[MIPS] SMTC: Synchronize cp0 counters on bootup.
[linux-2.6/kvm.git] / arch / mips / kernel / smtc.c
blob3b78caf112f5d5c361bdb82fb0c1f455fb9a9cf2
1 /* Copyright (C) 2004 Mips Technologies, Inc */
3 #include <linux/kernel.h>
4 #include <linux/sched.h>
5 #include <linux/cpumask.h>
6 #include <linux/interrupt.h>
8 #include <asm/cpu.h>
9 #include <asm/processor.h>
10 #include <asm/atomic.h>
11 #include <asm/system.h>
12 #include <asm/hardirq.h>
13 #include <asm/hazards.h>
14 #include <asm/mmu_context.h>
15 #include <asm/smp.h>
16 #include <asm/mipsregs.h>
17 #include <asm/cacheflush.h>
18 #include <asm/time.h>
19 #include <asm/addrspace.h>
20 #include <asm/smtc.h>
21 #include <asm/smtc_ipi.h>
22 #include <asm/smtc_proc.h>
25 * This file should be built into the kernel only if CONFIG_MIPS_MT_SMTC is set.
29 * MIPSCPU_INT_BASE is identically defined in both
30 * asm-mips/mips-boards/maltaint.h and asm-mips/mips-boards/simint.h,
31 * but as yet there's no properly organized include structure that
32 * will ensure that the right *int.h file will be included for a
33 * given platform build.
36 #define MIPSCPU_INT_BASE 16
38 #define MIPS_CPU_IPI_IRQ 1
40 #define LOCK_MT_PRA() \
41 local_irq_save(flags); \
42 mtflags = dmt()
44 #define UNLOCK_MT_PRA() \
45 emt(mtflags); \
46 local_irq_restore(flags)
48 #define LOCK_CORE_PRA() \
49 local_irq_save(flags); \
50 mtflags = dvpe()
52 #define UNLOCK_CORE_PRA() \
53 evpe(mtflags); \
54 local_irq_restore(flags)
57 * Data structures purely associated with SMTC parallelism
62 * Table for tracking ASIDs whose lifetime is prolonged.
65 asiduse smtc_live_asid[MAX_SMTC_TLBS][MAX_SMTC_ASIDS];
68 * Clock interrupt "latch" buffers, per "CPU"
71 unsigned int ipi_timer_latch[NR_CPUS];
74 * Number of InterProcessor Interupt (IPI) message buffers to allocate
77 #define IPIBUF_PER_CPU 4
79 struct smtc_ipi_q IPIQ[NR_CPUS];
80 struct smtc_ipi_q freeIPIq;
83 /* Forward declarations */
85 void ipi_decode(struct smtc_ipi *);
86 void post_direct_ipi(int cpu, struct smtc_ipi *pipi);
87 void setup_cross_vpe_interrupts(void);
88 void init_smtc_stats(void);
90 /* Global SMTC Status */
92 unsigned int smtc_status = 0;
94 /* Boot command line configuration overrides */
96 static int vpelimit = 0;
97 static int tclimit = 0;
98 static int ipibuffers = 0;
99 static int nostlb = 0;
100 static int asidmask = 0;
101 unsigned long smtc_asid_mask = 0xff;
103 static int __init maxvpes(char *str)
105 get_option(&str, &vpelimit);
106 return 1;
109 static int __init maxtcs(char *str)
111 get_option(&str, &tclimit);
112 return 1;
115 static int __init ipibufs(char *str)
117 get_option(&str, &ipibuffers);
118 return 1;
121 static int __init stlb_disable(char *s)
123 nostlb = 1;
124 return 1;
127 static int __init asidmask_set(char *str)
129 get_option(&str, &asidmask);
130 switch (asidmask) {
131 case 0x1:
132 case 0x3:
133 case 0x7:
134 case 0xf:
135 case 0x1f:
136 case 0x3f:
137 case 0x7f:
138 case 0xff:
139 smtc_asid_mask = (unsigned long)asidmask;
140 break;
141 default:
142 printk("ILLEGAL ASID mask 0x%x from command line\n", asidmask);
144 return 1;
147 __setup("maxvpes=", maxvpes);
148 __setup("maxtcs=", maxtcs);
149 __setup("ipibufs=", ipibufs);
150 __setup("nostlb", stlb_disable);
151 __setup("asidmask=", asidmask_set);
153 /* Enable additional debug checks before going into CPU idle loop */
154 #define SMTC_IDLE_HOOK_DEBUG
156 #ifdef SMTC_IDLE_HOOK_DEBUG
158 static int hang_trig = 0;
160 static int __init hangtrig_enable(char *s)
162 hang_trig = 1;
163 return 1;
167 __setup("hangtrig", hangtrig_enable);
169 #define DEFAULT_BLOCKED_IPI_LIMIT 32
171 static int timerq_limit = DEFAULT_BLOCKED_IPI_LIMIT;
173 static int __init tintq(char *str)
175 get_option(&str, &timerq_limit);
176 return 1;
179 __setup("tintq=", tintq);
181 int imstuckcount[2][8];
182 /* vpemask represents IM/IE bits of per-VPE Status registers, low-to-high */
183 int vpemask[2][8] = {{0,1,1,0,0,0,0,1},{0,1,0,0,0,0,0,1}};
184 int tcnoprog[NR_CPUS];
185 static atomic_t idle_hook_initialized = {0};
186 static int clock_hang_reported[NR_CPUS];
188 #endif /* SMTC_IDLE_HOOK_DEBUG */
190 /* Initialize shared TLB - the should probably migrate to smtc_setup_cpus() */
192 void __init sanitize_tlb_entries(void)
194 printk("Deprecated sanitize_tlb_entries() invoked\n");
199 * Configure shared TLB - VPC configuration bit must be set by caller
202 void smtc_configure_tlb(void)
204 int i,tlbsiz,vpes;
205 unsigned long mvpconf0;
206 unsigned long config1val;
208 /* Set up ASID preservation table */
209 for (vpes=0; vpes<MAX_SMTC_TLBS; vpes++) {
210 for(i = 0; i < MAX_SMTC_ASIDS; i++) {
211 smtc_live_asid[vpes][i] = 0;
214 mvpconf0 = read_c0_mvpconf0();
216 if ((vpes = ((mvpconf0 & MVPCONF0_PVPE)
217 >> MVPCONF0_PVPE_SHIFT) + 1) > 1) {
218 /* If we have multiple VPEs, try to share the TLB */
219 if ((mvpconf0 & MVPCONF0_TLBS) && !nostlb) {
221 * If TLB sizing is programmable, shared TLB
222 * size is the total available complement.
223 * Otherwise, we have to take the sum of all
224 * static VPE TLB entries.
226 if ((tlbsiz = ((mvpconf0 & MVPCONF0_PTLBE)
227 >> MVPCONF0_PTLBE_SHIFT)) == 0) {
229 * If there's more than one VPE, there had better
230 * be more than one TC, because we need one to bind
231 * to each VPE in turn to be able to read
232 * its configuration state!
234 settc(1);
235 /* Stop the TC from doing anything foolish */
236 write_tc_c0_tchalt(TCHALT_H);
237 mips_ihb();
238 /* No need to un-Halt - that happens later anyway */
239 for (i=0; i < vpes; i++) {
240 write_tc_c0_tcbind(i);
242 * To be 100% sure we're really getting the right
243 * information, we exit the configuration state
244 * and do an IHB after each rebinding.
246 write_c0_mvpcontrol(
247 read_c0_mvpcontrol() & ~ MVPCONTROL_VPC );
248 mips_ihb();
250 * Only count if the MMU Type indicated is TLB
252 if (((read_vpe_c0_config() & MIPS_CONF_MT) >> 7) == 1) {
253 config1val = read_vpe_c0_config1();
254 tlbsiz += ((config1val >> 25) & 0x3f) + 1;
257 /* Put core back in configuration state */
258 write_c0_mvpcontrol(
259 read_c0_mvpcontrol() | MVPCONTROL_VPC );
260 mips_ihb();
263 write_c0_mvpcontrol(read_c0_mvpcontrol() | MVPCONTROL_STLB);
266 * Setup kernel data structures to use software total,
267 * rather than read the per-VPE Config1 value. The values
268 * for "CPU 0" gets copied to all the other CPUs as part
269 * of their initialization in smtc_cpu_setup().
272 tlbsiz = tlbsiz & 0x3f; /* MIPS32 limits TLB indices to 64 */
273 cpu_data[0].tlbsize = tlbsiz;
274 smtc_status |= SMTC_TLB_SHARED;
276 printk("TLB of %d entry pairs shared by %d VPEs\n",
277 tlbsiz, vpes);
278 } else {
279 printk("WARNING: TLB Not Sharable on SMTC Boot!\n");
286 * Incrementally build the CPU map out of constituent MIPS MT cores,
287 * using the specified available VPEs and TCs. Plaform code needs
288 * to ensure that each MIPS MT core invokes this routine on reset,
289 * one at a time(!).
291 * This version of the build_cpu_map and prepare_cpus routines assumes
292 * that *all* TCs of a MIPS MT core will be used for Linux, and that
293 * they will be spread across *all* available VPEs (to minimise the
294 * loss of efficiency due to exception service serialization).
295 * An improved version would pick up configuration information and
296 * possibly leave some TCs/VPEs as "slave" processors.
298 * Use c0_MVPConf0 to find out how many TCs are available, setting up
299 * phys_cpu_present_map and the logical/physical mappings.
302 int __init mipsmt_build_cpu_map(int start_cpu_slot)
304 int i, ntcs;
307 * The CPU map isn't actually used for anything at this point,
308 * so it's not clear what else we should do apart from set
309 * everything up so that "logical" = "physical".
311 ntcs = ((read_c0_mvpconf0() & MVPCONF0_PTC) >> MVPCONF0_PTC_SHIFT) + 1;
312 for (i=start_cpu_slot; i<NR_CPUS && i<ntcs; i++) {
313 cpu_set(i, phys_cpu_present_map);
314 __cpu_number_map[i] = i;
315 __cpu_logical_map[i] = i;
317 /* Initialize map of CPUs with FPUs */
318 cpus_clear(mt_fpu_cpumask);
320 /* One of those TC's is the one booting, and not a secondary... */
321 printk("%i available secondary CPU TC(s)\n", i - 1);
323 return i;
327 * Common setup before any secondaries are started
328 * Make sure all CPU's are in a sensible state before we boot any of the
329 * secondaries.
331 * For MIPS MT "SMTC" operation, we set up all TCs, spread as evenly
332 * as possible across the available VPEs.
335 static void smtc_tc_setup(int vpe, int tc, int cpu)
337 settc(tc);
338 write_tc_c0_tchalt(TCHALT_H);
339 mips_ihb();
340 write_tc_c0_tcstatus((read_tc_c0_tcstatus()
341 & ~(TCSTATUS_TKSU | TCSTATUS_DA | TCSTATUS_IXMT))
342 | TCSTATUS_A);
343 write_tc_c0_tccontext(0);
344 /* Bind tc to vpe */
345 write_tc_c0_tcbind(vpe);
346 /* In general, all TCs should have the same cpu_data indications */
347 memcpy(&cpu_data[cpu], &cpu_data[0], sizeof(struct cpuinfo_mips));
348 /* For 34Kf, start with TC/CPU 0 as sole owner of single FPU context */
349 if (cpu_data[0].cputype == CPU_34K)
350 cpu_data[cpu].options &= ~MIPS_CPU_FPU;
351 cpu_data[cpu].vpe_id = vpe;
352 cpu_data[cpu].tc_id = tc;
356 void mipsmt_prepare_cpus(void)
358 int i, vpe, tc, ntc, nvpe, tcpervpe, slop, cpu;
359 unsigned long flags;
360 unsigned long val;
361 int nipi;
362 struct smtc_ipi *pipi;
364 /* disable interrupts so we can disable MT */
365 local_irq_save(flags);
366 /* disable MT so we can configure */
367 dvpe();
368 dmt();
370 spin_lock_init(&freeIPIq.lock);
373 * We probably don't have as many VPEs as we do SMP "CPUs",
374 * but it's possible - and in any case we'll never use more!
376 for (i=0; i<NR_CPUS; i++) {
377 IPIQ[i].head = IPIQ[i].tail = NULL;
378 spin_lock_init(&IPIQ[i].lock);
379 IPIQ[i].depth = 0;
380 ipi_timer_latch[i] = 0;
383 /* cpu_data index starts at zero */
384 cpu = 0;
385 cpu_data[cpu].vpe_id = 0;
386 cpu_data[cpu].tc_id = 0;
387 cpu++;
389 /* Report on boot-time options */
390 mips_mt_set_cpuoptions ();
391 if (vpelimit > 0)
392 printk("Limit of %d VPEs set\n", vpelimit);
393 if (tclimit > 0)
394 printk("Limit of %d TCs set\n", tclimit);
395 if (nostlb) {
396 printk("Shared TLB Use Inhibited - UNSAFE for Multi-VPE Operation\n");
398 if (asidmask)
399 printk("ASID mask value override to 0x%x\n", asidmask);
401 /* Temporary */
402 #ifdef SMTC_IDLE_HOOK_DEBUG
403 if (hang_trig)
404 printk("Logic Analyser Trigger on suspected TC hang\n");
405 #endif /* SMTC_IDLE_HOOK_DEBUG */
407 /* Put MVPE's into 'configuration state' */
408 write_c0_mvpcontrol( read_c0_mvpcontrol() | MVPCONTROL_VPC );
410 val = read_c0_mvpconf0();
411 nvpe = ((val & MVPCONF0_PVPE) >> MVPCONF0_PVPE_SHIFT) + 1;
412 if (vpelimit > 0 && nvpe > vpelimit)
413 nvpe = vpelimit;
414 ntc = ((val & MVPCONF0_PTC) >> MVPCONF0_PTC_SHIFT) + 1;
415 if (ntc > NR_CPUS)
416 ntc = NR_CPUS;
417 if (tclimit > 0 && ntc > tclimit)
418 ntc = tclimit;
419 tcpervpe = ntc / nvpe;
420 slop = ntc % nvpe; /* Residual TCs, < NVPE */
422 /* Set up shared TLB */
423 smtc_configure_tlb();
425 for (tc = 0, vpe = 0 ; (vpe < nvpe) && (tc < ntc) ; vpe++) {
427 * Set the MVP bits.
429 settc(tc);
430 write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() | VPECONF0_MVP);
431 if (vpe != 0)
432 printk(", ");
433 printk("VPE %d: TC", vpe);
434 for (i = 0; i < tcpervpe; i++) {
436 * TC 0 is bound to VPE 0 at reset,
437 * and is presumably executing this
438 * code. Leave it alone!
440 if (tc != 0) {
441 smtc_tc_setup(vpe,tc, cpu);
442 cpu++;
444 printk(" %d", tc);
445 tc++;
447 if (slop) {
448 if (tc != 0) {
449 smtc_tc_setup(vpe,tc, cpu);
450 cpu++;
452 printk(" %d", tc);
453 tc++;
454 slop--;
456 if (vpe != 0) {
458 * Clear any stale software interrupts from VPE's Cause
460 write_vpe_c0_cause(0);
463 * Clear ERL/EXL of VPEs other than 0
464 * and set restricted interrupt enable/mask.
466 write_vpe_c0_status((read_vpe_c0_status()
467 & ~(ST0_BEV | ST0_ERL | ST0_EXL | ST0_IM))
468 | (STATUSF_IP0 | STATUSF_IP1 | STATUSF_IP7
469 | ST0_IE));
471 * set config to be the same as vpe0,
472 * particularly kseg0 coherency alg
474 write_vpe_c0_config(read_c0_config());
475 /* Clear any pending timer interrupt */
476 write_vpe_c0_compare(0);
477 /* Propagate Config7 */
478 write_vpe_c0_config7(read_c0_config7());
479 write_vpe_c0_count(read_c0_count());
481 /* enable multi-threading within VPE */
482 write_vpe_c0_vpecontrol(read_vpe_c0_vpecontrol() | VPECONTROL_TE);
483 /* enable the VPE */
484 write_vpe_c0_vpeconf0(read_vpe_c0_vpeconf0() | VPECONF0_VPA);
488 * Pull any physically present but unused TCs out of circulation.
490 while (tc < (((val & MVPCONF0_PTC) >> MVPCONF0_PTC_SHIFT) + 1)) {
491 cpu_clear(tc, phys_cpu_present_map);
492 cpu_clear(tc, cpu_present_map);
493 tc++;
496 /* release config state */
497 write_c0_mvpcontrol( read_c0_mvpcontrol() & ~ MVPCONTROL_VPC );
499 printk("\n");
501 /* Set up coprocessor affinity CPU mask(s) */
503 for (tc = 0; tc < ntc; tc++) {
504 if (cpu_data[tc].options & MIPS_CPU_FPU)
505 cpu_set(tc, mt_fpu_cpumask);
508 /* set up ipi interrupts... */
510 /* If we have multiple VPEs running, set up the cross-VPE interrupt */
512 if (nvpe > 1)
513 setup_cross_vpe_interrupts();
515 /* Set up queue of free IPI "messages". */
516 nipi = NR_CPUS * IPIBUF_PER_CPU;
517 if (ipibuffers > 0)
518 nipi = ipibuffers;
520 pipi = kmalloc(nipi *sizeof(struct smtc_ipi), GFP_KERNEL);
521 if (pipi == NULL)
522 panic("kmalloc of IPI message buffers failed\n");
523 else
524 printk("IPI buffer pool of %d buffers\n", nipi);
525 for (i = 0; i < nipi; i++) {
526 smtc_ipi_nq(&freeIPIq, pipi);
527 pipi++;
530 /* Arm multithreading and enable other VPEs - but all TCs are Halted */
531 emt(EMT_ENABLE);
532 evpe(EVPE_ENABLE);
533 local_irq_restore(flags);
534 /* Initialize SMTC /proc statistics/diagnostics */
535 init_smtc_stats();
540 * Setup the PC, SP, and GP of a secondary processor and start it
541 * running!
542 * smp_bootstrap is the place to resume from
543 * __KSTK_TOS(idle) is apparently the stack pointer
544 * (unsigned long)idle->thread_info the gp
547 void smtc_boot_secondary(int cpu, struct task_struct *idle)
549 extern u32 kernelsp[NR_CPUS];
550 long flags;
551 int mtflags;
553 LOCK_MT_PRA();
554 if (cpu_data[cpu].vpe_id != cpu_data[smp_processor_id()].vpe_id) {
555 dvpe();
557 settc(cpu_data[cpu].tc_id);
559 /* pc */
560 write_tc_c0_tcrestart((unsigned long)&smp_bootstrap);
562 /* stack pointer */
563 kernelsp[cpu] = __KSTK_TOS(idle);
564 write_tc_gpr_sp(__KSTK_TOS(idle));
566 /* global pointer */
567 write_tc_gpr_gp((unsigned long)idle->thread_info);
569 smtc_status |= SMTC_MTC_ACTIVE;
570 write_tc_c0_tchalt(0);
571 if (cpu_data[cpu].vpe_id != cpu_data[smp_processor_id()].vpe_id) {
572 evpe(EVPE_ENABLE);
574 UNLOCK_MT_PRA();
577 void smtc_init_secondary(void)
580 * Start timer on secondary VPEs if necessary.
581 * plat_timer_setup has already have been invoked by init/main
582 * on "boot" TC. Like per_cpu_trap_init() hack, this assumes that
583 * SMTC init code assigns TCs consdecutively and in ascending order
584 * to across available VPEs.
586 if (((read_c0_tcbind() & TCBIND_CURTC) != 0) &&
587 ((read_c0_tcbind() & TCBIND_CURVPE)
588 != cpu_data[smp_processor_id() - 1].vpe_id)){
589 write_c0_compare (read_c0_count() + mips_hpt_frequency/HZ);
592 local_irq_enable();
595 void smtc_smp_finish(void)
597 printk("TC %d going on-line as CPU %d\n",
598 cpu_data[smp_processor_id()].tc_id, smp_processor_id());
601 void smtc_cpus_done(void)
606 * Support for SMTC-optimized driver IRQ registration
610 * SMTC Kernel needs to manipulate low-level CPU interrupt mask
611 * in do_IRQ. These are passed in setup_irq_smtc() and stored
612 * in this table.
615 int setup_irq_smtc(unsigned int irq, struct irqaction * new,
616 unsigned long hwmask)
618 irq_hwmask[irq] = hwmask;
620 return setup_irq(irq, new);
624 * IPI model for SMTC is tricky, because interrupts aren't TC-specific.
625 * Within a VPE one TC can interrupt another by different approaches.
626 * The easiest to get right would probably be to make all TCs except
627 * the target IXMT and set a software interrupt, but an IXMT-based
628 * scheme requires that a handler must run before a new IPI could
629 * be sent, which would break the "broadcast" loops in MIPS MT.
630 * A more gonzo approach within a VPE is to halt the TC, extract
631 * its Restart, Status, and a couple of GPRs, and program the Restart
632 * address to emulate an interrupt.
634 * Within a VPE, one can be confident that the target TC isn't in
635 * a critical EXL state when halted, since the write to the Halt
636 * register could not have issued on the writing thread if the
637 * halting thread had EXL set. So k0 and k1 of the target TC
638 * can be used by the injection code. Across VPEs, one can't
639 * be certain that the target TC isn't in a critical exception
640 * state. So we try a two-step process of sending a software
641 * interrupt to the target VPE, which either handles the event
642 * itself (if it was the target) or injects the event within
643 * the VPE.
646 void smtc_ipi_qdump(void)
648 int i;
650 for (i = 0; i < NR_CPUS ;i++) {
651 printk("IPIQ[%d]: head = 0x%x, tail = 0x%x, depth = %d\n",
652 i, (unsigned)IPIQ[i].head, (unsigned)IPIQ[i].tail,
653 IPIQ[i].depth);
658 * The standard atomic.h primitives don't quite do what we want
659 * here: We need an atomic add-and-return-previous-value (which
660 * could be done with atomic_add_return and a decrement) and an
661 * atomic set/zero-and-return-previous-value (which can't really
662 * be done with the atomic.h primitives). And since this is
663 * MIPS MT, we can assume that we have LL/SC.
665 static __inline__ int atomic_postincrement(unsigned int *pv)
667 unsigned long result;
669 unsigned long temp;
671 __asm__ __volatile__(
672 "1: ll %0, %2 \n"
673 " addu %1, %0, 1 \n"
674 " sc %1, %2 \n"
675 " beqz %1, 1b \n"
676 " sync \n"
677 : "=&r" (result), "=&r" (temp), "=m" (*pv)
678 : "m" (*pv)
679 : "memory");
681 return result;
684 /* No longer used in IPI dispatch, but retained for future recycling */
686 static __inline__ int atomic_postclear(unsigned int *pv)
688 unsigned long result;
690 unsigned long temp;
692 __asm__ __volatile__(
693 "1: ll %0, %2 \n"
694 " or %1, $0, $0 \n"
695 " sc %1, %2 \n"
696 " beqz %1, 1b \n"
697 " sync \n"
698 : "=&r" (result), "=&r" (temp), "=m" (*pv)
699 : "m" (*pv)
700 : "memory");
702 return result;
706 void smtc_send_ipi(int cpu, int type, unsigned int action)
708 int tcstatus;
709 struct smtc_ipi *pipi;
710 long flags;
711 int mtflags;
713 if (cpu == smp_processor_id()) {
714 printk("Cannot Send IPI to self!\n");
715 return;
717 /* Set up a descriptor, to be delivered either promptly or queued */
718 pipi = smtc_ipi_dq(&freeIPIq);
719 if (pipi == NULL) {
720 bust_spinlocks(1);
721 mips_mt_regdump(dvpe());
722 panic("IPI Msg. Buffers Depleted\n");
724 pipi->type = type;
725 pipi->arg = (void *)action;
726 pipi->dest = cpu;
727 if (cpu_data[cpu].vpe_id != cpu_data[smp_processor_id()].vpe_id) {
728 /* If not on same VPE, enqueue and send cross-VPE interupt */
729 smtc_ipi_nq(&IPIQ[cpu], pipi);
730 LOCK_CORE_PRA();
731 settc(cpu_data[cpu].tc_id);
732 write_vpe_c0_cause(read_vpe_c0_cause() | C_SW1);
733 UNLOCK_CORE_PRA();
734 } else {
736 * Not sufficient to do a LOCK_MT_PRA (dmt) here,
737 * since ASID shootdown on the other VPE may
738 * collide with this operation.
740 LOCK_CORE_PRA();
741 settc(cpu_data[cpu].tc_id);
742 /* Halt the targeted TC */
743 write_tc_c0_tchalt(TCHALT_H);
744 mips_ihb();
747 * Inspect TCStatus - if IXMT is set, we have to queue
748 * a message. Otherwise, we set up the "interrupt"
749 * of the other TC
751 tcstatus = read_tc_c0_tcstatus();
753 if ((tcstatus & TCSTATUS_IXMT) != 0) {
755 * Spin-waiting here can deadlock,
756 * so we queue the message for the target TC.
758 write_tc_c0_tchalt(0);
759 UNLOCK_CORE_PRA();
760 /* Try to reduce redundant timer interrupt messages */
761 if (type == SMTC_CLOCK_TICK) {
762 if (atomic_postincrement(&ipi_timer_latch[cpu])!=0){
763 smtc_ipi_nq(&freeIPIq, pipi);
764 return;
767 smtc_ipi_nq(&IPIQ[cpu], pipi);
768 } else {
769 post_direct_ipi(cpu, pipi);
770 write_tc_c0_tchalt(0);
771 UNLOCK_CORE_PRA();
777 * Send IPI message to Halted TC, TargTC/TargVPE already having been set
779 void post_direct_ipi(int cpu, struct smtc_ipi *pipi)
781 struct pt_regs *kstack;
782 unsigned long tcstatus;
783 unsigned long tcrestart;
784 extern u32 kernelsp[NR_CPUS];
785 extern void __smtc_ipi_vector(void);
787 /* Extract Status, EPC from halted TC */
788 tcstatus = read_tc_c0_tcstatus();
789 tcrestart = read_tc_c0_tcrestart();
790 /* If TCRestart indicates a WAIT instruction, advance the PC */
791 if ((tcrestart & 0x80000000)
792 && ((*(unsigned int *)tcrestart & 0xfe00003f) == 0x42000020)) {
793 tcrestart += 4;
796 * Save on TC's future kernel stack
798 * CU bit of Status is indicator that TC was
799 * already running on a kernel stack...
801 if (tcstatus & ST0_CU0) {
802 /* Note that this "- 1" is pointer arithmetic */
803 kstack = ((struct pt_regs *)read_tc_gpr_sp()) - 1;
804 } else {
805 kstack = ((struct pt_regs *)kernelsp[cpu]) - 1;
808 kstack->cp0_epc = (long)tcrestart;
809 /* Save TCStatus */
810 kstack->cp0_tcstatus = tcstatus;
811 /* Pass token of operation to be performed kernel stack pad area */
812 kstack->pad0[4] = (unsigned long)pipi;
813 /* Pass address of function to be called likewise */
814 kstack->pad0[5] = (unsigned long)&ipi_decode;
815 /* Set interrupt exempt and kernel mode */
816 tcstatus |= TCSTATUS_IXMT;
817 tcstatus &= ~TCSTATUS_TKSU;
818 write_tc_c0_tcstatus(tcstatus);
819 ehb();
820 /* Set TC Restart address to be SMTC IPI vector */
821 write_tc_c0_tcrestart(__smtc_ipi_vector);
824 static void ipi_resched_interrupt(void)
826 /* Return from interrupt should be enough to cause scheduler check */
830 static void ipi_call_interrupt(void)
832 /* Invoke generic function invocation code in smp.c */
833 smp_call_function_interrupt();
836 void ipi_decode(struct smtc_ipi *pipi)
838 void *arg_copy = pipi->arg;
839 int type_copy = pipi->type;
840 int dest_copy = pipi->dest;
842 smtc_ipi_nq(&freeIPIq, pipi);
843 switch (type_copy) {
844 case SMTC_CLOCK_TICK:
845 /* Invoke Clock "Interrupt" */
846 ipi_timer_latch[dest_copy] = 0;
847 #ifdef SMTC_IDLE_HOOK_DEBUG
848 clock_hang_reported[dest_copy] = 0;
849 #endif /* SMTC_IDLE_HOOK_DEBUG */
850 local_timer_interrupt(0, NULL);
851 break;
852 case LINUX_SMP_IPI:
853 switch ((int)arg_copy) {
854 case SMP_RESCHEDULE_YOURSELF:
855 ipi_resched_interrupt();
856 break;
857 case SMP_CALL_FUNCTION:
858 ipi_call_interrupt();
859 break;
860 default:
861 printk("Impossible SMTC IPI Argument 0x%x\n",
862 (int)arg_copy);
863 break;
865 break;
866 default:
867 printk("Impossible SMTC IPI Type 0x%x\n", type_copy);
868 break;
872 void deferred_smtc_ipi(void)
874 struct smtc_ipi *pipi;
875 unsigned long flags;
876 /* DEBUG */
877 int q = smp_processor_id();
880 * Test is not atomic, but much faster than a dequeue,
881 * and the vast majority of invocations will have a null queue.
883 if (IPIQ[q].head != NULL) {
884 while((pipi = smtc_ipi_dq(&IPIQ[q])) != NULL) {
885 /* ipi_decode() should be called with interrupts off */
886 local_irq_save(flags);
887 ipi_decode(pipi);
888 local_irq_restore(flags);
894 * Send clock tick to all TCs except the one executing the funtion
897 void smtc_timer_broadcast(int vpe)
899 int cpu;
900 int myTC = cpu_data[smp_processor_id()].tc_id;
901 int myVPE = cpu_data[smp_processor_id()].vpe_id;
903 smtc_cpu_stats[smp_processor_id()].timerints++;
905 for_each_online_cpu(cpu) {
906 if (cpu_data[cpu].vpe_id == myVPE &&
907 cpu_data[cpu].tc_id != myTC)
908 smtc_send_ipi(cpu, SMTC_CLOCK_TICK, 0);
913 * Cross-VPE interrupts in the SMTC prototype use "software interrupts"
914 * set via cross-VPE MTTR manipulation of the Cause register. It would be
915 * in some regards preferable to have external logic for "doorbell" hardware
916 * interrupts.
919 static int cpu_ipi_irq = MIPSCPU_INT_BASE + MIPS_CPU_IPI_IRQ;
921 static irqreturn_t ipi_interrupt(int irq, void *dev_idm)
923 int my_vpe = cpu_data[smp_processor_id()].vpe_id;
924 int my_tc = cpu_data[smp_processor_id()].tc_id;
925 int cpu;
926 struct smtc_ipi *pipi;
927 unsigned long tcstatus;
928 int sent;
929 long flags;
930 unsigned int mtflags;
931 unsigned int vpflags;
934 * So long as cross-VPE interrupts are done via
935 * MFTR/MTTR read-modify-writes of Cause, we need
936 * to stop other VPEs whenever the local VPE does
937 * anything similar.
939 local_irq_save(flags);
940 vpflags = dvpe();
941 clear_c0_cause(0x100 << MIPS_CPU_IPI_IRQ);
942 set_c0_status(0x100 << MIPS_CPU_IPI_IRQ);
943 irq_enable_hazard();
944 evpe(vpflags);
945 local_irq_restore(flags);
948 * Cross-VPE Interrupt handler: Try to directly deliver IPIs
949 * queued for TCs on this VPE other than the current one.
950 * Return-from-interrupt should cause us to drain the queue
951 * for the current TC, so we ought not to have to do it explicitly here.
954 for_each_online_cpu(cpu) {
955 if (cpu_data[cpu].vpe_id != my_vpe)
956 continue;
958 pipi = smtc_ipi_dq(&IPIQ[cpu]);
959 if (pipi != NULL) {
960 if (cpu_data[cpu].tc_id != my_tc) {
961 sent = 0;
962 LOCK_MT_PRA();
963 settc(cpu_data[cpu].tc_id);
964 write_tc_c0_tchalt(TCHALT_H);
965 mips_ihb();
966 tcstatus = read_tc_c0_tcstatus();
967 if ((tcstatus & TCSTATUS_IXMT) == 0) {
968 post_direct_ipi(cpu, pipi);
969 sent = 1;
971 write_tc_c0_tchalt(0);
972 UNLOCK_MT_PRA();
973 if (!sent) {
974 smtc_ipi_req(&IPIQ[cpu], pipi);
976 } else {
978 * ipi_decode() should be called
979 * with interrupts off
981 local_irq_save(flags);
982 ipi_decode(pipi);
983 local_irq_restore(flags);
988 return IRQ_HANDLED;
991 static void ipi_irq_dispatch(void)
993 do_IRQ(cpu_ipi_irq);
996 static struct irqaction irq_ipi;
998 void setup_cross_vpe_interrupts(void)
1000 if (!cpu_has_vint)
1001 panic("SMTC Kernel requires Vectored Interupt support");
1003 set_vi_handler(MIPS_CPU_IPI_IRQ, ipi_irq_dispatch);
1005 irq_ipi.handler = ipi_interrupt;
1006 irq_ipi.flags = IRQF_DISABLED;
1007 irq_ipi.name = "SMTC_IPI";
1009 setup_irq_smtc(cpu_ipi_irq, &irq_ipi, (0x100 << MIPS_CPU_IPI_IRQ));
1011 irq_desc[cpu_ipi_irq].status |= IRQ_PER_CPU;
1015 * SMTC-specific hacks invoked from elsewhere in the kernel.
1018 void smtc_idle_loop_hook(void)
1020 #ifdef SMTC_IDLE_HOOK_DEBUG
1021 int im;
1022 int flags;
1023 int mtflags;
1024 int bit;
1025 int vpe;
1026 int tc;
1027 int hook_ntcs;
1029 * printk within DMT-protected regions can deadlock,
1030 * so buffer diagnostic messages for later output.
1032 char *pdb_msg;
1033 char id_ho_db_msg[768]; /* worst-case use should be less than 700 */
1035 if (atomic_read(&idle_hook_initialized) == 0) { /* fast test */
1036 if (atomic_add_return(1, &idle_hook_initialized) == 1) {
1037 int mvpconf0;
1038 /* Tedious stuff to just do once */
1039 mvpconf0 = read_c0_mvpconf0();
1040 hook_ntcs = ((mvpconf0 & MVPCONF0_PTC) >> MVPCONF0_PTC_SHIFT) + 1;
1041 if (hook_ntcs > NR_CPUS)
1042 hook_ntcs = NR_CPUS;
1043 for (tc = 0; tc < hook_ntcs; tc++) {
1044 tcnoprog[tc] = 0;
1045 clock_hang_reported[tc] = 0;
1047 for (vpe = 0; vpe < 2; vpe++)
1048 for (im = 0; im < 8; im++)
1049 imstuckcount[vpe][im] = 0;
1050 printk("Idle loop test hook initialized for %d TCs\n", hook_ntcs);
1051 atomic_set(&idle_hook_initialized, 1000);
1052 } else {
1053 /* Someone else is initializing in parallel - let 'em finish */
1054 while (atomic_read(&idle_hook_initialized) < 1000)
1059 /* Have we stupidly left IXMT set somewhere? */
1060 if (read_c0_tcstatus() & 0x400) {
1061 write_c0_tcstatus(read_c0_tcstatus() & ~0x400);
1062 ehb();
1063 printk("Dangling IXMT in cpu_idle()\n");
1066 /* Have we stupidly left an IM bit turned off? */
1067 #define IM_LIMIT 2000
1068 local_irq_save(flags);
1069 mtflags = dmt();
1070 pdb_msg = &id_ho_db_msg[0];
1071 im = read_c0_status();
1072 vpe = cpu_data[smp_processor_id()].vpe_id;
1073 for (bit = 0; bit < 8; bit++) {
1075 * In current prototype, I/O interrupts
1076 * are masked for VPE > 0
1078 if (vpemask[vpe][bit]) {
1079 if (!(im & (0x100 << bit)))
1080 imstuckcount[vpe][bit]++;
1081 else
1082 imstuckcount[vpe][bit] = 0;
1083 if (imstuckcount[vpe][bit] > IM_LIMIT) {
1084 set_c0_status(0x100 << bit);
1085 ehb();
1086 imstuckcount[vpe][bit] = 0;
1087 pdb_msg += sprintf(pdb_msg,
1088 "Dangling IM %d fixed for VPE %d\n", bit,
1089 vpe);
1095 * Now that we limit outstanding timer IPIs, check for hung TC
1097 for (tc = 0; tc < NR_CPUS; tc++) {
1098 /* Don't check ourself - we'll dequeue IPIs just below */
1099 if ((tc != smp_processor_id()) &&
1100 ipi_timer_latch[tc] > timerq_limit) {
1101 if (clock_hang_reported[tc] == 0) {
1102 pdb_msg += sprintf(pdb_msg,
1103 "TC %d looks hung with timer latch at %d\n",
1104 tc, ipi_timer_latch[tc]);
1105 clock_hang_reported[tc]++;
1109 emt(mtflags);
1110 local_irq_restore(flags);
1111 if (pdb_msg != &id_ho_db_msg[0])
1112 printk("CPU%d: %s", smp_processor_id(), id_ho_db_msg);
1113 #endif /* SMTC_IDLE_HOOK_DEBUG */
1115 * To the extent that we've ever turned interrupts off,
1116 * we may have accumulated deferred IPIs. This is subtle.
1117 * If we use the smtc_ipi_qdepth() macro, we'll get an
1118 * exact number - but we'll also disable interrupts
1119 * and create a window of failure where a new IPI gets
1120 * queued after we test the depth but before we re-enable
1121 * interrupts. So long as IXMT never gets set, however,
1122 * we should be OK: If we pick up something and dispatch
1123 * it here, that's great. If we see nothing, but concurrent
1124 * with this operation, another TC sends us an IPI, IXMT
1125 * is clear, and we'll handle it as a real pseudo-interrupt
1126 * and not a pseudo-pseudo interrupt.
1128 if (IPIQ[smp_processor_id()].depth > 0) {
1129 struct smtc_ipi *pipi;
1130 extern void self_ipi(struct smtc_ipi *);
1132 if ((pipi = smtc_ipi_dq(&IPIQ[smp_processor_id()])) != NULL) {
1133 self_ipi(pipi);
1134 smtc_cpu_stats[smp_processor_id()].selfipis++;
1139 void smtc_soft_dump(void)
1141 int i;
1143 printk("Counter Interrupts taken per CPU (TC)\n");
1144 for (i=0; i < NR_CPUS; i++) {
1145 printk("%d: %ld\n", i, smtc_cpu_stats[i].timerints);
1147 printk("Self-IPI invocations:\n");
1148 for (i=0; i < NR_CPUS; i++) {
1149 printk("%d: %ld\n", i, smtc_cpu_stats[i].selfipis);
1151 smtc_ipi_qdump();
1152 printk("Timer IPI Backlogs:\n");
1153 for (i=0; i < NR_CPUS; i++) {
1154 printk("%d: %d\n", i, ipi_timer_latch[i]);
1156 printk("%d Recoveries of \"stolen\" FPU\n",
1157 atomic_read(&smtc_fpu_recoveries));
1162 * TLB management routines special to SMTC
1165 void smtc_get_new_mmu_context(struct mm_struct *mm, unsigned long cpu)
1167 unsigned long flags, mtflags, tcstat, prevhalt, asid;
1168 int tlb, i;
1171 * It would be nice to be able to use a spinlock here,
1172 * but this is invoked from within TLB flush routines
1173 * that protect themselves with DVPE, so if a lock is
1174 * held by another TC, it'll never be freed.
1176 * DVPE/DMT must not be done with interrupts enabled,
1177 * so even so most callers will already have disabled
1178 * them, let's be really careful...
1181 local_irq_save(flags);
1182 if (smtc_status & SMTC_TLB_SHARED) {
1183 mtflags = dvpe();
1184 tlb = 0;
1185 } else {
1186 mtflags = dmt();
1187 tlb = cpu_data[cpu].vpe_id;
1189 asid = asid_cache(cpu);
1191 do {
1192 if (!((asid += ASID_INC) & ASID_MASK) ) {
1193 if (cpu_has_vtag_icache)
1194 flush_icache_all();
1195 /* Traverse all online CPUs (hack requires contigous range) */
1196 for (i = 0; i < num_online_cpus(); i++) {
1198 * We don't need to worry about our own CPU, nor those of
1199 * CPUs who don't share our TLB.
1201 if ((i != smp_processor_id()) &&
1202 ((smtc_status & SMTC_TLB_SHARED) ||
1203 (cpu_data[i].vpe_id == cpu_data[cpu].vpe_id))) {
1204 settc(cpu_data[i].tc_id);
1205 prevhalt = read_tc_c0_tchalt() & TCHALT_H;
1206 if (!prevhalt) {
1207 write_tc_c0_tchalt(TCHALT_H);
1208 mips_ihb();
1210 tcstat = read_tc_c0_tcstatus();
1211 smtc_live_asid[tlb][(tcstat & ASID_MASK)] |= (asiduse)(0x1 << i);
1212 if (!prevhalt)
1213 write_tc_c0_tchalt(0);
1216 if (!asid) /* fix version if needed */
1217 asid = ASID_FIRST_VERSION;
1218 local_flush_tlb_all(); /* start new asid cycle */
1220 } while (smtc_live_asid[tlb][(asid & ASID_MASK)]);
1223 * SMTC shares the TLB within VPEs and possibly across all VPEs.
1225 for (i = 0; i < num_online_cpus(); i++) {
1226 if ((smtc_status & SMTC_TLB_SHARED) ||
1227 (cpu_data[i].vpe_id == cpu_data[cpu].vpe_id))
1228 cpu_context(i, mm) = asid_cache(i) = asid;
1231 if (smtc_status & SMTC_TLB_SHARED)
1232 evpe(mtflags);
1233 else
1234 emt(mtflags);
1235 local_irq_restore(flags);
1239 * Invoked from macros defined in mmu_context.h
1240 * which must already have disabled interrupts
1241 * and done a DVPE or DMT as appropriate.
1244 void smtc_flush_tlb_asid(unsigned long asid)
1246 int entry;
1247 unsigned long ehi;
1249 entry = read_c0_wired();
1251 /* Traverse all non-wired entries */
1252 while (entry < current_cpu_data.tlbsize) {
1253 write_c0_index(entry);
1254 ehb();
1255 tlb_read();
1256 ehb();
1257 ehi = read_c0_entryhi();
1258 if ((ehi & ASID_MASK) == asid) {
1260 * Invalidate only entries with specified ASID,
1261 * makiing sure all entries differ.
1263 write_c0_entryhi(CKSEG0 + (entry << (PAGE_SHIFT + 1)));
1264 write_c0_entrylo0(0);
1265 write_c0_entrylo1(0);
1266 mtc0_tlbw_hazard();
1267 tlb_write_indexed();
1269 entry++;
1271 write_c0_index(PARKED_INDEX);
1272 tlbw_use_hazard();
1276 * Support for single-threading cache flush operations.
1279 int halt_state_save[NR_CPUS];
1282 * To really, really be sure that nothing is being done
1283 * by other TCs, halt them all. This code assumes that
1284 * a DVPE has already been done, so while their Halted
1285 * state is theoretically architecturally unstable, in
1286 * practice, it's not going to change while we're looking
1287 * at it.
1290 void smtc_cflush_lockdown(void)
1292 int cpu;
1294 for_each_online_cpu(cpu) {
1295 if (cpu != smp_processor_id()) {
1296 settc(cpu_data[cpu].tc_id);
1297 halt_state_save[cpu] = read_tc_c0_tchalt();
1298 write_tc_c0_tchalt(TCHALT_H);
1301 mips_ihb();
1304 /* It would be cheating to change the cpu_online states during a flush! */
1306 void smtc_cflush_release(void)
1308 int cpu;
1311 * Start with a hazard barrier to ensure
1312 * that all CACHE ops have played through.
1314 mips_ihb();
1316 for_each_online_cpu(cpu) {
1317 if (cpu != smp_processor_id()) {
1318 settc(cpu_data[cpu].tc_id);
1319 write_tc_c0_tchalt(halt_state_save[cpu]);
1322 mips_ihb();