netem: revised correlated loss generator
[linux-2.6/kvm.git] / net / sched / sch_netem.c
blob5bbcccc353d0a596cda5f417aba540ebf98e1772
1 /*
2 * net/sched/sch_netem.c Network emulator
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License.
9 * Many of the algorithms and ideas for this came from
10 * NIST Net which is not copyrighted.
12 * Authors: Stephen Hemminger <shemminger@osdl.org>
13 * Catalin(ux aka Dino) BOIE <catab at umbrella dot ro>
16 #include <linux/module.h>
17 #include <linux/slab.h>
18 #include <linux/types.h>
19 #include <linux/kernel.h>
20 #include <linux/errno.h>
21 #include <linux/skbuff.h>
22 #include <linux/rtnetlink.h>
24 #include <net/netlink.h>
25 #include <net/pkt_sched.h>
27 #define VERSION "1.2"
29 /* Network Emulation Queuing algorithm.
30 ====================================
32 Sources: [1] Mark Carson, Darrin Santay, "NIST Net - A Linux-based
33 Network Emulation Tool
34 [2] Luigi Rizzo, DummyNet for FreeBSD
36 ----------------------------------------------------------------
38 This started out as a simple way to delay outgoing packets to
39 test TCP but has grown to include most of the functionality
40 of a full blown network emulator like NISTnet. It can delay
41 packets and add random jitter (and correlation). The random
42 distribution can be loaded from a table as well to provide
43 normal, Pareto, or experimental curves. Packet loss,
44 duplication, and reordering can also be emulated.
46 This qdisc does not do classification that can be handled in
47 layering other disciplines. It does not need to do bandwidth
48 control either since that can be handled by using token
49 bucket or other rate control.
51 Correlated Loss Generator models
53 Added generation of correlated loss according to the
54 "Gilbert-Elliot" model, a 4-state markov model.
56 References:
57 [1] NetemCLG Home http://netgroup.uniroma2.it/NetemCLG
58 [2] S. Salsano, F. Ludovici, A. Ordine, "Definition of a general
59 and intuitive loss model for packet networks and its implementation
60 in the Netem module in the Linux kernel", available in [1]
62 Authors: Stefano Salsano <stefano.salsano at uniroma2.it
63 Fabio Ludovici <fabio.ludovici at yahoo.it>
66 struct netem_sched_data {
67 struct Qdisc *qdisc;
68 struct qdisc_watchdog watchdog;
70 psched_tdiff_t latency;
71 psched_tdiff_t jitter;
73 u32 loss;
74 u32 limit;
75 u32 counter;
76 u32 gap;
77 u32 duplicate;
78 u32 reorder;
79 u32 corrupt;
81 struct crndstate {
82 u32 last;
83 u32 rho;
84 } delay_cor, loss_cor, dup_cor, reorder_cor, corrupt_cor;
86 struct disttable {
87 u32 size;
88 s16 table[0];
89 } *delay_dist;
91 enum {
92 CLG_RANDOM,
93 CLG_4_STATES,
94 CLG_GILB_ELL,
95 } loss_model;
97 /* Correlated Loss Generation models */
98 struct clgstate {
99 /* state of the Markov chain */
100 u8 state;
102 /* 4-states and Gilbert-Elliot models */
103 u32 a1; /* p13 for 4-states or p for GE */
104 u32 a2; /* p31 for 4-states or r for GE */
105 u32 a3; /* p32 for 4-states or h for GE */
106 u32 a4; /* p14 for 4-states or 1-k for GE */
107 u32 a5; /* p23 used only in 4-states */
108 } clg;
112 /* Time stamp put into socket buffer control block */
113 struct netem_skb_cb {
114 psched_time_t time_to_send;
117 static inline struct netem_skb_cb *netem_skb_cb(struct sk_buff *skb)
119 BUILD_BUG_ON(sizeof(skb->cb) <
120 sizeof(struct qdisc_skb_cb) + sizeof(struct netem_skb_cb));
121 return (struct netem_skb_cb *)qdisc_skb_cb(skb)->data;
124 /* init_crandom - initialize correlated random number generator
125 * Use entropy source for initial seed.
127 static void init_crandom(struct crndstate *state, unsigned long rho)
129 state->rho = rho;
130 state->last = net_random();
133 /* get_crandom - correlated random number generator
134 * Next number depends on last value.
135 * rho is scaled to avoid floating point.
137 static u32 get_crandom(struct crndstate *state)
139 u64 value, rho;
140 unsigned long answer;
142 if (state->rho == 0) /* no correlation */
143 return net_random();
145 value = net_random();
146 rho = (u64)state->rho + 1;
147 answer = (value * ((1ull<<32) - rho) + state->last * rho) >> 32;
148 state->last = answer;
149 return answer;
152 /* loss_4state - 4-state model loss generator
153 * Generates losses according to the 4-state Markov chain adopted in
154 * the GI (General and Intuitive) loss model.
156 static bool loss_4state(struct netem_sched_data *q)
158 struct clgstate *clg = &q->clg;
159 u32 rnd = net_random();
162 * Makes a comparision between rnd and the transition
163 * probabilities outgoing from the current state, then decides the
164 * next state and if the next packet has to be transmitted or lost.
165 * The four states correspond to:
166 * 1 => successfully transmitted packets within a gap period
167 * 4 => isolated losses within a gap period
168 * 3 => lost packets within a burst period
169 * 2 => successfully transmitted packets within a burst period
171 switch (clg->state) {
172 case 1:
173 if (rnd < clg->a4) {
174 clg->state = 4;
175 return true;
176 } else if (clg->a4 < rnd && rnd < clg->a1) {
177 clg->state = 3;
178 return true;
179 } else if (clg->a1 < rnd)
180 clg->state = 1;
182 break;
183 case 2:
184 if (rnd < clg->a5) {
185 clg->state = 3;
186 return true;
187 } else
188 clg->state = 2;
190 break;
191 case 3:
192 if (rnd < clg->a3)
193 clg->state = 2;
194 else if (clg->a3 < rnd && rnd < clg->a2 + clg->a3) {
195 clg->state = 1;
196 return true;
197 } else if (clg->a2 + clg->a3 < rnd) {
198 clg->state = 3;
199 return true;
201 break;
202 case 4:
203 clg->state = 1;
204 break;
207 return false;
210 /* loss_gilb_ell - Gilbert-Elliot model loss generator
211 * Generates losses according to the Gilbert-Elliot loss model or
212 * its special cases (Gilbert or Simple Gilbert)
214 * Makes a comparision between random number and the transition
215 * probabilities outgoing from the current state, then decides the
216 * next state. A second random number is extracted and the comparision
217 * with the loss probability of the current state decides if the next
218 * packet will be transmitted or lost.
220 static bool loss_gilb_ell(struct netem_sched_data *q)
222 struct clgstate *clg = &q->clg;
224 switch (clg->state) {
225 case 1:
226 if (net_random() < clg->a1)
227 clg->state = 2;
228 if (net_random() < clg->a4)
229 return true;
230 case 2:
231 if (net_random() < clg->a2)
232 clg->state = 1;
233 if (clg->a3 > net_random())
234 return true;
237 return false;
240 static bool loss_event(struct netem_sched_data *q)
242 switch (q->loss_model) {
243 case CLG_RANDOM:
244 /* Random packet drop 0 => none, ~0 => all */
245 return q->loss && q->loss >= get_crandom(&q->loss_cor);
247 case CLG_4_STATES:
248 /* 4state loss model algorithm (used also for GI model)
249 * Extracts a value from the markov 4 state loss generator,
250 * if it is 1 drops a packet and if needed writes the event in
251 * the kernel logs
253 return loss_4state(q);
255 case CLG_GILB_ELL:
256 /* Gilbert-Elliot loss model algorithm
257 * Extracts a value from the Gilbert-Elliot loss generator,
258 * if it is 1 drops a packet and if needed writes the event in
259 * the kernel logs
261 return loss_gilb_ell(q);
264 return false; /* not reached */
268 /* tabledist - return a pseudo-randomly distributed value with mean mu and
269 * std deviation sigma. Uses table lookup to approximate the desired
270 * distribution, and a uniformly-distributed pseudo-random source.
272 static psched_tdiff_t tabledist(psched_tdiff_t mu, psched_tdiff_t sigma,
273 struct crndstate *state,
274 const struct disttable *dist)
276 psched_tdiff_t x;
277 long t;
278 u32 rnd;
280 if (sigma == 0)
281 return mu;
283 rnd = get_crandom(state);
285 /* default uniform distribution */
286 if (dist == NULL)
287 return (rnd % (2*sigma)) - sigma + mu;
289 t = dist->table[rnd % dist->size];
290 x = (sigma % NETEM_DIST_SCALE) * t;
291 if (x >= 0)
292 x += NETEM_DIST_SCALE/2;
293 else
294 x -= NETEM_DIST_SCALE/2;
296 return x / NETEM_DIST_SCALE + (sigma / NETEM_DIST_SCALE) * t + mu;
300 * Insert one skb into qdisc.
301 * Note: parent depends on return value to account for queue length.
302 * NET_XMIT_DROP: queue length didn't change.
303 * NET_XMIT_SUCCESS: one skb was queued.
305 static int netem_enqueue(struct sk_buff *skb, struct Qdisc *sch)
307 struct netem_sched_data *q = qdisc_priv(sch);
308 /* We don't fill cb now as skb_unshare() may invalidate it */
309 struct netem_skb_cb *cb;
310 struct sk_buff *skb2;
311 int ret;
312 int count = 1;
314 pr_debug("netem_enqueue skb=%p\n", skb);
316 /* Random duplication */
317 if (q->duplicate && q->duplicate >= get_crandom(&q->dup_cor))
318 ++count;
320 /* Drop packet? */
321 if (loss_event(q))
322 --count;
324 if (count == 0) {
325 sch->qstats.drops++;
326 kfree_skb(skb);
327 return NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
330 skb_orphan(skb);
333 * If we need to duplicate packet, then re-insert at top of the
334 * qdisc tree, since parent queuer expects that only one
335 * skb will be queued.
337 if (count > 1 && (skb2 = skb_clone(skb, GFP_ATOMIC)) != NULL) {
338 struct Qdisc *rootq = qdisc_root(sch);
339 u32 dupsave = q->duplicate; /* prevent duplicating a dup... */
340 q->duplicate = 0;
342 qdisc_enqueue_root(skb2, rootq);
343 q->duplicate = dupsave;
347 * Randomized packet corruption.
348 * Make copy if needed since we are modifying
349 * If packet is going to be hardware checksummed, then
350 * do it now in software before we mangle it.
352 if (q->corrupt && q->corrupt >= get_crandom(&q->corrupt_cor)) {
353 if (!(skb = skb_unshare(skb, GFP_ATOMIC)) ||
354 (skb->ip_summed == CHECKSUM_PARTIAL &&
355 skb_checksum_help(skb))) {
356 sch->qstats.drops++;
357 return NET_XMIT_DROP;
360 skb->data[net_random() % skb_headlen(skb)] ^= 1<<(net_random() % 8);
363 cb = netem_skb_cb(skb);
364 if (q->gap == 0 || /* not doing reordering */
365 q->counter < q->gap || /* inside last reordering gap */
366 q->reorder < get_crandom(&q->reorder_cor)) {
367 psched_time_t now;
368 psched_tdiff_t delay;
370 delay = tabledist(q->latency, q->jitter,
371 &q->delay_cor, q->delay_dist);
373 now = psched_get_time();
374 cb->time_to_send = now + delay;
375 ++q->counter;
376 ret = qdisc_enqueue(skb, q->qdisc);
377 } else {
379 * Do re-ordering by putting one out of N packets at the front
380 * of the queue.
382 cb->time_to_send = psched_get_time();
383 q->counter = 0;
385 __skb_queue_head(&q->qdisc->q, skb);
386 q->qdisc->qstats.backlog += qdisc_pkt_len(skb);
387 q->qdisc->qstats.requeues++;
388 ret = NET_XMIT_SUCCESS;
391 if (ret != NET_XMIT_SUCCESS) {
392 if (net_xmit_drop_count(ret)) {
393 sch->qstats.drops++;
394 return ret;
398 sch->q.qlen++;
399 return NET_XMIT_SUCCESS;
402 static unsigned int netem_drop(struct Qdisc *sch)
404 struct netem_sched_data *q = qdisc_priv(sch);
405 unsigned int len = 0;
407 if (q->qdisc->ops->drop && (len = q->qdisc->ops->drop(q->qdisc)) != 0) {
408 sch->q.qlen--;
409 sch->qstats.drops++;
411 return len;
414 static struct sk_buff *netem_dequeue(struct Qdisc *sch)
416 struct netem_sched_data *q = qdisc_priv(sch);
417 struct sk_buff *skb;
419 if (qdisc_is_throttled(sch))
420 return NULL;
422 skb = q->qdisc->ops->peek(q->qdisc);
423 if (skb) {
424 const struct netem_skb_cb *cb = netem_skb_cb(skb);
425 psched_time_t now = psched_get_time();
427 /* if more time remaining? */
428 if (cb->time_to_send <= now) {
429 skb = qdisc_dequeue_peeked(q->qdisc);
430 if (unlikely(!skb))
431 return NULL;
433 #ifdef CONFIG_NET_CLS_ACT
435 * If it's at ingress let's pretend the delay is
436 * from the network (tstamp will be updated).
438 if (G_TC_FROM(skb->tc_verd) & AT_INGRESS)
439 skb->tstamp.tv64 = 0;
440 #endif
442 sch->q.qlen--;
443 qdisc_unthrottled(sch);
444 qdisc_bstats_update(sch, skb);
445 return skb;
448 qdisc_watchdog_schedule(&q->watchdog, cb->time_to_send);
451 return NULL;
454 static void netem_reset(struct Qdisc *sch)
456 struct netem_sched_data *q = qdisc_priv(sch);
458 qdisc_reset(q->qdisc);
459 sch->q.qlen = 0;
460 qdisc_watchdog_cancel(&q->watchdog);
463 static void dist_free(struct disttable *d)
465 if (d) {
466 if (is_vmalloc_addr(d))
467 vfree(d);
468 else
469 kfree(d);
474 * Distribution data is a variable size payload containing
475 * signed 16 bit values.
477 static int get_dist_table(struct Qdisc *sch, const struct nlattr *attr)
479 struct netem_sched_data *q = qdisc_priv(sch);
480 size_t n = nla_len(attr)/sizeof(__s16);
481 const __s16 *data = nla_data(attr);
482 spinlock_t *root_lock;
483 struct disttable *d;
484 int i;
485 size_t s;
487 if (n > NETEM_DIST_MAX)
488 return -EINVAL;
490 s = sizeof(struct disttable) + n * sizeof(s16);
491 d = kmalloc(s, GFP_KERNEL);
492 if (!d)
493 d = vmalloc(s);
494 if (!d)
495 return -ENOMEM;
497 d->size = n;
498 for (i = 0; i < n; i++)
499 d->table[i] = data[i];
501 root_lock = qdisc_root_sleeping_lock(sch);
503 spin_lock_bh(root_lock);
504 dist_free(q->delay_dist);
505 q->delay_dist = d;
506 spin_unlock_bh(root_lock);
507 return 0;
510 static void get_correlation(struct Qdisc *sch, const struct nlattr *attr)
512 struct netem_sched_data *q = qdisc_priv(sch);
513 const struct tc_netem_corr *c = nla_data(attr);
515 init_crandom(&q->delay_cor, c->delay_corr);
516 init_crandom(&q->loss_cor, c->loss_corr);
517 init_crandom(&q->dup_cor, c->dup_corr);
520 static void get_reorder(struct Qdisc *sch, const struct nlattr *attr)
522 struct netem_sched_data *q = qdisc_priv(sch);
523 const struct tc_netem_reorder *r = nla_data(attr);
525 q->reorder = r->probability;
526 init_crandom(&q->reorder_cor, r->correlation);
529 static void get_corrupt(struct Qdisc *sch, const struct nlattr *attr)
531 struct netem_sched_data *q = qdisc_priv(sch);
532 const struct tc_netem_corrupt *r = nla_data(attr);
534 q->corrupt = r->probability;
535 init_crandom(&q->corrupt_cor, r->correlation);
538 static int get_loss_clg(struct Qdisc *sch, const struct nlattr *attr)
540 struct netem_sched_data *q = qdisc_priv(sch);
541 const struct nlattr *la;
542 int rem;
544 nla_for_each_nested(la, attr, rem) {
545 u16 type = nla_type(la);
547 switch(type) {
548 case NETEM_LOSS_GI: {
549 const struct tc_netem_gimodel *gi = nla_data(la);
551 if (nla_len(la) != sizeof(struct tc_netem_gimodel)) {
552 pr_info("netem: incorrect gi model size\n");
553 return -EINVAL;
556 q->loss_model = CLG_4_STATES;
558 q->clg.state = 1;
559 q->clg.a1 = gi->p13;
560 q->clg.a2 = gi->p31;
561 q->clg.a3 = gi->p32;
562 q->clg.a4 = gi->p14;
563 q->clg.a5 = gi->p23;
564 break;
567 case NETEM_LOSS_GE: {
568 const struct tc_netem_gemodel *ge = nla_data(la);
570 if (nla_len(la) != sizeof(struct tc_netem_gemodel)) {
571 pr_info("netem: incorrect gi model size\n");
572 return -EINVAL;
575 q->loss_model = CLG_GILB_ELL;
576 q->clg.state = 1;
577 q->clg.a1 = ge->p;
578 q->clg.a2 = ge->r;
579 q->clg.a3 = ge->h;
580 q->clg.a4 = ge->k1;
581 break;
584 default:
585 pr_info("netem: unknown loss type %u\n", type);
586 return -EINVAL;
590 return 0;
593 static const struct nla_policy netem_policy[TCA_NETEM_MAX + 1] = {
594 [TCA_NETEM_CORR] = { .len = sizeof(struct tc_netem_corr) },
595 [TCA_NETEM_REORDER] = { .len = sizeof(struct tc_netem_reorder) },
596 [TCA_NETEM_CORRUPT] = { .len = sizeof(struct tc_netem_corrupt) },
597 [TCA_NETEM_LOSS] = { .type = NLA_NESTED },
600 static int parse_attr(struct nlattr *tb[], int maxtype, struct nlattr *nla,
601 const struct nla_policy *policy, int len)
603 int nested_len = nla_len(nla) - NLA_ALIGN(len);
605 if (nested_len < 0) {
606 pr_info("netem: invalid attributes len %d\n", nested_len);
607 return -EINVAL;
610 if (nested_len >= nla_attr_size(0))
611 return nla_parse(tb, maxtype, nla_data(nla) + NLA_ALIGN(len),
612 nested_len, policy);
614 memset(tb, 0, sizeof(struct nlattr *) * (maxtype + 1));
615 return 0;
618 /* Parse netlink message to set options */
619 static int netem_change(struct Qdisc *sch, struct nlattr *opt)
621 struct netem_sched_data *q = qdisc_priv(sch);
622 struct nlattr *tb[TCA_NETEM_MAX + 1];
623 struct tc_netem_qopt *qopt;
624 int ret;
626 if (opt == NULL)
627 return -EINVAL;
629 qopt = nla_data(opt);
630 ret = parse_attr(tb, TCA_NETEM_MAX, opt, netem_policy, sizeof(*qopt));
631 if (ret < 0)
632 return ret;
634 ret = fifo_set_limit(q->qdisc, qopt->limit);
635 if (ret) {
636 pr_debug("netem: can't set fifo limit\n");
637 return ret;
640 q->latency = qopt->latency;
641 q->jitter = qopt->jitter;
642 q->limit = qopt->limit;
643 q->gap = qopt->gap;
644 q->counter = 0;
645 q->loss = qopt->loss;
646 q->duplicate = qopt->duplicate;
648 /* for compatibility with earlier versions.
649 * if gap is set, need to assume 100% probability
651 if (q->gap)
652 q->reorder = ~0;
654 if (tb[TCA_NETEM_CORR])
655 get_correlation(sch, tb[TCA_NETEM_CORR]);
657 if (tb[TCA_NETEM_DELAY_DIST]) {
658 ret = get_dist_table(sch, tb[TCA_NETEM_DELAY_DIST]);
659 if (ret)
660 return ret;
663 if (tb[TCA_NETEM_REORDER])
664 get_reorder(sch, tb[TCA_NETEM_REORDER]);
666 if (tb[TCA_NETEM_CORRUPT])
667 get_corrupt(sch, tb[TCA_NETEM_CORRUPT]);
669 q->loss_model = CLG_RANDOM;
670 if (tb[TCA_NETEM_LOSS])
671 ret = get_loss_clg(sch, tb[TCA_NETEM_LOSS]);
673 return ret;
677 * Special case version of FIFO queue for use by netem.
678 * It queues in order based on timestamps in skb's
680 struct fifo_sched_data {
681 u32 limit;
682 psched_time_t oldest;
685 static int tfifo_enqueue(struct sk_buff *nskb, struct Qdisc *sch)
687 struct fifo_sched_data *q = qdisc_priv(sch);
688 struct sk_buff_head *list = &sch->q;
689 psched_time_t tnext = netem_skb_cb(nskb)->time_to_send;
690 struct sk_buff *skb;
692 if (likely(skb_queue_len(list) < q->limit)) {
693 /* Optimize for add at tail */
694 if (likely(skb_queue_empty(list) || tnext >= q->oldest)) {
695 q->oldest = tnext;
696 return qdisc_enqueue_tail(nskb, sch);
699 skb_queue_reverse_walk(list, skb) {
700 const struct netem_skb_cb *cb = netem_skb_cb(skb);
702 if (tnext >= cb->time_to_send)
703 break;
706 __skb_queue_after(list, skb, nskb);
708 sch->qstats.backlog += qdisc_pkt_len(nskb);
710 return NET_XMIT_SUCCESS;
713 return qdisc_reshape_fail(nskb, sch);
716 static int tfifo_init(struct Qdisc *sch, struct nlattr *opt)
718 struct fifo_sched_data *q = qdisc_priv(sch);
720 if (opt) {
721 struct tc_fifo_qopt *ctl = nla_data(opt);
722 if (nla_len(opt) < sizeof(*ctl))
723 return -EINVAL;
725 q->limit = ctl->limit;
726 } else
727 q->limit = max_t(u32, qdisc_dev(sch)->tx_queue_len, 1);
729 q->oldest = PSCHED_PASTPERFECT;
730 return 0;
733 static int tfifo_dump(struct Qdisc *sch, struct sk_buff *skb)
735 struct fifo_sched_data *q = qdisc_priv(sch);
736 struct tc_fifo_qopt opt = { .limit = q->limit };
738 NLA_PUT(skb, TCA_OPTIONS, sizeof(opt), &opt);
739 return skb->len;
741 nla_put_failure:
742 return -1;
745 static struct Qdisc_ops tfifo_qdisc_ops __read_mostly = {
746 .id = "tfifo",
747 .priv_size = sizeof(struct fifo_sched_data),
748 .enqueue = tfifo_enqueue,
749 .dequeue = qdisc_dequeue_head,
750 .peek = qdisc_peek_head,
751 .drop = qdisc_queue_drop,
752 .init = tfifo_init,
753 .reset = qdisc_reset_queue,
754 .change = tfifo_init,
755 .dump = tfifo_dump,
758 static int netem_init(struct Qdisc *sch, struct nlattr *opt)
760 struct netem_sched_data *q = qdisc_priv(sch);
761 int ret;
763 if (!opt)
764 return -EINVAL;
766 qdisc_watchdog_init(&q->watchdog, sch);
768 q->loss_model = CLG_RANDOM;
769 q->qdisc = qdisc_create_dflt(sch->dev_queue, &tfifo_qdisc_ops,
770 TC_H_MAKE(sch->handle, 1));
771 if (!q->qdisc) {
772 pr_debug("netem: qdisc create failed\n");
773 return -ENOMEM;
776 ret = netem_change(sch, opt);
777 if (ret) {
778 pr_debug("netem: change failed\n");
779 qdisc_destroy(q->qdisc);
781 return ret;
784 static void netem_destroy(struct Qdisc *sch)
786 struct netem_sched_data *q = qdisc_priv(sch);
788 qdisc_watchdog_cancel(&q->watchdog);
789 qdisc_destroy(q->qdisc);
790 dist_free(q->delay_dist);
793 static int dump_loss_model(const struct netem_sched_data *q,
794 struct sk_buff *skb)
796 struct nlattr *nest;
798 nest = nla_nest_start(skb, TCA_NETEM_LOSS);
799 if (nest == NULL)
800 goto nla_put_failure;
802 switch (q->loss_model) {
803 case CLG_RANDOM:
804 /* legacy loss model */
805 nla_nest_cancel(skb, nest);
806 return 0; /* no data */
808 case CLG_4_STATES: {
809 struct tc_netem_gimodel gi = {
810 .p13 = q->clg.a1,
811 .p31 = q->clg.a2,
812 .p32 = q->clg.a3,
813 .p14 = q->clg.a4,
814 .p23 = q->clg.a5,
817 NLA_PUT(skb, NETEM_LOSS_GI, sizeof(gi), &gi);
818 break;
820 case CLG_GILB_ELL: {
821 struct tc_netem_gemodel ge = {
822 .p = q->clg.a1,
823 .r = q->clg.a2,
824 .h = q->clg.a3,
825 .k1 = q->clg.a4,
828 NLA_PUT(skb, NETEM_LOSS_GE, sizeof(ge), &ge);
829 break;
833 nla_nest_end(skb, nest);
834 return 0;
836 nla_put_failure:
837 nla_nest_cancel(skb, nest);
838 return -1;
841 static int netem_dump(struct Qdisc *sch, struct sk_buff *skb)
843 const struct netem_sched_data *q = qdisc_priv(sch);
844 struct nlattr *nla = (struct nlattr *) skb_tail_pointer(skb);
845 struct tc_netem_qopt qopt;
846 struct tc_netem_corr cor;
847 struct tc_netem_reorder reorder;
848 struct tc_netem_corrupt corrupt;
850 qopt.latency = q->latency;
851 qopt.jitter = q->jitter;
852 qopt.limit = q->limit;
853 qopt.loss = q->loss;
854 qopt.gap = q->gap;
855 qopt.duplicate = q->duplicate;
856 NLA_PUT(skb, TCA_OPTIONS, sizeof(qopt), &qopt);
858 cor.delay_corr = q->delay_cor.rho;
859 cor.loss_corr = q->loss_cor.rho;
860 cor.dup_corr = q->dup_cor.rho;
861 NLA_PUT(skb, TCA_NETEM_CORR, sizeof(cor), &cor);
863 reorder.probability = q->reorder;
864 reorder.correlation = q->reorder_cor.rho;
865 NLA_PUT(skb, TCA_NETEM_REORDER, sizeof(reorder), &reorder);
867 corrupt.probability = q->corrupt;
868 corrupt.correlation = q->corrupt_cor.rho;
869 NLA_PUT(skb, TCA_NETEM_CORRUPT, sizeof(corrupt), &corrupt);
871 if (dump_loss_model(q, skb) != 0)
872 goto nla_put_failure;
874 return nla_nest_end(skb, nla);
876 nla_put_failure:
877 nlmsg_trim(skb, nla);
878 return -1;
881 static int netem_dump_class(struct Qdisc *sch, unsigned long cl,
882 struct sk_buff *skb, struct tcmsg *tcm)
884 struct netem_sched_data *q = qdisc_priv(sch);
886 if (cl != 1) /* only one class */
887 return -ENOENT;
889 tcm->tcm_handle |= TC_H_MIN(1);
890 tcm->tcm_info = q->qdisc->handle;
892 return 0;
895 static int netem_graft(struct Qdisc *sch, unsigned long arg, struct Qdisc *new,
896 struct Qdisc **old)
898 struct netem_sched_data *q = qdisc_priv(sch);
900 if (new == NULL)
901 new = &noop_qdisc;
903 sch_tree_lock(sch);
904 *old = q->qdisc;
905 q->qdisc = new;
906 qdisc_tree_decrease_qlen(*old, (*old)->q.qlen);
907 qdisc_reset(*old);
908 sch_tree_unlock(sch);
910 return 0;
913 static struct Qdisc *netem_leaf(struct Qdisc *sch, unsigned long arg)
915 struct netem_sched_data *q = qdisc_priv(sch);
916 return q->qdisc;
919 static unsigned long netem_get(struct Qdisc *sch, u32 classid)
921 return 1;
924 static void netem_put(struct Qdisc *sch, unsigned long arg)
928 static void netem_walk(struct Qdisc *sch, struct qdisc_walker *walker)
930 if (!walker->stop) {
931 if (walker->count >= walker->skip)
932 if (walker->fn(sch, 1, walker) < 0) {
933 walker->stop = 1;
934 return;
936 walker->count++;
940 static const struct Qdisc_class_ops netem_class_ops = {
941 .graft = netem_graft,
942 .leaf = netem_leaf,
943 .get = netem_get,
944 .put = netem_put,
945 .walk = netem_walk,
946 .dump = netem_dump_class,
949 static struct Qdisc_ops netem_qdisc_ops __read_mostly = {
950 .id = "netem",
951 .cl_ops = &netem_class_ops,
952 .priv_size = sizeof(struct netem_sched_data),
953 .enqueue = netem_enqueue,
954 .dequeue = netem_dequeue,
955 .peek = qdisc_peek_dequeued,
956 .drop = netem_drop,
957 .init = netem_init,
958 .reset = netem_reset,
959 .destroy = netem_destroy,
960 .change = netem_change,
961 .dump = netem_dump,
962 .owner = THIS_MODULE,
966 static int __init netem_module_init(void)
968 pr_info("netem: version " VERSION "\n");
969 return register_qdisc(&netem_qdisc_ops);
971 static void __exit netem_module_exit(void)
973 unregister_qdisc(&netem_qdisc_ops);
975 module_init(netem_module_init)
976 module_exit(netem_module_exit)
977 MODULE_LICENSE("GPL");