2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/buffer_head.h>
21 #include <linux/blkdev.h>
22 #include <linux/random.h>
23 #include <linux/iocontext.h>
24 #include <asm/div64.h>
27 #include "extent_map.h"
29 #include "transaction.h"
30 #include "print-tree.h"
32 #include "async-thread.h"
42 struct btrfs_bio_stripe stripes
[];
45 static int init_first_rw_device(struct btrfs_trans_handle
*trans
,
46 struct btrfs_root
*root
,
47 struct btrfs_device
*device
);
48 static int btrfs_relocate_sys_chunks(struct btrfs_root
*root
);
50 #define map_lookup_size(n) (sizeof(struct map_lookup) + \
51 (sizeof(struct btrfs_bio_stripe) * (n)))
53 static DEFINE_MUTEX(uuid_mutex
);
54 static LIST_HEAD(fs_uuids
);
56 void btrfs_lock_volumes(void)
58 mutex_lock(&uuid_mutex
);
61 void btrfs_unlock_volumes(void)
63 mutex_unlock(&uuid_mutex
);
66 static void lock_chunks(struct btrfs_root
*root
)
68 mutex_lock(&root
->fs_info
->chunk_mutex
);
71 static void unlock_chunks(struct btrfs_root
*root
)
73 mutex_unlock(&root
->fs_info
->chunk_mutex
);
76 static void free_fs_devices(struct btrfs_fs_devices
*fs_devices
)
78 struct btrfs_device
*device
;
79 WARN_ON(fs_devices
->opened
);
80 while (!list_empty(&fs_devices
->devices
)) {
81 device
= list_entry(fs_devices
->devices
.next
,
82 struct btrfs_device
, dev_list
);
83 list_del(&device
->dev_list
);
90 int btrfs_cleanup_fs_uuids(void)
92 struct btrfs_fs_devices
*fs_devices
;
94 while (!list_empty(&fs_uuids
)) {
95 fs_devices
= list_entry(fs_uuids
.next
,
96 struct btrfs_fs_devices
, list
);
97 list_del(&fs_devices
->list
);
98 free_fs_devices(fs_devices
);
103 static noinline
struct btrfs_device
*__find_device(struct list_head
*head
,
106 struct btrfs_device
*dev
;
108 list_for_each_entry(dev
, head
, dev_list
) {
109 if (dev
->devid
== devid
&&
110 (!uuid
|| !memcmp(dev
->uuid
, uuid
, BTRFS_UUID_SIZE
))) {
117 static noinline
struct btrfs_fs_devices
*find_fsid(u8
*fsid
)
119 struct btrfs_fs_devices
*fs_devices
;
121 list_for_each_entry(fs_devices
, &fs_uuids
, list
) {
122 if (memcmp(fsid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
) == 0)
128 static void requeue_list(struct btrfs_pending_bios
*pending_bios
,
129 struct bio
*head
, struct bio
*tail
)
132 struct bio
*old_head
;
134 old_head
= pending_bios
->head
;
135 pending_bios
->head
= head
;
136 if (pending_bios
->tail
)
137 tail
->bi_next
= old_head
;
139 pending_bios
->tail
= tail
;
143 * we try to collect pending bios for a device so we don't get a large
144 * number of procs sending bios down to the same device. This greatly
145 * improves the schedulers ability to collect and merge the bios.
147 * But, it also turns into a long list of bios to process and that is sure
148 * to eventually make the worker thread block. The solution here is to
149 * make some progress and then put this work struct back at the end of
150 * the list if the block device is congested. This way, multiple devices
151 * can make progress from a single worker thread.
153 static noinline
int run_scheduled_bios(struct btrfs_device
*device
)
156 struct backing_dev_info
*bdi
;
157 struct btrfs_fs_info
*fs_info
;
158 struct btrfs_pending_bios
*pending_bios
;
162 unsigned long num_run
;
163 unsigned long num_sync_run
;
164 unsigned long batch_run
= 0;
166 unsigned long last_waited
= 0;
169 bdi
= blk_get_backing_dev_info(device
->bdev
);
170 fs_info
= device
->dev_root
->fs_info
;
171 limit
= btrfs_async_submit_limit(fs_info
);
172 limit
= limit
* 2 / 3;
174 /* we want to make sure that every time we switch from the sync
175 * list to the normal list, we unplug
180 spin_lock(&device
->io_lock
);
185 /* take all the bios off the list at once and process them
186 * later on (without the lock held). But, remember the
187 * tail and other pointers so the bios can be properly reinserted
188 * into the list if we hit congestion
190 if (!force_reg
&& device
->pending_sync_bios
.head
) {
191 pending_bios
= &device
->pending_sync_bios
;
194 pending_bios
= &device
->pending_bios
;
198 pending
= pending_bios
->head
;
199 tail
= pending_bios
->tail
;
200 WARN_ON(pending
&& !tail
);
203 * if pending was null this time around, no bios need processing
204 * at all and we can stop. Otherwise it'll loop back up again
205 * and do an additional check so no bios are missed.
207 * device->running_pending is used to synchronize with the
210 if (device
->pending_sync_bios
.head
== NULL
&&
211 device
->pending_bios
.head
== NULL
) {
213 device
->running_pending
= 0;
216 device
->running_pending
= 1;
219 pending_bios
->head
= NULL
;
220 pending_bios
->tail
= NULL
;
222 spin_unlock(&device
->io_lock
);
225 * if we're doing the regular priority list, make sure we unplug
226 * for any high prio bios we've sent down
228 if (pending_bios
== &device
->pending_bios
&& num_sync_run
> 0) {
230 blk_run_backing_dev(bdi
, NULL
);
236 /* we want to work on both lists, but do more bios on the
237 * sync list than the regular list
240 pending_bios
!= &device
->pending_sync_bios
&&
241 device
->pending_sync_bios
.head
) ||
242 (num_run
> 64 && pending_bios
== &device
->pending_sync_bios
&&
243 device
->pending_bios
.head
)) {
244 spin_lock(&device
->io_lock
);
245 requeue_list(pending_bios
, pending
, tail
);
250 pending
= pending
->bi_next
;
252 atomic_dec(&fs_info
->nr_async_bios
);
254 if (atomic_read(&fs_info
->nr_async_bios
) < limit
&&
255 waitqueue_active(&fs_info
->async_submit_wait
))
256 wake_up(&fs_info
->async_submit_wait
);
258 BUG_ON(atomic_read(&cur
->bi_cnt
) == 0);
260 if (bio_rw_flagged(cur
, BIO_RW_SYNCIO
))
263 submit_bio(cur
->bi_rw
, cur
);
266 if (need_resched()) {
268 blk_run_backing_dev(bdi
, NULL
);
275 * we made progress, there is more work to do and the bdi
276 * is now congested. Back off and let other work structs
279 if (pending
&& bdi_write_congested(bdi
) && batch_run
> 8 &&
280 fs_info
->fs_devices
->open_devices
> 1) {
281 struct io_context
*ioc
;
283 ioc
= current
->io_context
;
286 * the main goal here is that we don't want to
287 * block if we're going to be able to submit
288 * more requests without blocking.
290 * This code does two great things, it pokes into
291 * the elevator code from a filesystem _and_
292 * it makes assumptions about how batching works.
294 if (ioc
&& ioc
->nr_batch_requests
> 0 &&
295 time_before(jiffies
, ioc
->last_waited
+ HZ
/50UL) &&
297 ioc
->last_waited
== last_waited
)) {
299 * we want to go through our batch of
300 * requests and stop. So, we copy out
301 * the ioc->last_waited time and test
302 * against it before looping
304 last_waited
= ioc
->last_waited
;
305 if (need_resched()) {
307 blk_run_backing_dev(bdi
, NULL
);
314 spin_lock(&device
->io_lock
);
315 requeue_list(pending_bios
, pending
, tail
);
316 device
->running_pending
= 1;
318 spin_unlock(&device
->io_lock
);
319 btrfs_requeue_work(&device
->work
);
326 blk_run_backing_dev(bdi
, NULL
);
329 * IO has already been through a long path to get here. Checksumming,
330 * async helper threads, perhaps compression. We've done a pretty
331 * good job of collecting a batch of IO and should just unplug
332 * the device right away.
334 * This will help anyone who is waiting on the IO, they might have
335 * already unplugged, but managed to do so before the bio they
336 * cared about found its way down here.
338 blk_run_backing_dev(bdi
, NULL
);
344 spin_lock(&device
->io_lock
);
345 if (device
->pending_bios
.head
|| device
->pending_sync_bios
.head
)
347 spin_unlock(&device
->io_lock
);
353 static void pending_bios_fn(struct btrfs_work
*work
)
355 struct btrfs_device
*device
;
357 device
= container_of(work
, struct btrfs_device
, work
);
358 run_scheduled_bios(device
);
361 static noinline
int device_list_add(const char *path
,
362 struct btrfs_super_block
*disk_super
,
363 u64 devid
, struct btrfs_fs_devices
**fs_devices_ret
)
365 struct btrfs_device
*device
;
366 struct btrfs_fs_devices
*fs_devices
;
367 u64 found_transid
= btrfs_super_generation(disk_super
);
370 fs_devices
= find_fsid(disk_super
->fsid
);
372 fs_devices
= kzalloc(sizeof(*fs_devices
), GFP_NOFS
);
375 INIT_LIST_HEAD(&fs_devices
->devices
);
376 INIT_LIST_HEAD(&fs_devices
->alloc_list
);
377 list_add(&fs_devices
->list
, &fs_uuids
);
378 memcpy(fs_devices
->fsid
, disk_super
->fsid
, BTRFS_FSID_SIZE
);
379 fs_devices
->latest_devid
= devid
;
380 fs_devices
->latest_trans
= found_transid
;
381 mutex_init(&fs_devices
->device_list_mutex
);
384 device
= __find_device(&fs_devices
->devices
, devid
,
385 disk_super
->dev_item
.uuid
);
388 if (fs_devices
->opened
)
391 device
= kzalloc(sizeof(*device
), GFP_NOFS
);
393 /* we can safely leave the fs_devices entry around */
396 device
->devid
= devid
;
397 device
->work
.func
= pending_bios_fn
;
398 memcpy(device
->uuid
, disk_super
->dev_item
.uuid
,
400 device
->barriers
= 1;
401 spin_lock_init(&device
->io_lock
);
402 device
->name
= kstrdup(path
, GFP_NOFS
);
407 INIT_LIST_HEAD(&device
->dev_alloc_list
);
409 mutex_lock(&fs_devices
->device_list_mutex
);
410 list_add(&device
->dev_list
, &fs_devices
->devices
);
411 mutex_unlock(&fs_devices
->device_list_mutex
);
413 device
->fs_devices
= fs_devices
;
414 fs_devices
->num_devices
++;
415 } else if (strcmp(device
->name
, path
)) {
416 name
= kstrdup(path
, GFP_NOFS
);
423 if (found_transid
> fs_devices
->latest_trans
) {
424 fs_devices
->latest_devid
= devid
;
425 fs_devices
->latest_trans
= found_transid
;
427 *fs_devices_ret
= fs_devices
;
431 static struct btrfs_fs_devices
*clone_fs_devices(struct btrfs_fs_devices
*orig
)
433 struct btrfs_fs_devices
*fs_devices
;
434 struct btrfs_device
*device
;
435 struct btrfs_device
*orig_dev
;
437 fs_devices
= kzalloc(sizeof(*fs_devices
), GFP_NOFS
);
439 return ERR_PTR(-ENOMEM
);
441 INIT_LIST_HEAD(&fs_devices
->devices
);
442 INIT_LIST_HEAD(&fs_devices
->alloc_list
);
443 INIT_LIST_HEAD(&fs_devices
->list
);
444 mutex_init(&fs_devices
->device_list_mutex
);
445 fs_devices
->latest_devid
= orig
->latest_devid
;
446 fs_devices
->latest_trans
= orig
->latest_trans
;
447 memcpy(fs_devices
->fsid
, orig
->fsid
, sizeof(fs_devices
->fsid
));
449 mutex_lock(&orig
->device_list_mutex
);
450 list_for_each_entry(orig_dev
, &orig
->devices
, dev_list
) {
451 device
= kzalloc(sizeof(*device
), GFP_NOFS
);
455 device
->name
= kstrdup(orig_dev
->name
, GFP_NOFS
);
461 device
->devid
= orig_dev
->devid
;
462 device
->work
.func
= pending_bios_fn
;
463 memcpy(device
->uuid
, orig_dev
->uuid
, sizeof(device
->uuid
));
464 device
->barriers
= 1;
465 spin_lock_init(&device
->io_lock
);
466 INIT_LIST_HEAD(&device
->dev_list
);
467 INIT_LIST_HEAD(&device
->dev_alloc_list
);
469 list_add(&device
->dev_list
, &fs_devices
->devices
);
470 device
->fs_devices
= fs_devices
;
471 fs_devices
->num_devices
++;
473 mutex_unlock(&orig
->device_list_mutex
);
476 mutex_unlock(&orig
->device_list_mutex
);
477 free_fs_devices(fs_devices
);
478 return ERR_PTR(-ENOMEM
);
481 int btrfs_close_extra_devices(struct btrfs_fs_devices
*fs_devices
)
483 struct btrfs_device
*device
, *next
;
485 mutex_lock(&uuid_mutex
);
487 mutex_lock(&fs_devices
->device_list_mutex
);
488 list_for_each_entry_safe(device
, next
, &fs_devices
->devices
, dev_list
) {
489 if (device
->in_fs_metadata
)
493 close_bdev_exclusive(device
->bdev
, device
->mode
);
495 fs_devices
->open_devices
--;
497 if (device
->writeable
) {
498 list_del_init(&device
->dev_alloc_list
);
499 device
->writeable
= 0;
500 fs_devices
->rw_devices
--;
502 list_del_init(&device
->dev_list
);
503 fs_devices
->num_devices
--;
507 mutex_unlock(&fs_devices
->device_list_mutex
);
509 if (fs_devices
->seed
) {
510 fs_devices
= fs_devices
->seed
;
514 mutex_unlock(&uuid_mutex
);
518 static int __btrfs_close_devices(struct btrfs_fs_devices
*fs_devices
)
520 struct btrfs_device
*device
;
522 if (--fs_devices
->opened
> 0)
525 list_for_each_entry(device
, &fs_devices
->devices
, dev_list
) {
527 close_bdev_exclusive(device
->bdev
, device
->mode
);
528 fs_devices
->open_devices
--;
530 if (device
->writeable
) {
531 list_del_init(&device
->dev_alloc_list
);
532 fs_devices
->rw_devices
--;
536 device
->writeable
= 0;
537 device
->in_fs_metadata
= 0;
539 WARN_ON(fs_devices
->open_devices
);
540 WARN_ON(fs_devices
->rw_devices
);
541 fs_devices
->opened
= 0;
542 fs_devices
->seeding
= 0;
547 int btrfs_close_devices(struct btrfs_fs_devices
*fs_devices
)
549 struct btrfs_fs_devices
*seed_devices
= NULL
;
552 mutex_lock(&uuid_mutex
);
553 ret
= __btrfs_close_devices(fs_devices
);
554 if (!fs_devices
->opened
) {
555 seed_devices
= fs_devices
->seed
;
556 fs_devices
->seed
= NULL
;
558 mutex_unlock(&uuid_mutex
);
560 while (seed_devices
) {
561 fs_devices
= seed_devices
;
562 seed_devices
= fs_devices
->seed
;
563 __btrfs_close_devices(fs_devices
);
564 free_fs_devices(fs_devices
);
569 static int __btrfs_open_devices(struct btrfs_fs_devices
*fs_devices
,
570 fmode_t flags
, void *holder
)
572 struct block_device
*bdev
;
573 struct list_head
*head
= &fs_devices
->devices
;
574 struct btrfs_device
*device
;
575 struct block_device
*latest_bdev
= NULL
;
576 struct buffer_head
*bh
;
577 struct btrfs_super_block
*disk_super
;
578 u64 latest_devid
= 0;
579 u64 latest_transid
= 0;
584 list_for_each_entry(device
, head
, dev_list
) {
590 bdev
= open_bdev_exclusive(device
->name
, flags
, holder
);
592 printk(KERN_INFO
"open %s failed\n", device
->name
);
595 set_blocksize(bdev
, 4096);
597 bh
= btrfs_read_dev_super(bdev
);
601 disk_super
= (struct btrfs_super_block
*)bh
->b_data
;
602 devid
= btrfs_stack_device_id(&disk_super
->dev_item
);
603 if (devid
!= device
->devid
)
606 if (memcmp(device
->uuid
, disk_super
->dev_item
.uuid
,
610 device
->generation
= btrfs_super_generation(disk_super
);
611 if (!latest_transid
|| device
->generation
> latest_transid
) {
612 latest_devid
= devid
;
613 latest_transid
= device
->generation
;
617 if (btrfs_super_flags(disk_super
) & BTRFS_SUPER_FLAG_SEEDING
) {
618 device
->writeable
= 0;
620 device
->writeable
= !bdev_read_only(bdev
);
625 device
->in_fs_metadata
= 0;
626 device
->mode
= flags
;
628 if (!blk_queue_nonrot(bdev_get_queue(bdev
)))
629 fs_devices
->rotating
= 1;
631 fs_devices
->open_devices
++;
632 if (device
->writeable
) {
633 fs_devices
->rw_devices
++;
634 list_add(&device
->dev_alloc_list
,
635 &fs_devices
->alloc_list
);
642 close_bdev_exclusive(bdev
, FMODE_READ
);
646 if (fs_devices
->open_devices
== 0) {
650 fs_devices
->seeding
= seeding
;
651 fs_devices
->opened
= 1;
652 fs_devices
->latest_bdev
= latest_bdev
;
653 fs_devices
->latest_devid
= latest_devid
;
654 fs_devices
->latest_trans
= latest_transid
;
655 fs_devices
->total_rw_bytes
= 0;
660 int btrfs_open_devices(struct btrfs_fs_devices
*fs_devices
,
661 fmode_t flags
, void *holder
)
665 mutex_lock(&uuid_mutex
);
666 if (fs_devices
->opened
) {
667 fs_devices
->opened
++;
670 ret
= __btrfs_open_devices(fs_devices
, flags
, holder
);
672 mutex_unlock(&uuid_mutex
);
676 int btrfs_scan_one_device(const char *path
, fmode_t flags
, void *holder
,
677 struct btrfs_fs_devices
**fs_devices_ret
)
679 struct btrfs_super_block
*disk_super
;
680 struct block_device
*bdev
;
681 struct buffer_head
*bh
;
686 mutex_lock(&uuid_mutex
);
688 bdev
= open_bdev_exclusive(path
, flags
, holder
);
695 ret
= set_blocksize(bdev
, 4096);
698 bh
= btrfs_read_dev_super(bdev
);
703 disk_super
= (struct btrfs_super_block
*)bh
->b_data
;
704 devid
= btrfs_stack_device_id(&disk_super
->dev_item
);
705 transid
= btrfs_super_generation(disk_super
);
706 if (disk_super
->label
[0])
707 printk(KERN_INFO
"device label %s ", disk_super
->label
);
709 /* FIXME, make a readl uuid parser */
710 printk(KERN_INFO
"device fsid %llx-%llx ",
711 *(unsigned long long *)disk_super
->fsid
,
712 *(unsigned long long *)(disk_super
->fsid
+ 8));
714 printk(KERN_CONT
"devid %llu transid %llu %s\n",
715 (unsigned long long)devid
, (unsigned long long)transid
, path
);
716 ret
= device_list_add(path
, disk_super
, devid
, fs_devices_ret
);
720 close_bdev_exclusive(bdev
, flags
);
722 mutex_unlock(&uuid_mutex
);
727 * this uses a pretty simple search, the expectation is that it is
728 * called very infrequently and that a given device has a small number
731 int find_free_dev_extent(struct btrfs_trans_handle
*trans
,
732 struct btrfs_device
*device
, u64 num_bytes
,
733 u64
*start
, u64
*max_avail
)
735 struct btrfs_key key
;
736 struct btrfs_root
*root
= device
->dev_root
;
737 struct btrfs_dev_extent
*dev_extent
= NULL
;
738 struct btrfs_path
*path
;
741 u64 search_start
= 0;
742 u64 search_end
= device
->total_bytes
;
746 struct extent_buffer
*l
;
748 path
= btrfs_alloc_path();
754 /* FIXME use last free of some kind */
756 /* we don't want to overwrite the superblock on the drive,
757 * so we make sure to start at an offset of at least 1MB
759 search_start
= max((u64
)1024 * 1024, search_start
);
761 if (root
->fs_info
->alloc_start
+ num_bytes
<= device
->total_bytes
)
762 search_start
= max(root
->fs_info
->alloc_start
, search_start
);
764 key
.objectid
= device
->devid
;
765 key
.offset
= search_start
;
766 key
.type
= BTRFS_DEV_EXTENT_KEY
;
767 ret
= btrfs_search_slot(trans
, root
, &key
, path
, 0, 0);
771 ret
= btrfs_previous_item(root
, path
, key
.objectid
, key
.type
);
778 btrfs_item_key_to_cpu(l
, &key
, path
->slots
[0]);
781 slot
= path
->slots
[0];
782 if (slot
>= btrfs_header_nritems(l
)) {
783 ret
= btrfs_next_leaf(root
, path
);
790 if (search_start
>= search_end
) {
794 *start
= search_start
;
798 *start
= last_byte
> search_start
?
799 last_byte
: search_start
;
800 if (search_end
<= *start
) {
806 btrfs_item_key_to_cpu(l
, &key
, slot
);
808 if (key
.objectid
< device
->devid
)
811 if (key
.objectid
> device
->devid
)
814 if (key
.offset
>= search_start
&& key
.offset
> last_byte
&&
816 if (last_byte
< search_start
)
817 last_byte
= search_start
;
818 hole_size
= key
.offset
- last_byte
;
820 if (hole_size
> *max_avail
)
821 *max_avail
= hole_size
;
823 if (key
.offset
> last_byte
&&
824 hole_size
>= num_bytes
) {
829 if (btrfs_key_type(&key
) != BTRFS_DEV_EXTENT_KEY
)
833 dev_extent
= btrfs_item_ptr(l
, slot
, struct btrfs_dev_extent
);
834 last_byte
= key
.offset
+ btrfs_dev_extent_length(l
, dev_extent
);
840 /* we have to make sure we didn't find an extent that has already
841 * been allocated by the map tree or the original allocation
843 BUG_ON(*start
< search_start
);
845 if (*start
+ num_bytes
> search_end
) {
849 /* check for pending inserts here */
853 btrfs_free_path(path
);
857 static int btrfs_free_dev_extent(struct btrfs_trans_handle
*trans
,
858 struct btrfs_device
*device
,
862 struct btrfs_path
*path
;
863 struct btrfs_root
*root
= device
->dev_root
;
864 struct btrfs_key key
;
865 struct btrfs_key found_key
;
866 struct extent_buffer
*leaf
= NULL
;
867 struct btrfs_dev_extent
*extent
= NULL
;
869 path
= btrfs_alloc_path();
873 key
.objectid
= device
->devid
;
875 key
.type
= BTRFS_DEV_EXTENT_KEY
;
877 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
879 ret
= btrfs_previous_item(root
, path
, key
.objectid
,
880 BTRFS_DEV_EXTENT_KEY
);
882 leaf
= path
->nodes
[0];
883 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
884 extent
= btrfs_item_ptr(leaf
, path
->slots
[0],
885 struct btrfs_dev_extent
);
886 BUG_ON(found_key
.offset
> start
|| found_key
.offset
+
887 btrfs_dev_extent_length(leaf
, extent
) < start
);
889 } else if (ret
== 0) {
890 leaf
= path
->nodes
[0];
891 extent
= btrfs_item_ptr(leaf
, path
->slots
[0],
892 struct btrfs_dev_extent
);
896 if (device
->bytes_used
> 0)
897 device
->bytes_used
-= btrfs_dev_extent_length(leaf
, extent
);
898 ret
= btrfs_del_item(trans
, root
, path
);
901 btrfs_free_path(path
);
905 int btrfs_alloc_dev_extent(struct btrfs_trans_handle
*trans
,
906 struct btrfs_device
*device
,
907 u64 chunk_tree
, u64 chunk_objectid
,
908 u64 chunk_offset
, u64 start
, u64 num_bytes
)
911 struct btrfs_path
*path
;
912 struct btrfs_root
*root
= device
->dev_root
;
913 struct btrfs_dev_extent
*extent
;
914 struct extent_buffer
*leaf
;
915 struct btrfs_key key
;
917 WARN_ON(!device
->in_fs_metadata
);
918 path
= btrfs_alloc_path();
922 key
.objectid
= device
->devid
;
924 key
.type
= BTRFS_DEV_EXTENT_KEY
;
925 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
929 leaf
= path
->nodes
[0];
930 extent
= btrfs_item_ptr(leaf
, path
->slots
[0],
931 struct btrfs_dev_extent
);
932 btrfs_set_dev_extent_chunk_tree(leaf
, extent
, chunk_tree
);
933 btrfs_set_dev_extent_chunk_objectid(leaf
, extent
, chunk_objectid
);
934 btrfs_set_dev_extent_chunk_offset(leaf
, extent
, chunk_offset
);
936 write_extent_buffer(leaf
, root
->fs_info
->chunk_tree_uuid
,
937 (unsigned long)btrfs_dev_extent_chunk_tree_uuid(extent
),
940 btrfs_set_dev_extent_length(leaf
, extent
, num_bytes
);
941 btrfs_mark_buffer_dirty(leaf
);
942 btrfs_free_path(path
);
946 static noinline
int find_next_chunk(struct btrfs_root
*root
,
947 u64 objectid
, u64
*offset
)
949 struct btrfs_path
*path
;
951 struct btrfs_key key
;
952 struct btrfs_chunk
*chunk
;
953 struct btrfs_key found_key
;
955 path
= btrfs_alloc_path();
958 key
.objectid
= objectid
;
959 key
.offset
= (u64
)-1;
960 key
.type
= BTRFS_CHUNK_ITEM_KEY
;
962 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
968 ret
= btrfs_previous_item(root
, path
, 0, BTRFS_CHUNK_ITEM_KEY
);
972 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
974 if (found_key
.objectid
!= objectid
)
977 chunk
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
979 *offset
= found_key
.offset
+
980 btrfs_chunk_length(path
->nodes
[0], chunk
);
985 btrfs_free_path(path
);
989 static noinline
int find_next_devid(struct btrfs_root
*root
, u64
*objectid
)
992 struct btrfs_key key
;
993 struct btrfs_key found_key
;
994 struct btrfs_path
*path
;
996 root
= root
->fs_info
->chunk_root
;
998 path
= btrfs_alloc_path();
1002 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
1003 key
.type
= BTRFS_DEV_ITEM_KEY
;
1004 key
.offset
= (u64
)-1;
1006 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
1012 ret
= btrfs_previous_item(root
, path
, BTRFS_DEV_ITEMS_OBJECTID
,
1013 BTRFS_DEV_ITEM_KEY
);
1017 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
1019 *objectid
= found_key
.offset
+ 1;
1023 btrfs_free_path(path
);
1028 * the device information is stored in the chunk root
1029 * the btrfs_device struct should be fully filled in
1031 int btrfs_add_device(struct btrfs_trans_handle
*trans
,
1032 struct btrfs_root
*root
,
1033 struct btrfs_device
*device
)
1036 struct btrfs_path
*path
;
1037 struct btrfs_dev_item
*dev_item
;
1038 struct extent_buffer
*leaf
;
1039 struct btrfs_key key
;
1042 root
= root
->fs_info
->chunk_root
;
1044 path
= btrfs_alloc_path();
1048 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
1049 key
.type
= BTRFS_DEV_ITEM_KEY
;
1050 key
.offset
= device
->devid
;
1052 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
1057 leaf
= path
->nodes
[0];
1058 dev_item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_dev_item
);
1060 btrfs_set_device_id(leaf
, dev_item
, device
->devid
);
1061 btrfs_set_device_generation(leaf
, dev_item
, 0);
1062 btrfs_set_device_type(leaf
, dev_item
, device
->type
);
1063 btrfs_set_device_io_align(leaf
, dev_item
, device
->io_align
);
1064 btrfs_set_device_io_width(leaf
, dev_item
, device
->io_width
);
1065 btrfs_set_device_sector_size(leaf
, dev_item
, device
->sector_size
);
1066 btrfs_set_device_total_bytes(leaf
, dev_item
, device
->total_bytes
);
1067 btrfs_set_device_bytes_used(leaf
, dev_item
, device
->bytes_used
);
1068 btrfs_set_device_group(leaf
, dev_item
, 0);
1069 btrfs_set_device_seek_speed(leaf
, dev_item
, 0);
1070 btrfs_set_device_bandwidth(leaf
, dev_item
, 0);
1071 btrfs_set_device_start_offset(leaf
, dev_item
, 0);
1073 ptr
= (unsigned long)btrfs_device_uuid(dev_item
);
1074 write_extent_buffer(leaf
, device
->uuid
, ptr
, BTRFS_UUID_SIZE
);
1075 ptr
= (unsigned long)btrfs_device_fsid(dev_item
);
1076 write_extent_buffer(leaf
, root
->fs_info
->fsid
, ptr
, BTRFS_UUID_SIZE
);
1077 btrfs_mark_buffer_dirty(leaf
);
1081 btrfs_free_path(path
);
1085 static int btrfs_rm_dev_item(struct btrfs_root
*root
,
1086 struct btrfs_device
*device
)
1089 struct btrfs_path
*path
;
1090 struct btrfs_key key
;
1091 struct btrfs_trans_handle
*trans
;
1093 root
= root
->fs_info
->chunk_root
;
1095 path
= btrfs_alloc_path();
1099 trans
= btrfs_start_transaction(root
, 1);
1100 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
1101 key
.type
= BTRFS_DEV_ITEM_KEY
;
1102 key
.offset
= device
->devid
;
1105 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1114 ret
= btrfs_del_item(trans
, root
, path
);
1118 btrfs_free_path(path
);
1119 unlock_chunks(root
);
1120 btrfs_commit_transaction(trans
, root
);
1124 int btrfs_rm_device(struct btrfs_root
*root
, char *device_path
)
1126 struct btrfs_device
*device
;
1127 struct btrfs_device
*next_device
;
1128 struct block_device
*bdev
;
1129 struct buffer_head
*bh
= NULL
;
1130 struct btrfs_super_block
*disk_super
;
1137 mutex_lock(&uuid_mutex
);
1138 mutex_lock(&root
->fs_info
->volume_mutex
);
1140 all_avail
= root
->fs_info
->avail_data_alloc_bits
|
1141 root
->fs_info
->avail_system_alloc_bits
|
1142 root
->fs_info
->avail_metadata_alloc_bits
;
1144 if ((all_avail
& BTRFS_BLOCK_GROUP_RAID10
) &&
1145 root
->fs_info
->fs_devices
->num_devices
<= 4) {
1146 printk(KERN_ERR
"btrfs: unable to go below four devices "
1152 if ((all_avail
& BTRFS_BLOCK_GROUP_RAID1
) &&
1153 root
->fs_info
->fs_devices
->num_devices
<= 2) {
1154 printk(KERN_ERR
"btrfs: unable to go below two "
1155 "devices on raid1\n");
1160 if (strcmp(device_path
, "missing") == 0) {
1161 struct list_head
*devices
;
1162 struct btrfs_device
*tmp
;
1165 devices
= &root
->fs_info
->fs_devices
->devices
;
1166 mutex_lock(&root
->fs_info
->fs_devices
->device_list_mutex
);
1167 list_for_each_entry(tmp
, devices
, dev_list
) {
1168 if (tmp
->in_fs_metadata
&& !tmp
->bdev
) {
1173 mutex_unlock(&root
->fs_info
->fs_devices
->device_list_mutex
);
1178 printk(KERN_ERR
"btrfs: no missing devices found to "
1183 bdev
= open_bdev_exclusive(device_path
, FMODE_READ
,
1184 root
->fs_info
->bdev_holder
);
1186 ret
= PTR_ERR(bdev
);
1190 set_blocksize(bdev
, 4096);
1191 bh
= btrfs_read_dev_super(bdev
);
1196 disk_super
= (struct btrfs_super_block
*)bh
->b_data
;
1197 devid
= btrfs_stack_device_id(&disk_super
->dev_item
);
1198 dev_uuid
= disk_super
->dev_item
.uuid
;
1199 device
= btrfs_find_device(root
, devid
, dev_uuid
,
1207 if (device
->writeable
&& root
->fs_info
->fs_devices
->rw_devices
== 1) {
1208 printk(KERN_ERR
"btrfs: unable to remove the only writeable "
1214 if (device
->writeable
) {
1215 list_del_init(&device
->dev_alloc_list
);
1216 root
->fs_info
->fs_devices
->rw_devices
--;
1219 ret
= btrfs_shrink_device(device
, 0);
1223 ret
= btrfs_rm_dev_item(root
->fs_info
->chunk_root
, device
);
1227 device
->in_fs_metadata
= 0;
1230 * the device list mutex makes sure that we don't change
1231 * the device list while someone else is writing out all
1232 * the device supers.
1234 mutex_lock(&root
->fs_info
->fs_devices
->device_list_mutex
);
1235 list_del_init(&device
->dev_list
);
1236 mutex_unlock(&root
->fs_info
->fs_devices
->device_list_mutex
);
1238 device
->fs_devices
->num_devices
--;
1240 next_device
= list_entry(root
->fs_info
->fs_devices
->devices
.next
,
1241 struct btrfs_device
, dev_list
);
1242 if (device
->bdev
== root
->fs_info
->sb
->s_bdev
)
1243 root
->fs_info
->sb
->s_bdev
= next_device
->bdev
;
1244 if (device
->bdev
== root
->fs_info
->fs_devices
->latest_bdev
)
1245 root
->fs_info
->fs_devices
->latest_bdev
= next_device
->bdev
;
1248 close_bdev_exclusive(device
->bdev
, device
->mode
);
1249 device
->bdev
= NULL
;
1250 device
->fs_devices
->open_devices
--;
1253 num_devices
= btrfs_super_num_devices(&root
->fs_info
->super_copy
) - 1;
1254 btrfs_set_super_num_devices(&root
->fs_info
->super_copy
, num_devices
);
1256 if (device
->fs_devices
->open_devices
== 0) {
1257 struct btrfs_fs_devices
*fs_devices
;
1258 fs_devices
= root
->fs_info
->fs_devices
;
1259 while (fs_devices
) {
1260 if (fs_devices
->seed
== device
->fs_devices
)
1262 fs_devices
= fs_devices
->seed
;
1264 fs_devices
->seed
= device
->fs_devices
->seed
;
1265 device
->fs_devices
->seed
= NULL
;
1266 __btrfs_close_devices(device
->fs_devices
);
1267 free_fs_devices(device
->fs_devices
);
1271 * at this point, the device is zero sized. We want to
1272 * remove it from the devices list and zero out the old super
1274 if (device
->writeable
) {
1275 /* make sure this device isn't detected as part of
1278 memset(&disk_super
->magic
, 0, sizeof(disk_super
->magic
));
1279 set_buffer_dirty(bh
);
1280 sync_dirty_buffer(bh
);
1283 kfree(device
->name
);
1291 close_bdev_exclusive(bdev
, FMODE_READ
);
1293 mutex_unlock(&root
->fs_info
->volume_mutex
);
1294 mutex_unlock(&uuid_mutex
);
1299 * does all the dirty work required for changing file system's UUID.
1301 static int btrfs_prepare_sprout(struct btrfs_trans_handle
*trans
,
1302 struct btrfs_root
*root
)
1304 struct btrfs_fs_devices
*fs_devices
= root
->fs_info
->fs_devices
;
1305 struct btrfs_fs_devices
*old_devices
;
1306 struct btrfs_fs_devices
*seed_devices
;
1307 struct btrfs_super_block
*disk_super
= &root
->fs_info
->super_copy
;
1308 struct btrfs_device
*device
;
1311 BUG_ON(!mutex_is_locked(&uuid_mutex
));
1312 if (!fs_devices
->seeding
)
1315 seed_devices
= kzalloc(sizeof(*fs_devices
), GFP_NOFS
);
1319 old_devices
= clone_fs_devices(fs_devices
);
1320 if (IS_ERR(old_devices
)) {
1321 kfree(seed_devices
);
1322 return PTR_ERR(old_devices
);
1325 list_add(&old_devices
->list
, &fs_uuids
);
1327 memcpy(seed_devices
, fs_devices
, sizeof(*seed_devices
));
1328 seed_devices
->opened
= 1;
1329 INIT_LIST_HEAD(&seed_devices
->devices
);
1330 INIT_LIST_HEAD(&seed_devices
->alloc_list
);
1331 mutex_init(&seed_devices
->device_list_mutex
);
1332 list_splice_init(&fs_devices
->devices
, &seed_devices
->devices
);
1333 list_splice_init(&fs_devices
->alloc_list
, &seed_devices
->alloc_list
);
1334 list_for_each_entry(device
, &seed_devices
->devices
, dev_list
) {
1335 device
->fs_devices
= seed_devices
;
1338 fs_devices
->seeding
= 0;
1339 fs_devices
->num_devices
= 0;
1340 fs_devices
->open_devices
= 0;
1341 fs_devices
->seed
= seed_devices
;
1343 generate_random_uuid(fs_devices
->fsid
);
1344 memcpy(root
->fs_info
->fsid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
);
1345 memcpy(disk_super
->fsid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
);
1346 super_flags
= btrfs_super_flags(disk_super
) &
1347 ~BTRFS_SUPER_FLAG_SEEDING
;
1348 btrfs_set_super_flags(disk_super
, super_flags
);
1354 * strore the expected generation for seed devices in device items.
1356 static int btrfs_finish_sprout(struct btrfs_trans_handle
*trans
,
1357 struct btrfs_root
*root
)
1359 struct btrfs_path
*path
;
1360 struct extent_buffer
*leaf
;
1361 struct btrfs_dev_item
*dev_item
;
1362 struct btrfs_device
*device
;
1363 struct btrfs_key key
;
1364 u8 fs_uuid
[BTRFS_UUID_SIZE
];
1365 u8 dev_uuid
[BTRFS_UUID_SIZE
];
1369 path
= btrfs_alloc_path();
1373 root
= root
->fs_info
->chunk_root
;
1374 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
1376 key
.type
= BTRFS_DEV_ITEM_KEY
;
1379 ret
= btrfs_search_slot(trans
, root
, &key
, path
, 0, 1);
1383 leaf
= path
->nodes
[0];
1385 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
1386 ret
= btrfs_next_leaf(root
, path
);
1391 leaf
= path
->nodes
[0];
1392 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
1393 btrfs_release_path(root
, path
);
1397 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
1398 if (key
.objectid
!= BTRFS_DEV_ITEMS_OBJECTID
||
1399 key
.type
!= BTRFS_DEV_ITEM_KEY
)
1402 dev_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
1403 struct btrfs_dev_item
);
1404 devid
= btrfs_device_id(leaf
, dev_item
);
1405 read_extent_buffer(leaf
, dev_uuid
,
1406 (unsigned long)btrfs_device_uuid(dev_item
),
1408 read_extent_buffer(leaf
, fs_uuid
,
1409 (unsigned long)btrfs_device_fsid(dev_item
),
1411 device
= btrfs_find_device(root
, devid
, dev_uuid
, fs_uuid
);
1414 if (device
->fs_devices
->seeding
) {
1415 btrfs_set_device_generation(leaf
, dev_item
,
1416 device
->generation
);
1417 btrfs_mark_buffer_dirty(leaf
);
1425 btrfs_free_path(path
);
1429 int btrfs_init_new_device(struct btrfs_root
*root
, char *device_path
)
1431 struct btrfs_trans_handle
*trans
;
1432 struct btrfs_device
*device
;
1433 struct block_device
*bdev
;
1434 struct list_head
*devices
;
1435 struct super_block
*sb
= root
->fs_info
->sb
;
1437 int seeding_dev
= 0;
1440 if ((sb
->s_flags
& MS_RDONLY
) && !root
->fs_info
->fs_devices
->seeding
)
1443 bdev
= open_bdev_exclusive(device_path
, 0, root
->fs_info
->bdev_holder
);
1445 return PTR_ERR(bdev
);
1447 if (root
->fs_info
->fs_devices
->seeding
) {
1449 down_write(&sb
->s_umount
);
1450 mutex_lock(&uuid_mutex
);
1453 filemap_write_and_wait(bdev
->bd_inode
->i_mapping
);
1454 mutex_lock(&root
->fs_info
->volume_mutex
);
1456 devices
= &root
->fs_info
->fs_devices
->devices
;
1458 * we have the volume lock, so we don't need the extra
1459 * device list mutex while reading the list here.
1461 list_for_each_entry(device
, devices
, dev_list
) {
1462 if (device
->bdev
== bdev
) {
1468 device
= kzalloc(sizeof(*device
), GFP_NOFS
);
1470 /* we can safely leave the fs_devices entry around */
1475 device
->name
= kstrdup(device_path
, GFP_NOFS
);
1476 if (!device
->name
) {
1482 ret
= find_next_devid(root
, &device
->devid
);
1488 trans
= btrfs_start_transaction(root
, 1);
1491 device
->barriers
= 1;
1492 device
->writeable
= 1;
1493 device
->work
.func
= pending_bios_fn
;
1494 generate_random_uuid(device
->uuid
);
1495 spin_lock_init(&device
->io_lock
);
1496 device
->generation
= trans
->transid
;
1497 device
->io_width
= root
->sectorsize
;
1498 device
->io_align
= root
->sectorsize
;
1499 device
->sector_size
= root
->sectorsize
;
1500 device
->total_bytes
= i_size_read(bdev
->bd_inode
);
1501 device
->disk_total_bytes
= device
->total_bytes
;
1502 device
->dev_root
= root
->fs_info
->dev_root
;
1503 device
->bdev
= bdev
;
1504 device
->in_fs_metadata
= 1;
1506 set_blocksize(device
->bdev
, 4096);
1509 sb
->s_flags
&= ~MS_RDONLY
;
1510 ret
= btrfs_prepare_sprout(trans
, root
);
1514 device
->fs_devices
= root
->fs_info
->fs_devices
;
1517 * we don't want write_supers to jump in here with our device
1520 mutex_lock(&root
->fs_info
->fs_devices
->device_list_mutex
);
1521 list_add(&device
->dev_list
, &root
->fs_info
->fs_devices
->devices
);
1522 list_add(&device
->dev_alloc_list
,
1523 &root
->fs_info
->fs_devices
->alloc_list
);
1524 root
->fs_info
->fs_devices
->num_devices
++;
1525 root
->fs_info
->fs_devices
->open_devices
++;
1526 root
->fs_info
->fs_devices
->rw_devices
++;
1527 root
->fs_info
->fs_devices
->total_rw_bytes
+= device
->total_bytes
;
1529 if (!blk_queue_nonrot(bdev_get_queue(bdev
)))
1530 root
->fs_info
->fs_devices
->rotating
= 1;
1532 total_bytes
= btrfs_super_total_bytes(&root
->fs_info
->super_copy
);
1533 btrfs_set_super_total_bytes(&root
->fs_info
->super_copy
,
1534 total_bytes
+ device
->total_bytes
);
1536 total_bytes
= btrfs_super_num_devices(&root
->fs_info
->super_copy
);
1537 btrfs_set_super_num_devices(&root
->fs_info
->super_copy
,
1539 mutex_unlock(&root
->fs_info
->fs_devices
->device_list_mutex
);
1542 ret
= init_first_rw_device(trans
, root
, device
);
1544 ret
= btrfs_finish_sprout(trans
, root
);
1547 ret
= btrfs_add_device(trans
, root
, device
);
1551 * we've got more storage, clear any full flags on the space
1554 btrfs_clear_space_info_full(root
->fs_info
);
1556 unlock_chunks(root
);
1557 btrfs_commit_transaction(trans
, root
);
1560 mutex_unlock(&uuid_mutex
);
1561 up_write(&sb
->s_umount
);
1563 ret
= btrfs_relocate_sys_chunks(root
);
1567 mutex_unlock(&root
->fs_info
->volume_mutex
);
1570 close_bdev_exclusive(bdev
, 0);
1572 mutex_unlock(&uuid_mutex
);
1573 up_write(&sb
->s_umount
);
1578 static noinline
int btrfs_update_device(struct btrfs_trans_handle
*trans
,
1579 struct btrfs_device
*device
)
1582 struct btrfs_path
*path
;
1583 struct btrfs_root
*root
;
1584 struct btrfs_dev_item
*dev_item
;
1585 struct extent_buffer
*leaf
;
1586 struct btrfs_key key
;
1588 root
= device
->dev_root
->fs_info
->chunk_root
;
1590 path
= btrfs_alloc_path();
1594 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
1595 key
.type
= BTRFS_DEV_ITEM_KEY
;
1596 key
.offset
= device
->devid
;
1598 ret
= btrfs_search_slot(trans
, root
, &key
, path
, 0, 1);
1607 leaf
= path
->nodes
[0];
1608 dev_item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_dev_item
);
1610 btrfs_set_device_id(leaf
, dev_item
, device
->devid
);
1611 btrfs_set_device_type(leaf
, dev_item
, device
->type
);
1612 btrfs_set_device_io_align(leaf
, dev_item
, device
->io_align
);
1613 btrfs_set_device_io_width(leaf
, dev_item
, device
->io_width
);
1614 btrfs_set_device_sector_size(leaf
, dev_item
, device
->sector_size
);
1615 btrfs_set_device_total_bytes(leaf
, dev_item
, device
->disk_total_bytes
);
1616 btrfs_set_device_bytes_used(leaf
, dev_item
, device
->bytes_used
);
1617 btrfs_mark_buffer_dirty(leaf
);
1620 btrfs_free_path(path
);
1624 static int __btrfs_grow_device(struct btrfs_trans_handle
*trans
,
1625 struct btrfs_device
*device
, u64 new_size
)
1627 struct btrfs_super_block
*super_copy
=
1628 &device
->dev_root
->fs_info
->super_copy
;
1629 u64 old_total
= btrfs_super_total_bytes(super_copy
);
1630 u64 diff
= new_size
- device
->total_bytes
;
1632 if (!device
->writeable
)
1634 if (new_size
<= device
->total_bytes
)
1637 btrfs_set_super_total_bytes(super_copy
, old_total
+ diff
);
1638 device
->fs_devices
->total_rw_bytes
+= diff
;
1640 device
->total_bytes
= new_size
;
1641 device
->disk_total_bytes
= new_size
;
1642 btrfs_clear_space_info_full(device
->dev_root
->fs_info
);
1644 return btrfs_update_device(trans
, device
);
1647 int btrfs_grow_device(struct btrfs_trans_handle
*trans
,
1648 struct btrfs_device
*device
, u64 new_size
)
1651 lock_chunks(device
->dev_root
);
1652 ret
= __btrfs_grow_device(trans
, device
, new_size
);
1653 unlock_chunks(device
->dev_root
);
1657 static int btrfs_free_chunk(struct btrfs_trans_handle
*trans
,
1658 struct btrfs_root
*root
,
1659 u64 chunk_tree
, u64 chunk_objectid
,
1663 struct btrfs_path
*path
;
1664 struct btrfs_key key
;
1666 root
= root
->fs_info
->chunk_root
;
1667 path
= btrfs_alloc_path();
1671 key
.objectid
= chunk_objectid
;
1672 key
.offset
= chunk_offset
;
1673 key
.type
= BTRFS_CHUNK_ITEM_KEY
;
1675 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1678 ret
= btrfs_del_item(trans
, root
, path
);
1681 btrfs_free_path(path
);
1685 static int btrfs_del_sys_chunk(struct btrfs_root
*root
, u64 chunk_objectid
, u64
1688 struct btrfs_super_block
*super_copy
= &root
->fs_info
->super_copy
;
1689 struct btrfs_disk_key
*disk_key
;
1690 struct btrfs_chunk
*chunk
;
1697 struct btrfs_key key
;
1699 array_size
= btrfs_super_sys_array_size(super_copy
);
1701 ptr
= super_copy
->sys_chunk_array
;
1704 while (cur
< array_size
) {
1705 disk_key
= (struct btrfs_disk_key
*)ptr
;
1706 btrfs_disk_key_to_cpu(&key
, disk_key
);
1708 len
= sizeof(*disk_key
);
1710 if (key
.type
== BTRFS_CHUNK_ITEM_KEY
) {
1711 chunk
= (struct btrfs_chunk
*)(ptr
+ len
);
1712 num_stripes
= btrfs_stack_chunk_num_stripes(chunk
);
1713 len
+= btrfs_chunk_item_size(num_stripes
);
1718 if (key
.objectid
== chunk_objectid
&&
1719 key
.offset
== chunk_offset
) {
1720 memmove(ptr
, ptr
+ len
, array_size
- (cur
+ len
));
1722 btrfs_set_super_sys_array_size(super_copy
, array_size
);
1731 static int btrfs_relocate_chunk(struct btrfs_root
*root
,
1732 u64 chunk_tree
, u64 chunk_objectid
,
1735 struct extent_map_tree
*em_tree
;
1736 struct btrfs_root
*extent_root
;
1737 struct btrfs_trans_handle
*trans
;
1738 struct extent_map
*em
;
1739 struct map_lookup
*map
;
1743 root
= root
->fs_info
->chunk_root
;
1744 extent_root
= root
->fs_info
->extent_root
;
1745 em_tree
= &root
->fs_info
->mapping_tree
.map_tree
;
1747 ret
= btrfs_can_relocate(extent_root
, chunk_offset
);
1751 /* step one, relocate all the extents inside this chunk */
1752 ret
= btrfs_relocate_block_group(extent_root
, chunk_offset
);
1755 trans
= btrfs_start_transaction(root
, 1);
1761 * step two, delete the device extents and the
1762 * chunk tree entries
1764 read_lock(&em_tree
->lock
);
1765 em
= lookup_extent_mapping(em_tree
, chunk_offset
, 1);
1766 read_unlock(&em_tree
->lock
);
1768 BUG_ON(em
->start
> chunk_offset
||
1769 em
->start
+ em
->len
< chunk_offset
);
1770 map
= (struct map_lookup
*)em
->bdev
;
1772 for (i
= 0; i
< map
->num_stripes
; i
++) {
1773 ret
= btrfs_free_dev_extent(trans
, map
->stripes
[i
].dev
,
1774 map
->stripes
[i
].physical
);
1777 if (map
->stripes
[i
].dev
) {
1778 ret
= btrfs_update_device(trans
, map
->stripes
[i
].dev
);
1782 ret
= btrfs_free_chunk(trans
, root
, chunk_tree
, chunk_objectid
,
1787 if (map
->type
& BTRFS_BLOCK_GROUP_SYSTEM
) {
1788 ret
= btrfs_del_sys_chunk(root
, chunk_objectid
, chunk_offset
);
1792 ret
= btrfs_remove_block_group(trans
, extent_root
, chunk_offset
);
1795 write_lock(&em_tree
->lock
);
1796 remove_extent_mapping(em_tree
, em
);
1797 write_unlock(&em_tree
->lock
);
1802 /* once for the tree */
1803 free_extent_map(em
);
1805 free_extent_map(em
);
1807 unlock_chunks(root
);
1808 btrfs_end_transaction(trans
, root
);
1812 static int btrfs_relocate_sys_chunks(struct btrfs_root
*root
)
1814 struct btrfs_root
*chunk_root
= root
->fs_info
->chunk_root
;
1815 struct btrfs_path
*path
;
1816 struct extent_buffer
*leaf
;
1817 struct btrfs_chunk
*chunk
;
1818 struct btrfs_key key
;
1819 struct btrfs_key found_key
;
1820 u64 chunk_tree
= chunk_root
->root_key
.objectid
;
1822 bool retried
= false;
1826 path
= btrfs_alloc_path();
1831 key
.objectid
= BTRFS_FIRST_CHUNK_TREE_OBJECTID
;
1832 key
.offset
= (u64
)-1;
1833 key
.type
= BTRFS_CHUNK_ITEM_KEY
;
1836 ret
= btrfs_search_slot(NULL
, chunk_root
, &key
, path
, 0, 0);
1841 ret
= btrfs_previous_item(chunk_root
, path
, key
.objectid
,
1848 leaf
= path
->nodes
[0];
1849 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
1851 chunk
= btrfs_item_ptr(leaf
, path
->slots
[0],
1852 struct btrfs_chunk
);
1853 chunk_type
= btrfs_chunk_type(leaf
, chunk
);
1854 btrfs_release_path(chunk_root
, path
);
1856 if (chunk_type
& BTRFS_BLOCK_GROUP_SYSTEM
) {
1857 ret
= btrfs_relocate_chunk(chunk_root
, chunk_tree
,
1866 if (found_key
.offset
== 0)
1868 key
.offset
= found_key
.offset
- 1;
1871 if (failed
&& !retried
) {
1875 } else if (failed
&& retried
) {
1880 btrfs_free_path(path
);
1884 static u64
div_factor(u64 num
, int factor
)
1893 int btrfs_balance(struct btrfs_root
*dev_root
)
1896 struct list_head
*devices
= &dev_root
->fs_info
->fs_devices
->devices
;
1897 struct btrfs_device
*device
;
1900 struct btrfs_path
*path
;
1901 struct btrfs_key key
;
1902 struct btrfs_chunk
*chunk
;
1903 struct btrfs_root
*chunk_root
= dev_root
->fs_info
->chunk_root
;
1904 struct btrfs_trans_handle
*trans
;
1905 struct btrfs_key found_key
;
1907 if (dev_root
->fs_info
->sb
->s_flags
& MS_RDONLY
)
1910 mutex_lock(&dev_root
->fs_info
->volume_mutex
);
1911 dev_root
= dev_root
->fs_info
->dev_root
;
1913 /* step one make some room on all the devices */
1914 list_for_each_entry(device
, devices
, dev_list
) {
1915 old_size
= device
->total_bytes
;
1916 size_to_free
= div_factor(old_size
, 1);
1917 size_to_free
= min(size_to_free
, (u64
)1 * 1024 * 1024);
1918 if (!device
->writeable
||
1919 device
->total_bytes
- device
->bytes_used
> size_to_free
)
1922 ret
= btrfs_shrink_device(device
, old_size
- size_to_free
);
1927 trans
= btrfs_start_transaction(dev_root
, 1);
1930 ret
= btrfs_grow_device(trans
, device
, old_size
);
1933 btrfs_end_transaction(trans
, dev_root
);
1936 /* step two, relocate all the chunks */
1937 path
= btrfs_alloc_path();
1940 key
.objectid
= BTRFS_FIRST_CHUNK_TREE_OBJECTID
;
1941 key
.offset
= (u64
)-1;
1942 key
.type
= BTRFS_CHUNK_ITEM_KEY
;
1945 ret
= btrfs_search_slot(NULL
, chunk_root
, &key
, path
, 0, 0);
1950 * this shouldn't happen, it means the last relocate
1956 ret
= btrfs_previous_item(chunk_root
, path
, 0,
1957 BTRFS_CHUNK_ITEM_KEY
);
1961 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
1963 if (found_key
.objectid
!= key
.objectid
)
1966 chunk
= btrfs_item_ptr(path
->nodes
[0],
1968 struct btrfs_chunk
);
1969 /* chunk zero is special */
1970 if (found_key
.offset
== 0)
1973 btrfs_release_path(chunk_root
, path
);
1974 ret
= btrfs_relocate_chunk(chunk_root
,
1975 chunk_root
->root_key
.objectid
,
1978 BUG_ON(ret
&& ret
!= -ENOSPC
);
1979 key
.offset
= found_key
.offset
- 1;
1983 btrfs_free_path(path
);
1984 mutex_unlock(&dev_root
->fs_info
->volume_mutex
);
1989 * shrinking a device means finding all of the device extents past
1990 * the new size, and then following the back refs to the chunks.
1991 * The chunk relocation code actually frees the device extent
1993 int btrfs_shrink_device(struct btrfs_device
*device
, u64 new_size
)
1995 struct btrfs_trans_handle
*trans
;
1996 struct btrfs_root
*root
= device
->dev_root
;
1997 struct btrfs_dev_extent
*dev_extent
= NULL
;
1998 struct btrfs_path
*path
;
2006 bool retried
= false;
2007 struct extent_buffer
*l
;
2008 struct btrfs_key key
;
2009 struct btrfs_super_block
*super_copy
= &root
->fs_info
->super_copy
;
2010 u64 old_total
= btrfs_super_total_bytes(super_copy
);
2011 u64 old_size
= device
->total_bytes
;
2012 u64 diff
= device
->total_bytes
- new_size
;
2014 if (new_size
>= device
->total_bytes
)
2017 path
= btrfs_alloc_path();
2025 device
->total_bytes
= new_size
;
2026 if (device
->writeable
)
2027 device
->fs_devices
->total_rw_bytes
-= diff
;
2028 unlock_chunks(root
);
2031 key
.objectid
= device
->devid
;
2032 key
.offset
= (u64
)-1;
2033 key
.type
= BTRFS_DEV_EXTENT_KEY
;
2036 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
2040 ret
= btrfs_previous_item(root
, path
, 0, key
.type
);
2045 btrfs_release_path(root
, path
);
2050 slot
= path
->slots
[0];
2051 btrfs_item_key_to_cpu(l
, &key
, path
->slots
[0]);
2053 if (key
.objectid
!= device
->devid
) {
2054 btrfs_release_path(root
, path
);
2058 dev_extent
= btrfs_item_ptr(l
, slot
, struct btrfs_dev_extent
);
2059 length
= btrfs_dev_extent_length(l
, dev_extent
);
2061 if (key
.offset
+ length
<= new_size
) {
2062 btrfs_release_path(root
, path
);
2066 chunk_tree
= btrfs_dev_extent_chunk_tree(l
, dev_extent
);
2067 chunk_objectid
= btrfs_dev_extent_chunk_objectid(l
, dev_extent
);
2068 chunk_offset
= btrfs_dev_extent_chunk_offset(l
, dev_extent
);
2069 btrfs_release_path(root
, path
);
2071 ret
= btrfs_relocate_chunk(root
, chunk_tree
, chunk_objectid
,
2073 if (ret
&& ret
!= -ENOSPC
)
2080 if (failed
&& !retried
) {
2084 } else if (failed
&& retried
) {
2088 device
->total_bytes
= old_size
;
2089 if (device
->writeable
)
2090 device
->fs_devices
->total_rw_bytes
+= diff
;
2091 unlock_chunks(root
);
2095 /* Shrinking succeeded, else we would be at "done". */
2096 trans
= btrfs_start_transaction(root
, 1);
2103 device
->disk_total_bytes
= new_size
;
2104 /* Now btrfs_update_device() will change the on-disk size. */
2105 ret
= btrfs_update_device(trans
, device
);
2107 unlock_chunks(root
);
2108 btrfs_end_transaction(trans
, root
);
2111 WARN_ON(diff
> old_total
);
2112 btrfs_set_super_total_bytes(super_copy
, old_total
- diff
);
2113 unlock_chunks(root
);
2114 btrfs_end_transaction(trans
, root
);
2116 btrfs_free_path(path
);
2120 static int btrfs_add_system_chunk(struct btrfs_trans_handle
*trans
,
2121 struct btrfs_root
*root
,
2122 struct btrfs_key
*key
,
2123 struct btrfs_chunk
*chunk
, int item_size
)
2125 struct btrfs_super_block
*super_copy
= &root
->fs_info
->super_copy
;
2126 struct btrfs_disk_key disk_key
;
2130 array_size
= btrfs_super_sys_array_size(super_copy
);
2131 if (array_size
+ item_size
> BTRFS_SYSTEM_CHUNK_ARRAY_SIZE
)
2134 ptr
= super_copy
->sys_chunk_array
+ array_size
;
2135 btrfs_cpu_key_to_disk(&disk_key
, key
);
2136 memcpy(ptr
, &disk_key
, sizeof(disk_key
));
2137 ptr
+= sizeof(disk_key
);
2138 memcpy(ptr
, chunk
, item_size
);
2139 item_size
+= sizeof(disk_key
);
2140 btrfs_set_super_sys_array_size(super_copy
, array_size
+ item_size
);
2144 static noinline u64
chunk_bytes_by_type(u64 type
, u64 calc_size
,
2145 int num_stripes
, int sub_stripes
)
2147 if (type
& (BTRFS_BLOCK_GROUP_RAID1
| BTRFS_BLOCK_GROUP_DUP
))
2149 else if (type
& BTRFS_BLOCK_GROUP_RAID10
)
2150 return calc_size
* (num_stripes
/ sub_stripes
);
2152 return calc_size
* num_stripes
;
2155 static int __btrfs_alloc_chunk(struct btrfs_trans_handle
*trans
,
2156 struct btrfs_root
*extent_root
,
2157 struct map_lookup
**map_ret
,
2158 u64
*num_bytes
, u64
*stripe_size
,
2159 u64 start
, u64 type
)
2161 struct btrfs_fs_info
*info
= extent_root
->fs_info
;
2162 struct btrfs_device
*device
= NULL
;
2163 struct btrfs_fs_devices
*fs_devices
= info
->fs_devices
;
2164 struct list_head
*cur
;
2165 struct map_lookup
*map
= NULL
;
2166 struct extent_map_tree
*em_tree
;
2167 struct extent_map
*em
;
2168 struct list_head private_devs
;
2169 int min_stripe_size
= 1 * 1024 * 1024;
2170 u64 calc_size
= 1024 * 1024 * 1024;
2171 u64 max_chunk_size
= calc_size
;
2176 int num_stripes
= 1;
2177 int min_stripes
= 1;
2178 int sub_stripes
= 0;
2182 int stripe_len
= 64 * 1024;
2184 if ((type
& BTRFS_BLOCK_GROUP_RAID1
) &&
2185 (type
& BTRFS_BLOCK_GROUP_DUP
)) {
2187 type
&= ~BTRFS_BLOCK_GROUP_DUP
;
2189 if (list_empty(&fs_devices
->alloc_list
))
2192 if (type
& (BTRFS_BLOCK_GROUP_RAID0
)) {
2193 num_stripes
= fs_devices
->rw_devices
;
2196 if (type
& (BTRFS_BLOCK_GROUP_DUP
)) {
2200 if (type
& (BTRFS_BLOCK_GROUP_RAID1
)) {
2201 num_stripes
= min_t(u64
, 2, fs_devices
->rw_devices
);
2202 if (num_stripes
< 2)
2206 if (type
& (BTRFS_BLOCK_GROUP_RAID10
)) {
2207 num_stripes
= fs_devices
->rw_devices
;
2208 if (num_stripes
< 4)
2210 num_stripes
&= ~(u32
)1;
2215 if (type
& BTRFS_BLOCK_GROUP_DATA
) {
2216 max_chunk_size
= 10 * calc_size
;
2217 min_stripe_size
= 64 * 1024 * 1024;
2218 } else if (type
& BTRFS_BLOCK_GROUP_METADATA
) {
2219 max_chunk_size
= 256 * 1024 * 1024;
2220 min_stripe_size
= 32 * 1024 * 1024;
2221 } else if (type
& BTRFS_BLOCK_GROUP_SYSTEM
) {
2222 calc_size
= 8 * 1024 * 1024;
2223 max_chunk_size
= calc_size
* 2;
2224 min_stripe_size
= 1 * 1024 * 1024;
2227 /* we don't want a chunk larger than 10% of writeable space */
2228 max_chunk_size
= min(div_factor(fs_devices
->total_rw_bytes
, 1),
2233 if (!map
|| map
->num_stripes
!= num_stripes
) {
2235 map
= kmalloc(map_lookup_size(num_stripes
), GFP_NOFS
);
2238 map
->num_stripes
= num_stripes
;
2241 if (calc_size
* num_stripes
> max_chunk_size
) {
2242 calc_size
= max_chunk_size
;
2243 do_div(calc_size
, num_stripes
);
2244 do_div(calc_size
, stripe_len
);
2245 calc_size
*= stripe_len
;
2247 /* we don't want tiny stripes */
2248 calc_size
= max_t(u64
, min_stripe_size
, calc_size
);
2250 do_div(calc_size
, stripe_len
);
2251 calc_size
*= stripe_len
;
2253 cur
= fs_devices
->alloc_list
.next
;
2256 if (type
& BTRFS_BLOCK_GROUP_DUP
)
2257 min_free
= calc_size
* 2;
2259 min_free
= calc_size
;
2262 * we add 1MB because we never use the first 1MB of the device, unless
2263 * we've looped, then we are likely allocating the maximum amount of
2264 * space left already
2267 min_free
+= 1024 * 1024;
2269 INIT_LIST_HEAD(&private_devs
);
2270 while (index
< num_stripes
) {
2271 device
= list_entry(cur
, struct btrfs_device
, dev_alloc_list
);
2272 BUG_ON(!device
->writeable
);
2273 if (device
->total_bytes
> device
->bytes_used
)
2274 avail
= device
->total_bytes
- device
->bytes_used
;
2279 if (device
->in_fs_metadata
&& avail
>= min_free
) {
2280 ret
= find_free_dev_extent(trans
, device
,
2281 min_free
, &dev_offset
,
2284 list_move_tail(&device
->dev_alloc_list
,
2286 map
->stripes
[index
].dev
= device
;
2287 map
->stripes
[index
].physical
= dev_offset
;
2289 if (type
& BTRFS_BLOCK_GROUP_DUP
) {
2290 map
->stripes
[index
].dev
= device
;
2291 map
->stripes
[index
].physical
=
2292 dev_offset
+ calc_size
;
2296 } else if (device
->in_fs_metadata
&& avail
> max_avail
)
2298 if (cur
== &fs_devices
->alloc_list
)
2301 list_splice(&private_devs
, &fs_devices
->alloc_list
);
2302 if (index
< num_stripes
) {
2303 if (index
>= min_stripes
) {
2304 num_stripes
= index
;
2305 if (type
& (BTRFS_BLOCK_GROUP_RAID10
)) {
2306 num_stripes
/= sub_stripes
;
2307 num_stripes
*= sub_stripes
;
2312 if (!looped
&& max_avail
> 0) {
2314 calc_size
= max_avail
;
2320 map
->sector_size
= extent_root
->sectorsize
;
2321 map
->stripe_len
= stripe_len
;
2322 map
->io_align
= stripe_len
;
2323 map
->io_width
= stripe_len
;
2325 map
->num_stripes
= num_stripes
;
2326 map
->sub_stripes
= sub_stripes
;
2329 *stripe_size
= calc_size
;
2330 *num_bytes
= chunk_bytes_by_type(type
, calc_size
,
2331 num_stripes
, sub_stripes
);
2333 em
= alloc_extent_map(GFP_NOFS
);
2338 em
->bdev
= (struct block_device
*)map
;
2340 em
->len
= *num_bytes
;
2341 em
->block_start
= 0;
2342 em
->block_len
= em
->len
;
2344 em_tree
= &extent_root
->fs_info
->mapping_tree
.map_tree
;
2345 write_lock(&em_tree
->lock
);
2346 ret
= add_extent_mapping(em_tree
, em
);
2347 write_unlock(&em_tree
->lock
);
2349 free_extent_map(em
);
2351 ret
= btrfs_make_block_group(trans
, extent_root
, 0, type
,
2352 BTRFS_FIRST_CHUNK_TREE_OBJECTID
,
2357 while (index
< map
->num_stripes
) {
2358 device
= map
->stripes
[index
].dev
;
2359 dev_offset
= map
->stripes
[index
].physical
;
2361 ret
= btrfs_alloc_dev_extent(trans
, device
,
2362 info
->chunk_root
->root_key
.objectid
,
2363 BTRFS_FIRST_CHUNK_TREE_OBJECTID
,
2364 start
, dev_offset
, calc_size
);
2372 static int __finish_chunk_alloc(struct btrfs_trans_handle
*trans
,
2373 struct btrfs_root
*extent_root
,
2374 struct map_lookup
*map
, u64 chunk_offset
,
2375 u64 chunk_size
, u64 stripe_size
)
2378 struct btrfs_key key
;
2379 struct btrfs_root
*chunk_root
= extent_root
->fs_info
->chunk_root
;
2380 struct btrfs_device
*device
;
2381 struct btrfs_chunk
*chunk
;
2382 struct btrfs_stripe
*stripe
;
2383 size_t item_size
= btrfs_chunk_item_size(map
->num_stripes
);
2387 chunk
= kzalloc(item_size
, GFP_NOFS
);
2392 while (index
< map
->num_stripes
) {
2393 device
= map
->stripes
[index
].dev
;
2394 device
->bytes_used
+= stripe_size
;
2395 ret
= btrfs_update_device(trans
, device
);
2401 stripe
= &chunk
->stripe
;
2402 while (index
< map
->num_stripes
) {
2403 device
= map
->stripes
[index
].dev
;
2404 dev_offset
= map
->stripes
[index
].physical
;
2406 btrfs_set_stack_stripe_devid(stripe
, device
->devid
);
2407 btrfs_set_stack_stripe_offset(stripe
, dev_offset
);
2408 memcpy(stripe
->dev_uuid
, device
->uuid
, BTRFS_UUID_SIZE
);
2413 btrfs_set_stack_chunk_length(chunk
, chunk_size
);
2414 btrfs_set_stack_chunk_owner(chunk
, extent_root
->root_key
.objectid
);
2415 btrfs_set_stack_chunk_stripe_len(chunk
, map
->stripe_len
);
2416 btrfs_set_stack_chunk_type(chunk
, map
->type
);
2417 btrfs_set_stack_chunk_num_stripes(chunk
, map
->num_stripes
);
2418 btrfs_set_stack_chunk_io_align(chunk
, map
->stripe_len
);
2419 btrfs_set_stack_chunk_io_width(chunk
, map
->stripe_len
);
2420 btrfs_set_stack_chunk_sector_size(chunk
, extent_root
->sectorsize
);
2421 btrfs_set_stack_chunk_sub_stripes(chunk
, map
->sub_stripes
);
2423 key
.objectid
= BTRFS_FIRST_CHUNK_TREE_OBJECTID
;
2424 key
.type
= BTRFS_CHUNK_ITEM_KEY
;
2425 key
.offset
= chunk_offset
;
2427 ret
= btrfs_insert_item(trans
, chunk_root
, &key
, chunk
, item_size
);
2430 if (map
->type
& BTRFS_BLOCK_GROUP_SYSTEM
) {
2431 ret
= btrfs_add_system_chunk(trans
, chunk_root
, &key
, chunk
,
2440 * Chunk allocation falls into two parts. The first part does works
2441 * that make the new allocated chunk useable, but not do any operation
2442 * that modifies the chunk tree. The second part does the works that
2443 * require modifying the chunk tree. This division is important for the
2444 * bootstrap process of adding storage to a seed btrfs.
2446 int btrfs_alloc_chunk(struct btrfs_trans_handle
*trans
,
2447 struct btrfs_root
*extent_root
, u64 type
)
2452 struct map_lookup
*map
;
2453 struct btrfs_root
*chunk_root
= extent_root
->fs_info
->chunk_root
;
2456 ret
= find_next_chunk(chunk_root
, BTRFS_FIRST_CHUNK_TREE_OBJECTID
,
2461 ret
= __btrfs_alloc_chunk(trans
, extent_root
, &map
, &chunk_size
,
2462 &stripe_size
, chunk_offset
, type
);
2466 ret
= __finish_chunk_alloc(trans
, extent_root
, map
, chunk_offset
,
2467 chunk_size
, stripe_size
);
2472 static noinline
int init_first_rw_device(struct btrfs_trans_handle
*trans
,
2473 struct btrfs_root
*root
,
2474 struct btrfs_device
*device
)
2477 u64 sys_chunk_offset
;
2481 u64 sys_stripe_size
;
2483 struct map_lookup
*map
;
2484 struct map_lookup
*sys_map
;
2485 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2486 struct btrfs_root
*extent_root
= fs_info
->extent_root
;
2489 ret
= find_next_chunk(fs_info
->chunk_root
,
2490 BTRFS_FIRST_CHUNK_TREE_OBJECTID
, &chunk_offset
);
2493 alloc_profile
= BTRFS_BLOCK_GROUP_METADATA
|
2494 (fs_info
->metadata_alloc_profile
&
2495 fs_info
->avail_metadata_alloc_bits
);
2496 alloc_profile
= btrfs_reduce_alloc_profile(root
, alloc_profile
);
2498 ret
= __btrfs_alloc_chunk(trans
, extent_root
, &map
, &chunk_size
,
2499 &stripe_size
, chunk_offset
, alloc_profile
);
2502 sys_chunk_offset
= chunk_offset
+ chunk_size
;
2504 alloc_profile
= BTRFS_BLOCK_GROUP_SYSTEM
|
2505 (fs_info
->system_alloc_profile
&
2506 fs_info
->avail_system_alloc_bits
);
2507 alloc_profile
= btrfs_reduce_alloc_profile(root
, alloc_profile
);
2509 ret
= __btrfs_alloc_chunk(trans
, extent_root
, &sys_map
,
2510 &sys_chunk_size
, &sys_stripe_size
,
2511 sys_chunk_offset
, alloc_profile
);
2514 ret
= btrfs_add_device(trans
, fs_info
->chunk_root
, device
);
2518 * Modifying chunk tree needs allocating new blocks from both
2519 * system block group and metadata block group. So we only can
2520 * do operations require modifying the chunk tree after both
2521 * block groups were created.
2523 ret
= __finish_chunk_alloc(trans
, extent_root
, map
, chunk_offset
,
2524 chunk_size
, stripe_size
);
2527 ret
= __finish_chunk_alloc(trans
, extent_root
, sys_map
,
2528 sys_chunk_offset
, sys_chunk_size
,
2534 int btrfs_chunk_readonly(struct btrfs_root
*root
, u64 chunk_offset
)
2536 struct extent_map
*em
;
2537 struct map_lookup
*map
;
2538 struct btrfs_mapping_tree
*map_tree
= &root
->fs_info
->mapping_tree
;
2542 read_lock(&map_tree
->map_tree
.lock
);
2543 em
= lookup_extent_mapping(&map_tree
->map_tree
, chunk_offset
, 1);
2544 read_unlock(&map_tree
->map_tree
.lock
);
2548 if (btrfs_test_opt(root
, DEGRADED
)) {
2549 free_extent_map(em
);
2553 map
= (struct map_lookup
*)em
->bdev
;
2554 for (i
= 0; i
< map
->num_stripes
; i
++) {
2555 if (!map
->stripes
[i
].dev
->writeable
) {
2560 free_extent_map(em
);
2564 void btrfs_mapping_init(struct btrfs_mapping_tree
*tree
)
2566 extent_map_tree_init(&tree
->map_tree
, GFP_NOFS
);
2569 void btrfs_mapping_tree_free(struct btrfs_mapping_tree
*tree
)
2571 struct extent_map
*em
;
2574 write_lock(&tree
->map_tree
.lock
);
2575 em
= lookup_extent_mapping(&tree
->map_tree
, 0, (u64
)-1);
2577 remove_extent_mapping(&tree
->map_tree
, em
);
2578 write_unlock(&tree
->map_tree
.lock
);
2583 free_extent_map(em
);
2584 /* once for the tree */
2585 free_extent_map(em
);
2589 int btrfs_num_copies(struct btrfs_mapping_tree
*map_tree
, u64 logical
, u64 len
)
2591 struct extent_map
*em
;
2592 struct map_lookup
*map
;
2593 struct extent_map_tree
*em_tree
= &map_tree
->map_tree
;
2596 read_lock(&em_tree
->lock
);
2597 em
= lookup_extent_mapping(em_tree
, logical
, len
);
2598 read_unlock(&em_tree
->lock
);
2601 BUG_ON(em
->start
> logical
|| em
->start
+ em
->len
< logical
);
2602 map
= (struct map_lookup
*)em
->bdev
;
2603 if (map
->type
& (BTRFS_BLOCK_GROUP_DUP
| BTRFS_BLOCK_GROUP_RAID1
))
2604 ret
= map
->num_stripes
;
2605 else if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
)
2606 ret
= map
->sub_stripes
;
2609 free_extent_map(em
);
2613 static int find_live_mirror(struct map_lookup
*map
, int first
, int num
,
2617 if (map
->stripes
[optimal
].dev
->bdev
)
2619 for (i
= first
; i
< first
+ num
; i
++) {
2620 if (map
->stripes
[i
].dev
->bdev
)
2623 /* we couldn't find one that doesn't fail. Just return something
2624 * and the io error handling code will clean up eventually
2629 static int __btrfs_map_block(struct btrfs_mapping_tree
*map_tree
, int rw
,
2630 u64 logical
, u64
*length
,
2631 struct btrfs_multi_bio
**multi_ret
,
2632 int mirror_num
, struct page
*unplug_page
)
2634 struct extent_map
*em
;
2635 struct map_lookup
*map
;
2636 struct extent_map_tree
*em_tree
= &map_tree
->map_tree
;
2640 int stripes_allocated
= 8;
2641 int stripes_required
= 1;
2646 struct btrfs_multi_bio
*multi
= NULL
;
2648 if (multi_ret
&& !(rw
& (1 << BIO_RW
)))
2649 stripes_allocated
= 1;
2652 multi
= kzalloc(btrfs_multi_bio_size(stripes_allocated
),
2657 atomic_set(&multi
->error
, 0);
2660 read_lock(&em_tree
->lock
);
2661 em
= lookup_extent_mapping(em_tree
, logical
, *length
);
2662 read_unlock(&em_tree
->lock
);
2664 if (!em
&& unplug_page
) {
2670 printk(KERN_CRIT
"unable to find logical %llu len %llu\n",
2671 (unsigned long long)logical
,
2672 (unsigned long long)*length
);
2676 BUG_ON(em
->start
> logical
|| em
->start
+ em
->len
< logical
);
2677 map
= (struct map_lookup
*)em
->bdev
;
2678 offset
= logical
- em
->start
;
2680 if (mirror_num
> map
->num_stripes
)
2683 /* if our multi bio struct is too small, back off and try again */
2684 if (rw
& (1 << BIO_RW
)) {
2685 if (map
->type
& (BTRFS_BLOCK_GROUP_RAID1
|
2686 BTRFS_BLOCK_GROUP_DUP
)) {
2687 stripes_required
= map
->num_stripes
;
2689 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
) {
2690 stripes_required
= map
->sub_stripes
;
2694 if (multi_ret
&& (rw
& (1 << BIO_RW
)) &&
2695 stripes_allocated
< stripes_required
) {
2696 stripes_allocated
= map
->num_stripes
;
2697 free_extent_map(em
);
2703 * stripe_nr counts the total number of stripes we have to stride
2704 * to get to this block
2706 do_div(stripe_nr
, map
->stripe_len
);
2708 stripe_offset
= stripe_nr
* map
->stripe_len
;
2709 BUG_ON(offset
< stripe_offset
);
2711 /* stripe_offset is the offset of this block in its stripe*/
2712 stripe_offset
= offset
- stripe_offset
;
2714 if (map
->type
& (BTRFS_BLOCK_GROUP_RAID0
| BTRFS_BLOCK_GROUP_RAID1
|
2715 BTRFS_BLOCK_GROUP_RAID10
|
2716 BTRFS_BLOCK_GROUP_DUP
)) {
2717 /* we limit the length of each bio to what fits in a stripe */
2718 *length
= min_t(u64
, em
->len
- offset
,
2719 map
->stripe_len
- stripe_offset
);
2721 *length
= em
->len
- offset
;
2724 if (!multi_ret
&& !unplug_page
)
2729 if (map
->type
& BTRFS_BLOCK_GROUP_RAID1
) {
2730 if (unplug_page
|| (rw
& (1 << BIO_RW
)))
2731 num_stripes
= map
->num_stripes
;
2732 else if (mirror_num
)
2733 stripe_index
= mirror_num
- 1;
2735 stripe_index
= find_live_mirror(map
, 0,
2737 current
->pid
% map
->num_stripes
);
2740 } else if (map
->type
& BTRFS_BLOCK_GROUP_DUP
) {
2741 if (rw
& (1 << BIO_RW
))
2742 num_stripes
= map
->num_stripes
;
2743 else if (mirror_num
)
2744 stripe_index
= mirror_num
- 1;
2746 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
) {
2747 int factor
= map
->num_stripes
/ map
->sub_stripes
;
2749 stripe_index
= do_div(stripe_nr
, factor
);
2750 stripe_index
*= map
->sub_stripes
;
2752 if (unplug_page
|| (rw
& (1 << BIO_RW
)))
2753 num_stripes
= map
->sub_stripes
;
2754 else if (mirror_num
)
2755 stripe_index
+= mirror_num
- 1;
2757 stripe_index
= find_live_mirror(map
, stripe_index
,
2758 map
->sub_stripes
, stripe_index
+
2759 current
->pid
% map
->sub_stripes
);
2763 * after this do_div call, stripe_nr is the number of stripes
2764 * on this device we have to walk to find the data, and
2765 * stripe_index is the number of our device in the stripe array
2767 stripe_index
= do_div(stripe_nr
, map
->num_stripes
);
2769 BUG_ON(stripe_index
>= map
->num_stripes
);
2771 for (i
= 0; i
< num_stripes
; i
++) {
2773 struct btrfs_device
*device
;
2774 struct backing_dev_info
*bdi
;
2776 device
= map
->stripes
[stripe_index
].dev
;
2778 bdi
= blk_get_backing_dev_info(device
->bdev
);
2779 if (bdi
->unplug_io_fn
)
2780 bdi
->unplug_io_fn(bdi
, unplug_page
);
2783 multi
->stripes
[i
].physical
=
2784 map
->stripes
[stripe_index
].physical
+
2785 stripe_offset
+ stripe_nr
* map
->stripe_len
;
2786 multi
->stripes
[i
].dev
= map
->stripes
[stripe_index
].dev
;
2792 multi
->num_stripes
= num_stripes
;
2793 multi
->max_errors
= max_errors
;
2796 free_extent_map(em
);
2800 int btrfs_map_block(struct btrfs_mapping_tree
*map_tree
, int rw
,
2801 u64 logical
, u64
*length
,
2802 struct btrfs_multi_bio
**multi_ret
, int mirror_num
)
2804 return __btrfs_map_block(map_tree
, rw
, logical
, length
, multi_ret
,
2808 int btrfs_rmap_block(struct btrfs_mapping_tree
*map_tree
,
2809 u64 chunk_start
, u64 physical
, u64 devid
,
2810 u64
**logical
, int *naddrs
, int *stripe_len
)
2812 struct extent_map_tree
*em_tree
= &map_tree
->map_tree
;
2813 struct extent_map
*em
;
2814 struct map_lookup
*map
;
2821 read_lock(&em_tree
->lock
);
2822 em
= lookup_extent_mapping(em_tree
, chunk_start
, 1);
2823 read_unlock(&em_tree
->lock
);
2825 BUG_ON(!em
|| em
->start
!= chunk_start
);
2826 map
= (struct map_lookup
*)em
->bdev
;
2829 if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
)
2830 do_div(length
, map
->num_stripes
/ map
->sub_stripes
);
2831 else if (map
->type
& BTRFS_BLOCK_GROUP_RAID0
)
2832 do_div(length
, map
->num_stripes
);
2834 buf
= kzalloc(sizeof(u64
) * map
->num_stripes
, GFP_NOFS
);
2837 for (i
= 0; i
< map
->num_stripes
; i
++) {
2838 if (devid
&& map
->stripes
[i
].dev
->devid
!= devid
)
2840 if (map
->stripes
[i
].physical
> physical
||
2841 map
->stripes
[i
].physical
+ length
<= physical
)
2844 stripe_nr
= physical
- map
->stripes
[i
].physical
;
2845 do_div(stripe_nr
, map
->stripe_len
);
2847 if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
) {
2848 stripe_nr
= stripe_nr
* map
->num_stripes
+ i
;
2849 do_div(stripe_nr
, map
->sub_stripes
);
2850 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID0
) {
2851 stripe_nr
= stripe_nr
* map
->num_stripes
+ i
;
2853 bytenr
= chunk_start
+ stripe_nr
* map
->stripe_len
;
2854 WARN_ON(nr
>= map
->num_stripes
);
2855 for (j
= 0; j
< nr
; j
++) {
2856 if (buf
[j
] == bytenr
)
2860 WARN_ON(nr
>= map
->num_stripes
);
2867 *stripe_len
= map
->stripe_len
;
2869 free_extent_map(em
);
2873 int btrfs_unplug_page(struct btrfs_mapping_tree
*map_tree
,
2874 u64 logical
, struct page
*page
)
2876 u64 length
= PAGE_CACHE_SIZE
;
2877 return __btrfs_map_block(map_tree
, READ
, logical
, &length
,
2881 static void end_bio_multi_stripe(struct bio
*bio
, int err
)
2883 struct btrfs_multi_bio
*multi
= bio
->bi_private
;
2884 int is_orig_bio
= 0;
2887 atomic_inc(&multi
->error
);
2889 if (bio
== multi
->orig_bio
)
2892 if (atomic_dec_and_test(&multi
->stripes_pending
)) {
2895 bio
= multi
->orig_bio
;
2897 bio
->bi_private
= multi
->private;
2898 bio
->bi_end_io
= multi
->end_io
;
2899 /* only send an error to the higher layers if it is
2900 * beyond the tolerance of the multi-bio
2902 if (atomic_read(&multi
->error
) > multi
->max_errors
) {
2906 * this bio is actually up to date, we didn't
2907 * go over the max number of errors
2909 set_bit(BIO_UPTODATE
, &bio
->bi_flags
);
2914 bio_endio(bio
, err
);
2915 } else if (!is_orig_bio
) {
2920 struct async_sched
{
2923 struct btrfs_fs_info
*info
;
2924 struct btrfs_work work
;
2928 * see run_scheduled_bios for a description of why bios are collected for
2931 * This will add one bio to the pending list for a device and make sure
2932 * the work struct is scheduled.
2934 static noinline
int schedule_bio(struct btrfs_root
*root
,
2935 struct btrfs_device
*device
,
2936 int rw
, struct bio
*bio
)
2938 int should_queue
= 1;
2939 struct btrfs_pending_bios
*pending_bios
;
2941 /* don't bother with additional async steps for reads, right now */
2942 if (!(rw
& (1 << BIO_RW
))) {
2944 submit_bio(rw
, bio
);
2950 * nr_async_bios allows us to reliably return congestion to the
2951 * higher layers. Otherwise, the async bio makes it appear we have
2952 * made progress against dirty pages when we've really just put it
2953 * on a queue for later
2955 atomic_inc(&root
->fs_info
->nr_async_bios
);
2956 WARN_ON(bio
->bi_next
);
2957 bio
->bi_next
= NULL
;
2960 spin_lock(&device
->io_lock
);
2961 if (bio_rw_flagged(bio
, BIO_RW_SYNCIO
))
2962 pending_bios
= &device
->pending_sync_bios
;
2964 pending_bios
= &device
->pending_bios
;
2966 if (pending_bios
->tail
)
2967 pending_bios
->tail
->bi_next
= bio
;
2969 pending_bios
->tail
= bio
;
2970 if (!pending_bios
->head
)
2971 pending_bios
->head
= bio
;
2972 if (device
->running_pending
)
2975 spin_unlock(&device
->io_lock
);
2978 btrfs_queue_worker(&root
->fs_info
->submit_workers
,
2983 int btrfs_map_bio(struct btrfs_root
*root
, int rw
, struct bio
*bio
,
2984 int mirror_num
, int async_submit
)
2986 struct btrfs_mapping_tree
*map_tree
;
2987 struct btrfs_device
*dev
;
2988 struct bio
*first_bio
= bio
;
2989 u64 logical
= (u64
)bio
->bi_sector
<< 9;
2992 struct btrfs_multi_bio
*multi
= NULL
;
2997 length
= bio
->bi_size
;
2998 map_tree
= &root
->fs_info
->mapping_tree
;
2999 map_length
= length
;
3001 ret
= btrfs_map_block(map_tree
, rw
, logical
, &map_length
, &multi
,
3005 total_devs
= multi
->num_stripes
;
3006 if (map_length
< length
) {
3007 printk(KERN_CRIT
"mapping failed logical %llu bio len %llu "
3008 "len %llu\n", (unsigned long long)logical
,
3009 (unsigned long long)length
,
3010 (unsigned long long)map_length
);
3013 multi
->end_io
= first_bio
->bi_end_io
;
3014 multi
->private = first_bio
->bi_private
;
3015 multi
->orig_bio
= first_bio
;
3016 atomic_set(&multi
->stripes_pending
, multi
->num_stripes
);
3018 while (dev_nr
< total_devs
) {
3019 if (total_devs
> 1) {
3020 if (dev_nr
< total_devs
- 1) {
3021 bio
= bio_clone(first_bio
, GFP_NOFS
);
3026 bio
->bi_private
= multi
;
3027 bio
->bi_end_io
= end_bio_multi_stripe
;
3029 bio
->bi_sector
= multi
->stripes
[dev_nr
].physical
>> 9;
3030 dev
= multi
->stripes
[dev_nr
].dev
;
3031 BUG_ON(rw
== WRITE
&& !dev
->writeable
);
3032 if (dev
&& dev
->bdev
) {
3033 bio
->bi_bdev
= dev
->bdev
;
3035 schedule_bio(root
, dev
, rw
, bio
);
3037 submit_bio(rw
, bio
);
3039 bio
->bi_bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
3040 bio
->bi_sector
= logical
>> 9;
3041 bio_endio(bio
, -EIO
);
3045 if (total_devs
== 1)
3050 struct btrfs_device
*btrfs_find_device(struct btrfs_root
*root
, u64 devid
,
3053 struct btrfs_device
*device
;
3054 struct btrfs_fs_devices
*cur_devices
;
3056 cur_devices
= root
->fs_info
->fs_devices
;
3057 while (cur_devices
) {
3059 !memcmp(cur_devices
->fsid
, fsid
, BTRFS_UUID_SIZE
)) {
3060 device
= __find_device(&cur_devices
->devices
,
3065 cur_devices
= cur_devices
->seed
;
3070 static struct btrfs_device
*add_missing_dev(struct btrfs_root
*root
,
3071 u64 devid
, u8
*dev_uuid
)
3073 struct btrfs_device
*device
;
3074 struct btrfs_fs_devices
*fs_devices
= root
->fs_info
->fs_devices
;
3076 device
= kzalloc(sizeof(*device
), GFP_NOFS
);
3079 list_add(&device
->dev_list
,
3080 &fs_devices
->devices
);
3081 device
->barriers
= 1;
3082 device
->dev_root
= root
->fs_info
->dev_root
;
3083 device
->devid
= devid
;
3084 device
->work
.func
= pending_bios_fn
;
3085 device
->fs_devices
= fs_devices
;
3086 fs_devices
->num_devices
++;
3087 spin_lock_init(&device
->io_lock
);
3088 INIT_LIST_HEAD(&device
->dev_alloc_list
);
3089 memcpy(device
->uuid
, dev_uuid
, BTRFS_UUID_SIZE
);
3093 static int read_one_chunk(struct btrfs_root
*root
, struct btrfs_key
*key
,
3094 struct extent_buffer
*leaf
,
3095 struct btrfs_chunk
*chunk
)
3097 struct btrfs_mapping_tree
*map_tree
= &root
->fs_info
->mapping_tree
;
3098 struct map_lookup
*map
;
3099 struct extent_map
*em
;
3103 u8 uuid
[BTRFS_UUID_SIZE
];
3108 logical
= key
->offset
;
3109 length
= btrfs_chunk_length(leaf
, chunk
);
3111 read_lock(&map_tree
->map_tree
.lock
);
3112 em
= lookup_extent_mapping(&map_tree
->map_tree
, logical
, 1);
3113 read_unlock(&map_tree
->map_tree
.lock
);
3115 /* already mapped? */
3116 if (em
&& em
->start
<= logical
&& em
->start
+ em
->len
> logical
) {
3117 free_extent_map(em
);
3120 free_extent_map(em
);
3123 em
= alloc_extent_map(GFP_NOFS
);
3126 num_stripes
= btrfs_chunk_num_stripes(leaf
, chunk
);
3127 map
= kmalloc(map_lookup_size(num_stripes
), GFP_NOFS
);
3129 free_extent_map(em
);
3133 em
->bdev
= (struct block_device
*)map
;
3134 em
->start
= logical
;
3136 em
->block_start
= 0;
3137 em
->block_len
= em
->len
;
3139 map
->num_stripes
= num_stripes
;
3140 map
->io_width
= btrfs_chunk_io_width(leaf
, chunk
);
3141 map
->io_align
= btrfs_chunk_io_align(leaf
, chunk
);
3142 map
->sector_size
= btrfs_chunk_sector_size(leaf
, chunk
);
3143 map
->stripe_len
= btrfs_chunk_stripe_len(leaf
, chunk
);
3144 map
->type
= btrfs_chunk_type(leaf
, chunk
);
3145 map
->sub_stripes
= btrfs_chunk_sub_stripes(leaf
, chunk
);
3146 for (i
= 0; i
< num_stripes
; i
++) {
3147 map
->stripes
[i
].physical
=
3148 btrfs_stripe_offset_nr(leaf
, chunk
, i
);
3149 devid
= btrfs_stripe_devid_nr(leaf
, chunk
, i
);
3150 read_extent_buffer(leaf
, uuid
, (unsigned long)
3151 btrfs_stripe_dev_uuid_nr(chunk
, i
),
3153 map
->stripes
[i
].dev
= btrfs_find_device(root
, devid
, uuid
,
3155 if (!map
->stripes
[i
].dev
&& !btrfs_test_opt(root
, DEGRADED
)) {
3157 free_extent_map(em
);
3160 if (!map
->stripes
[i
].dev
) {
3161 map
->stripes
[i
].dev
=
3162 add_missing_dev(root
, devid
, uuid
);
3163 if (!map
->stripes
[i
].dev
) {
3165 free_extent_map(em
);
3169 map
->stripes
[i
].dev
->in_fs_metadata
= 1;
3172 write_lock(&map_tree
->map_tree
.lock
);
3173 ret
= add_extent_mapping(&map_tree
->map_tree
, em
);
3174 write_unlock(&map_tree
->map_tree
.lock
);
3176 free_extent_map(em
);
3181 static int fill_device_from_item(struct extent_buffer
*leaf
,
3182 struct btrfs_dev_item
*dev_item
,
3183 struct btrfs_device
*device
)
3187 device
->devid
= btrfs_device_id(leaf
, dev_item
);
3188 device
->disk_total_bytes
= btrfs_device_total_bytes(leaf
, dev_item
);
3189 device
->total_bytes
= device
->disk_total_bytes
;
3190 device
->bytes_used
= btrfs_device_bytes_used(leaf
, dev_item
);
3191 device
->type
= btrfs_device_type(leaf
, dev_item
);
3192 device
->io_align
= btrfs_device_io_align(leaf
, dev_item
);
3193 device
->io_width
= btrfs_device_io_width(leaf
, dev_item
);
3194 device
->sector_size
= btrfs_device_sector_size(leaf
, dev_item
);
3196 ptr
= (unsigned long)btrfs_device_uuid(dev_item
);
3197 read_extent_buffer(leaf
, device
->uuid
, ptr
, BTRFS_UUID_SIZE
);
3202 static int open_seed_devices(struct btrfs_root
*root
, u8
*fsid
)
3204 struct btrfs_fs_devices
*fs_devices
;
3207 mutex_lock(&uuid_mutex
);
3209 fs_devices
= root
->fs_info
->fs_devices
->seed
;
3210 while (fs_devices
) {
3211 if (!memcmp(fs_devices
->fsid
, fsid
, BTRFS_UUID_SIZE
)) {
3215 fs_devices
= fs_devices
->seed
;
3218 fs_devices
= find_fsid(fsid
);
3224 fs_devices
= clone_fs_devices(fs_devices
);
3225 if (IS_ERR(fs_devices
)) {
3226 ret
= PTR_ERR(fs_devices
);
3230 ret
= __btrfs_open_devices(fs_devices
, FMODE_READ
,
3231 root
->fs_info
->bdev_holder
);
3235 if (!fs_devices
->seeding
) {
3236 __btrfs_close_devices(fs_devices
);
3237 free_fs_devices(fs_devices
);
3242 fs_devices
->seed
= root
->fs_info
->fs_devices
->seed
;
3243 root
->fs_info
->fs_devices
->seed
= fs_devices
;
3245 mutex_unlock(&uuid_mutex
);
3249 static int read_one_dev(struct btrfs_root
*root
,
3250 struct extent_buffer
*leaf
,
3251 struct btrfs_dev_item
*dev_item
)
3253 struct btrfs_device
*device
;
3256 u8 fs_uuid
[BTRFS_UUID_SIZE
];
3257 u8 dev_uuid
[BTRFS_UUID_SIZE
];
3259 devid
= btrfs_device_id(leaf
, dev_item
);
3260 read_extent_buffer(leaf
, dev_uuid
,
3261 (unsigned long)btrfs_device_uuid(dev_item
),
3263 read_extent_buffer(leaf
, fs_uuid
,
3264 (unsigned long)btrfs_device_fsid(dev_item
),
3267 if (memcmp(fs_uuid
, root
->fs_info
->fsid
, BTRFS_UUID_SIZE
)) {
3268 ret
= open_seed_devices(root
, fs_uuid
);
3269 if (ret
&& !btrfs_test_opt(root
, DEGRADED
))
3273 device
= btrfs_find_device(root
, devid
, dev_uuid
, fs_uuid
);
3274 if (!device
|| !device
->bdev
) {
3275 if (!btrfs_test_opt(root
, DEGRADED
))
3279 printk(KERN_WARNING
"warning devid %llu missing\n",
3280 (unsigned long long)devid
);
3281 device
= add_missing_dev(root
, devid
, dev_uuid
);
3287 if (device
->fs_devices
!= root
->fs_info
->fs_devices
) {
3288 BUG_ON(device
->writeable
);
3289 if (device
->generation
!=
3290 btrfs_device_generation(leaf
, dev_item
))
3294 fill_device_from_item(leaf
, dev_item
, device
);
3295 device
->dev_root
= root
->fs_info
->dev_root
;
3296 device
->in_fs_metadata
= 1;
3297 if (device
->writeable
)
3298 device
->fs_devices
->total_rw_bytes
+= device
->total_bytes
;
3303 int btrfs_read_super_device(struct btrfs_root
*root
, struct extent_buffer
*buf
)
3305 struct btrfs_dev_item
*dev_item
;
3307 dev_item
= (struct btrfs_dev_item
*)offsetof(struct btrfs_super_block
,
3309 return read_one_dev(root
, buf
, dev_item
);
3312 int btrfs_read_sys_array(struct btrfs_root
*root
)
3314 struct btrfs_super_block
*super_copy
= &root
->fs_info
->super_copy
;
3315 struct extent_buffer
*sb
;
3316 struct btrfs_disk_key
*disk_key
;
3317 struct btrfs_chunk
*chunk
;
3319 unsigned long sb_ptr
;
3325 struct btrfs_key key
;
3327 sb
= btrfs_find_create_tree_block(root
, BTRFS_SUPER_INFO_OFFSET
,
3328 BTRFS_SUPER_INFO_SIZE
);
3331 btrfs_set_buffer_uptodate(sb
);
3332 btrfs_set_buffer_lockdep_class(sb
, 0);
3334 write_extent_buffer(sb
, super_copy
, 0, BTRFS_SUPER_INFO_SIZE
);
3335 array_size
= btrfs_super_sys_array_size(super_copy
);
3337 ptr
= super_copy
->sys_chunk_array
;
3338 sb_ptr
= offsetof(struct btrfs_super_block
, sys_chunk_array
);
3341 while (cur
< array_size
) {
3342 disk_key
= (struct btrfs_disk_key
*)ptr
;
3343 btrfs_disk_key_to_cpu(&key
, disk_key
);
3345 len
= sizeof(*disk_key
); ptr
+= len
;
3349 if (key
.type
== BTRFS_CHUNK_ITEM_KEY
) {
3350 chunk
= (struct btrfs_chunk
*)sb_ptr
;
3351 ret
= read_one_chunk(root
, &key
, sb
, chunk
);
3354 num_stripes
= btrfs_chunk_num_stripes(sb
, chunk
);
3355 len
= btrfs_chunk_item_size(num_stripes
);
3364 free_extent_buffer(sb
);
3368 int btrfs_read_chunk_tree(struct btrfs_root
*root
)
3370 struct btrfs_path
*path
;
3371 struct extent_buffer
*leaf
;
3372 struct btrfs_key key
;
3373 struct btrfs_key found_key
;
3377 root
= root
->fs_info
->chunk_root
;
3379 path
= btrfs_alloc_path();
3383 /* first we search for all of the device items, and then we
3384 * read in all of the chunk items. This way we can create chunk
3385 * mappings that reference all of the devices that are afound
3387 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
3391 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
3393 leaf
= path
->nodes
[0];
3394 slot
= path
->slots
[0];
3395 if (slot
>= btrfs_header_nritems(leaf
)) {
3396 ret
= btrfs_next_leaf(root
, path
);
3403 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
3404 if (key
.objectid
== BTRFS_DEV_ITEMS_OBJECTID
) {
3405 if (found_key
.objectid
!= BTRFS_DEV_ITEMS_OBJECTID
)
3407 if (found_key
.type
== BTRFS_DEV_ITEM_KEY
) {
3408 struct btrfs_dev_item
*dev_item
;
3409 dev_item
= btrfs_item_ptr(leaf
, slot
,
3410 struct btrfs_dev_item
);
3411 ret
= read_one_dev(root
, leaf
, dev_item
);
3415 } else if (found_key
.type
== BTRFS_CHUNK_ITEM_KEY
) {
3416 struct btrfs_chunk
*chunk
;
3417 chunk
= btrfs_item_ptr(leaf
, slot
, struct btrfs_chunk
);
3418 ret
= read_one_chunk(root
, &found_key
, leaf
, chunk
);
3424 if (key
.objectid
== BTRFS_DEV_ITEMS_OBJECTID
) {
3426 btrfs_release_path(root
, path
);
3431 btrfs_free_path(path
);