4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
10 * Notes on the allocation strategy:
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
20 #include <linux/fdtable.h>
22 #include <linux/fsnotify.h>
23 #include <linux/slab.h>
24 #include <linux/init.h>
25 #include <linux/hash.h>
26 #include <linux/cache.h>
27 #include <linux/module.h>
28 #include <linux/mount.h>
29 #include <linux/file.h>
30 #include <asm/uaccess.h>
31 #include <linux/security.h>
32 #include <linux/seqlock.h>
33 #include <linux/swap.h>
34 #include <linux/bootmem.h>
38 int sysctl_vfs_cache_pressure __read_mostly
= 100;
39 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure
);
41 __cacheline_aligned_in_smp
DEFINE_SPINLOCK(dcache_lock
);
42 __cacheline_aligned_in_smp
DEFINE_SEQLOCK(rename_lock
);
44 EXPORT_SYMBOL(dcache_lock
);
46 static struct kmem_cache
*dentry_cache __read_mostly
;
48 #define DNAME_INLINE_LEN (sizeof(struct dentry)-offsetof(struct dentry,d_iname))
51 * This is the single most critical data structure when it comes
52 * to the dcache: the hashtable for lookups. Somebody should try
53 * to make this good - I've just made it work.
55 * This hash-function tries to avoid losing too many bits of hash
56 * information, yet avoid using a prime hash-size or similar.
58 #define D_HASHBITS d_hash_shift
59 #define D_HASHMASK d_hash_mask
61 static unsigned int d_hash_mask __read_mostly
;
62 static unsigned int d_hash_shift __read_mostly
;
63 static struct hlist_head
*dentry_hashtable __read_mostly
;
65 /* Statistics gathering. */
66 struct dentry_stat_t dentry_stat
= {
70 static void __d_free(struct dentry
*dentry
)
72 if (dname_external(dentry
))
73 kfree(dentry
->d_name
.name
);
74 kmem_cache_free(dentry_cache
, dentry
);
77 static void d_callback(struct rcu_head
*head
)
79 struct dentry
* dentry
= container_of(head
, struct dentry
, d_u
.d_rcu
);
84 * no dcache_lock, please. The caller must decrement dentry_stat.nr_dentry
87 static void d_free(struct dentry
*dentry
)
89 if (dentry
->d_op
&& dentry
->d_op
->d_release
)
90 dentry
->d_op
->d_release(dentry
);
91 /* if dentry was never inserted into hash, immediate free is OK */
92 if (hlist_unhashed(&dentry
->d_hash
))
95 call_rcu(&dentry
->d_u
.d_rcu
, d_callback
);
99 * Release the dentry's inode, using the filesystem
100 * d_iput() operation if defined.
102 static void dentry_iput(struct dentry
* dentry
)
103 __releases(dentry
->d_lock
)
104 __releases(dcache_lock
)
106 struct inode
*inode
= dentry
->d_inode
;
108 dentry
->d_inode
= NULL
;
109 list_del_init(&dentry
->d_alias
);
110 spin_unlock(&dentry
->d_lock
);
111 spin_unlock(&dcache_lock
);
113 fsnotify_inoderemove(inode
);
114 if (dentry
->d_op
&& dentry
->d_op
->d_iput
)
115 dentry
->d_op
->d_iput(dentry
, inode
);
119 spin_unlock(&dentry
->d_lock
);
120 spin_unlock(&dcache_lock
);
125 * dentry_lru_(add|add_tail|del|del_init) must be called with dcache_lock held.
127 static void dentry_lru_add(struct dentry
*dentry
)
129 list_add(&dentry
->d_lru
, &dentry
->d_sb
->s_dentry_lru
);
130 dentry
->d_sb
->s_nr_dentry_unused
++;
131 dentry_stat
.nr_unused
++;
134 static void dentry_lru_add_tail(struct dentry
*dentry
)
136 list_add_tail(&dentry
->d_lru
, &dentry
->d_sb
->s_dentry_lru
);
137 dentry
->d_sb
->s_nr_dentry_unused
++;
138 dentry_stat
.nr_unused
++;
141 static void dentry_lru_del(struct dentry
*dentry
)
143 if (!list_empty(&dentry
->d_lru
)) {
144 list_del(&dentry
->d_lru
);
145 dentry
->d_sb
->s_nr_dentry_unused
--;
146 dentry_stat
.nr_unused
--;
150 static void dentry_lru_del_init(struct dentry
*dentry
)
152 if (likely(!list_empty(&dentry
->d_lru
))) {
153 list_del_init(&dentry
->d_lru
);
154 dentry
->d_sb
->s_nr_dentry_unused
--;
155 dentry_stat
.nr_unused
--;
160 * d_kill - kill dentry and return parent
161 * @dentry: dentry to kill
163 * The dentry must already be unhashed and removed from the LRU.
165 * If this is the root of the dentry tree, return NULL.
167 static struct dentry
*d_kill(struct dentry
*dentry
)
168 __releases(dentry
->d_lock
)
169 __releases(dcache_lock
)
171 struct dentry
*parent
;
173 list_del(&dentry
->d_u
.d_child
);
174 dentry_stat
.nr_dentry
--; /* For d_free, below */
175 /*drops the locks, at that point nobody can reach this dentry */
177 parent
= dentry
->d_parent
;
179 return dentry
== parent
? NULL
: parent
;
185 * This is complicated by the fact that we do not want to put
186 * dentries that are no longer on any hash chain on the unused
187 * list: we'd much rather just get rid of them immediately.
189 * However, that implies that we have to traverse the dentry
190 * tree upwards to the parents which might _also_ now be
191 * scheduled for deletion (it may have been only waiting for
192 * its last child to go away).
194 * This tail recursion is done by hand as we don't want to depend
195 * on the compiler to always get this right (gcc generally doesn't).
196 * Real recursion would eat up our stack space.
200 * dput - release a dentry
201 * @dentry: dentry to release
203 * Release a dentry. This will drop the usage count and if appropriate
204 * call the dentry unlink method as well as removing it from the queues and
205 * releasing its resources. If the parent dentries were scheduled for release
206 * they too may now get deleted.
208 * no dcache lock, please.
211 void dput(struct dentry
*dentry
)
217 if (atomic_read(&dentry
->d_count
) == 1)
219 if (!atomic_dec_and_lock(&dentry
->d_count
, &dcache_lock
))
222 spin_lock(&dentry
->d_lock
);
223 if (atomic_read(&dentry
->d_count
)) {
224 spin_unlock(&dentry
->d_lock
);
225 spin_unlock(&dcache_lock
);
230 * AV: ->d_delete() is _NOT_ allowed to block now.
232 if (dentry
->d_op
&& dentry
->d_op
->d_delete
) {
233 if (dentry
->d_op
->d_delete(dentry
))
236 /* Unreachable? Get rid of it */
237 if (d_unhashed(dentry
))
239 if (list_empty(&dentry
->d_lru
)) {
240 dentry
->d_flags
|= DCACHE_REFERENCED
;
241 dentry_lru_add(dentry
);
243 spin_unlock(&dentry
->d_lock
);
244 spin_unlock(&dcache_lock
);
250 /* if dentry was on the d_lru list delete it from there */
251 dentry_lru_del(dentry
);
252 dentry
= d_kill(dentry
);
258 * d_invalidate - invalidate a dentry
259 * @dentry: dentry to invalidate
261 * Try to invalidate the dentry if it turns out to be
262 * possible. If there are other dentries that can be
263 * reached through this one we can't delete it and we
264 * return -EBUSY. On success we return 0.
269 int d_invalidate(struct dentry
* dentry
)
272 * If it's already been dropped, return OK.
274 spin_lock(&dcache_lock
);
275 if (d_unhashed(dentry
)) {
276 spin_unlock(&dcache_lock
);
280 * Check whether to do a partial shrink_dcache
281 * to get rid of unused child entries.
283 if (!list_empty(&dentry
->d_subdirs
)) {
284 spin_unlock(&dcache_lock
);
285 shrink_dcache_parent(dentry
);
286 spin_lock(&dcache_lock
);
290 * Somebody else still using it?
292 * If it's a directory, we can't drop it
293 * for fear of somebody re-populating it
294 * with children (even though dropping it
295 * would make it unreachable from the root,
296 * we might still populate it if it was a
297 * working directory or similar).
299 spin_lock(&dentry
->d_lock
);
300 if (atomic_read(&dentry
->d_count
) > 1) {
301 if (dentry
->d_inode
&& S_ISDIR(dentry
->d_inode
->i_mode
)) {
302 spin_unlock(&dentry
->d_lock
);
303 spin_unlock(&dcache_lock
);
309 spin_unlock(&dentry
->d_lock
);
310 spin_unlock(&dcache_lock
);
314 /* This should be called _only_ with dcache_lock held */
316 static inline struct dentry
* __dget_locked(struct dentry
*dentry
)
318 atomic_inc(&dentry
->d_count
);
319 dentry_lru_del_init(dentry
);
323 struct dentry
* dget_locked(struct dentry
*dentry
)
325 return __dget_locked(dentry
);
329 * d_find_alias - grab a hashed alias of inode
330 * @inode: inode in question
331 * @want_discon: flag, used by d_splice_alias, to request
332 * that only a DISCONNECTED alias be returned.
334 * If inode has a hashed alias, or is a directory and has any alias,
335 * acquire the reference to alias and return it. Otherwise return NULL.
336 * Notice that if inode is a directory there can be only one alias and
337 * it can be unhashed only if it has no children, or if it is the root
340 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
341 * any other hashed alias over that one unless @want_discon is set,
342 * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
345 static struct dentry
* __d_find_alias(struct inode
*inode
, int want_discon
)
347 struct list_head
*head
, *next
, *tmp
;
348 struct dentry
*alias
, *discon_alias
=NULL
;
350 head
= &inode
->i_dentry
;
351 next
= inode
->i_dentry
.next
;
352 while (next
!= head
) {
356 alias
= list_entry(tmp
, struct dentry
, d_alias
);
357 if (S_ISDIR(inode
->i_mode
) || !d_unhashed(alias
)) {
358 if (IS_ROOT(alias
) &&
359 (alias
->d_flags
& DCACHE_DISCONNECTED
))
360 discon_alias
= alias
;
361 else if (!want_discon
) {
362 __dget_locked(alias
);
368 __dget_locked(discon_alias
);
372 struct dentry
* d_find_alias(struct inode
*inode
)
374 struct dentry
*de
= NULL
;
376 if (!list_empty(&inode
->i_dentry
)) {
377 spin_lock(&dcache_lock
);
378 de
= __d_find_alias(inode
, 0);
379 spin_unlock(&dcache_lock
);
385 * Try to kill dentries associated with this inode.
386 * WARNING: you must own a reference to inode.
388 void d_prune_aliases(struct inode
*inode
)
390 struct dentry
*dentry
;
392 spin_lock(&dcache_lock
);
393 list_for_each_entry(dentry
, &inode
->i_dentry
, d_alias
) {
394 spin_lock(&dentry
->d_lock
);
395 if (!atomic_read(&dentry
->d_count
)) {
396 __dget_locked(dentry
);
398 spin_unlock(&dentry
->d_lock
);
399 spin_unlock(&dcache_lock
);
403 spin_unlock(&dentry
->d_lock
);
405 spin_unlock(&dcache_lock
);
409 * Throw away a dentry - free the inode, dput the parent. This requires that
410 * the LRU list has already been removed.
412 * Try to prune ancestors as well. This is necessary to prevent
413 * quadratic behavior of shrink_dcache_parent(), but is also expected
414 * to be beneficial in reducing dentry cache fragmentation.
416 static void prune_one_dentry(struct dentry
* dentry
)
417 __releases(dentry
->d_lock
)
418 __releases(dcache_lock
)
419 __acquires(dcache_lock
)
422 dentry
= d_kill(dentry
);
425 * Prune ancestors. Locking is simpler than in dput(),
426 * because dcache_lock needs to be taken anyway.
428 spin_lock(&dcache_lock
);
430 if (!atomic_dec_and_lock(&dentry
->d_count
, &dentry
->d_lock
))
433 if (dentry
->d_op
&& dentry
->d_op
->d_delete
)
434 dentry
->d_op
->d_delete(dentry
);
435 dentry_lru_del_init(dentry
);
437 dentry
= d_kill(dentry
);
438 spin_lock(&dcache_lock
);
443 * Shrink the dentry LRU on a given superblock.
444 * @sb : superblock to shrink dentry LRU.
445 * @count: If count is NULL, we prune all dentries on superblock.
446 * @flags: If flags is non-zero, we need to do special processing based on
447 * which flags are set. This means we don't need to maintain multiple
448 * similar copies of this loop.
450 static void __shrink_dcache_sb(struct super_block
*sb
, int *count
, int flags
)
452 LIST_HEAD(referenced
);
454 struct dentry
*dentry
;
458 BUG_ON((flags
& DCACHE_REFERENCED
) && count
== NULL
);
459 spin_lock(&dcache_lock
);
461 /* called from prune_dcache() and shrink_dcache_parent() */
465 list_splice_init(&sb
->s_dentry_lru
, &tmp
);
467 while (!list_empty(&sb
->s_dentry_lru
)) {
468 dentry
= list_entry(sb
->s_dentry_lru
.prev
,
469 struct dentry
, d_lru
);
470 BUG_ON(dentry
->d_sb
!= sb
);
472 spin_lock(&dentry
->d_lock
);
474 * If we are honouring the DCACHE_REFERENCED flag and
475 * the dentry has this flag set, don't free it. Clear
476 * the flag and put it back on the LRU.
478 if ((flags
& DCACHE_REFERENCED
)
479 && (dentry
->d_flags
& DCACHE_REFERENCED
)) {
480 dentry
->d_flags
&= ~DCACHE_REFERENCED
;
481 list_move_tail(&dentry
->d_lru
, &referenced
);
482 spin_unlock(&dentry
->d_lock
);
484 list_move_tail(&dentry
->d_lru
, &tmp
);
485 spin_unlock(&dentry
->d_lock
);
490 cond_resched_lock(&dcache_lock
);
493 while (!list_empty(&tmp
)) {
494 dentry
= list_entry(tmp
.prev
, struct dentry
, d_lru
);
495 dentry_lru_del_init(dentry
);
496 spin_lock(&dentry
->d_lock
);
498 * We found an inuse dentry which was not removed from
499 * the LRU because of laziness during lookup. Do not free
500 * it - just keep it off the LRU list.
502 if (atomic_read(&dentry
->d_count
)) {
503 spin_unlock(&dentry
->d_lock
);
506 prune_one_dentry(dentry
);
507 /* dentry->d_lock was dropped in prune_one_dentry() */
508 cond_resched_lock(&dcache_lock
);
510 if (count
== NULL
&& !list_empty(&sb
->s_dentry_lru
))
514 if (!list_empty(&referenced
))
515 list_splice(&referenced
, &sb
->s_dentry_lru
);
516 spin_unlock(&dcache_lock
);
520 * prune_dcache - shrink the dcache
521 * @count: number of entries to try to free
523 * Shrink the dcache. This is done when we need more memory, or simply when we
524 * need to unmount something (at which point we need to unuse all dentries).
526 * This function may fail to free any resources if all the dentries are in use.
528 static void prune_dcache(int count
)
530 struct super_block
*sb
;
532 int unused
= dentry_stat
.nr_unused
;
536 if (unused
== 0 || count
== 0)
538 spin_lock(&dcache_lock
);
543 prune_ratio
= unused
/ count
;
545 list_for_each_entry(sb
, &super_blocks
, s_list
) {
546 if (sb
->s_nr_dentry_unused
== 0)
549 /* Now, we reclaim unused dentrins with fairness.
550 * We reclaim them same percentage from each superblock.
551 * We calculate number of dentries to scan on this sb
552 * as follows, but the implementation is arranged to avoid
554 * number of dentries to scan on this sb =
555 * count * (number of dentries on this sb /
556 * number of dentries in the machine)
558 spin_unlock(&sb_lock
);
559 if (prune_ratio
!= 1)
560 w_count
= (sb
->s_nr_dentry_unused
/ prune_ratio
) + 1;
562 w_count
= sb
->s_nr_dentry_unused
;
565 * We need to be sure this filesystem isn't being unmounted,
566 * otherwise we could race with generic_shutdown_super(), and
567 * end up holding a reference to an inode while the filesystem
568 * is unmounted. So we try to get s_umount, and make sure
571 if (down_read_trylock(&sb
->s_umount
)) {
572 if ((sb
->s_root
!= NULL
) &&
573 (!list_empty(&sb
->s_dentry_lru
))) {
574 spin_unlock(&dcache_lock
);
575 __shrink_dcache_sb(sb
, &w_count
,
578 spin_lock(&dcache_lock
);
580 up_read(&sb
->s_umount
);
585 * restart only when sb is no longer on the list and
586 * we have more work to do.
588 if (__put_super_and_need_restart(sb
) && count
> 0) {
589 spin_unlock(&sb_lock
);
593 spin_unlock(&sb_lock
);
594 spin_unlock(&dcache_lock
);
598 * shrink_dcache_sb - shrink dcache for a superblock
601 * Shrink the dcache for the specified super block. This
602 * is used to free the dcache before unmounting a file
605 void shrink_dcache_sb(struct super_block
* sb
)
607 __shrink_dcache_sb(sb
, NULL
, 0);
611 * destroy a single subtree of dentries for unmount
612 * - see the comments on shrink_dcache_for_umount() for a description of the
615 static void shrink_dcache_for_umount_subtree(struct dentry
*dentry
)
617 struct dentry
*parent
;
618 unsigned detached
= 0;
620 BUG_ON(!IS_ROOT(dentry
));
622 /* detach this root from the system */
623 spin_lock(&dcache_lock
);
624 dentry_lru_del_init(dentry
);
626 spin_unlock(&dcache_lock
);
629 /* descend to the first leaf in the current subtree */
630 while (!list_empty(&dentry
->d_subdirs
)) {
633 /* this is a branch with children - detach all of them
634 * from the system in one go */
635 spin_lock(&dcache_lock
);
636 list_for_each_entry(loop
, &dentry
->d_subdirs
,
638 dentry_lru_del_init(loop
);
640 cond_resched_lock(&dcache_lock
);
642 spin_unlock(&dcache_lock
);
644 /* move to the first child */
645 dentry
= list_entry(dentry
->d_subdirs
.next
,
646 struct dentry
, d_u
.d_child
);
649 /* consume the dentries from this leaf up through its parents
650 * until we find one with children or run out altogether */
654 if (atomic_read(&dentry
->d_count
) != 0) {
656 "BUG: Dentry %p{i=%lx,n=%s}"
658 " [unmount of %s %s]\n",
661 dentry
->d_inode
->i_ino
: 0UL,
663 atomic_read(&dentry
->d_count
),
664 dentry
->d_sb
->s_type
->name
,
669 parent
= dentry
->d_parent
;
670 if (parent
== dentry
)
673 atomic_dec(&parent
->d_count
);
675 list_del(&dentry
->d_u
.d_child
);
678 inode
= dentry
->d_inode
;
680 dentry
->d_inode
= NULL
;
681 list_del_init(&dentry
->d_alias
);
682 if (dentry
->d_op
&& dentry
->d_op
->d_iput
)
683 dentry
->d_op
->d_iput(dentry
, inode
);
690 /* finished when we fall off the top of the tree,
691 * otherwise we ascend to the parent and move to the
692 * next sibling if there is one */
698 } while (list_empty(&dentry
->d_subdirs
));
700 dentry
= list_entry(dentry
->d_subdirs
.next
,
701 struct dentry
, d_u
.d_child
);
704 /* several dentries were freed, need to correct nr_dentry */
705 spin_lock(&dcache_lock
);
706 dentry_stat
.nr_dentry
-= detached
;
707 spin_unlock(&dcache_lock
);
711 * destroy the dentries attached to a superblock on unmounting
712 * - we don't need to use dentry->d_lock, and only need dcache_lock when
713 * removing the dentry from the system lists and hashes because:
714 * - the superblock is detached from all mountings and open files, so the
715 * dentry trees will not be rearranged by the VFS
716 * - s_umount is write-locked, so the memory pressure shrinker will ignore
717 * any dentries belonging to this superblock that it comes across
718 * - the filesystem itself is no longer permitted to rearrange the dentries
721 void shrink_dcache_for_umount(struct super_block
*sb
)
723 struct dentry
*dentry
;
725 if (down_read_trylock(&sb
->s_umount
))
730 atomic_dec(&dentry
->d_count
);
731 shrink_dcache_for_umount_subtree(dentry
);
733 while (!hlist_empty(&sb
->s_anon
)) {
734 dentry
= hlist_entry(sb
->s_anon
.first
, struct dentry
, d_hash
);
735 shrink_dcache_for_umount_subtree(dentry
);
740 * Search for at least 1 mount point in the dentry's subdirs.
741 * We descend to the next level whenever the d_subdirs
742 * list is non-empty and continue searching.
746 * have_submounts - check for mounts over a dentry
747 * @parent: dentry to check.
749 * Return true if the parent or its subdirectories contain
753 int have_submounts(struct dentry
*parent
)
755 struct dentry
*this_parent
= parent
;
756 struct list_head
*next
;
758 spin_lock(&dcache_lock
);
759 if (d_mountpoint(parent
))
762 next
= this_parent
->d_subdirs
.next
;
764 while (next
!= &this_parent
->d_subdirs
) {
765 struct list_head
*tmp
= next
;
766 struct dentry
*dentry
= list_entry(tmp
, struct dentry
, d_u
.d_child
);
768 /* Have we found a mount point ? */
769 if (d_mountpoint(dentry
))
771 if (!list_empty(&dentry
->d_subdirs
)) {
772 this_parent
= dentry
;
777 * All done at this level ... ascend and resume the search.
779 if (this_parent
!= parent
) {
780 next
= this_parent
->d_u
.d_child
.next
;
781 this_parent
= this_parent
->d_parent
;
784 spin_unlock(&dcache_lock
);
785 return 0; /* No mount points found in tree */
787 spin_unlock(&dcache_lock
);
792 * Search the dentry child list for the specified parent,
793 * and move any unused dentries to the end of the unused
794 * list for prune_dcache(). We descend to the next level
795 * whenever the d_subdirs list is non-empty and continue
798 * It returns zero iff there are no unused children,
799 * otherwise it returns the number of children moved to
800 * the end of the unused list. This may not be the total
801 * number of unused children, because select_parent can
802 * drop the lock and return early due to latency
805 static int select_parent(struct dentry
* parent
)
807 struct dentry
*this_parent
= parent
;
808 struct list_head
*next
;
811 spin_lock(&dcache_lock
);
813 next
= this_parent
->d_subdirs
.next
;
815 while (next
!= &this_parent
->d_subdirs
) {
816 struct list_head
*tmp
= next
;
817 struct dentry
*dentry
= list_entry(tmp
, struct dentry
, d_u
.d_child
);
820 dentry_lru_del_init(dentry
);
822 * move only zero ref count dentries to the end
823 * of the unused list for prune_dcache
825 if (!atomic_read(&dentry
->d_count
)) {
826 dentry_lru_add_tail(dentry
);
831 * We can return to the caller if we have found some (this
832 * ensures forward progress). We'll be coming back to find
835 if (found
&& need_resched())
839 * Descend a level if the d_subdirs list is non-empty.
841 if (!list_empty(&dentry
->d_subdirs
)) {
842 this_parent
= dentry
;
847 * All done at this level ... ascend and resume the search.
849 if (this_parent
!= parent
) {
850 next
= this_parent
->d_u
.d_child
.next
;
851 this_parent
= this_parent
->d_parent
;
855 spin_unlock(&dcache_lock
);
860 * shrink_dcache_parent - prune dcache
861 * @parent: parent of entries to prune
863 * Prune the dcache to remove unused children of the parent dentry.
866 void shrink_dcache_parent(struct dentry
* parent
)
868 struct super_block
*sb
= parent
->d_sb
;
871 while ((found
= select_parent(parent
)) != 0)
872 __shrink_dcache_sb(sb
, &found
, 0);
876 * Scan `nr' dentries and return the number which remain.
878 * We need to avoid reentering the filesystem if the caller is performing a
879 * GFP_NOFS allocation attempt. One example deadlock is:
881 * ext2_new_block->getblk->GFP->shrink_dcache_memory->prune_dcache->
882 * prune_one_dentry->dput->dentry_iput->iput->inode->i_sb->s_op->put_inode->
883 * ext2_discard_prealloc->ext2_free_blocks->lock_super->DEADLOCK.
885 * In this case we return -1 to tell the caller that we baled.
887 static int shrink_dcache_memory(int nr
, gfp_t gfp_mask
)
890 if (!(gfp_mask
& __GFP_FS
))
894 return (dentry_stat
.nr_unused
/ 100) * sysctl_vfs_cache_pressure
;
897 static struct shrinker dcache_shrinker
= {
898 .shrink
= shrink_dcache_memory
,
899 .seeks
= DEFAULT_SEEKS
,
903 * d_alloc - allocate a dcache entry
904 * @parent: parent of entry to allocate
905 * @name: qstr of the name
907 * Allocates a dentry. It returns %NULL if there is insufficient memory
908 * available. On a success the dentry is returned. The name passed in is
909 * copied and the copy passed in may be reused after this call.
912 struct dentry
*d_alloc(struct dentry
* parent
, const struct qstr
*name
)
914 struct dentry
*dentry
;
917 dentry
= kmem_cache_alloc(dentry_cache
, GFP_KERNEL
);
921 if (name
->len
> DNAME_INLINE_LEN
-1) {
922 dname
= kmalloc(name
->len
+ 1, GFP_KERNEL
);
924 kmem_cache_free(dentry_cache
, dentry
);
928 dname
= dentry
->d_iname
;
930 dentry
->d_name
.name
= dname
;
932 dentry
->d_name
.len
= name
->len
;
933 dentry
->d_name
.hash
= name
->hash
;
934 memcpy(dname
, name
->name
, name
->len
);
935 dname
[name
->len
] = 0;
937 atomic_set(&dentry
->d_count
, 1);
938 dentry
->d_flags
= DCACHE_UNHASHED
;
939 spin_lock_init(&dentry
->d_lock
);
940 dentry
->d_inode
= NULL
;
941 dentry
->d_parent
= NULL
;
944 dentry
->d_fsdata
= NULL
;
945 dentry
->d_mounted
= 0;
946 #ifdef CONFIG_PROFILING
947 dentry
->d_cookie
= NULL
;
949 INIT_HLIST_NODE(&dentry
->d_hash
);
950 INIT_LIST_HEAD(&dentry
->d_lru
);
951 INIT_LIST_HEAD(&dentry
->d_subdirs
);
952 INIT_LIST_HEAD(&dentry
->d_alias
);
955 dentry
->d_parent
= dget(parent
);
956 dentry
->d_sb
= parent
->d_sb
;
958 INIT_LIST_HEAD(&dentry
->d_u
.d_child
);
961 spin_lock(&dcache_lock
);
963 list_add(&dentry
->d_u
.d_child
, &parent
->d_subdirs
);
964 dentry_stat
.nr_dentry
++;
965 spin_unlock(&dcache_lock
);
970 struct dentry
*d_alloc_name(struct dentry
*parent
, const char *name
)
975 q
.len
= strlen(name
);
976 q
.hash
= full_name_hash(q
.name
, q
.len
);
977 return d_alloc(parent
, &q
);
981 * d_instantiate - fill in inode information for a dentry
982 * @entry: dentry to complete
983 * @inode: inode to attach to this dentry
985 * Fill in inode information in the entry.
987 * This turns negative dentries into productive full members
990 * NOTE! This assumes that the inode count has been incremented
991 * (or otherwise set) by the caller to indicate that it is now
992 * in use by the dcache.
995 void d_instantiate(struct dentry
*entry
, struct inode
* inode
)
997 BUG_ON(!list_empty(&entry
->d_alias
));
998 spin_lock(&dcache_lock
);
1000 list_add(&entry
->d_alias
, &inode
->i_dentry
);
1001 entry
->d_inode
= inode
;
1002 fsnotify_d_instantiate(entry
, inode
);
1003 spin_unlock(&dcache_lock
);
1004 security_d_instantiate(entry
, inode
);
1008 * d_instantiate_unique - instantiate a non-aliased dentry
1009 * @entry: dentry to instantiate
1010 * @inode: inode to attach to this dentry
1012 * Fill in inode information in the entry. On success, it returns NULL.
1013 * If an unhashed alias of "entry" already exists, then we return the
1014 * aliased dentry instead and drop one reference to inode.
1016 * Note that in order to avoid conflicts with rename() etc, the caller
1017 * had better be holding the parent directory semaphore.
1019 * This also assumes that the inode count has been incremented
1020 * (or otherwise set) by the caller to indicate that it is now
1021 * in use by the dcache.
1023 static struct dentry
*__d_instantiate_unique(struct dentry
*entry
,
1024 struct inode
*inode
)
1026 struct dentry
*alias
;
1027 int len
= entry
->d_name
.len
;
1028 const char *name
= entry
->d_name
.name
;
1029 unsigned int hash
= entry
->d_name
.hash
;
1032 entry
->d_inode
= NULL
;
1036 list_for_each_entry(alias
, &inode
->i_dentry
, d_alias
) {
1037 struct qstr
*qstr
= &alias
->d_name
;
1039 if (qstr
->hash
!= hash
)
1041 if (alias
->d_parent
!= entry
->d_parent
)
1043 if (qstr
->len
!= len
)
1045 if (memcmp(qstr
->name
, name
, len
))
1051 list_add(&entry
->d_alias
, &inode
->i_dentry
);
1052 entry
->d_inode
= inode
;
1053 fsnotify_d_instantiate(entry
, inode
);
1057 struct dentry
*d_instantiate_unique(struct dentry
*entry
, struct inode
*inode
)
1059 struct dentry
*result
;
1061 BUG_ON(!list_empty(&entry
->d_alias
));
1063 spin_lock(&dcache_lock
);
1064 result
= __d_instantiate_unique(entry
, inode
);
1065 spin_unlock(&dcache_lock
);
1068 security_d_instantiate(entry
, inode
);
1072 BUG_ON(!d_unhashed(result
));
1077 EXPORT_SYMBOL(d_instantiate_unique
);
1080 * d_alloc_root - allocate root dentry
1081 * @root_inode: inode to allocate the root for
1083 * Allocate a root ("/") dentry for the inode given. The inode is
1084 * instantiated and returned. %NULL is returned if there is insufficient
1085 * memory or the inode passed is %NULL.
1088 struct dentry
* d_alloc_root(struct inode
* root_inode
)
1090 struct dentry
*res
= NULL
;
1093 static const struct qstr name
= { .name
= "/", .len
= 1 };
1095 res
= d_alloc(NULL
, &name
);
1097 res
->d_sb
= root_inode
->i_sb
;
1098 res
->d_parent
= res
;
1099 d_instantiate(res
, root_inode
);
1105 static inline struct hlist_head
*d_hash(struct dentry
*parent
,
1108 hash
+= ((unsigned long) parent
^ GOLDEN_RATIO_PRIME
) / L1_CACHE_BYTES
;
1109 hash
= hash
^ ((hash
^ GOLDEN_RATIO_PRIME
) >> D_HASHBITS
);
1110 return dentry_hashtable
+ (hash
& D_HASHMASK
);
1114 * d_alloc_anon - allocate an anonymous dentry
1115 * @inode: inode to allocate the dentry for
1117 * This is similar to d_alloc_root. It is used by filesystems when
1118 * creating a dentry for a given inode, often in the process of
1119 * mapping a filehandle to a dentry. The returned dentry may be
1120 * anonymous, or may have a full name (if the inode was already
1121 * in the cache). The file system may need to make further
1122 * efforts to connect this dentry into the dcache properly.
1124 * When called on a directory inode, we must ensure that
1125 * the inode only ever has one dentry. If a dentry is
1126 * found, that is returned instead of allocating a new one.
1128 * On successful return, the reference to the inode has been transferred
1129 * to the dentry. If %NULL is returned (indicating kmalloc failure),
1130 * the reference on the inode has not been released.
1133 struct dentry
* d_alloc_anon(struct inode
*inode
)
1135 static const struct qstr anonstring
= { .name
= "" };
1139 if ((res
= d_find_alias(inode
))) {
1144 tmp
= d_alloc(NULL
, &anonstring
);
1148 tmp
->d_parent
= tmp
; /* make sure dput doesn't croak */
1150 spin_lock(&dcache_lock
);
1151 res
= __d_find_alias(inode
, 0);
1153 /* attach a disconnected dentry */
1156 spin_lock(&res
->d_lock
);
1157 res
->d_sb
= inode
->i_sb
;
1158 res
->d_parent
= res
;
1159 res
->d_inode
= inode
;
1160 res
->d_flags
|= DCACHE_DISCONNECTED
;
1161 res
->d_flags
&= ~DCACHE_UNHASHED
;
1162 list_add(&res
->d_alias
, &inode
->i_dentry
);
1163 hlist_add_head(&res
->d_hash
, &inode
->i_sb
->s_anon
);
1164 spin_unlock(&res
->d_lock
);
1166 inode
= NULL
; /* don't drop reference */
1168 spin_unlock(&dcache_lock
);
1179 * d_splice_alias - splice a disconnected dentry into the tree if one exists
1180 * @inode: the inode which may have a disconnected dentry
1181 * @dentry: a negative dentry which we want to point to the inode.
1183 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1184 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1185 * and return it, else simply d_add the inode to the dentry and return NULL.
1187 * This is needed in the lookup routine of any filesystem that is exportable
1188 * (via knfsd) so that we can build dcache paths to directories effectively.
1190 * If a dentry was found and moved, then it is returned. Otherwise NULL
1191 * is returned. This matches the expected return value of ->lookup.
1194 struct dentry
*d_splice_alias(struct inode
*inode
, struct dentry
*dentry
)
1196 struct dentry
*new = NULL
;
1198 if (inode
&& S_ISDIR(inode
->i_mode
)) {
1199 spin_lock(&dcache_lock
);
1200 new = __d_find_alias(inode
, 1);
1202 BUG_ON(!(new->d_flags
& DCACHE_DISCONNECTED
));
1203 fsnotify_d_instantiate(new, inode
);
1204 spin_unlock(&dcache_lock
);
1205 security_d_instantiate(new, inode
);
1207 d_move(new, dentry
);
1210 /* d_instantiate takes dcache_lock, so we do it by hand */
1211 list_add(&dentry
->d_alias
, &inode
->i_dentry
);
1212 dentry
->d_inode
= inode
;
1213 fsnotify_d_instantiate(dentry
, inode
);
1214 spin_unlock(&dcache_lock
);
1215 security_d_instantiate(dentry
, inode
);
1219 d_add(dentry
, inode
);
1225 * d_lookup - search for a dentry
1226 * @parent: parent dentry
1227 * @name: qstr of name we wish to find
1229 * Searches the children of the parent dentry for the name in question. If
1230 * the dentry is found its reference count is incremented and the dentry
1231 * is returned. The caller must use d_put to free the entry when it has
1232 * finished using it. %NULL is returned on failure.
1234 * __d_lookup is dcache_lock free. The hash list is protected using RCU.
1235 * Memory barriers are used while updating and doing lockless traversal.
1236 * To avoid races with d_move while rename is happening, d_lock is used.
1238 * Overflows in memcmp(), while d_move, are avoided by keeping the length
1239 * and name pointer in one structure pointed by d_qstr.
1241 * rcu_read_lock() and rcu_read_unlock() are used to disable preemption while
1242 * lookup is going on.
1244 * The dentry unused LRU is not updated even if lookup finds the required dentry
1245 * in there. It is updated in places such as prune_dcache, shrink_dcache_sb,
1246 * select_parent and __dget_locked. This laziness saves lookup from dcache_lock
1249 * d_lookup() is protected against the concurrent renames in some unrelated
1250 * directory using the seqlockt_t rename_lock.
1253 struct dentry
* d_lookup(struct dentry
* parent
, struct qstr
* name
)
1255 struct dentry
* dentry
= NULL
;
1259 seq
= read_seqbegin(&rename_lock
);
1260 dentry
= __d_lookup(parent
, name
);
1263 } while (read_seqretry(&rename_lock
, seq
));
1267 struct dentry
* __d_lookup(struct dentry
* parent
, struct qstr
* name
)
1269 unsigned int len
= name
->len
;
1270 unsigned int hash
= name
->hash
;
1271 const unsigned char *str
= name
->name
;
1272 struct hlist_head
*head
= d_hash(parent
,hash
);
1273 struct dentry
*found
= NULL
;
1274 struct hlist_node
*node
;
1275 struct dentry
*dentry
;
1279 hlist_for_each_entry_rcu(dentry
, node
, head
, d_hash
) {
1282 if (dentry
->d_name
.hash
!= hash
)
1284 if (dentry
->d_parent
!= parent
)
1287 spin_lock(&dentry
->d_lock
);
1290 * Recheck the dentry after taking the lock - d_move may have
1291 * changed things. Don't bother checking the hash because we're
1292 * about to compare the whole name anyway.
1294 if (dentry
->d_parent
!= parent
)
1298 * It is safe to compare names since d_move() cannot
1299 * change the qstr (protected by d_lock).
1301 qstr
= &dentry
->d_name
;
1302 if (parent
->d_op
&& parent
->d_op
->d_compare
) {
1303 if (parent
->d_op
->d_compare(parent
, qstr
, name
))
1306 if (qstr
->len
!= len
)
1308 if (memcmp(qstr
->name
, str
, len
))
1312 if (!d_unhashed(dentry
)) {
1313 atomic_inc(&dentry
->d_count
);
1316 spin_unlock(&dentry
->d_lock
);
1319 spin_unlock(&dentry
->d_lock
);
1327 * d_hash_and_lookup - hash the qstr then search for a dentry
1328 * @dir: Directory to search in
1329 * @name: qstr of name we wish to find
1331 * On hash failure or on lookup failure NULL is returned.
1333 struct dentry
*d_hash_and_lookup(struct dentry
*dir
, struct qstr
*name
)
1335 struct dentry
*dentry
= NULL
;
1338 * Check for a fs-specific hash function. Note that we must
1339 * calculate the standard hash first, as the d_op->d_hash()
1340 * routine may choose to leave the hash value unchanged.
1342 name
->hash
= full_name_hash(name
->name
, name
->len
);
1343 if (dir
->d_op
&& dir
->d_op
->d_hash
) {
1344 if (dir
->d_op
->d_hash(dir
, name
) < 0)
1347 dentry
= d_lookup(dir
, name
);
1353 * d_validate - verify dentry provided from insecure source
1354 * @dentry: The dentry alleged to be valid child of @dparent
1355 * @dparent: The parent dentry (known to be valid)
1356 * @hash: Hash of the dentry
1357 * @len: Length of the name
1359 * An insecure source has sent us a dentry, here we verify it and dget() it.
1360 * This is used by ncpfs in its readdir implementation.
1361 * Zero is returned in the dentry is invalid.
1364 int d_validate(struct dentry
*dentry
, struct dentry
*dparent
)
1366 struct hlist_head
*base
;
1367 struct hlist_node
*lhp
;
1369 /* Check whether the ptr might be valid at all.. */
1370 if (!kmem_ptr_validate(dentry_cache
, dentry
))
1373 if (dentry
->d_parent
!= dparent
)
1376 spin_lock(&dcache_lock
);
1377 base
= d_hash(dparent
, dentry
->d_name
.hash
);
1378 hlist_for_each(lhp
,base
) {
1379 /* hlist_for_each_entry_rcu() not required for d_hash list
1380 * as it is parsed under dcache_lock
1382 if (dentry
== hlist_entry(lhp
, struct dentry
, d_hash
)) {
1383 __dget_locked(dentry
);
1384 spin_unlock(&dcache_lock
);
1388 spin_unlock(&dcache_lock
);
1394 * When a file is deleted, we have two options:
1395 * - turn this dentry into a negative dentry
1396 * - unhash this dentry and free it.
1398 * Usually, we want to just turn this into
1399 * a negative dentry, but if anybody else is
1400 * currently using the dentry or the inode
1401 * we can't do that and we fall back on removing
1402 * it from the hash queues and waiting for
1403 * it to be deleted later when it has no users
1407 * d_delete - delete a dentry
1408 * @dentry: The dentry to delete
1410 * Turn the dentry into a negative dentry if possible, otherwise
1411 * remove it from the hash queues so it can be deleted later
1414 void d_delete(struct dentry
* dentry
)
1418 * Are we the only user?
1420 spin_lock(&dcache_lock
);
1421 spin_lock(&dentry
->d_lock
);
1422 isdir
= S_ISDIR(dentry
->d_inode
->i_mode
);
1423 if (atomic_read(&dentry
->d_count
) == 1) {
1424 dentry_iput(dentry
);
1425 fsnotify_nameremove(dentry
, isdir
);
1429 if (!d_unhashed(dentry
))
1432 spin_unlock(&dentry
->d_lock
);
1433 spin_unlock(&dcache_lock
);
1435 fsnotify_nameremove(dentry
, isdir
);
1438 static void __d_rehash(struct dentry
* entry
, struct hlist_head
*list
)
1441 entry
->d_flags
&= ~DCACHE_UNHASHED
;
1442 hlist_add_head_rcu(&entry
->d_hash
, list
);
1445 static void _d_rehash(struct dentry
* entry
)
1447 __d_rehash(entry
, d_hash(entry
->d_parent
, entry
->d_name
.hash
));
1451 * d_rehash - add an entry back to the hash
1452 * @entry: dentry to add to the hash
1454 * Adds a dentry to the hash according to its name.
1457 void d_rehash(struct dentry
* entry
)
1459 spin_lock(&dcache_lock
);
1460 spin_lock(&entry
->d_lock
);
1462 spin_unlock(&entry
->d_lock
);
1463 spin_unlock(&dcache_lock
);
1466 #define do_switch(x,y) do { \
1467 __typeof__ (x) __tmp = x; \
1468 x = y; y = __tmp; } while (0)
1471 * When switching names, the actual string doesn't strictly have to
1472 * be preserved in the target - because we're dropping the target
1473 * anyway. As such, we can just do a simple memcpy() to copy over
1474 * the new name before we switch.
1476 * Note that we have to be a lot more careful about getting the hash
1477 * switched - we have to switch the hash value properly even if it
1478 * then no longer matches the actual (corrupted) string of the target.
1479 * The hash value has to match the hash queue that the dentry is on..
1481 static void switch_names(struct dentry
*dentry
, struct dentry
*target
)
1483 if (dname_external(target
)) {
1484 if (dname_external(dentry
)) {
1486 * Both external: swap the pointers
1488 do_switch(target
->d_name
.name
, dentry
->d_name
.name
);
1491 * dentry:internal, target:external. Steal target's
1492 * storage and make target internal.
1494 memcpy(target
->d_iname
, dentry
->d_name
.name
,
1495 dentry
->d_name
.len
+ 1);
1496 dentry
->d_name
.name
= target
->d_name
.name
;
1497 target
->d_name
.name
= target
->d_iname
;
1500 if (dname_external(dentry
)) {
1502 * dentry:external, target:internal. Give dentry's
1503 * storage to target and make dentry internal
1505 memcpy(dentry
->d_iname
, target
->d_name
.name
,
1506 target
->d_name
.len
+ 1);
1507 target
->d_name
.name
= dentry
->d_name
.name
;
1508 dentry
->d_name
.name
= dentry
->d_iname
;
1511 * Both are internal. Just copy target to dentry
1513 memcpy(dentry
->d_iname
, target
->d_name
.name
,
1514 target
->d_name
.len
+ 1);
1520 * We cannibalize "target" when moving dentry on top of it,
1521 * because it's going to be thrown away anyway. We could be more
1522 * polite about it, though.
1524 * This forceful removal will result in ugly /proc output if
1525 * somebody holds a file open that got deleted due to a rename.
1526 * We could be nicer about the deleted file, and let it show
1527 * up under the name it had before it was deleted rather than
1528 * under the original name of the file that was moved on top of it.
1532 * d_move_locked - move a dentry
1533 * @dentry: entry to move
1534 * @target: new dentry
1536 * Update the dcache to reflect the move of a file name. Negative
1537 * dcache entries should not be moved in this way.
1539 static void d_move_locked(struct dentry
* dentry
, struct dentry
* target
)
1541 struct hlist_head
*list
;
1543 if (!dentry
->d_inode
)
1544 printk(KERN_WARNING
"VFS: moving negative dcache entry\n");
1546 write_seqlock(&rename_lock
);
1548 * XXXX: do we really need to take target->d_lock?
1550 if (target
< dentry
) {
1551 spin_lock(&target
->d_lock
);
1552 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
1554 spin_lock(&dentry
->d_lock
);
1555 spin_lock_nested(&target
->d_lock
, DENTRY_D_LOCK_NESTED
);
1558 /* Move the dentry to the target hash queue, if on different bucket */
1559 if (d_unhashed(dentry
))
1560 goto already_unhashed
;
1562 hlist_del_rcu(&dentry
->d_hash
);
1565 list
= d_hash(target
->d_parent
, target
->d_name
.hash
);
1566 __d_rehash(dentry
, list
);
1568 /* Unhash the target: dput() will then get rid of it */
1571 list_del(&dentry
->d_u
.d_child
);
1572 list_del(&target
->d_u
.d_child
);
1574 /* Switch the names.. */
1575 switch_names(dentry
, target
);
1576 do_switch(dentry
->d_name
.len
, target
->d_name
.len
);
1577 do_switch(dentry
->d_name
.hash
, target
->d_name
.hash
);
1579 /* ... and switch the parents */
1580 if (IS_ROOT(dentry
)) {
1581 dentry
->d_parent
= target
->d_parent
;
1582 target
->d_parent
= target
;
1583 INIT_LIST_HEAD(&target
->d_u
.d_child
);
1585 do_switch(dentry
->d_parent
, target
->d_parent
);
1587 /* And add them back to the (new) parent lists */
1588 list_add(&target
->d_u
.d_child
, &target
->d_parent
->d_subdirs
);
1591 list_add(&dentry
->d_u
.d_child
, &dentry
->d_parent
->d_subdirs
);
1592 spin_unlock(&target
->d_lock
);
1593 fsnotify_d_move(dentry
);
1594 spin_unlock(&dentry
->d_lock
);
1595 write_sequnlock(&rename_lock
);
1599 * d_move - move a dentry
1600 * @dentry: entry to move
1601 * @target: new dentry
1603 * Update the dcache to reflect the move of a file name. Negative
1604 * dcache entries should not be moved in this way.
1607 void d_move(struct dentry
* dentry
, struct dentry
* target
)
1609 spin_lock(&dcache_lock
);
1610 d_move_locked(dentry
, target
);
1611 spin_unlock(&dcache_lock
);
1615 * Helper that returns 1 if p1 is a parent of p2, else 0
1617 static int d_isparent(struct dentry
*p1
, struct dentry
*p2
)
1621 for (p
= p2
; p
->d_parent
!= p
; p
= p
->d_parent
) {
1622 if (p
->d_parent
== p1
)
1629 * This helper attempts to cope with remotely renamed directories
1631 * It assumes that the caller is already holding
1632 * dentry->d_parent->d_inode->i_mutex and the dcache_lock
1634 * Note: If ever the locking in lock_rename() changes, then please
1635 * remember to update this too...
1637 static struct dentry
*__d_unalias(struct dentry
*dentry
, struct dentry
*alias
)
1638 __releases(dcache_lock
)
1640 struct mutex
*m1
= NULL
, *m2
= NULL
;
1643 /* If alias and dentry share a parent, then no extra locks required */
1644 if (alias
->d_parent
== dentry
->d_parent
)
1647 /* Check for loops */
1648 ret
= ERR_PTR(-ELOOP
);
1649 if (d_isparent(alias
, dentry
))
1652 /* See lock_rename() */
1653 ret
= ERR_PTR(-EBUSY
);
1654 if (!mutex_trylock(&dentry
->d_sb
->s_vfs_rename_mutex
))
1656 m1
= &dentry
->d_sb
->s_vfs_rename_mutex
;
1657 if (!mutex_trylock(&alias
->d_parent
->d_inode
->i_mutex
))
1659 m2
= &alias
->d_parent
->d_inode
->i_mutex
;
1661 d_move_locked(alias
, dentry
);
1664 spin_unlock(&dcache_lock
);
1673 * Prepare an anonymous dentry for life in the superblock's dentry tree as a
1674 * named dentry in place of the dentry to be replaced.
1676 static void __d_materialise_dentry(struct dentry
*dentry
, struct dentry
*anon
)
1678 struct dentry
*dparent
, *aparent
;
1680 switch_names(dentry
, anon
);
1681 do_switch(dentry
->d_name
.len
, anon
->d_name
.len
);
1682 do_switch(dentry
->d_name
.hash
, anon
->d_name
.hash
);
1684 dparent
= dentry
->d_parent
;
1685 aparent
= anon
->d_parent
;
1687 dentry
->d_parent
= (aparent
== anon
) ? dentry
: aparent
;
1688 list_del(&dentry
->d_u
.d_child
);
1689 if (!IS_ROOT(dentry
))
1690 list_add(&dentry
->d_u
.d_child
, &dentry
->d_parent
->d_subdirs
);
1692 INIT_LIST_HEAD(&dentry
->d_u
.d_child
);
1694 anon
->d_parent
= (dparent
== dentry
) ? anon
: dparent
;
1695 list_del(&anon
->d_u
.d_child
);
1697 list_add(&anon
->d_u
.d_child
, &anon
->d_parent
->d_subdirs
);
1699 INIT_LIST_HEAD(&anon
->d_u
.d_child
);
1701 anon
->d_flags
&= ~DCACHE_DISCONNECTED
;
1705 * d_materialise_unique - introduce an inode into the tree
1706 * @dentry: candidate dentry
1707 * @inode: inode to bind to the dentry, to which aliases may be attached
1709 * Introduces an dentry into the tree, substituting an extant disconnected
1710 * root directory alias in its place if there is one
1712 struct dentry
*d_materialise_unique(struct dentry
*dentry
, struct inode
*inode
)
1714 struct dentry
*actual
;
1716 BUG_ON(!d_unhashed(dentry
));
1718 spin_lock(&dcache_lock
);
1722 dentry
->d_inode
= NULL
;
1726 if (S_ISDIR(inode
->i_mode
)) {
1727 struct dentry
*alias
;
1729 /* Does an aliased dentry already exist? */
1730 alias
= __d_find_alias(inode
, 0);
1733 /* Is this an anonymous mountpoint that we could splice
1735 if (IS_ROOT(alias
)) {
1736 spin_lock(&alias
->d_lock
);
1737 __d_materialise_dentry(dentry
, alias
);
1741 /* Nope, but we must(!) avoid directory aliasing */
1742 actual
= __d_unalias(dentry
, alias
);
1749 /* Add a unique reference */
1750 actual
= __d_instantiate_unique(dentry
, inode
);
1753 else if (unlikely(!d_unhashed(actual
)))
1754 goto shouldnt_be_hashed
;
1757 spin_lock(&actual
->d_lock
);
1760 spin_unlock(&actual
->d_lock
);
1761 spin_unlock(&dcache_lock
);
1763 if (actual
== dentry
) {
1764 security_d_instantiate(dentry
, inode
);
1772 spin_unlock(&dcache_lock
);
1776 static int prepend(char **buffer
, int *buflen
, const char *str
, int namelen
)
1780 return -ENAMETOOLONG
;
1782 memcpy(*buffer
, str
, namelen
);
1786 static int prepend_name(char **buffer
, int *buflen
, struct qstr
*name
)
1788 return prepend(buffer
, buflen
, name
->name
, name
->len
);
1792 * __d_path - return the path of a dentry
1793 * @path: the dentry/vfsmount to report
1794 * @root: root vfsmnt/dentry (may be modified by this function)
1795 * @buffer: buffer to return value in
1796 * @buflen: buffer length
1798 * Convert a dentry into an ASCII path name. If the entry has been deleted
1799 * the string " (deleted)" is appended. Note that this is ambiguous.
1801 * Returns the buffer or an error code if the path was too long.
1803 * "buflen" should be positive. Caller holds the dcache_lock.
1805 * If path is not reachable from the supplied root, then the value of
1806 * root is changed (without modifying refcounts).
1808 char *__d_path(const struct path
*path
, struct path
*root
,
1809 char *buffer
, int buflen
)
1811 struct dentry
*dentry
= path
->dentry
;
1812 struct vfsmount
*vfsmnt
= path
->mnt
;
1813 char *end
= buffer
+ buflen
;
1816 spin_lock(&vfsmount_lock
);
1817 prepend(&end
, &buflen
, "\0", 1);
1818 if (!IS_ROOT(dentry
) && d_unhashed(dentry
) &&
1819 (prepend(&end
, &buflen
, " (deleted)", 10) != 0))
1829 struct dentry
* parent
;
1831 if (dentry
== root
->dentry
&& vfsmnt
== root
->mnt
)
1833 if (dentry
== vfsmnt
->mnt_root
|| IS_ROOT(dentry
)) {
1835 if (vfsmnt
->mnt_parent
== vfsmnt
) {
1838 dentry
= vfsmnt
->mnt_mountpoint
;
1839 vfsmnt
= vfsmnt
->mnt_parent
;
1842 parent
= dentry
->d_parent
;
1844 if ((prepend_name(&end
, &buflen
, &dentry
->d_name
) != 0) ||
1845 (prepend(&end
, &buflen
, "/", 1) != 0))
1852 spin_unlock(&vfsmount_lock
);
1856 retval
+= 1; /* hit the slash */
1857 if (prepend_name(&retval
, &buflen
, &dentry
->d_name
) != 0)
1860 root
->dentry
= dentry
;
1864 retval
= ERR_PTR(-ENAMETOOLONG
);
1869 * d_path - return the path of a dentry
1870 * @path: path to report
1871 * @buf: buffer to return value in
1872 * @buflen: buffer length
1874 * Convert a dentry into an ASCII path name. If the entry has been deleted
1875 * the string " (deleted)" is appended. Note that this is ambiguous.
1877 * Returns the buffer or an error code if the path was too long.
1879 * "buflen" should be positive.
1881 char *d_path(const struct path
*path
, char *buf
, int buflen
)
1888 * We have various synthetic filesystems that never get mounted. On
1889 * these filesystems dentries are never used for lookup purposes, and
1890 * thus don't need to be hashed. They also don't need a name until a
1891 * user wants to identify the object in /proc/pid/fd/. The little hack
1892 * below allows us to generate a name for these objects on demand:
1894 if (path
->dentry
->d_op
&& path
->dentry
->d_op
->d_dname
)
1895 return path
->dentry
->d_op
->d_dname(path
->dentry
, buf
, buflen
);
1897 read_lock(¤t
->fs
->lock
);
1898 root
= current
->fs
->root
;
1900 read_unlock(¤t
->fs
->lock
);
1901 spin_lock(&dcache_lock
);
1903 res
= __d_path(path
, &tmp
, buf
, buflen
);
1904 spin_unlock(&dcache_lock
);
1910 * Helper function for dentry_operations.d_dname() members
1912 char *dynamic_dname(struct dentry
*dentry
, char *buffer
, int buflen
,
1913 const char *fmt
, ...)
1919 va_start(args
, fmt
);
1920 sz
= vsnprintf(temp
, sizeof(temp
), fmt
, args
) + 1;
1923 if (sz
> sizeof(temp
) || sz
> buflen
)
1924 return ERR_PTR(-ENAMETOOLONG
);
1926 buffer
+= buflen
- sz
;
1927 return memcpy(buffer
, temp
, sz
);
1931 * Write full pathname from the root of the filesystem into the buffer.
1933 char *dentry_path(struct dentry
*dentry
, char *buf
, int buflen
)
1935 char *end
= buf
+ buflen
;
1938 spin_lock(&dcache_lock
);
1939 prepend(&end
, &buflen
, "\0", 1);
1940 if (!IS_ROOT(dentry
) && d_unhashed(dentry
) &&
1941 (prepend(&end
, &buflen
, "//deleted", 9) != 0))
1949 while (!IS_ROOT(dentry
)) {
1950 struct dentry
*parent
= dentry
->d_parent
;
1953 if ((prepend_name(&end
, &buflen
, &dentry
->d_name
) != 0) ||
1954 (prepend(&end
, &buflen
, "/", 1) != 0))
1960 spin_unlock(&dcache_lock
);
1963 spin_unlock(&dcache_lock
);
1964 return ERR_PTR(-ENAMETOOLONG
);
1968 * NOTE! The user-level library version returns a
1969 * character pointer. The kernel system call just
1970 * returns the length of the buffer filled (which
1971 * includes the ending '\0' character), or a negative
1972 * error value. So libc would do something like
1974 * char *getcwd(char * buf, size_t size)
1978 * retval = sys_getcwd(buf, size);
1985 asmlinkage
long sys_getcwd(char __user
*buf
, unsigned long size
)
1988 struct path pwd
, root
;
1989 char *page
= (char *) __get_free_page(GFP_USER
);
1994 read_lock(¤t
->fs
->lock
);
1995 pwd
= current
->fs
->pwd
;
1997 root
= current
->fs
->root
;
1999 read_unlock(¤t
->fs
->lock
);
2002 /* Has the current directory has been unlinked? */
2003 spin_lock(&dcache_lock
);
2004 if (IS_ROOT(pwd
.dentry
) || !d_unhashed(pwd
.dentry
)) {
2006 struct path tmp
= root
;
2009 cwd
= __d_path(&pwd
, &tmp
, page
, PAGE_SIZE
);
2010 spin_unlock(&dcache_lock
);
2012 error
= PTR_ERR(cwd
);
2017 len
= PAGE_SIZE
+ page
- cwd
;
2020 if (copy_to_user(buf
, cwd
, len
))
2024 spin_unlock(&dcache_lock
);
2029 free_page((unsigned long) page
);
2034 * Test whether new_dentry is a subdirectory of old_dentry.
2036 * Trivially implemented using the dcache structure
2040 * is_subdir - is new dentry a subdirectory of old_dentry
2041 * @new_dentry: new dentry
2042 * @old_dentry: old dentry
2044 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
2045 * Returns 0 otherwise.
2046 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
2049 int is_subdir(struct dentry
* new_dentry
, struct dentry
* old_dentry
)
2052 struct dentry
* saved
= new_dentry
;
2055 /* need rcu_readlock to protect against the d_parent trashing due to
2060 /* for restarting inner loop in case of seq retry */
2063 seq
= read_seqbegin(&rename_lock
);
2065 if (new_dentry
!= old_dentry
) {
2066 struct dentry
* parent
= new_dentry
->d_parent
;
2067 if (parent
== new_dentry
)
2069 new_dentry
= parent
;
2075 } while (read_seqretry(&rename_lock
, seq
));
2081 void d_genocide(struct dentry
*root
)
2083 struct dentry
*this_parent
= root
;
2084 struct list_head
*next
;
2086 spin_lock(&dcache_lock
);
2088 next
= this_parent
->d_subdirs
.next
;
2090 while (next
!= &this_parent
->d_subdirs
) {
2091 struct list_head
*tmp
= next
;
2092 struct dentry
*dentry
= list_entry(tmp
, struct dentry
, d_u
.d_child
);
2094 if (d_unhashed(dentry
)||!dentry
->d_inode
)
2096 if (!list_empty(&dentry
->d_subdirs
)) {
2097 this_parent
= dentry
;
2100 atomic_dec(&dentry
->d_count
);
2102 if (this_parent
!= root
) {
2103 next
= this_parent
->d_u
.d_child
.next
;
2104 atomic_dec(&this_parent
->d_count
);
2105 this_parent
= this_parent
->d_parent
;
2108 spin_unlock(&dcache_lock
);
2112 * find_inode_number - check for dentry with name
2113 * @dir: directory to check
2114 * @name: Name to find.
2116 * Check whether a dentry already exists for the given name,
2117 * and return the inode number if it has an inode. Otherwise
2120 * This routine is used to post-process directory listings for
2121 * filesystems using synthetic inode numbers, and is necessary
2122 * to keep getcwd() working.
2125 ino_t
find_inode_number(struct dentry
*dir
, struct qstr
*name
)
2127 struct dentry
* dentry
;
2130 dentry
= d_hash_and_lookup(dir
, name
);
2132 if (dentry
->d_inode
)
2133 ino
= dentry
->d_inode
->i_ino
;
2139 static __initdata
unsigned long dhash_entries
;
2140 static int __init
set_dhash_entries(char *str
)
2144 dhash_entries
= simple_strtoul(str
, &str
, 0);
2147 __setup("dhash_entries=", set_dhash_entries
);
2149 static void __init
dcache_init_early(void)
2153 /* If hashes are distributed across NUMA nodes, defer
2154 * hash allocation until vmalloc space is available.
2160 alloc_large_system_hash("Dentry cache",
2161 sizeof(struct hlist_head
),
2169 for (loop
= 0; loop
< (1 << d_hash_shift
); loop
++)
2170 INIT_HLIST_HEAD(&dentry_hashtable
[loop
]);
2173 static void __init
dcache_init(void)
2178 * A constructor could be added for stable state like the lists,
2179 * but it is probably not worth it because of the cache nature
2182 dentry_cache
= KMEM_CACHE(dentry
,
2183 SLAB_RECLAIM_ACCOUNT
|SLAB_PANIC
|SLAB_MEM_SPREAD
);
2185 register_shrinker(&dcache_shrinker
);
2187 /* Hash may have been set up in dcache_init_early */
2192 alloc_large_system_hash("Dentry cache",
2193 sizeof(struct hlist_head
),
2201 for (loop
= 0; loop
< (1 << d_hash_shift
); loop
++)
2202 INIT_HLIST_HEAD(&dentry_hashtable
[loop
]);
2205 /* SLAB cache for __getname() consumers */
2206 struct kmem_cache
*names_cachep __read_mostly
;
2208 /* SLAB cache for file structures */
2209 struct kmem_cache
*filp_cachep __read_mostly
;
2211 EXPORT_SYMBOL(d_genocide
);
2213 void __init
vfs_caches_init_early(void)
2215 dcache_init_early();
2219 void __init
vfs_caches_init(unsigned long mempages
)
2221 unsigned long reserve
;
2223 /* Base hash sizes on available memory, with a reserve equal to
2224 150% of current kernel size */
2226 reserve
= min((mempages
- nr_free_pages()) * 3/2, mempages
- 1);
2227 mempages
-= reserve
;
2229 names_cachep
= kmem_cache_create("names_cache", PATH_MAX
, 0,
2230 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
);
2232 filp_cachep
= kmem_cache_create("filp", sizeof(struct file
), 0,
2233 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
);
2237 files_init(mempages
);
2243 EXPORT_SYMBOL(d_alloc
);
2244 EXPORT_SYMBOL(d_alloc_anon
);
2245 EXPORT_SYMBOL(d_alloc_root
);
2246 EXPORT_SYMBOL(d_delete
);
2247 EXPORT_SYMBOL(d_find_alias
);
2248 EXPORT_SYMBOL(d_instantiate
);
2249 EXPORT_SYMBOL(d_invalidate
);
2250 EXPORT_SYMBOL(d_lookup
);
2251 EXPORT_SYMBOL(d_move
);
2252 EXPORT_SYMBOL_GPL(d_materialise_unique
);
2253 EXPORT_SYMBOL(d_path
);
2254 EXPORT_SYMBOL(d_prune_aliases
);
2255 EXPORT_SYMBOL(d_rehash
);
2256 EXPORT_SYMBOL(d_splice_alias
);
2257 EXPORT_SYMBOL(d_validate
);
2258 EXPORT_SYMBOL(dget_locked
);
2259 EXPORT_SYMBOL(dput
);
2260 EXPORT_SYMBOL(find_inode_number
);
2261 EXPORT_SYMBOL(have_submounts
);
2262 EXPORT_SYMBOL(names_cachep
);
2263 EXPORT_SYMBOL(shrink_dcache_parent
);
2264 EXPORT_SYMBOL(shrink_dcache_sb
);