u32 ecc_stat, err;
498 int no_subpages = 1;
499 int ret = 0;
500 u8 ecc_bit_mask, err_limit;
502 ecc_bit_mask = (host->eccsize == 4) ? 0x7 : 0xf;
503 err_limit = (host->eccsize == 4) ? 0x4 : 0x8;
505 no_subpages = mtd->writesize >> 9;
507 if (nfc_is_v21())
508 ecc_stat = readl(NFC_V1_V2_ECC_STATUS_RESULT);
509 else
510 ecc_stat = readl(NFC_V3_ECC_STATUS_RESULT);
512 do {
513 err = ecc_stat & ecc_bit_mask;
514 if (err > err_limit) {
515 printk(KERN_WARNING "UnCorrectable RS-ECC Error\n");
516 return -1;
517 } else {
518 ret += err;
520 ecc_stat >>= 4;
521 } while (--no_subpages);
523 mtd->ecc_stats.corrected += ret;
524 pr_debug("%d Symbol Correctable RS-ECC Error\n", ret);
526 return ret;
529 static int mxc_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
530 u_char *ecc_code)
532 return 0;
535 static u_char mxc_nand_read_byte(struct mtd_info *mtd)
537 struct nand_chip *nand_chip = mtd->priv;
538 struct mxc_nand_host *host = nand_chip->priv;
539 uint8_t ret;
541 /* Check for status request */
542 if (host->status_request)
543 return host->get_dev_status(host) & 0xFF;
545 ret = *(uint8_t *)(host->data_buf + host->buf_start);
546 host->buf_start++;
548 return ret;
551 static uint16_t mxc_nand_read_word(struct mtd_info *mtd)
553 struct nand_chip *nand_chip = mtd->priv;
554 struct mxc_nand_host *host = nand_chip->priv;
555 uint16_t ret;
557 ret = *(uint16_t *)(host->data_buf + host->buf_start);
558 host->buf_start += 2;
560 return ret;
563 /* Write data of length len to buffer buf. The data to be
564 * written on NAND Flash is first copied to RAMbuffer. After the Data Input
565 * Operation by the NFC, the data is written to NAND Flash */
566 static void mxc_nand_write_buf(struct mtd_info *mtd,
567 const u_char *buf, int len)
569 struct nand_chip *nand_chip = mtd->priv;
570 struct mxc_nand_host *host = nand_chip->priv;
571 u16 col = host->buf_start;
572 int n = mtd->oobsize + mtd->writesize - col;
574 n = min(n, len);
576 memcpy(host->data_buf + col, buf, n);
578 host->buf_start += n;
581 /* Read the data buffer from the NAND Flash. To read the data from NAND
582 * Flash first the data output cycle is initiated by the NFC, which copies
583 * the data to RAMbuffer. This data of length len is then copied to buffer buf.
585 static void mxc_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
587 struct nand_chip *nand_chip = mtd->priv;
588 struct mxc_nand_host *host = nand_chip->priv;
589 u16 col = host->buf_start;
590 int n = mtd->oobsize + mtd->writesize - col;
592 n = min(n, len);
594 memcpy(buf, host->data_buf + col, len);
596 host->buf_start += len;
599 /* Used by the upper layer to verify the data in NAND Flash
600 * with the data in the buf. */
601 static int mxc_nand_verify_buf(struct mtd_info *mtd,
602 const u_char *buf, int len)
604 return -EFAULT;
607 /* This function is used by upper layer for select and
608 * deselect of the NAND chip */
609 static void mxc_nand_select_chip(struct mtd_info *mtd, int chip)
611 struct nand_chip *nand_chip = mtd->priv;
612 struct mxc_nand_host *host = nand_chip->priv;
614 switch (chip) {
615 case -1:
616 /* Disable the NFC clock */
617 if (host->clk_act) {
618 clk_disable(host->clk);
619 host->clk_act = 0;
621 break;
622 case 0:
623 /* Enable the NFC clock */
624 if (!host->clk_act) {
625 clk_enable(host->clk);
626 host->clk_act = 1;
628 break;
630 default:
631 break;
636 * Function to transfer data to/from spare area.
638 static void copy_spare(struct mtd_info *mtd, bool bfrom)
640 struct nand_chip *this = mtd->priv;
641 struct mxc_nand_host *host = this->priv;
642 u16 i, j;
643 u16 n = mtd->writesize >> 9;
644 u8 *d = host->data_buf + mtd->writesize;
645 u8 *s = host->spare0;
646 u16 t = host->spare_len;
648 j = (mtd->oobsize / n >> 1) << 1;
650 if (bfrom) {
651 for (i = 0; i < n - 1; i++)
652 memcpy(d + i * j, s + i * t, j);
654 /* the last section */
655 memcpy(d + i * j, s + i * t, mtd->oobsize - i * j);
656 } else {
657 for (i = 0; i < n - 1; i++)
658 memcpy(&s[i * t], &d[i * j], j);
660 /* the last section */
661 memcpy(&s[i * t], &d[i * j], mtd->oobsize - i * j);
665 static void mxc_do_addr_cycle(struct mtd_info *mtd, int column, int page_addr)
667 struct nand_chip *nand_chip = mtd->priv;
668 struct mxc_nand_host *host = nand_chip->priv;
670 /* Write out column address, if necessary */
671 if (column != -1) {
673 * MXC NANDFC can only perform full page+spare or
674 * spare-only read/write. When the upper layers
675 * layers perform a read/write buf operation,
676 * we will used the saved column address to index into
677 * the full page.
679 host->send_addr(host, 0, page_addr == -1);
680 if (mtd->writesize > 512)
681 /* another col addr cycle for 2k page */
682 host->send_addr(host, 0, false);
685 /* Write out page address, if necessary */
686 if (page_addr != -1) {
687 /* paddr_0 - p_addr_7 */
688 host->send_addr(host, (page_addr & 0xff), false);
690 if (mtd->writesize > 512) {
691 if (mtd->size >= 0x10000000) {
692 /* paddr_8 - paddr_15 */
693 host->send_addr(host, (page_addr >> 8) & 0xff, false);
694 host->send_addr(host, (page_addr >> 16) & 0xff, true);
695 } else
696 /* paddr_8 - paddr_15 */
697 host->send_addr(host, (page_addr >> 8) & 0xff, true);
698 } else {
699 /* One more address cycle for higher density devices */
700 if (mtd->size >= 0x4000000) {
701 /* paddr_8 - paddr_15 */
702 host->send_addr(host, (page_addr >> 8) & 0xff, false);
703 host->send_addr(host, (page_addr >> 16) & 0xff, true);
704 } else
705 /* paddr_8 - paddr_15 */
706 host->send_addr(host, (page_addr >> 8) & 0xff, true);
712 * v2 and v3 type controllers can do 4bit or 8bit ecc depending
713 * on how much oob the nand chip has. For 8bit ecc we need at least
714 * 26 bytes of oob data per 512 byte block.
716 static int get_eccsize(struct mtd_info *mtd)
718 int oobbytes_per_512 = 0;
720 oobbytes_per_512 = mtd->oobsize * 512 / mtd->writesize;
722 if (oobbytes_per_512 < 26)
723 return 4;
724 else
725 return 8;
728 static void preset_v1_v2(struct mtd_info *mtd)
730 struct nand_chip *nand_chip = mtd->priv;
731 struct mxc_nand_host *host = nand_chip->priv;
732 uint16_t tmp;
734 /* enable interrupt, disable spare enable */
735 tmp = readw(NFC_V1_V2_CONFIG1);
736 tmp &= ~NFC_V1_V2_CONFIG1_INT_MSK;
737 tmp &= ~NFC_V1_V2_CONFIG1_SP_EN;
738 if (nand_chip->ecc.mode == NAND_ECC_HW) {
739 tmp |= NFC_V1_V2_CONFIG1_ECC_EN;
740 } else {
741 tmp &= ~NFC_V1_V2_CONFIG1_ECC_EN;
744 if (nfc_is_v21() && mtd->writesize) {
745 host->eccsize = get_eccsize(mtd);
746 if (host->eccsize == 4)
747 tmp |= NFC_V2_CONFIG1_ECC_MODE_4;
748 } else {
749 host->eccsize = 1;
752 writew(tmp, NFC_V1_V2_CONFIG1);
753 /* preset operation */
755 /* Unlock the internal RAM Buffer */
756 writew(0x2, NFC_V1_V2_CONFIG);
758 /* Blocks to be unlocked */
759 if (nfc_is_v21()) {
760 writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR);
761 writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR);
762 } else if (nfc_is_v1()) {
763 writew(0x0, NFC_V1_UNLOCKSTART_BLKADDR);
764 writew(0x4000, NFC_V1_UNLOCKEND_BLKADDR);
765 } else
766 BUG();
768 /* Unlock Block Command for given address range */
769 writew(0x4, NFC_V1_V2_WRPROT);
772 static void preset_v3(struct mtd_info *mtd)
774 struct nand_chip *chip = mtd->priv;
775 struct mxc_nand_host *host = chip->priv;
776 uint32_t config2, config3;
777 int i, addr_phases;
779 writel(NFC_V3_CONFIG1_RBA(0), NFC_V3_CONFIG1);
780 writel(NFC_V3_IPC_CREQ, NFC_V3_IPC);
782 /* Unlock the internal RAM Buffer */
783 writel(NFC_V3_WRPROT_BLS_UNLOCK | NFC_V3_WRPROT_UNLOCK,
784 NFC_V3_WRPROT);
786 /* Blocks to be unlocked */
787 for (i = 0; i < NAND_MAX_CHIPS; i++)
788 writel(0x0 | (0xffff << 16),
789 NFC_V3_WRPROT_UNLOCK_BLK_ADD0 + (i << 2));
791 writel(0, NFC_V3_IPC);
793 config2 = NFC_V3_CONFIG2_ONE_CYCLE |
794 NFC_V3_CONFIG2_2CMD_PHASES |
795 NFC_V3_CONFIG2_SPAS(mtd->oobsize >> 1) |
796 NFC_V3_CONFIG2_ST_CMD(0x70) |
797 NFC_V3_CONFIG2_NUM_ADDR_PHASE0;
799 if (chip->ecc.mode == NAND_ECC_HW)
800 config2 |= NFC_V3_CONFIG2_ECC_EN;
802 addr_phases = fls(chip->pagemask) >> 3;
804 if (mtd->writesize == 2048) {
805 config2 |= NFC_V3_CONFIG2_PS_2048;
806 config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases);
807 } else if (mtd->writesize == 4096) {
808 config2 |= NFC_V3_CONFIG2_PS_4096;
809 config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases);
810 } else {
811 config2 |= NFC_V3_CONFIG2_PS_512;
812 config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases - 1);
815 if (mtd->writesize) {
816 config2 |= NFC_V3_CONFIG2_PPB(ffs(mtd->erasesize / mtd->writesize) - 6);
817 host->eccsize = get_eccsize(mtd);
818 if (host->eccsize == 8)
819 config2 |= NFC_V3_CONFIG2_ECC_MODE_8;
822 writel(config2, NFC_V3_CONFIG2);
824 config3 = NFC_V3_CONFIG3_NUM_OF_DEVICES(0) |
825 NFC_V3_CONFIG3_NO_SDMA |
826 NFC_V3_CONFIG3_RBB_MODE |
827 NFC_V3_CONFIG3_SBB(6) | /* Reset default */
828 NFC_V3_CONFIG3_ADD_OP(0);
830 if (!(chip->options & NAND_BUSWIDTH_16))
831 config3 |= NFC_V3_CONFIG3_FW8;
833 writel(config3, NFC_V3_CONFIG3);
835 writel(0, NFC_V3_DELAY_LINE);
838 /* Used by the upper layer to write command to NAND Flash for
839 * different operations to be carried out on NAND Flash */
840 static void mxc_nand_command(struct mtd_info *mtd, unsigned command,
841 int column, int page_addr)
843 struct nand_chip *nand_chip = mtd->priv;
844 struct mxc_nand_host *host = nand_chip->priv;
846 DEBUG(MTD_DEBUG_LEVEL3,
847 "mxc_nand_command (cmd = 0x%x, col = 0x%x, page = 0x%x)\n",
848 command, column, page_addr);
850 /* Reset command state information */
851 host->status_request = false;
853 /* Command pre-processing step */
854 switch (command) {
855 case NAND_CMD_RESET:
856 host->preset(mtd);
857 host->send_cmd(host, command, false);
858 break;
860 case NAND_CMD_STATUS:
861 host->buf_start = 0;
862 host->status_request = true;
864 host->send_cmd(host, command, true);
865 mxc_do_addr_cycle(mtd, column, page_addr);
866 break;
868 case NAND_CMD_READ0:
869 case NAND_CMD_READOOB:
870 if (command == NAND_CMD_READ0)
871 host->buf_start = column;
872 else
873 host->buf_start = column + mtd->writesize;
875 command = NAND_CMD_READ0; /* only READ0 is valid */
877 host->send_cmd(host, command, false);
878 mxc_do_addr_cycle(mtd, column, page_addr);
880 if (mtd->writesize > 512)
881 host->send_cmd(host, NAND_CMD_READSTART, true);
883 host->send_page(mtd, NFC_OUTPUT);
885 memcpy(host->data_buf, host->main_area0, mtd->writesize);
886 copy_spare(mtd, true);
887 break;
889 case NAND_CMD_SEQIN:
890 if (column >= mtd->writesize)
891 /* call ourself to read a page */
892 mxc_nand_command(mtd, NAND_CMD_READ0, 0, page_addr);
894 host->buf_start = column;
896 host->send_cmd(host, command, false);
897 mxc_do_addr_cycle(mtd, column, page_addr);
898 break;
900 case NAND_CMD_PAGEPROG:
901 memcpy(host->main_area0, host->data_buf, mtd->writesize);
902 copy_spare(mtd, false);
903 host->send_page(mtd, NFC_INPUT);
904 host->send_cmd(host, command, true);
905 mxc_do_addr_cycle(mtd, column, page_addr);
906 break;
908 case NAND_CMD_READID:
909 host->send_cmd(host, command, true);
910 mxc_do_addr_cycle(mtd, column, page_addr);
911 host->send_read_id(host);
912 host->buf_start = column;
913 break;
915 case NAND_CMD_ERASE1:
916 case NAND_CMD_ERASE2:
917 host->send_cmd(host, command, false);
918 mxc_do_addr_cycle(mtd, column, page_addr);
920 break;
925 * The generic flash bbt decriptors overlap with our ecc
926 * hardware, so define some i.MX specific ones.
928 static uint8_t bbt_pattern[] = { 'B', 'b', 't', '0' };
929 static uint8_t mirror_pattern[] = { '1', 't', 'b', 'B' };
931 static struct nand_bbt_descr bbt_main_descr = {
932 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
933 | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
934 .offs = 0,
935 .len = 4,
936 .veroffs = 4,
937 .maxblocks = 4,
938 .pattern = bbt_pattern,
941 static struct nand_bbt_descr bbt_mirror_descr = {
942 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
943 | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
944 .offs = 0,
945 .len = 4,
946 .veroffs = 4,
947 .maxblocks = 4,
948 .pattern = mirror_pattern,
951 static int __init mxcnd_probe(struct platform_device *pdev)
953 struct nand_chip *this;
954 struct mtd_info *mtd;
955 struct mxc_nand_platform_data *pdata = pdev->dev.platform_data;
956 struct mxc_nand_host *host;
957 struct resource *res;
958 int err = 0, nr_parts = 0;
959 struct nand_ecclayout *oob_smallpage, *oob_largepage;
961 /* Allocate memory for MTD device structure and private data */
962 host = kzalloc(sizeof(struct mxc_nand_host) + NAND_MAX_PAGESIZE +
963 NAND_MAX_OOBSIZE, GFP_KERNEL);
964 if (!host)
965 return -ENOMEM;
967 host->data_buf = (uint8_t *)(host + 1);
969 host->dev = &pdev->dev;
970 /* structures must be linked */
971 this = &host->nand;
972 mtd = &host->mtd;
973 mtd->priv = this;
974 mtd->owner = THIS_MODULE;
975 mtd->dev.parent = &pdev->dev;
976 mtd->name = DRIVER_NAME;
978 /* 50 us command delay time */
979 this->chip_delay = 5;
981 this->priv = host;
982 this->dev_ready = mxc_nand_dev_ready;
983 this->cmdfunc = mxc_nand_command;
984 this->select_chip = mxc_nand_select_chip;
985 this->read_byte = mxc_nand_read_byte;
986 this->read_word = mxc_nand_read_word;
987 this->write_buf = mxc_nand_write_buf;
988 this->read_buf = mxc_nand_read_buf;
989 this->verify_buf = mxc_nand_verify_buf;
991 host->clk = clk_get(&pdev->dev, "nfc");
992 if (IS_ERR(host->clk)) {
993 err = PTR_ERR(host->clk);
994 goto eclk;
997 clk_enable(host->clk);
998 host->clk_act = 1;
1000 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1001 if (!res) {
1002 err = -ENODEV;
1003 goto eres;
1006 host->base = ioremap(res->start, resource_size(res));
1007 if (!host->base) {
1008 err = -ENOMEM;
1009 goto eres;
1012 host->main_area0 = host->base;
1014 if (nfc_is_v1() || nfc_is_v21()) {
1015 host->preset = preset_v1_v2;
1016 host->send_cmd = send_cmd_v1_v2;
1017 host->send_addr = send_addr_v1_v2;
1018 host->send_page = send_page_v1_v2;
1019 host->send_read_id = send_read_id_v1_v2;
1020 host->get_dev_status = get_dev_status_v1_v2;
1021 host->check_int = check_int_v1_v2;
1024 if (nfc_is_v21()) {
1025 host->regs = host->base + 0x1e00;
1026 host->spare0 = host->base + 0x1000;
1027 host->spare_len = 64;
1028 oob_smallpage = &nandv2_hw_eccoob_smallpage;
1029 oob_largepage = &nandv2_hw_eccoob_largepage;
1030 this->ecc.bytes = 9;
1031 } else if (nfc_is_v1()) {
1032 host->regs = host->base + 0xe00;
1033 host->spare0 = host->base + 0x800;
1034 host->spare_len = 16;
1035 oob_smallpage = &nandv1_hw_eccoob_smallpage;
1036 oob_largepage = &nandv1_hw_eccoob_largepage;
1037 this->ecc.bytes = 3;
1038 host->eccsize = 1;
1039 } else if (nfc_is_v3_2()) {
1040 res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1041 if (!res) {
1042 err = -ENODEV;
1043 goto eirq;
1045 host->regs_ip = ioremap(res->start, resource_size(res));
1046 if (!host->regs_ip) {
1047 err = -ENOMEM;
1048 goto eirq;
1050 host->regs_axi = host->base + 0x1e00;
1051 host->spare0 = host->base + 0x1000;
1052 host->spare_len = 64;
1053 host->preset = preset_v3;
1054 host->send_cmd = send_cmd_v3;
1055 host->send_addr = send_addr_v3;
1056 host->send_page = send_page_v3;
1057 host->send_read_id = send_read_id_v3;
1058 host->check_int = check_int_v3;
1059 host->get_dev_status = get_dev_status_v3;
1060 oob_smallpage = &nandv2_hw_eccoob_smallpage;
1061 oob_largepage = &nandv2_hw_eccoob_largepage;
1062 } else
1063 BUG();
1065 this->ecc.size = 512;
1066 this->ecc.layout = oob_smallpage;
1068 if (pdata->hw_ecc) {
1069 this->ecc.calculate = mxc_nand_calculate_ecc;
1070 this->ecc.hwctl = mxc_nand_enable_hwecc;
1071 if (nfc_is_v1())
1072 this->ecc.correct = mxc_nand_correct_data_v1;
1073 else
1074 this->ecc.correct = mxc_nand_correct_data_v2_v3;
1075 this->ecc.mode = NAND_ECC_HW;
1076 } else {
1077 this->ecc.mode = NAND_ECC_SOFT;
1080 /* NAND bus width determines access funtions used by upper layer */
1081 if (pdata->width == 2)
1082 this->options |= NAND_BUSWIDTH_16;
1084 if (pdata->flash_bbt) {
1085 this->bbt_td = &bbt_main_descr;
1086 this->bbt_md = &bbt_mirror_descr;
1087 /* update flash based bbt */
1088 this->options |= NAND_USE_FLASH_BBT;
1091 init_waitqueue_head(&host->irq_waitq);
1093 host->irq = platform_get_irq(pdev, 0);
1095 err = request_irq(host->irq, mxc_nfc_irq, IRQF_DISABLED, DRIVER_NAME, host);
1096 if (err)
1097 goto eirq;
1099 /* first scan to find the device and get the page size */
1100 if (nand_scan_ident(mtd, 1, NULL)) {
1101 err = -ENXIO;
1102 goto escan;
1105 /* Call preset again, with correct writesize this time */
1106 host->preset(mtd);
1108 if (mtd->writesize == 2048)
1109 this->ecc.layout = oob_largepage;
1111 /* second phase scan */
1112 if (nand_scan_tail(mtd)) {
1113 err = -ENXIO;
1114 goto escan;
1117 /* Register the partitions */
1118 #ifdef CONFIG_MTD_PARTITIONS
1119 nr_parts =
1120 parse_mtd_partitions(mtd, part_probes, &host->parts, 0);
1121 if (nr_parts > 0)
1122 add_mtd_partitions(mtd, host->parts, nr_parts);
1123 else
1124 #endif
1126 pr_info("Registering %s as whole device\n", mtd->name);
1127 add_mtd_device(mtd);
1130 platform_set_drvdata(pdev, host);
1132 return 0;
1134 escan:
1135 free_irq(host->irq, host);
1136 eirq:
1137 if (host->regs_ip)
1138 iounmap(host->regs_ip);
1139 iounmap(host->base);
1140 eres:
1141 clk_put(host->clk);
1142 eclk:
1143 kfree(host);
1145 return err;
1148 static int __devexit mxcnd_remove(struct platform_device *pdev)
1150 struct mxc_nand_host *host = platform_get_drvdata(pdev);
1152 clk_put(host->clk);
1154 platform_set_drvdata(pdev, NULL);
1156 nand_release(&host->mtd);
1157 free_irq(host->irq, host);
1158 if (host->regs_ip)
1159 iounmap(host->regs_ip);
1160 iounmap(host->base);
1161 kfree(host);
1163 return 0;
1166 static struct platform_driver mxcnd_driver = {
1167 .driver = {
1168 .name = DRIVER_NAME,
1170 .remove = __devexit_p(mxcnd_remove),
1173 static int __init mxc_nd_init(void)
1175 return platform_driver_probe(&mxcnd_driver, mxcnd_probe);
1178 static void __exit mxc_nd_cleanup(void)
1180 /* Unregister the device structure */
1181 platform_driver_unregister(&mxcnd_driver);
1184 module_init(mxc_nd_init);
1185 module_exit(mxc_nd_cleanup);
1187 MODULE_AUTHOR("Freescale Semiconductor, Inc.");
1188 MODULE_DESCRIPTION("MXC NAND MTD driver");
1189 MODULE_LICENSE("GPL");