Documentation: email-clients: Add better Thunderbird information
[linux-2.6/kvm.git] / sound / soc / codecs / tlv320aic3x.c
blob0963c4c7a83f7bae464c4b2b7165d82d42370e5b
1 /*
2 * ALSA SoC TLV320AIC3X codec driver
4 * Author: Vladimir Barinov, <vbarinov@embeddedalley.com>
5 * Copyright: (C) 2007 MontaVista Software, Inc., <source@mvista.com>
7 * Based on sound/soc/codecs/wm8753.c by Liam Girdwood
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 * Notes:
14 * The AIC3X is a driver for a low power stereo audio
15 * codecs aic31, aic32, aic33, aic3007.
17 * It supports full aic33 codec functionality.
18 * The compatibility with aic32, aic31 and aic3007 is as follows:
19 * aic32/aic3007 | aic31
20 * ---------------------------------------
21 * MONO_LOUT -> N/A | MONO_LOUT -> N/A
22 * | IN1L -> LINE1L
23 * | IN1R -> LINE1R
24 * | IN2L -> LINE2L
25 * | IN2R -> LINE2R
26 * | MIC3L/R -> N/A
27 * truncated internal functionality in
28 * accordance with documentation
29 * ---------------------------------------
31 * Hence the machine layer should disable unsupported inputs/outputs by
32 * snd_soc_dapm_disable_pin(codec, "MONO_LOUT"), etc.
35 #include <linux/module.h>
36 #include <linux/moduleparam.h>
37 #include <linux/init.h>
38 #include <linux/delay.h>
39 #include <linux/pm.h>
40 #include <linux/i2c.h>
41 #include <linux/gpio.h>
42 #include <linux/regulator/consumer.h>
43 #include <linux/platform_device.h>
44 #include <linux/slab.h>
45 #include <sound/core.h>
46 #include <sound/pcm.h>
47 #include <sound/pcm_params.h>
48 #include <sound/soc.h>
49 #include <sound/initval.h>
50 #include <sound/tlv.h>
51 #include <sound/tlv320aic3x.h>
53 #include "tlv320aic3x.h"
55 #define AIC3X_NUM_SUPPLIES 4
56 static const char *aic3x_supply_names[AIC3X_NUM_SUPPLIES] = {
57 "IOVDD", /* I/O Voltage */
58 "DVDD", /* Digital Core Voltage */
59 "AVDD", /* Analog DAC Voltage */
60 "DRVDD", /* ADC Analog and Output Driver Voltage */
63 static LIST_HEAD(reset_list);
65 struct aic3x_priv;
67 struct aic3x_disable_nb {
68 struct notifier_block nb;
69 struct aic3x_priv *aic3x;
72 /* codec private data */
73 struct aic3x_priv {
74 struct snd_soc_codec *codec;
75 struct regulator_bulk_data supplies[AIC3X_NUM_SUPPLIES];
76 struct aic3x_disable_nb disable_nb[AIC3X_NUM_SUPPLIES];
77 enum snd_soc_control_type control_type;
78 struct aic3x_setup_data *setup;
79 void *control_data;
80 unsigned int sysclk;
81 struct list_head list;
82 int master;
83 int gpio_reset;
84 int power;
85 #define AIC3X_MODEL_3X 0
86 #define AIC3X_MODEL_33 1
87 #define AIC3X_MODEL_3007 2
88 u16 model;
92 * AIC3X register cache
93 * We can't read the AIC3X register space when we are
94 * using 2 wire for device control, so we cache them instead.
95 * There is no point in caching the reset register
97 static const u8 aic3x_reg[AIC3X_CACHEREGNUM] = {
98 0x00, 0x00, 0x00, 0x10, /* 0 */
99 0x04, 0x00, 0x00, 0x00, /* 4 */
100 0x00, 0x00, 0x00, 0x01, /* 8 */
101 0x00, 0x00, 0x00, 0x80, /* 12 */
102 0x80, 0xff, 0xff, 0x78, /* 16 */
103 0x78, 0x78, 0x78, 0x78, /* 20 */
104 0x78, 0x00, 0x00, 0xfe, /* 24 */
105 0x00, 0x00, 0xfe, 0x00, /* 28 */
106 0x18, 0x18, 0x00, 0x00, /* 32 */
107 0x00, 0x00, 0x00, 0x00, /* 36 */
108 0x00, 0x00, 0x00, 0x80, /* 40 */
109 0x80, 0x00, 0x00, 0x00, /* 44 */
110 0x00, 0x00, 0x00, 0x04, /* 48 */
111 0x00, 0x00, 0x00, 0x00, /* 52 */
112 0x00, 0x00, 0x04, 0x00, /* 56 */
113 0x00, 0x00, 0x00, 0x00, /* 60 */
114 0x00, 0x04, 0x00, 0x00, /* 64 */
115 0x00, 0x00, 0x00, 0x00, /* 68 */
116 0x04, 0x00, 0x00, 0x00, /* 72 */
117 0x00, 0x00, 0x00, 0x00, /* 76 */
118 0x00, 0x00, 0x00, 0x00, /* 80 */
119 0x00, 0x00, 0x00, 0x00, /* 84 */
120 0x00, 0x00, 0x00, 0x00, /* 88 */
121 0x00, 0x00, 0x00, 0x00, /* 92 */
122 0x00, 0x00, 0x00, 0x00, /* 96 */
123 0x00, 0x00, 0x02, /* 100 */
127 * read from the aic3x register space. Only use for this function is if
128 * wanting to read volatile bits from those registers that has both read-only
129 * and read/write bits. All other cases should use snd_soc_read.
131 static int aic3x_read(struct snd_soc_codec *codec, unsigned int reg,
132 u8 *value)
134 u8 *cache = codec->reg_cache;
136 if (codec->cache_only)
137 return -EINVAL;
138 if (reg >= AIC3X_CACHEREGNUM)
139 return -1;
141 *value = codec->hw_read(codec, reg);
142 cache[reg] = *value;
144 return 0;
147 #define SOC_DAPM_SINGLE_AIC3X(xname, reg, shift, mask, invert) \
148 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
149 .info = snd_soc_info_volsw, \
150 .get = snd_soc_dapm_get_volsw, .put = snd_soc_dapm_put_volsw_aic3x, \
151 .private_value = SOC_SINGLE_VALUE(reg, shift, mask, invert) }
154 * All input lines are connected when !0xf and disconnected with 0xf bit field,
155 * so we have to use specific dapm_put call for input mixer
157 static int snd_soc_dapm_put_volsw_aic3x(struct snd_kcontrol *kcontrol,
158 struct snd_ctl_elem_value *ucontrol)
160 struct snd_soc_dapm_widget_list *wlist = snd_kcontrol_chip(kcontrol);
161 struct snd_soc_dapm_widget *widget = wlist->widgets[0];
162 struct soc_mixer_control *mc =
163 (struct soc_mixer_control *)kcontrol->private_value;
164 unsigned int reg = mc->reg;
165 unsigned int shift = mc->shift;
166 int max = mc->max;
167 unsigned int mask = (1 << fls(max)) - 1;
168 unsigned int invert = mc->invert;
169 unsigned short val, val_mask;
170 int ret;
171 struct snd_soc_dapm_path *path;
172 int found = 0;
174 val = (ucontrol->value.integer.value[0] & mask);
176 mask = 0xf;
177 if (val)
178 val = mask;
180 if (invert)
181 val = mask - val;
182 val_mask = mask << shift;
183 val = val << shift;
185 mutex_lock(&widget->codec->mutex);
187 if (snd_soc_test_bits(widget->codec, reg, val_mask, val)) {
188 /* find dapm widget path assoc with kcontrol */
189 list_for_each_entry(path, &widget->dapm->card->paths, list) {
190 if (path->kcontrol != kcontrol)
191 continue;
193 /* found, now check type */
194 found = 1;
195 if (val)
196 /* new connection */
197 path->connect = invert ? 0 : 1;
198 else
199 /* old connection must be powered down */
200 path->connect = invert ? 1 : 0;
201 break;
204 if (found)
205 snd_soc_dapm_sync(widget->dapm);
208 ret = snd_soc_update_bits(widget->codec, reg, val_mask, val);
210 mutex_unlock(&widget->codec->mutex);
211 return ret;
214 static const char *aic3x_left_dac_mux[] = { "DAC_L1", "DAC_L3", "DAC_L2" };
215 static const char *aic3x_right_dac_mux[] = { "DAC_R1", "DAC_R3", "DAC_R2" };
216 static const char *aic3x_left_hpcom_mux[] =
217 { "differential of HPLOUT", "constant VCM", "single-ended" };
218 static const char *aic3x_right_hpcom_mux[] =
219 { "differential of HPROUT", "constant VCM", "single-ended",
220 "differential of HPLCOM", "external feedback" };
221 static const char *aic3x_linein_mode_mux[] = { "single-ended", "differential" };
222 static const char *aic3x_adc_hpf[] =
223 { "Disabled", "0.0045xFs", "0.0125xFs", "0.025xFs" };
225 #define LDAC_ENUM 0
226 #define RDAC_ENUM 1
227 #define LHPCOM_ENUM 2
228 #define RHPCOM_ENUM 3
229 #define LINE1L_2_L_ENUM 4
230 #define LINE1L_2_R_ENUM 5
231 #define LINE1R_2_L_ENUM 6
232 #define LINE1R_2_R_ENUM 7
233 #define LINE2L_ENUM 8
234 #define LINE2R_ENUM 9
235 #define ADC_HPF_ENUM 10
237 static const struct soc_enum aic3x_enum[] = {
238 SOC_ENUM_SINGLE(DAC_LINE_MUX, 6, 3, aic3x_left_dac_mux),
239 SOC_ENUM_SINGLE(DAC_LINE_MUX, 4, 3, aic3x_right_dac_mux),
240 SOC_ENUM_SINGLE(HPLCOM_CFG, 4, 3, aic3x_left_hpcom_mux),
241 SOC_ENUM_SINGLE(HPRCOM_CFG, 3, 5, aic3x_right_hpcom_mux),
242 SOC_ENUM_SINGLE(LINE1L_2_LADC_CTRL, 7, 2, aic3x_linein_mode_mux),
243 SOC_ENUM_SINGLE(LINE1L_2_RADC_CTRL, 7, 2, aic3x_linein_mode_mux),
244 SOC_ENUM_SINGLE(LINE1R_2_LADC_CTRL, 7, 2, aic3x_linein_mode_mux),
245 SOC_ENUM_SINGLE(LINE1R_2_RADC_CTRL, 7, 2, aic3x_linein_mode_mux),
246 SOC_ENUM_SINGLE(LINE2L_2_LADC_CTRL, 7, 2, aic3x_linein_mode_mux),
247 SOC_ENUM_SINGLE(LINE2R_2_RADC_CTRL, 7, 2, aic3x_linein_mode_mux),
248 SOC_ENUM_DOUBLE(AIC3X_CODEC_DFILT_CTRL, 6, 4, 4, aic3x_adc_hpf),
252 * DAC digital volumes. From -63.5 to 0 dB in 0.5 dB steps
254 static DECLARE_TLV_DB_SCALE(dac_tlv, -6350, 50, 0);
255 /* ADC PGA gain volumes. From 0 to 59.5 dB in 0.5 dB steps */
256 static DECLARE_TLV_DB_SCALE(adc_tlv, 0, 50, 0);
258 * Output stage volumes. From -78.3 to 0 dB. Muted below -78.3 dB.
259 * Step size is approximately 0.5 dB over most of the scale but increasing
260 * near the very low levels.
261 * Define dB scale so that it is mostly correct for range about -55 to 0 dB
262 * but having increasing dB difference below that (and where it doesn't count
263 * so much). This setting shows -50 dB (actual is -50.3 dB) for register
264 * value 100 and -58.5 dB (actual is -78.3 dB) for register value 117.
266 static DECLARE_TLV_DB_SCALE(output_stage_tlv, -5900, 50, 1);
268 static const struct snd_kcontrol_new aic3x_snd_controls[] = {
269 /* Output */
270 SOC_DOUBLE_R_TLV("PCM Playback Volume",
271 LDAC_VOL, RDAC_VOL, 0, 0x7f, 1, dac_tlv),
274 * Output controls that map to output mixer switches. Note these are
275 * only for swapped L-to-R and R-to-L routes. See below stereo controls
276 * for direct L-to-L and R-to-R routes.
278 SOC_SINGLE_TLV("Left Line Mixer Line2R Bypass Volume",
279 LINE2R_2_LLOPM_VOL, 0, 118, 1, output_stage_tlv),
280 SOC_SINGLE_TLV("Left Line Mixer PGAR Bypass Volume",
281 PGAR_2_LLOPM_VOL, 0, 118, 1, output_stage_tlv),
282 SOC_SINGLE_TLV("Left Line Mixer DACR1 Playback Volume",
283 DACR1_2_LLOPM_VOL, 0, 118, 1, output_stage_tlv),
285 SOC_SINGLE_TLV("Right Line Mixer Line2L Bypass Volume",
286 LINE2L_2_RLOPM_VOL, 0, 118, 1, output_stage_tlv),
287 SOC_SINGLE_TLV("Right Line Mixer PGAL Bypass Volume",
288 PGAL_2_RLOPM_VOL, 0, 118, 1, output_stage_tlv),
289 SOC_SINGLE_TLV("Right Line Mixer DACL1 Playback Volume",
290 DACL1_2_RLOPM_VOL, 0, 118, 1, output_stage_tlv),
292 SOC_SINGLE_TLV("Left HP Mixer Line2R Bypass Volume",
293 LINE2R_2_HPLOUT_VOL, 0, 118, 1, output_stage_tlv),
294 SOC_SINGLE_TLV("Left HP Mixer PGAR Bypass Volume",
295 PGAR_2_HPLOUT_VOL, 0, 118, 1, output_stage_tlv),
296 SOC_SINGLE_TLV("Left HP Mixer DACR1 Playback Volume",
297 DACR1_2_HPLOUT_VOL, 0, 118, 1, output_stage_tlv),
299 SOC_SINGLE_TLV("Right HP Mixer Line2L Bypass Volume",
300 LINE2L_2_HPROUT_VOL, 0, 118, 1, output_stage_tlv),
301 SOC_SINGLE_TLV("Right HP Mixer PGAL Bypass Volume",
302 PGAL_2_HPROUT_VOL, 0, 118, 1, output_stage_tlv),
303 SOC_SINGLE_TLV("Right HP Mixer DACL1 Playback Volume",
304 DACL1_2_HPROUT_VOL, 0, 118, 1, output_stage_tlv),
306 SOC_SINGLE_TLV("Left HPCOM Mixer Line2R Bypass Volume",
307 LINE2R_2_HPLCOM_VOL, 0, 118, 1, output_stage_tlv),
308 SOC_SINGLE_TLV("Left HPCOM Mixer PGAR Bypass Volume",
309 PGAR_2_HPLCOM_VOL, 0, 118, 1, output_stage_tlv),
310 SOC_SINGLE_TLV("Left HPCOM Mixer DACR1 Playback Volume",
311 DACR1_2_HPLCOM_VOL, 0, 118, 1, output_stage_tlv),
313 SOC_SINGLE_TLV("Right HPCOM Mixer Line2L Bypass Volume",
314 LINE2L_2_HPRCOM_VOL, 0, 118, 1, output_stage_tlv),
315 SOC_SINGLE_TLV("Right HPCOM Mixer PGAL Bypass Volume",
316 PGAL_2_HPRCOM_VOL, 0, 118, 1, output_stage_tlv),
317 SOC_SINGLE_TLV("Right HPCOM Mixer DACL1 Playback Volume",
318 DACL1_2_HPRCOM_VOL, 0, 118, 1, output_stage_tlv),
320 /* Stereo output controls for direct L-to-L and R-to-R routes */
321 SOC_DOUBLE_R_TLV("Line Line2 Bypass Volume",
322 LINE2L_2_LLOPM_VOL, LINE2R_2_RLOPM_VOL,
323 0, 118, 1, output_stage_tlv),
324 SOC_DOUBLE_R_TLV("Line PGA Bypass Volume",
325 PGAL_2_LLOPM_VOL, PGAR_2_RLOPM_VOL,
326 0, 118, 1, output_stage_tlv),
327 SOC_DOUBLE_R_TLV("Line DAC Playback Volume",
328 DACL1_2_LLOPM_VOL, DACR1_2_RLOPM_VOL,
329 0, 118, 1, output_stage_tlv),
331 SOC_DOUBLE_R_TLV("Mono Line2 Bypass Volume",
332 LINE2L_2_MONOLOPM_VOL, LINE2R_2_MONOLOPM_VOL,
333 0, 118, 1, output_stage_tlv),
334 SOC_DOUBLE_R_TLV("Mono PGA Bypass Volume",
335 PGAL_2_MONOLOPM_VOL, PGAR_2_MONOLOPM_VOL,
336 0, 118, 1, output_stage_tlv),
337 SOC_DOUBLE_R_TLV("Mono DAC Playback Volume",
338 DACL1_2_MONOLOPM_VOL, DACR1_2_MONOLOPM_VOL,
339 0, 118, 1, output_stage_tlv),
341 SOC_DOUBLE_R_TLV("HP Line2 Bypass Volume",
342 LINE2L_2_HPLOUT_VOL, LINE2R_2_HPROUT_VOL,
343 0, 118, 1, output_stage_tlv),
344 SOC_DOUBLE_R_TLV("HP PGA Bypass Volume",
345 PGAL_2_HPLOUT_VOL, PGAR_2_HPROUT_VOL,
346 0, 118, 1, output_stage_tlv),
347 SOC_DOUBLE_R_TLV("HP DAC Playback Volume",
348 DACL1_2_HPLOUT_VOL, DACR1_2_HPROUT_VOL,
349 0, 118, 1, output_stage_tlv),
351 SOC_DOUBLE_R_TLV("HPCOM Line2 Bypass Volume",
352 LINE2L_2_HPLCOM_VOL, LINE2R_2_HPRCOM_VOL,
353 0, 118, 1, output_stage_tlv),
354 SOC_DOUBLE_R_TLV("HPCOM PGA Bypass Volume",
355 PGAL_2_HPLCOM_VOL, PGAR_2_HPRCOM_VOL,
356 0, 118, 1, output_stage_tlv),
357 SOC_DOUBLE_R_TLV("HPCOM DAC Playback Volume",
358 DACL1_2_HPLCOM_VOL, DACR1_2_HPRCOM_VOL,
359 0, 118, 1, output_stage_tlv),
361 /* Output pin mute controls */
362 SOC_DOUBLE_R("Line Playback Switch", LLOPM_CTRL, RLOPM_CTRL, 3,
363 0x01, 0),
364 SOC_SINGLE("Mono Playback Switch", MONOLOPM_CTRL, 3, 0x01, 0),
365 SOC_DOUBLE_R("HP Playback Switch", HPLOUT_CTRL, HPROUT_CTRL, 3,
366 0x01, 0),
367 SOC_DOUBLE_R("HPCOM Playback Switch", HPLCOM_CTRL, HPRCOM_CTRL, 3,
368 0x01, 0),
371 * Note: enable Automatic input Gain Controller with care. It can
372 * adjust PGA to max value when ADC is on and will never go back.
374 SOC_DOUBLE_R("AGC Switch", LAGC_CTRL_A, RAGC_CTRL_A, 7, 0x01, 0),
376 /* Input */
377 SOC_DOUBLE_R_TLV("PGA Capture Volume", LADC_VOL, RADC_VOL,
378 0, 119, 0, adc_tlv),
379 SOC_DOUBLE_R("PGA Capture Switch", LADC_VOL, RADC_VOL, 7, 0x01, 1),
381 SOC_ENUM("ADC HPF Cut-off", aic3x_enum[ADC_HPF_ENUM]),
385 * Class-D amplifier gain. From 0 to 18 dB in 6 dB steps
387 static DECLARE_TLV_DB_SCALE(classd_amp_tlv, 0, 600, 0);
389 static const struct snd_kcontrol_new aic3x_classd_amp_gain_ctrl =
390 SOC_DOUBLE_TLV("Class-D Amplifier Gain", CLASSD_CTRL, 6, 4, 3, 0, classd_amp_tlv);
392 /* Left DAC Mux */
393 static const struct snd_kcontrol_new aic3x_left_dac_mux_controls =
394 SOC_DAPM_ENUM("Route", aic3x_enum[LDAC_ENUM]);
396 /* Right DAC Mux */
397 static const struct snd_kcontrol_new aic3x_right_dac_mux_controls =
398 SOC_DAPM_ENUM("Route", aic3x_enum[RDAC_ENUM]);
400 /* Left HPCOM Mux */
401 static const struct snd_kcontrol_new aic3x_left_hpcom_mux_controls =
402 SOC_DAPM_ENUM("Route", aic3x_enum[LHPCOM_ENUM]);
404 /* Right HPCOM Mux */
405 static const struct snd_kcontrol_new aic3x_right_hpcom_mux_controls =
406 SOC_DAPM_ENUM("Route", aic3x_enum[RHPCOM_ENUM]);
408 /* Left Line Mixer */
409 static const struct snd_kcontrol_new aic3x_left_line_mixer_controls[] = {
410 SOC_DAPM_SINGLE("Line2L Bypass Switch", LINE2L_2_LLOPM_VOL, 7, 1, 0),
411 SOC_DAPM_SINGLE("PGAL Bypass Switch", PGAL_2_LLOPM_VOL, 7, 1, 0),
412 SOC_DAPM_SINGLE("DACL1 Switch", DACL1_2_LLOPM_VOL, 7, 1, 0),
413 SOC_DAPM_SINGLE("Line2R Bypass Switch", LINE2R_2_LLOPM_VOL, 7, 1, 0),
414 SOC_DAPM_SINGLE("PGAR Bypass Switch", PGAR_2_LLOPM_VOL, 7, 1, 0),
415 SOC_DAPM_SINGLE("DACR1 Switch", DACR1_2_LLOPM_VOL, 7, 1, 0),
418 /* Right Line Mixer */
419 static const struct snd_kcontrol_new aic3x_right_line_mixer_controls[] = {
420 SOC_DAPM_SINGLE("Line2L Bypass Switch", LINE2L_2_RLOPM_VOL, 7, 1, 0),
421 SOC_DAPM_SINGLE("PGAL Bypass Switch", PGAL_2_RLOPM_VOL, 7, 1, 0),
422 SOC_DAPM_SINGLE("DACL1 Switch", DACL1_2_RLOPM_VOL, 7, 1, 0),
423 SOC_DAPM_SINGLE("Line2R Bypass Switch", LINE2R_2_RLOPM_VOL, 7, 1, 0),
424 SOC_DAPM_SINGLE("PGAR Bypass Switch", PGAR_2_RLOPM_VOL, 7, 1, 0),
425 SOC_DAPM_SINGLE("DACR1 Switch", DACR1_2_RLOPM_VOL, 7, 1, 0),
428 /* Mono Mixer */
429 static const struct snd_kcontrol_new aic3x_mono_mixer_controls[] = {
430 SOC_DAPM_SINGLE("Line2L Bypass Switch", LINE2L_2_MONOLOPM_VOL, 7, 1, 0),
431 SOC_DAPM_SINGLE("PGAL Bypass Switch", PGAL_2_MONOLOPM_VOL, 7, 1, 0),
432 SOC_DAPM_SINGLE("DACL1 Switch", DACL1_2_MONOLOPM_VOL, 7, 1, 0),
433 SOC_DAPM_SINGLE("Line2R Bypass Switch", LINE2R_2_MONOLOPM_VOL, 7, 1, 0),
434 SOC_DAPM_SINGLE("PGAR Bypass Switch", PGAR_2_MONOLOPM_VOL, 7, 1, 0),
435 SOC_DAPM_SINGLE("DACR1 Switch", DACR1_2_MONOLOPM_VOL, 7, 1, 0),
438 /* Left HP Mixer */
439 static const struct snd_kcontrol_new aic3x_left_hp_mixer_controls[] = {
440 SOC_DAPM_SINGLE("Line2L Bypass Switch", LINE2L_2_HPLOUT_VOL, 7, 1, 0),
441 SOC_DAPM_SINGLE("PGAL Bypass Switch", PGAL_2_HPLOUT_VOL, 7, 1, 0),
442 SOC_DAPM_SINGLE("DACL1 Switch", DACL1_2_HPLOUT_VOL, 7, 1, 0),
443 SOC_DAPM_SINGLE("Line2R Bypass Switch", LINE2R_2_HPLOUT_VOL, 7, 1, 0),
444 SOC_DAPM_SINGLE("PGAR Bypass Switch", PGAR_2_HPLOUT_VOL, 7, 1, 0),
445 SOC_DAPM_SINGLE("DACR1 Switch", DACR1_2_HPLOUT_VOL, 7, 1, 0),
448 /* Right HP Mixer */
449 static const struct snd_kcontrol_new aic3x_right_hp_mixer_controls[] = {
450 SOC_DAPM_SINGLE("Line2L Bypass Switch", LINE2L_2_HPROUT_VOL, 7, 1, 0),
451 SOC_DAPM_SINGLE("PGAL Bypass Switch", PGAL_2_HPROUT_VOL, 7, 1, 0),
452 SOC_DAPM_SINGLE("DACL1 Switch", DACL1_2_HPROUT_VOL, 7, 1, 0),
453 SOC_DAPM_SINGLE("Line2R Bypass Switch", LINE2R_2_HPROUT_VOL, 7, 1, 0),
454 SOC_DAPM_SINGLE("PGAR Bypass Switch", PGAR_2_HPROUT_VOL, 7, 1, 0),
455 SOC_DAPM_SINGLE("DACR1 Switch", DACR1_2_HPROUT_VOL, 7, 1, 0),
458 /* Left HPCOM Mixer */
459 static const struct snd_kcontrol_new aic3x_left_hpcom_mixer_controls[] = {
460 SOC_DAPM_SINGLE("Line2L Bypass Switch", LINE2L_2_HPLCOM_VOL, 7, 1, 0),
461 SOC_DAPM_SINGLE("PGAL Bypass Switch", PGAL_2_HPLCOM_VOL, 7, 1, 0),
462 SOC_DAPM_SINGLE("DACL1 Switch", DACL1_2_HPLCOM_VOL, 7, 1, 0),
463 SOC_DAPM_SINGLE("Line2R Bypass Switch", LINE2R_2_HPLCOM_VOL, 7, 1, 0),
464 SOC_DAPM_SINGLE("PGAR Bypass Switch", PGAR_2_HPLCOM_VOL, 7, 1, 0),
465 SOC_DAPM_SINGLE("DACR1 Switch", DACR1_2_HPLCOM_VOL, 7, 1, 0),
468 /* Right HPCOM Mixer */
469 static const struct snd_kcontrol_new aic3x_right_hpcom_mixer_controls[] = {
470 SOC_DAPM_SINGLE("Line2L Bypass Switch", LINE2L_2_HPRCOM_VOL, 7, 1, 0),
471 SOC_DAPM_SINGLE("PGAL Bypass Switch", PGAL_2_HPRCOM_VOL, 7, 1, 0),
472 SOC_DAPM_SINGLE("DACL1 Switch", DACL1_2_HPRCOM_VOL, 7, 1, 0),
473 SOC_DAPM_SINGLE("Line2R Bypass Switch", LINE2R_2_HPRCOM_VOL, 7, 1, 0),
474 SOC_DAPM_SINGLE("PGAR Bypass Switch", PGAR_2_HPRCOM_VOL, 7, 1, 0),
475 SOC_DAPM_SINGLE("DACR1 Switch", DACR1_2_HPRCOM_VOL, 7, 1, 0),
478 /* Left PGA Mixer */
479 static const struct snd_kcontrol_new aic3x_left_pga_mixer_controls[] = {
480 SOC_DAPM_SINGLE_AIC3X("Line1L Switch", LINE1L_2_LADC_CTRL, 3, 1, 1),
481 SOC_DAPM_SINGLE_AIC3X("Line1R Switch", LINE1R_2_LADC_CTRL, 3, 1, 1),
482 SOC_DAPM_SINGLE_AIC3X("Line2L Switch", LINE2L_2_LADC_CTRL, 3, 1, 1),
483 SOC_DAPM_SINGLE_AIC3X("Mic3L Switch", MIC3LR_2_LADC_CTRL, 4, 1, 1),
484 SOC_DAPM_SINGLE_AIC3X("Mic3R Switch", MIC3LR_2_LADC_CTRL, 0, 1, 1),
487 /* Right PGA Mixer */
488 static const struct snd_kcontrol_new aic3x_right_pga_mixer_controls[] = {
489 SOC_DAPM_SINGLE_AIC3X("Line1R Switch", LINE1R_2_RADC_CTRL, 3, 1, 1),
490 SOC_DAPM_SINGLE_AIC3X("Line1L Switch", LINE1L_2_RADC_CTRL, 3, 1, 1),
491 SOC_DAPM_SINGLE_AIC3X("Line2R Switch", LINE2R_2_RADC_CTRL, 3, 1, 1),
492 SOC_DAPM_SINGLE_AIC3X("Mic3L Switch", MIC3LR_2_RADC_CTRL, 4, 1, 1),
493 SOC_DAPM_SINGLE_AIC3X("Mic3R Switch", MIC3LR_2_RADC_CTRL, 0, 1, 1),
496 /* Left Line1 Mux */
497 static const struct snd_kcontrol_new aic3x_left_line1l_mux_controls =
498 SOC_DAPM_ENUM("Route", aic3x_enum[LINE1L_2_L_ENUM]);
499 static const struct snd_kcontrol_new aic3x_right_line1l_mux_controls =
500 SOC_DAPM_ENUM("Route", aic3x_enum[LINE1L_2_R_ENUM]);
502 /* Right Line1 Mux */
503 static const struct snd_kcontrol_new aic3x_right_line1r_mux_controls =
504 SOC_DAPM_ENUM("Route", aic3x_enum[LINE1R_2_R_ENUM]);
505 static const struct snd_kcontrol_new aic3x_left_line1r_mux_controls =
506 SOC_DAPM_ENUM("Route", aic3x_enum[LINE1R_2_L_ENUM]);
508 /* Left Line2 Mux */
509 static const struct snd_kcontrol_new aic3x_left_line2_mux_controls =
510 SOC_DAPM_ENUM("Route", aic3x_enum[LINE2L_ENUM]);
512 /* Right Line2 Mux */
513 static const struct snd_kcontrol_new aic3x_right_line2_mux_controls =
514 SOC_DAPM_ENUM("Route", aic3x_enum[LINE2R_ENUM]);
516 static const struct snd_soc_dapm_widget aic3x_dapm_widgets[] = {
517 /* Left DAC to Left Outputs */
518 SND_SOC_DAPM_DAC("Left DAC", "Left Playback", DAC_PWR, 7, 0),
519 SND_SOC_DAPM_MUX("Left DAC Mux", SND_SOC_NOPM, 0, 0,
520 &aic3x_left_dac_mux_controls),
521 SND_SOC_DAPM_MUX("Left HPCOM Mux", SND_SOC_NOPM, 0, 0,
522 &aic3x_left_hpcom_mux_controls),
523 SND_SOC_DAPM_PGA("Left Line Out", LLOPM_CTRL, 0, 0, NULL, 0),
524 SND_SOC_DAPM_PGA("Left HP Out", HPLOUT_CTRL, 0, 0, NULL, 0),
525 SND_SOC_DAPM_PGA("Left HP Com", HPLCOM_CTRL, 0, 0, NULL, 0),
527 /* Right DAC to Right Outputs */
528 SND_SOC_DAPM_DAC("Right DAC", "Right Playback", DAC_PWR, 6, 0),
529 SND_SOC_DAPM_MUX("Right DAC Mux", SND_SOC_NOPM, 0, 0,
530 &aic3x_right_dac_mux_controls),
531 SND_SOC_DAPM_MUX("Right HPCOM Mux", SND_SOC_NOPM, 0, 0,
532 &aic3x_right_hpcom_mux_controls),
533 SND_SOC_DAPM_PGA("Right Line Out", RLOPM_CTRL, 0, 0, NULL, 0),
534 SND_SOC_DAPM_PGA("Right HP Out", HPROUT_CTRL, 0, 0, NULL, 0),
535 SND_SOC_DAPM_PGA("Right HP Com", HPRCOM_CTRL, 0, 0, NULL, 0),
537 /* Mono Output */
538 SND_SOC_DAPM_PGA("Mono Out", MONOLOPM_CTRL, 0, 0, NULL, 0),
540 /* Inputs to Left ADC */
541 SND_SOC_DAPM_ADC("Left ADC", "Left Capture", LINE1L_2_LADC_CTRL, 2, 0),
542 SND_SOC_DAPM_MIXER("Left PGA Mixer", SND_SOC_NOPM, 0, 0,
543 &aic3x_left_pga_mixer_controls[0],
544 ARRAY_SIZE(aic3x_left_pga_mixer_controls)),
545 SND_SOC_DAPM_MUX("Left Line1L Mux", SND_SOC_NOPM, 0, 0,
546 &aic3x_left_line1l_mux_controls),
547 SND_SOC_DAPM_MUX("Left Line1R Mux", SND_SOC_NOPM, 0, 0,
548 &aic3x_left_line1r_mux_controls),
549 SND_SOC_DAPM_MUX("Left Line2L Mux", SND_SOC_NOPM, 0, 0,
550 &aic3x_left_line2_mux_controls),
552 /* Inputs to Right ADC */
553 SND_SOC_DAPM_ADC("Right ADC", "Right Capture",
554 LINE1R_2_RADC_CTRL, 2, 0),
555 SND_SOC_DAPM_MIXER("Right PGA Mixer", SND_SOC_NOPM, 0, 0,
556 &aic3x_right_pga_mixer_controls[0],
557 ARRAY_SIZE(aic3x_right_pga_mixer_controls)),
558 SND_SOC_DAPM_MUX("Right Line1L Mux", SND_SOC_NOPM, 0, 0,
559 &aic3x_right_line1l_mux_controls),
560 SND_SOC_DAPM_MUX("Right Line1R Mux", SND_SOC_NOPM, 0, 0,
561 &aic3x_right_line1r_mux_controls),
562 SND_SOC_DAPM_MUX("Right Line2R Mux", SND_SOC_NOPM, 0, 0,
563 &aic3x_right_line2_mux_controls),
566 * Not a real mic bias widget but similar function. This is for dynamic
567 * control of GPIO1 digital mic modulator clock output function when
568 * using digital mic.
570 SND_SOC_DAPM_REG(snd_soc_dapm_micbias, "GPIO1 dmic modclk",
571 AIC3X_GPIO1_REG, 4, 0xf,
572 AIC3X_GPIO1_FUNC_DIGITAL_MIC_MODCLK,
573 AIC3X_GPIO1_FUNC_DISABLED),
576 * Also similar function like mic bias. Selects digital mic with
577 * configurable oversampling rate instead of ADC converter.
579 SND_SOC_DAPM_REG(snd_soc_dapm_micbias, "DMic Rate 128",
580 AIC3X_ASD_INTF_CTRLA, 0, 3, 1, 0),
581 SND_SOC_DAPM_REG(snd_soc_dapm_micbias, "DMic Rate 64",
582 AIC3X_ASD_INTF_CTRLA, 0, 3, 2, 0),
583 SND_SOC_DAPM_REG(snd_soc_dapm_micbias, "DMic Rate 32",
584 AIC3X_ASD_INTF_CTRLA, 0, 3, 3, 0),
586 /* Mic Bias */
587 SND_SOC_DAPM_REG(snd_soc_dapm_micbias, "Mic Bias 2V",
588 MICBIAS_CTRL, 6, 3, 1, 0),
589 SND_SOC_DAPM_REG(snd_soc_dapm_micbias, "Mic Bias 2.5V",
590 MICBIAS_CTRL, 6, 3, 2, 0),
591 SND_SOC_DAPM_REG(snd_soc_dapm_micbias, "Mic Bias AVDD",
592 MICBIAS_CTRL, 6, 3, 3, 0),
594 /* Output mixers */
595 SND_SOC_DAPM_MIXER("Left Line Mixer", SND_SOC_NOPM, 0, 0,
596 &aic3x_left_line_mixer_controls[0],
597 ARRAY_SIZE(aic3x_left_line_mixer_controls)),
598 SND_SOC_DAPM_MIXER("Right Line Mixer", SND_SOC_NOPM, 0, 0,
599 &aic3x_right_line_mixer_controls[0],
600 ARRAY_SIZE(aic3x_right_line_mixer_controls)),
601 SND_SOC_DAPM_MIXER("Mono Mixer", SND_SOC_NOPM, 0, 0,
602 &aic3x_mono_mixer_controls[0],
603 ARRAY_SIZE(aic3x_mono_mixer_controls)),
604 SND_SOC_DAPM_MIXER("Left HP Mixer", SND_SOC_NOPM, 0, 0,
605 &aic3x_left_hp_mixer_controls[0],
606 ARRAY_SIZE(aic3x_left_hp_mixer_controls)),
607 SND_SOC_DAPM_MIXER("Right HP Mixer", SND_SOC_NOPM, 0, 0,
608 &aic3x_right_hp_mixer_controls[0],
609 ARRAY_SIZE(aic3x_right_hp_mixer_controls)),
610 SND_SOC_DAPM_MIXER("Left HPCOM Mixer", SND_SOC_NOPM, 0, 0,
611 &aic3x_left_hpcom_mixer_controls[0],
612 ARRAY_SIZE(aic3x_left_hpcom_mixer_controls)),
613 SND_SOC_DAPM_MIXER("Right HPCOM Mixer", SND_SOC_NOPM, 0, 0,
614 &aic3x_right_hpcom_mixer_controls[0],
615 ARRAY_SIZE(aic3x_right_hpcom_mixer_controls)),
617 SND_SOC_DAPM_OUTPUT("LLOUT"),
618 SND_SOC_DAPM_OUTPUT("RLOUT"),
619 SND_SOC_DAPM_OUTPUT("MONO_LOUT"),
620 SND_SOC_DAPM_OUTPUT("HPLOUT"),
621 SND_SOC_DAPM_OUTPUT("HPROUT"),
622 SND_SOC_DAPM_OUTPUT("HPLCOM"),
623 SND_SOC_DAPM_OUTPUT("HPRCOM"),
625 SND_SOC_DAPM_INPUT("MIC3L"),
626 SND_SOC_DAPM_INPUT("MIC3R"),
627 SND_SOC_DAPM_INPUT("LINE1L"),
628 SND_SOC_DAPM_INPUT("LINE1R"),
629 SND_SOC_DAPM_INPUT("LINE2L"),
630 SND_SOC_DAPM_INPUT("LINE2R"),
633 * Virtual output pin to detection block inside codec. This can be
634 * used to keep codec bias on if gpio or detection features are needed.
635 * Force pin on or construct a path with an input jack and mic bias
636 * widgets.
638 SND_SOC_DAPM_OUTPUT("Detection"),
641 static const struct snd_soc_dapm_widget aic3007_dapm_widgets[] = {
642 /* Class-D outputs */
643 SND_SOC_DAPM_PGA("Left Class-D Out", CLASSD_CTRL, 3, 0, NULL, 0),
644 SND_SOC_DAPM_PGA("Right Class-D Out", CLASSD_CTRL, 2, 0, NULL, 0),
646 SND_SOC_DAPM_OUTPUT("SPOP"),
647 SND_SOC_DAPM_OUTPUT("SPOM"),
650 static const struct snd_soc_dapm_route intercon[] = {
651 /* Left Input */
652 {"Left Line1L Mux", "single-ended", "LINE1L"},
653 {"Left Line1L Mux", "differential", "LINE1L"},
655 {"Left Line2L Mux", "single-ended", "LINE2L"},
656 {"Left Line2L Mux", "differential", "LINE2L"},
658 {"Left PGA Mixer", "Line1L Switch", "Left Line1L Mux"},
659 {"Left PGA Mixer", "Line1R Switch", "Left Line1R Mux"},
660 {"Left PGA Mixer", "Line2L Switch", "Left Line2L Mux"},
661 {"Left PGA Mixer", "Mic3L Switch", "MIC3L"},
662 {"Left PGA Mixer", "Mic3R Switch", "MIC3R"},
664 {"Left ADC", NULL, "Left PGA Mixer"},
665 {"Left ADC", NULL, "GPIO1 dmic modclk"},
667 /* Right Input */
668 {"Right Line1R Mux", "single-ended", "LINE1R"},
669 {"Right Line1R Mux", "differential", "LINE1R"},
671 {"Right Line2R Mux", "single-ended", "LINE2R"},
672 {"Right Line2R Mux", "differential", "LINE2R"},
674 {"Right PGA Mixer", "Line1L Switch", "Right Line1L Mux"},
675 {"Right PGA Mixer", "Line1R Switch", "Right Line1R Mux"},
676 {"Right PGA Mixer", "Line2R Switch", "Right Line2R Mux"},
677 {"Right PGA Mixer", "Mic3L Switch", "MIC3L"},
678 {"Right PGA Mixer", "Mic3R Switch", "MIC3R"},
680 {"Right ADC", NULL, "Right PGA Mixer"},
681 {"Right ADC", NULL, "GPIO1 dmic modclk"},
684 * Logical path between digital mic enable and GPIO1 modulator clock
685 * output function
687 {"GPIO1 dmic modclk", NULL, "DMic Rate 128"},
688 {"GPIO1 dmic modclk", NULL, "DMic Rate 64"},
689 {"GPIO1 dmic modclk", NULL, "DMic Rate 32"},
691 /* Left DAC Output */
692 {"Left DAC Mux", "DAC_L1", "Left DAC"},
693 {"Left DAC Mux", "DAC_L2", "Left DAC"},
694 {"Left DAC Mux", "DAC_L3", "Left DAC"},
696 /* Right DAC Output */
697 {"Right DAC Mux", "DAC_R1", "Right DAC"},
698 {"Right DAC Mux", "DAC_R2", "Right DAC"},
699 {"Right DAC Mux", "DAC_R3", "Right DAC"},
701 /* Left Line Output */
702 {"Left Line Mixer", "Line2L Bypass Switch", "Left Line2L Mux"},
703 {"Left Line Mixer", "PGAL Bypass Switch", "Left PGA Mixer"},
704 {"Left Line Mixer", "DACL1 Switch", "Left DAC Mux"},
705 {"Left Line Mixer", "Line2R Bypass Switch", "Right Line2R Mux"},
706 {"Left Line Mixer", "PGAR Bypass Switch", "Right PGA Mixer"},
707 {"Left Line Mixer", "DACR1 Switch", "Right DAC Mux"},
709 {"Left Line Out", NULL, "Left Line Mixer"},
710 {"Left Line Out", NULL, "Left DAC Mux"},
711 {"LLOUT", NULL, "Left Line Out"},
713 /* Right Line Output */
714 {"Right Line Mixer", "Line2L Bypass Switch", "Left Line2L Mux"},
715 {"Right Line Mixer", "PGAL Bypass Switch", "Left PGA Mixer"},
716 {"Right Line Mixer", "DACL1 Switch", "Left DAC Mux"},
717 {"Right Line Mixer", "Line2R Bypass Switch", "Right Line2R Mux"},
718 {"Right Line Mixer", "PGAR Bypass Switch", "Right PGA Mixer"},
719 {"Right Line Mixer", "DACR1 Switch", "Right DAC Mux"},
721 {"Right Line Out", NULL, "Right Line Mixer"},
722 {"Right Line Out", NULL, "Right DAC Mux"},
723 {"RLOUT", NULL, "Right Line Out"},
725 /* Mono Output */
726 {"Mono Mixer", "Line2L Bypass Switch", "Left Line2L Mux"},
727 {"Mono Mixer", "PGAL Bypass Switch", "Left PGA Mixer"},
728 {"Mono Mixer", "DACL1 Switch", "Left DAC Mux"},
729 {"Mono Mixer", "Line2R Bypass Switch", "Right Line2R Mux"},
730 {"Mono Mixer", "PGAR Bypass Switch", "Right PGA Mixer"},
731 {"Mono Mixer", "DACR1 Switch", "Right DAC Mux"},
733 {"Mono Out", NULL, "Mono Mixer"},
734 {"MONO_LOUT", NULL, "Mono Out"},
736 /* Left HP Output */
737 {"Left HP Mixer", "Line2L Bypass Switch", "Left Line2L Mux"},
738 {"Left HP Mixer", "PGAL Bypass Switch", "Left PGA Mixer"},
739 {"Left HP Mixer", "DACL1 Switch", "Left DAC Mux"},
740 {"Left HP Mixer", "Line2R Bypass Switch", "Right Line2R Mux"},
741 {"Left HP Mixer", "PGAR Bypass Switch", "Right PGA Mixer"},
742 {"Left HP Mixer", "DACR1 Switch", "Right DAC Mux"},
744 {"Left HP Out", NULL, "Left HP Mixer"},
745 {"Left HP Out", NULL, "Left DAC Mux"},
746 {"HPLOUT", NULL, "Left HP Out"},
748 /* Right HP Output */
749 {"Right HP Mixer", "Line2L Bypass Switch", "Left Line2L Mux"},
750 {"Right HP Mixer", "PGAL Bypass Switch", "Left PGA Mixer"},
751 {"Right HP Mixer", "DACL1 Switch", "Left DAC Mux"},
752 {"Right HP Mixer", "Line2R Bypass Switch", "Right Line2R Mux"},
753 {"Right HP Mixer", "PGAR Bypass Switch", "Right PGA Mixer"},
754 {"Right HP Mixer", "DACR1 Switch", "Right DAC Mux"},
756 {"Right HP Out", NULL, "Right HP Mixer"},
757 {"Right HP Out", NULL, "Right DAC Mux"},
758 {"HPROUT", NULL, "Right HP Out"},
760 /* Left HPCOM Output */
761 {"Left HPCOM Mixer", "Line2L Bypass Switch", "Left Line2L Mux"},
762 {"Left HPCOM Mixer", "PGAL Bypass Switch", "Left PGA Mixer"},
763 {"Left HPCOM Mixer", "DACL1 Switch", "Left DAC Mux"},
764 {"Left HPCOM Mixer", "Line2R Bypass Switch", "Right Line2R Mux"},
765 {"Left HPCOM Mixer", "PGAR Bypass Switch", "Right PGA Mixer"},
766 {"Left HPCOM Mixer", "DACR1 Switch", "Right DAC Mux"},
768 {"Left HPCOM Mux", "differential of HPLOUT", "Left HP Mixer"},
769 {"Left HPCOM Mux", "constant VCM", "Left HPCOM Mixer"},
770 {"Left HPCOM Mux", "single-ended", "Left HPCOM Mixer"},
771 {"Left HP Com", NULL, "Left HPCOM Mux"},
772 {"HPLCOM", NULL, "Left HP Com"},
774 /* Right HPCOM Output */
775 {"Right HPCOM Mixer", "Line2L Bypass Switch", "Left Line2L Mux"},
776 {"Right HPCOM Mixer", "PGAL Bypass Switch", "Left PGA Mixer"},
777 {"Right HPCOM Mixer", "DACL1 Switch", "Left DAC Mux"},
778 {"Right HPCOM Mixer", "Line2R Bypass Switch", "Right Line2R Mux"},
779 {"Right HPCOM Mixer", "PGAR Bypass Switch", "Right PGA Mixer"},
780 {"Right HPCOM Mixer", "DACR1 Switch", "Right DAC Mux"},
782 {"Right HPCOM Mux", "differential of HPROUT", "Right HP Mixer"},
783 {"Right HPCOM Mux", "constant VCM", "Right HPCOM Mixer"},
784 {"Right HPCOM Mux", "single-ended", "Right HPCOM Mixer"},
785 {"Right HPCOM Mux", "differential of HPLCOM", "Left HPCOM Mixer"},
786 {"Right HPCOM Mux", "external feedback", "Right HPCOM Mixer"},
787 {"Right HP Com", NULL, "Right HPCOM Mux"},
788 {"HPRCOM", NULL, "Right HP Com"},
791 static const struct snd_soc_dapm_route intercon_3007[] = {
792 /* Class-D outputs */
793 {"Left Class-D Out", NULL, "Left Line Out"},
794 {"Right Class-D Out", NULL, "Left Line Out"},
795 {"SPOP", NULL, "Left Class-D Out"},
796 {"SPOM", NULL, "Right Class-D Out"},
799 static int aic3x_add_widgets(struct snd_soc_codec *codec)
801 struct aic3x_priv *aic3x = snd_soc_codec_get_drvdata(codec);
802 struct snd_soc_dapm_context *dapm = &codec->dapm;
804 snd_soc_dapm_new_controls(dapm, aic3x_dapm_widgets,
805 ARRAY_SIZE(aic3x_dapm_widgets));
807 /* set up audio path interconnects */
808 snd_soc_dapm_add_routes(dapm, intercon, ARRAY_SIZE(intercon));
810 if (aic3x->model == AIC3X_MODEL_3007) {
811 snd_soc_dapm_new_controls(dapm, aic3007_dapm_widgets,
812 ARRAY_SIZE(aic3007_dapm_widgets));
813 snd_soc_dapm_add_routes(dapm, intercon_3007,
814 ARRAY_SIZE(intercon_3007));
817 return 0;
820 static int aic3x_hw_params(struct snd_pcm_substream *substream,
821 struct snd_pcm_hw_params *params,
822 struct snd_soc_dai *dai)
824 struct snd_soc_pcm_runtime *rtd = substream->private_data;
825 struct snd_soc_codec *codec =rtd->codec;
826 struct aic3x_priv *aic3x = snd_soc_codec_get_drvdata(codec);
827 int codec_clk = 0, bypass_pll = 0, fsref, last_clk = 0;
828 u8 data, j, r, p, pll_q, pll_p = 1, pll_r = 1, pll_j = 1;
829 u16 d, pll_d = 1;
830 u8 reg;
831 int clk;
833 /* select data word length */
834 data = snd_soc_read(codec, AIC3X_ASD_INTF_CTRLB) & (~(0x3 << 4));
835 switch (params_format(params)) {
836 case SNDRV_PCM_FORMAT_S16_LE:
837 break;
838 case SNDRV_PCM_FORMAT_S20_3LE:
839 data |= (0x01 << 4);
840 break;
841 case SNDRV_PCM_FORMAT_S24_LE:
842 data |= (0x02 << 4);
843 break;
844 case SNDRV_PCM_FORMAT_S32_LE:
845 data |= (0x03 << 4);
846 break;
848 snd_soc_write(codec, AIC3X_ASD_INTF_CTRLB, data);
850 /* Fsref can be 44100 or 48000 */
851 fsref = (params_rate(params) % 11025 == 0) ? 44100 : 48000;
853 /* Try to find a value for Q which allows us to bypass the PLL and
854 * generate CODEC_CLK directly. */
855 for (pll_q = 2; pll_q < 18; pll_q++)
856 if (aic3x->sysclk / (128 * pll_q) == fsref) {
857 bypass_pll = 1;
858 break;
861 if (bypass_pll) {
862 pll_q &= 0xf;
863 snd_soc_write(codec, AIC3X_PLL_PROGA_REG, pll_q << PLLQ_SHIFT);
864 snd_soc_write(codec, AIC3X_GPIOB_REG, CODEC_CLKIN_CLKDIV);
865 /* disable PLL if it is bypassed */
866 reg = snd_soc_read(codec, AIC3X_PLL_PROGA_REG);
867 snd_soc_write(codec, AIC3X_PLL_PROGA_REG, reg & ~PLL_ENABLE);
869 } else {
870 snd_soc_write(codec, AIC3X_GPIOB_REG, CODEC_CLKIN_PLLDIV);
871 /* enable PLL when it is used */
872 reg = snd_soc_read(codec, AIC3X_PLL_PROGA_REG);
873 snd_soc_write(codec, AIC3X_PLL_PROGA_REG, reg | PLL_ENABLE);
876 /* Route Left DAC to left channel input and
877 * right DAC to right channel input */
878 data = (LDAC2LCH | RDAC2RCH);
879 data |= (fsref == 44100) ? FSREF_44100 : FSREF_48000;
880 if (params_rate(params) >= 64000)
881 data |= DUAL_RATE_MODE;
882 snd_soc_write(codec, AIC3X_CODEC_DATAPATH_REG, data);
884 /* codec sample rate select */
885 data = (fsref * 20) / params_rate(params);
886 if (params_rate(params) < 64000)
887 data /= 2;
888 data /= 5;
889 data -= 2;
890 data |= (data << 4);
891 snd_soc_write(codec, AIC3X_SAMPLE_RATE_SEL_REG, data);
893 if (bypass_pll)
894 return 0;
896 /* Use PLL, compute appropriate setup for j, d, r and p, the closest
897 * one wins the game. Try with d==0 first, next with d!=0.
898 * Constraints for j are according to the datasheet.
899 * The sysclk is divided by 1000 to prevent integer overflows.
902 codec_clk = (2048 * fsref) / (aic3x->sysclk / 1000);
904 for (r = 1; r <= 16; r++)
905 for (p = 1; p <= 8; p++) {
906 for (j = 4; j <= 55; j++) {
907 /* This is actually 1000*((j+(d/10000))*r)/p
908 * The term had to be converted to get
909 * rid of the division by 10000; d = 0 here
911 int tmp_clk = (1000 * j * r) / p;
913 /* Check whether this values get closer than
914 * the best ones we had before
916 if (abs(codec_clk - tmp_clk) <
917 abs(codec_clk - last_clk)) {
918 pll_j = j; pll_d = 0;
919 pll_r = r; pll_p = p;
920 last_clk = tmp_clk;
923 /* Early exit for exact matches */
924 if (tmp_clk == codec_clk)
925 goto found;
929 /* try with d != 0 */
930 for (p = 1; p <= 8; p++) {
931 j = codec_clk * p / 1000;
933 if (j < 4 || j > 11)
934 continue;
936 /* do not use codec_clk here since we'd loose precision */
937 d = ((2048 * p * fsref) - j * aic3x->sysclk)
938 * 100 / (aic3x->sysclk/100);
940 clk = (10000 * j + d) / (10 * p);
942 /* check whether this values get closer than the best
943 * ones we had before */
944 if (abs(codec_clk - clk) < abs(codec_clk - last_clk)) {
945 pll_j = j; pll_d = d; pll_r = 1; pll_p = p;
946 last_clk = clk;
949 /* Early exit for exact matches */
950 if (clk == codec_clk)
951 goto found;
954 if (last_clk == 0) {
955 printk(KERN_ERR "%s(): unable to setup PLL\n", __func__);
956 return -EINVAL;
959 found:
960 data = snd_soc_read(codec, AIC3X_PLL_PROGA_REG);
961 snd_soc_write(codec, AIC3X_PLL_PROGA_REG,
962 data | (pll_p << PLLP_SHIFT));
963 snd_soc_write(codec, AIC3X_OVRF_STATUS_AND_PLLR_REG,
964 pll_r << PLLR_SHIFT);
965 snd_soc_write(codec, AIC3X_PLL_PROGB_REG, pll_j << PLLJ_SHIFT);
966 snd_soc_write(codec, AIC3X_PLL_PROGC_REG,
967 (pll_d >> 6) << PLLD_MSB_SHIFT);
968 snd_soc_write(codec, AIC3X_PLL_PROGD_REG,
969 (pll_d & 0x3F) << PLLD_LSB_SHIFT);
971 return 0;
974 static int aic3x_mute(struct snd_soc_dai *dai, int mute)
976 struct snd_soc_codec *codec = dai->codec;
977 u8 ldac_reg = snd_soc_read(codec, LDAC_VOL) & ~MUTE_ON;
978 u8 rdac_reg = snd_soc_read(codec, RDAC_VOL) & ~MUTE_ON;
980 if (mute) {
981 snd_soc_write(codec, LDAC_VOL, ldac_reg | MUTE_ON);
982 snd_soc_write(codec, RDAC_VOL, rdac_reg | MUTE_ON);
983 } else {
984 snd_soc_write(codec, LDAC_VOL, ldac_reg);
985 snd_soc_write(codec, RDAC_VOL, rdac_reg);
988 return 0;
991 static int aic3x_set_dai_sysclk(struct snd_soc_dai *codec_dai,
992 int clk_id, unsigned int freq, int dir)
994 struct snd_soc_codec *codec = codec_dai->codec;
995 struct aic3x_priv *aic3x = snd_soc_codec_get_drvdata(codec);
997 aic3x->sysclk = freq;
998 return 0;
1001 static int aic3x_set_dai_fmt(struct snd_soc_dai *codec_dai,
1002 unsigned int fmt)
1004 struct snd_soc_codec *codec = codec_dai->codec;
1005 struct aic3x_priv *aic3x = snd_soc_codec_get_drvdata(codec);
1006 u8 iface_areg, iface_breg;
1007 int delay = 0;
1009 iface_areg = snd_soc_read(codec, AIC3X_ASD_INTF_CTRLA) & 0x3f;
1010 iface_breg = snd_soc_read(codec, AIC3X_ASD_INTF_CTRLB) & 0x3f;
1012 /* set master/slave audio interface */
1013 switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
1014 case SND_SOC_DAIFMT_CBM_CFM:
1015 aic3x->master = 1;
1016 iface_areg |= BIT_CLK_MASTER | WORD_CLK_MASTER;
1017 break;
1018 case SND_SOC_DAIFMT_CBS_CFS:
1019 aic3x->master = 0;
1020 break;
1021 default:
1022 return -EINVAL;
1026 * match both interface format and signal polarities since they
1027 * are fixed
1029 switch (fmt & (SND_SOC_DAIFMT_FORMAT_MASK |
1030 SND_SOC_DAIFMT_INV_MASK)) {
1031 case (SND_SOC_DAIFMT_I2S | SND_SOC_DAIFMT_NB_NF):
1032 break;
1033 case (SND_SOC_DAIFMT_DSP_A | SND_SOC_DAIFMT_IB_NF):
1034 delay = 1;
1035 case (SND_SOC_DAIFMT_DSP_B | SND_SOC_DAIFMT_IB_NF):
1036 iface_breg |= (0x01 << 6);
1037 break;
1038 case (SND_SOC_DAIFMT_RIGHT_J | SND_SOC_DAIFMT_NB_NF):
1039 iface_breg |= (0x02 << 6);
1040 break;
1041 case (SND_SOC_DAIFMT_LEFT_J | SND_SOC_DAIFMT_NB_NF):
1042 iface_breg |= (0x03 << 6);
1043 break;
1044 default:
1045 return -EINVAL;
1048 /* set iface */
1049 snd_soc_write(codec, AIC3X_ASD_INTF_CTRLA, iface_areg);
1050 snd_soc_write(codec, AIC3X_ASD_INTF_CTRLB, iface_breg);
1051 snd_soc_write(codec, AIC3X_ASD_INTF_CTRLC, delay);
1053 return 0;
1056 static int aic3x_init_3007(struct snd_soc_codec *codec)
1058 u8 tmp1, tmp2, *cache = codec->reg_cache;
1061 * There is no need to cache writes to undocumented page 0xD but
1062 * respective page 0 register cache entries must be preserved
1064 tmp1 = cache[0xD];
1065 tmp2 = cache[0x8];
1066 /* Class-D speaker driver init; datasheet p. 46 */
1067 snd_soc_write(codec, AIC3X_PAGE_SELECT, 0x0D);
1068 snd_soc_write(codec, 0xD, 0x0D);
1069 snd_soc_write(codec, 0x8, 0x5C);
1070 snd_soc_write(codec, 0x8, 0x5D);
1071 snd_soc_write(codec, 0x8, 0x5C);
1072 snd_soc_write(codec, AIC3X_PAGE_SELECT, 0x00);
1073 cache[0xD] = tmp1;
1074 cache[0x8] = tmp2;
1076 return 0;
1079 static int aic3x_regulator_event(struct notifier_block *nb,
1080 unsigned long event, void *data)
1082 struct aic3x_disable_nb *disable_nb =
1083 container_of(nb, struct aic3x_disable_nb, nb);
1084 struct aic3x_priv *aic3x = disable_nb->aic3x;
1086 if (event & REGULATOR_EVENT_DISABLE) {
1088 * Put codec to reset and require cache sync as at least one
1089 * of the supplies was disabled
1091 if (gpio_is_valid(aic3x->gpio_reset))
1092 gpio_set_value(aic3x->gpio_reset, 0);
1093 aic3x->codec->cache_sync = 1;
1096 return 0;
1099 static int aic3x_set_power(struct snd_soc_codec *codec, int power)
1101 struct aic3x_priv *aic3x = snd_soc_codec_get_drvdata(codec);
1102 int i, ret;
1103 u8 *cache = codec->reg_cache;
1105 if (power) {
1106 ret = regulator_bulk_enable(ARRAY_SIZE(aic3x->supplies),
1107 aic3x->supplies);
1108 if (ret)
1109 goto out;
1110 aic3x->power = 1;
1112 * Reset release and cache sync is necessary only if some
1113 * supply was off or if there were cached writes
1115 if (!codec->cache_sync)
1116 goto out;
1118 if (gpio_is_valid(aic3x->gpio_reset)) {
1119 udelay(1);
1120 gpio_set_value(aic3x->gpio_reset, 1);
1123 /* Sync reg_cache with the hardware */
1124 codec->cache_only = 0;
1125 for (i = AIC3X_SAMPLE_RATE_SEL_REG; i < ARRAY_SIZE(aic3x_reg); i++)
1126 snd_soc_write(codec, i, cache[i]);
1127 if (aic3x->model == AIC3X_MODEL_3007)
1128 aic3x_init_3007(codec);
1129 codec->cache_sync = 0;
1130 } else {
1132 * Do soft reset to this codec instance in order to clear
1133 * possible VDD leakage currents in case the supply regulators
1134 * remain on
1136 snd_soc_write(codec, AIC3X_RESET, SOFT_RESET);
1137 codec->cache_sync = 1;
1138 aic3x->power = 0;
1139 /* HW writes are needless when bias is off */
1140 codec->cache_only = 1;
1141 ret = regulator_bulk_disable(ARRAY_SIZE(aic3x->supplies),
1142 aic3x->supplies);
1144 out:
1145 return ret;
1148 static int aic3x_set_bias_level(struct snd_soc_codec *codec,
1149 enum snd_soc_bias_level level)
1151 struct aic3x_priv *aic3x = snd_soc_codec_get_drvdata(codec);
1152 u8 reg;
1154 switch (level) {
1155 case SND_SOC_BIAS_ON:
1156 break;
1157 case SND_SOC_BIAS_PREPARE:
1158 if (codec->dapm.bias_level == SND_SOC_BIAS_STANDBY &&
1159 aic3x->master) {
1160 /* enable pll */
1161 reg = snd_soc_read(codec, AIC3X_PLL_PROGA_REG);
1162 snd_soc_write(codec, AIC3X_PLL_PROGA_REG,
1163 reg | PLL_ENABLE);
1165 break;
1166 case SND_SOC_BIAS_STANDBY:
1167 if (!aic3x->power)
1168 aic3x_set_power(codec, 1);
1169 if (codec->dapm.bias_level == SND_SOC_BIAS_PREPARE &&
1170 aic3x->master) {
1171 /* disable pll */
1172 reg = snd_soc_read(codec, AIC3X_PLL_PROGA_REG);
1173 snd_soc_write(codec, AIC3X_PLL_PROGA_REG,
1174 reg & ~PLL_ENABLE);
1176 break;
1177 case SND_SOC_BIAS_OFF:
1178 if (aic3x->power)
1179 aic3x_set_power(codec, 0);
1180 break;
1182 codec->dapm.bias_level = level;
1184 return 0;
1187 void aic3x_set_gpio(struct snd_soc_codec *codec, int gpio, int state)
1189 u8 reg = gpio ? AIC3X_GPIO2_REG : AIC3X_GPIO1_REG;
1190 u8 bit = gpio ? 3: 0;
1191 u8 val = snd_soc_read(codec, reg) & ~(1 << bit);
1192 snd_soc_write(codec, reg, val | (!!state << bit));
1194 EXPORT_SYMBOL_GPL(aic3x_set_gpio);
1196 int aic3x_get_gpio(struct snd_soc_codec *codec, int gpio)
1198 u8 reg = gpio ? AIC3X_GPIO2_REG : AIC3X_GPIO1_REG;
1199 u8 val = 0, bit = gpio ? 2 : 1;
1201 aic3x_read(codec, reg, &val);
1202 return (val >> bit) & 1;
1204 EXPORT_SYMBOL_GPL(aic3x_get_gpio);
1206 void aic3x_set_headset_detection(struct snd_soc_codec *codec, int detect,
1207 int headset_debounce, int button_debounce)
1209 u8 val;
1211 val = ((detect & AIC3X_HEADSET_DETECT_MASK)
1212 << AIC3X_HEADSET_DETECT_SHIFT) |
1213 ((headset_debounce & AIC3X_HEADSET_DEBOUNCE_MASK)
1214 << AIC3X_HEADSET_DEBOUNCE_SHIFT) |
1215 ((button_debounce & AIC3X_BUTTON_DEBOUNCE_MASK)
1216 << AIC3X_BUTTON_DEBOUNCE_SHIFT);
1218 if (detect & AIC3X_HEADSET_DETECT_MASK)
1219 val |= AIC3X_HEADSET_DETECT_ENABLED;
1221 snd_soc_write(codec, AIC3X_HEADSET_DETECT_CTRL_A, val);
1223 EXPORT_SYMBOL_GPL(aic3x_set_headset_detection);
1225 int aic3x_headset_detected(struct snd_soc_codec *codec)
1227 u8 val = 0;
1228 aic3x_read(codec, AIC3X_HEADSET_DETECT_CTRL_B, &val);
1229 return (val >> 4) & 1;
1231 EXPORT_SYMBOL_GPL(aic3x_headset_detected);
1233 int aic3x_button_pressed(struct snd_soc_codec *codec)
1235 u8 val = 0;
1236 aic3x_read(codec, AIC3X_HEADSET_DETECT_CTRL_B, &val);
1237 return (val >> 5) & 1;
1239 EXPORT_SYMBOL_GPL(aic3x_button_pressed);
1241 #define AIC3X_RATES SNDRV_PCM_RATE_8000_96000
1242 #define AIC3X_FORMATS (SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S20_3LE | \
1243 SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S32_LE)
1245 static struct snd_soc_dai_ops aic3x_dai_ops = {
1246 .hw_params = aic3x_hw_params,
1247 .digital_mute = aic3x_mute,
1248 .set_sysclk = aic3x_set_dai_sysclk,
1249 .set_fmt = aic3x_set_dai_fmt,
1252 static struct snd_soc_dai_driver aic3x_dai = {
1253 .name = "tlv320aic3x-hifi",
1254 .playback = {
1255 .stream_name = "Playback",
1256 .channels_min = 1,
1257 .channels_max = 2,
1258 .rates = AIC3X_RATES,
1259 .formats = AIC3X_FORMATS,},
1260 .capture = {
1261 .stream_name = "Capture",
1262 .channels_min = 1,
1263 .channels_max = 2,
1264 .rates = AIC3X_RATES,
1265 .formats = AIC3X_FORMATS,},
1266 .ops = &aic3x_dai_ops,
1267 .symmetric_rates = 1,
1270 static int aic3x_suspend(struct snd_soc_codec *codec, pm_message_t state)
1272 aic3x_set_bias_level(codec, SND_SOC_BIAS_OFF);
1274 return 0;
1277 static int aic3x_resume(struct snd_soc_codec *codec)
1279 aic3x_set_bias_level(codec, SND_SOC_BIAS_STANDBY);
1281 return 0;
1285 * initialise the AIC3X driver
1286 * register the mixer and dsp interfaces with the kernel
1288 static int aic3x_init(struct snd_soc_codec *codec)
1290 struct aic3x_priv *aic3x = snd_soc_codec_get_drvdata(codec);
1291 int reg;
1293 snd_soc_write(codec, AIC3X_PAGE_SELECT, PAGE0_SELECT);
1294 snd_soc_write(codec, AIC3X_RESET, SOFT_RESET);
1296 /* DAC default volume and mute */
1297 snd_soc_write(codec, LDAC_VOL, DEFAULT_VOL | MUTE_ON);
1298 snd_soc_write(codec, RDAC_VOL, DEFAULT_VOL | MUTE_ON);
1300 /* DAC to HP default volume and route to Output mixer */
1301 snd_soc_write(codec, DACL1_2_HPLOUT_VOL, DEFAULT_VOL | ROUTE_ON);
1302 snd_soc_write(codec, DACR1_2_HPROUT_VOL, DEFAULT_VOL | ROUTE_ON);
1303 snd_soc_write(codec, DACL1_2_HPLCOM_VOL, DEFAULT_VOL | ROUTE_ON);
1304 snd_soc_write(codec, DACR1_2_HPRCOM_VOL, DEFAULT_VOL | ROUTE_ON);
1305 /* DAC to Line Out default volume and route to Output mixer */
1306 snd_soc_write(codec, DACL1_2_LLOPM_VOL, DEFAULT_VOL | ROUTE_ON);
1307 snd_soc_write(codec, DACR1_2_RLOPM_VOL, DEFAULT_VOL | ROUTE_ON);
1308 /* DAC to Mono Line Out default volume and route to Output mixer */
1309 snd_soc_write(codec, DACL1_2_MONOLOPM_VOL, DEFAULT_VOL | ROUTE_ON);
1310 snd_soc_write(codec, DACR1_2_MONOLOPM_VOL, DEFAULT_VOL | ROUTE_ON);
1312 /* unmute all outputs */
1313 reg = snd_soc_read(codec, LLOPM_CTRL);
1314 snd_soc_write(codec, LLOPM_CTRL, reg | UNMUTE);
1315 reg = snd_soc_read(codec, RLOPM_CTRL);
1316 snd_soc_write(codec, RLOPM_CTRL, reg | UNMUTE);
1317 reg = snd_soc_read(codec, MONOLOPM_CTRL);
1318 snd_soc_write(codec, MONOLOPM_CTRL, reg | UNMUTE);
1319 reg = snd_soc_read(codec, HPLOUT_CTRL);
1320 snd_soc_write(codec, HPLOUT_CTRL, reg | UNMUTE);
1321 reg = snd_soc_read(codec, HPROUT_CTRL);
1322 snd_soc_write(codec, HPROUT_CTRL, reg | UNMUTE);
1323 reg = snd_soc_read(codec, HPLCOM_CTRL);
1324 snd_soc_write(codec, HPLCOM_CTRL, reg | UNMUTE);
1325 reg = snd_soc_read(codec, HPRCOM_CTRL);
1326 snd_soc_write(codec, HPRCOM_CTRL, reg | UNMUTE);
1328 /* ADC default volume and unmute */
1329 snd_soc_write(codec, LADC_VOL, DEFAULT_GAIN);
1330 snd_soc_write(codec, RADC_VOL, DEFAULT_GAIN);
1331 /* By default route Line1 to ADC PGA mixer */
1332 snd_soc_write(codec, LINE1L_2_LADC_CTRL, 0x0);
1333 snd_soc_write(codec, LINE1R_2_RADC_CTRL, 0x0);
1335 /* PGA to HP Bypass default volume, disconnect from Output Mixer */
1336 snd_soc_write(codec, PGAL_2_HPLOUT_VOL, DEFAULT_VOL);
1337 snd_soc_write(codec, PGAR_2_HPROUT_VOL, DEFAULT_VOL);
1338 snd_soc_write(codec, PGAL_2_HPLCOM_VOL, DEFAULT_VOL);
1339 snd_soc_write(codec, PGAR_2_HPRCOM_VOL, DEFAULT_VOL);
1340 /* PGA to Line Out default volume, disconnect from Output Mixer */
1341 snd_soc_write(codec, PGAL_2_LLOPM_VOL, DEFAULT_VOL);
1342 snd_soc_write(codec, PGAR_2_RLOPM_VOL, DEFAULT_VOL);
1343 /* PGA to Mono Line Out default volume, disconnect from Output Mixer */
1344 snd_soc_write(codec, PGAL_2_MONOLOPM_VOL, DEFAULT_VOL);
1345 snd_soc_write(codec, PGAR_2_MONOLOPM_VOL, DEFAULT_VOL);
1347 /* Line2 to HP Bypass default volume, disconnect from Output Mixer */
1348 snd_soc_write(codec, LINE2L_2_HPLOUT_VOL, DEFAULT_VOL);
1349 snd_soc_write(codec, LINE2R_2_HPROUT_VOL, DEFAULT_VOL);
1350 snd_soc_write(codec, LINE2L_2_HPLCOM_VOL, DEFAULT_VOL);
1351 snd_soc_write(codec, LINE2R_2_HPRCOM_VOL, DEFAULT_VOL);
1352 /* Line2 Line Out default volume, disconnect from Output Mixer */
1353 snd_soc_write(codec, LINE2L_2_LLOPM_VOL, DEFAULT_VOL);
1354 snd_soc_write(codec, LINE2R_2_RLOPM_VOL, DEFAULT_VOL);
1355 /* Line2 to Mono Out default volume, disconnect from Output Mixer */
1356 snd_soc_write(codec, LINE2L_2_MONOLOPM_VOL, DEFAULT_VOL);
1357 snd_soc_write(codec, LINE2R_2_MONOLOPM_VOL, DEFAULT_VOL);
1359 if (aic3x->model == AIC3X_MODEL_3007) {
1360 aic3x_init_3007(codec);
1361 snd_soc_write(codec, CLASSD_CTRL, 0);
1364 return 0;
1367 static bool aic3x_is_shared_reset(struct aic3x_priv *aic3x)
1369 struct aic3x_priv *a;
1371 list_for_each_entry(a, &reset_list, list) {
1372 if (gpio_is_valid(aic3x->gpio_reset) &&
1373 aic3x->gpio_reset == a->gpio_reset)
1374 return true;
1377 return false;
1380 static int aic3x_probe(struct snd_soc_codec *codec)
1382 struct aic3x_priv *aic3x = snd_soc_codec_get_drvdata(codec);
1383 int ret, i;
1385 INIT_LIST_HEAD(&aic3x->list);
1386 codec->control_data = aic3x->control_data;
1387 aic3x->codec = codec;
1388 codec->dapm.idle_bias_off = 1;
1390 ret = snd_soc_codec_set_cache_io(codec, 8, 8, aic3x->control_type);
1391 if (ret != 0) {
1392 dev_err(codec->dev, "Failed to set cache I/O: %d\n", ret);
1393 return ret;
1396 if (gpio_is_valid(aic3x->gpio_reset) &&
1397 !aic3x_is_shared_reset(aic3x)) {
1398 ret = gpio_request(aic3x->gpio_reset, "tlv320aic3x reset");
1399 if (ret != 0)
1400 goto err_gpio;
1401 gpio_direction_output(aic3x->gpio_reset, 0);
1404 for (i = 0; i < ARRAY_SIZE(aic3x->supplies); i++)
1405 aic3x->supplies[i].supply = aic3x_supply_names[i];
1407 ret = regulator_bulk_get(codec->dev, ARRAY_SIZE(aic3x->supplies),
1408 aic3x->supplies);
1409 if (ret != 0) {
1410 dev_err(codec->dev, "Failed to request supplies: %d\n", ret);
1411 goto err_get;
1413 for (i = 0; i < ARRAY_SIZE(aic3x->supplies); i++) {
1414 aic3x->disable_nb[i].nb.notifier_call = aic3x_regulator_event;
1415 aic3x->disable_nb[i].aic3x = aic3x;
1416 ret = regulator_register_notifier(aic3x->supplies[i].consumer,
1417 &aic3x->disable_nb[i].nb);
1418 if (ret) {
1419 dev_err(codec->dev,
1420 "Failed to request regulator notifier: %d\n",
1421 ret);
1422 goto err_notif;
1426 codec->cache_only = 1;
1427 aic3x_init(codec);
1429 if (aic3x->setup) {
1430 /* setup GPIO functions */
1431 snd_soc_write(codec, AIC3X_GPIO1_REG,
1432 (aic3x->setup->gpio_func[0] & 0xf) << 4);
1433 snd_soc_write(codec, AIC3X_GPIO2_REG,
1434 (aic3x->setup->gpio_func[1] & 0xf) << 4);
1437 snd_soc_add_controls(codec, aic3x_snd_controls,
1438 ARRAY_SIZE(aic3x_snd_controls));
1439 if (aic3x->model == AIC3X_MODEL_3007)
1440 snd_soc_add_controls(codec, &aic3x_classd_amp_gain_ctrl, 1);
1442 aic3x_add_widgets(codec);
1443 list_add(&aic3x->list, &reset_list);
1445 return 0;
1447 err_notif:
1448 while (i--)
1449 regulator_unregister_notifier(aic3x->supplies[i].consumer,
1450 &aic3x->disable_nb[i].nb);
1451 regulator_bulk_free(ARRAY_SIZE(aic3x->supplies), aic3x->supplies);
1452 err_get:
1453 if (gpio_is_valid(aic3x->gpio_reset) &&
1454 !aic3x_is_shared_reset(aic3x))
1455 gpio_free(aic3x->gpio_reset);
1456 err_gpio:
1457 return ret;
1460 static int aic3x_remove(struct snd_soc_codec *codec)
1462 struct aic3x_priv *aic3x = snd_soc_codec_get_drvdata(codec);
1463 int i;
1465 aic3x_set_bias_level(codec, SND_SOC_BIAS_OFF);
1466 list_del(&aic3x->list);
1467 if (gpio_is_valid(aic3x->gpio_reset) &&
1468 !aic3x_is_shared_reset(aic3x)) {
1469 gpio_set_value(aic3x->gpio_reset, 0);
1470 gpio_free(aic3x->gpio_reset);
1472 for (i = 0; i < ARRAY_SIZE(aic3x->supplies); i++)
1473 regulator_unregister_notifier(aic3x->supplies[i].consumer,
1474 &aic3x->disable_nb[i].nb);
1475 regulator_bulk_free(ARRAY_SIZE(aic3x->supplies), aic3x->supplies);
1477 return 0;
1480 static struct snd_soc_codec_driver soc_codec_dev_aic3x = {
1481 .set_bias_level = aic3x_set_bias_level,
1482 .reg_cache_size = ARRAY_SIZE(aic3x_reg),
1483 .reg_word_size = sizeof(u8),
1484 .reg_cache_default = aic3x_reg,
1485 .probe = aic3x_probe,
1486 .remove = aic3x_remove,
1487 .suspend = aic3x_suspend,
1488 .resume = aic3x_resume,
1491 #if defined(CONFIG_I2C) || defined(CONFIG_I2C_MODULE)
1493 * AIC3X 2 wire address can be up to 4 devices with device addresses
1494 * 0x18, 0x19, 0x1A, 0x1B
1497 static const struct i2c_device_id aic3x_i2c_id[] = {
1498 [AIC3X_MODEL_3X] = { "tlv320aic3x", 0 },
1499 [AIC3X_MODEL_33] = { "tlv320aic33", 0 },
1500 [AIC3X_MODEL_3007] = { "tlv320aic3007", 0 },
1503 MODULE_DEVICE_TABLE(i2c, aic3x_i2c_id);
1506 * If the i2c layer weren't so broken, we could pass this kind of data
1507 * around
1509 static int aic3x_i2c_probe(struct i2c_client *i2c,
1510 const struct i2c_device_id *id)
1512 struct aic3x_pdata *pdata = i2c->dev.platform_data;
1513 struct aic3x_priv *aic3x;
1514 int ret;
1515 const struct i2c_device_id *tbl;
1517 aic3x = kzalloc(sizeof(struct aic3x_priv), GFP_KERNEL);
1518 if (aic3x == NULL) {
1519 dev_err(&i2c->dev, "failed to create private data\n");
1520 return -ENOMEM;
1523 aic3x->control_data = i2c;
1524 aic3x->control_type = SND_SOC_I2C;
1526 i2c_set_clientdata(i2c, aic3x);
1527 if (pdata) {
1528 aic3x->gpio_reset = pdata->gpio_reset;
1529 aic3x->setup = pdata->setup;
1530 } else {
1531 aic3x->gpio_reset = -1;
1534 for (tbl = aic3x_i2c_id; tbl->name[0]; tbl++) {
1535 if (!strcmp(tbl->name, id->name))
1536 break;
1538 aic3x->model = tbl - aic3x_i2c_id;
1540 ret = snd_soc_register_codec(&i2c->dev,
1541 &soc_codec_dev_aic3x, &aic3x_dai, 1);
1542 if (ret < 0)
1543 kfree(aic3x);
1544 return ret;
1547 static int aic3x_i2c_remove(struct i2c_client *client)
1549 snd_soc_unregister_codec(&client->dev);
1550 kfree(i2c_get_clientdata(client));
1551 return 0;
1554 /* machine i2c codec control layer */
1555 static struct i2c_driver aic3x_i2c_driver = {
1556 .driver = {
1557 .name = "tlv320aic3x-codec",
1558 .owner = THIS_MODULE,
1560 .probe = aic3x_i2c_probe,
1561 .remove = aic3x_i2c_remove,
1562 .id_table = aic3x_i2c_id,
1564 #endif
1566 static int __init aic3x_modinit(void)
1568 int ret = 0;
1569 #if defined(CONFIG_I2C) || defined(CONFIG_I2C_MODULE)
1570 ret = i2c_add_driver(&aic3x_i2c_driver);
1571 if (ret != 0) {
1572 printk(KERN_ERR "Failed to register TLV320AIC3x I2C driver: %d\n",
1573 ret);
1575 #endif
1576 return ret;
1578 module_init(aic3x_modinit);
1580 static void __exit aic3x_exit(void)
1582 #if defined(CONFIG_I2C) || defined(CONFIG_I2C_MODULE)
1583 i2c_del_driver(&aic3x_i2c_driver);
1584 #endif
1586 module_exit(aic3x_exit);
1588 MODULE_DESCRIPTION("ASoC TLV320AIC3X codec driver");
1589 MODULE_AUTHOR("Vladimir Barinov");
1590 MODULE_LICENSE("GPL");