[SCSI] drivers/scsi: Use ARRAY_SIZE macro
[linux-2.6/kvm.git] / include / linux / mmzone.h
blobb5c21122c2996bcee2a449188748f35e561ca0c9
1 #ifndef _LINUX_MMZONE_H
2 #define _LINUX_MMZONE_H
4 #ifdef __KERNEL__
5 #ifndef __ASSEMBLY__
7 #include <linux/config.h>
8 #include <linux/spinlock.h>
9 #include <linux/list.h>
10 #include <linux/wait.h>
11 #include <linux/cache.h>
12 #include <linux/threads.h>
13 #include <linux/numa.h>
14 #include <linux/init.h>
15 #include <linux/seqlock.h>
16 #include <linux/nodemask.h>
17 #include <asm/atomic.h>
19 /* Free memory management - zoned buddy allocator. */
20 #ifndef CONFIG_FORCE_MAX_ZONEORDER
21 #define MAX_ORDER 11
22 #else
23 #define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
24 #endif
26 struct free_area {
27 struct list_head free_list;
28 unsigned long nr_free;
31 struct pglist_data;
34 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
35 * So add a wild amount of padding here to ensure that they fall into separate
36 * cachelines. There are very few zone structures in the machine, so space
37 * consumption is not a concern here.
39 #if defined(CONFIG_SMP)
40 struct zone_padding {
41 char x[0];
42 } ____cacheline_internodealigned_in_smp;
43 #define ZONE_PADDING(name) struct zone_padding name;
44 #else
45 #define ZONE_PADDING(name)
46 #endif
48 struct per_cpu_pages {
49 int count; /* number of pages in the list */
50 int high; /* high watermark, emptying needed */
51 int batch; /* chunk size for buddy add/remove */
52 struct list_head list; /* the list of pages */
55 struct per_cpu_pageset {
56 struct per_cpu_pages pcp[2]; /* 0: hot. 1: cold */
57 #ifdef CONFIG_NUMA
58 unsigned long numa_hit; /* allocated in intended node */
59 unsigned long numa_miss; /* allocated in non intended node */
60 unsigned long numa_foreign; /* was intended here, hit elsewhere */
61 unsigned long interleave_hit; /* interleaver prefered this zone */
62 unsigned long local_node; /* allocation from local node */
63 unsigned long other_node; /* allocation from other node */
64 #endif
65 } ____cacheline_aligned_in_smp;
67 #ifdef CONFIG_NUMA
68 #define zone_pcp(__z, __cpu) ((__z)->pageset[(__cpu)])
69 #else
70 #define zone_pcp(__z, __cpu) (&(__z)->pageset[(__cpu)])
71 #endif
73 #define ZONE_DMA 0
74 #define ZONE_DMA32 1
75 #define ZONE_NORMAL 2
76 #define ZONE_HIGHMEM 3
78 #define MAX_NR_ZONES 4 /* Sync this with ZONES_SHIFT */
79 #define ZONES_SHIFT 2 /* ceil(log2(MAX_NR_ZONES)) */
83 * When a memory allocation must conform to specific limitations (such
84 * as being suitable for DMA) the caller will pass in hints to the
85 * allocator in the gfp_mask, in the zone modifier bits. These bits
86 * are used to select a priority ordered list of memory zones which
87 * match the requested limits. GFP_ZONEMASK defines which bits within
88 * the gfp_mask should be considered as zone modifiers. Each valid
89 * combination of the zone modifier bits has a corresponding list
90 * of zones (in node_zonelists). Thus for two zone modifiers there
91 * will be a maximum of 4 (2 ** 2) zonelists, for 3 modifiers there will
92 * be 8 (2 ** 3) zonelists. GFP_ZONETYPES defines the number of possible
93 * combinations of zone modifiers in "zone modifier space".
95 * As an optimisation any zone modifier bits which are only valid when
96 * no other zone modifier bits are set (loners) should be placed in
97 * the highest order bits of this field. This allows us to reduce the
98 * extent of the zonelists thus saving space. For example in the case
99 * of three zone modifier bits, we could require up to eight zonelists.
100 * If the left most zone modifier is a "loner" then the highest valid
101 * zonelist would be four allowing us to allocate only five zonelists.
102 * Use the first form for GFP_ZONETYPES when the left most bit is not
103 * a "loner", otherwise use the second.
105 * NOTE! Make sure this matches the zones in <linux/gfp.h>
107 #define GFP_ZONEMASK 0x07
108 /* #define GFP_ZONETYPES (GFP_ZONEMASK + 1) */ /* Non-loner */
109 #define GFP_ZONETYPES ((GFP_ZONEMASK + 1) / 2 + 1) /* Loner */
112 * On machines where it is needed (eg PCs) we divide physical memory
113 * into multiple physical zones. On a 32bit PC we have 4 zones:
115 * ZONE_DMA < 16 MB ISA DMA capable memory
116 * ZONE_DMA32 0 MB Empty
117 * ZONE_NORMAL 16-896 MB direct mapped by the kernel
118 * ZONE_HIGHMEM > 896 MB only page cache and user processes
121 struct zone {
122 /* Fields commonly accessed by the page allocator */
123 unsigned long free_pages;
124 unsigned long pages_min, pages_low, pages_high;
126 * We don't know if the memory that we're going to allocate will be freeable
127 * or/and it will be released eventually, so to avoid totally wasting several
128 * GB of ram we must reserve some of the lower zone memory (otherwise we risk
129 * to run OOM on the lower zones despite there's tons of freeable ram
130 * on the higher zones). This array is recalculated at runtime if the
131 * sysctl_lowmem_reserve_ratio sysctl changes.
133 unsigned long lowmem_reserve[MAX_NR_ZONES];
135 #ifdef CONFIG_NUMA
136 struct per_cpu_pageset *pageset[NR_CPUS];
137 #else
138 struct per_cpu_pageset pageset[NR_CPUS];
139 #endif
141 * free areas of different sizes
143 spinlock_t lock;
144 #ifdef CONFIG_MEMORY_HOTPLUG
145 /* see spanned/present_pages for more description */
146 seqlock_t span_seqlock;
147 #endif
148 struct free_area free_area[MAX_ORDER];
151 ZONE_PADDING(_pad1_)
153 /* Fields commonly accessed by the page reclaim scanner */
154 spinlock_t lru_lock;
155 struct list_head active_list;
156 struct list_head inactive_list;
157 unsigned long nr_scan_active;
158 unsigned long nr_scan_inactive;
159 unsigned long nr_active;
160 unsigned long nr_inactive;
161 unsigned long pages_scanned; /* since last reclaim */
162 int all_unreclaimable; /* All pages pinned */
164 /* A count of how many reclaimers are scanning this zone */
165 atomic_t reclaim_in_progress;
168 * timestamp (in jiffies) of the last zone reclaim that did not
169 * result in freeing of pages. This is used to avoid repeated scans
170 * if all memory in the zone is in use.
172 unsigned long last_unsuccessful_zone_reclaim;
175 * prev_priority holds the scanning priority for this zone. It is
176 * defined as the scanning priority at which we achieved our reclaim
177 * target at the previous try_to_free_pages() or balance_pgdat()
178 * invokation.
180 * We use prev_priority as a measure of how much stress page reclaim is
181 * under - it drives the swappiness decision: whether to unmap mapped
182 * pages.
184 * temp_priority is used to remember the scanning priority at which
185 * this zone was successfully refilled to free_pages == pages_high.
187 * Access to both these fields is quite racy even on uniprocessor. But
188 * it is expected to average out OK.
190 int temp_priority;
191 int prev_priority;
194 ZONE_PADDING(_pad2_)
195 /* Rarely used or read-mostly fields */
198 * wait_table -- the array holding the hash table
199 * wait_table_size -- the size of the hash table array
200 * wait_table_bits -- wait_table_size == (1 << wait_table_bits)
202 * The purpose of all these is to keep track of the people
203 * waiting for a page to become available and make them
204 * runnable again when possible. The trouble is that this
205 * consumes a lot of space, especially when so few things
206 * wait on pages at a given time. So instead of using
207 * per-page waitqueues, we use a waitqueue hash table.
209 * The bucket discipline is to sleep on the same queue when
210 * colliding and wake all in that wait queue when removing.
211 * When something wakes, it must check to be sure its page is
212 * truly available, a la thundering herd. The cost of a
213 * collision is great, but given the expected load of the
214 * table, they should be so rare as to be outweighed by the
215 * benefits from the saved space.
217 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
218 * primary users of these fields, and in mm/page_alloc.c
219 * free_area_init_core() performs the initialization of them.
221 wait_queue_head_t * wait_table;
222 unsigned long wait_table_size;
223 unsigned long wait_table_bits;
226 * Discontig memory support fields.
228 struct pglist_data *zone_pgdat;
229 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
230 unsigned long zone_start_pfn;
233 * zone_start_pfn, spanned_pages and present_pages are all
234 * protected by span_seqlock. It is a seqlock because it has
235 * to be read outside of zone->lock, and it is done in the main
236 * allocator path. But, it is written quite infrequently.
238 * The lock is declared along with zone->lock because it is
239 * frequently read in proximity to zone->lock. It's good to
240 * give them a chance of being in the same cacheline.
242 unsigned long spanned_pages; /* total size, including holes */
243 unsigned long present_pages; /* amount of memory (excluding holes) */
246 * rarely used fields:
248 char *name;
249 } ____cacheline_internodealigned_in_smp;
253 * The "priority" of VM scanning is how much of the queues we will scan in one
254 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
255 * queues ("queue_length >> 12") during an aging round.
257 #define DEF_PRIORITY 12
260 * One allocation request operates on a zonelist. A zonelist
261 * is a list of zones, the first one is the 'goal' of the
262 * allocation, the other zones are fallback zones, in decreasing
263 * priority.
265 * Right now a zonelist takes up less than a cacheline. We never
266 * modify it apart from boot-up, and only a few indices are used,
267 * so despite the zonelist table being relatively big, the cache
268 * footprint of this construct is very small.
270 struct zonelist {
271 struct zone *zones[MAX_NUMNODES * MAX_NR_ZONES + 1]; // NULL delimited
276 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
277 * (mostly NUMA machines?) to denote a higher-level memory zone than the
278 * zone denotes.
280 * On NUMA machines, each NUMA node would have a pg_data_t to describe
281 * it's memory layout.
283 * Memory statistics and page replacement data structures are maintained on a
284 * per-zone basis.
286 struct bootmem_data;
287 typedef struct pglist_data {
288 struct zone node_zones[MAX_NR_ZONES];
289 struct zonelist node_zonelists[GFP_ZONETYPES];
290 int nr_zones;
291 #ifdef CONFIG_FLAT_NODE_MEM_MAP
292 struct page *node_mem_map;
293 #endif
294 struct bootmem_data *bdata;
295 #ifdef CONFIG_MEMORY_HOTPLUG
297 * Must be held any time you expect node_start_pfn, node_present_pages
298 * or node_spanned_pages stay constant. Holding this will also
299 * guarantee that any pfn_valid() stays that way.
301 * Nests above zone->lock and zone->size_seqlock.
303 spinlock_t node_size_lock;
304 #endif
305 unsigned long node_start_pfn;
306 unsigned long node_present_pages; /* total number of physical pages */
307 unsigned long node_spanned_pages; /* total size of physical page
308 range, including holes */
309 int node_id;
310 wait_queue_head_t kswapd_wait;
311 struct task_struct *kswapd;
312 int kswapd_max_order;
313 } pg_data_t;
315 #define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
316 #define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
317 #ifdef CONFIG_FLAT_NODE_MEM_MAP
318 #define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
319 #else
320 #define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
321 #endif
322 #define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
324 #include <linux/memory_hotplug.h>
326 void __get_zone_counts(unsigned long *active, unsigned long *inactive,
327 unsigned long *free, struct pglist_data *pgdat);
328 void get_zone_counts(unsigned long *active, unsigned long *inactive,
329 unsigned long *free);
330 void build_all_zonelists(void);
331 void wakeup_kswapd(struct zone *zone, int order);
332 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
333 int classzone_idx, int alloc_flags);
335 #ifdef CONFIG_HAVE_MEMORY_PRESENT
336 void memory_present(int nid, unsigned long start, unsigned long end);
337 #else
338 static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
339 #endif
341 #ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
342 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
343 #endif
346 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
348 #define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
350 static inline int populated_zone(struct zone *zone)
352 return (!!zone->present_pages);
355 static inline int is_highmem_idx(int idx)
357 return (idx == ZONE_HIGHMEM);
360 static inline int is_normal_idx(int idx)
362 return (idx == ZONE_NORMAL);
366 * is_highmem - helper function to quickly check if a struct zone is a
367 * highmem zone or not. This is an attempt to keep references
368 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
369 * @zone - pointer to struct zone variable
371 static inline int is_highmem(struct zone *zone)
373 return zone == zone->zone_pgdat->node_zones + ZONE_HIGHMEM;
376 static inline int is_normal(struct zone *zone)
378 return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL;
381 static inline int is_dma32(struct zone *zone)
383 return zone == zone->zone_pgdat->node_zones + ZONE_DMA32;
386 static inline int is_dma(struct zone *zone)
388 return zone == zone->zone_pgdat->node_zones + ZONE_DMA;
391 /* These two functions are used to setup the per zone pages min values */
392 struct ctl_table;
393 struct file;
394 int min_free_kbytes_sysctl_handler(struct ctl_table *, int, struct file *,
395 void __user *, size_t *, loff_t *);
396 extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
397 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, struct file *,
398 void __user *, size_t *, loff_t *);
399 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int, struct file *,
400 void __user *, size_t *, loff_t *);
402 #include <linux/topology.h>
403 /* Returns the number of the current Node. */
404 #ifndef numa_node_id
405 #define numa_node_id() (cpu_to_node(raw_smp_processor_id()))
406 #endif
408 #ifndef CONFIG_NEED_MULTIPLE_NODES
410 extern struct pglist_data contig_page_data;
411 #define NODE_DATA(nid) (&contig_page_data)
412 #define NODE_MEM_MAP(nid) mem_map
413 #define MAX_NODES_SHIFT 1
415 #else /* CONFIG_NEED_MULTIPLE_NODES */
417 #include <asm/mmzone.h>
419 #endif /* !CONFIG_NEED_MULTIPLE_NODES */
421 extern struct pglist_data *first_online_pgdat(void);
422 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
423 extern struct zone *next_zone(struct zone *zone);
426 * for_each_pgdat - helper macro to iterate over all nodes
427 * @pgdat - pointer to a pg_data_t variable
429 #define for_each_online_pgdat(pgdat) \
430 for (pgdat = first_online_pgdat(); \
431 pgdat; \
432 pgdat = next_online_pgdat(pgdat))
434 * for_each_zone - helper macro to iterate over all memory zones
435 * @zone - pointer to struct zone variable
437 * The user only needs to declare the zone variable, for_each_zone
438 * fills it in.
440 #define for_each_zone(zone) \
441 for (zone = (first_online_pgdat())->node_zones; \
442 zone; \
443 zone = next_zone(zone))
445 #ifdef CONFIG_SPARSEMEM
446 #include <asm/sparsemem.h>
447 #endif
449 #if BITS_PER_LONG == 32
451 * with 32 bit page->flags field, we reserve 9 bits for node/zone info.
452 * there are 4 zones (3 bits) and this leaves 9-3=6 bits for nodes.
454 #define FLAGS_RESERVED 9
456 #elif BITS_PER_LONG == 64
458 * with 64 bit flags field, there's plenty of room.
460 #define FLAGS_RESERVED 32
462 #else
464 #error BITS_PER_LONG not defined
466 #endif
468 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
469 #define early_pfn_to_nid(nid) (0UL)
470 #endif
472 #ifdef CONFIG_FLATMEM
473 #define pfn_to_nid(pfn) (0)
474 #endif
476 #define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
477 #define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
479 #ifdef CONFIG_SPARSEMEM
482 * SECTION_SHIFT #bits space required to store a section #
484 * PA_SECTION_SHIFT physical address to/from section number
485 * PFN_SECTION_SHIFT pfn to/from section number
487 #define SECTIONS_SHIFT (MAX_PHYSMEM_BITS - SECTION_SIZE_BITS)
489 #define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
490 #define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
492 #define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
494 #define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
495 #define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
497 #if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
498 #error Allocator MAX_ORDER exceeds SECTION_SIZE
499 #endif
501 struct page;
502 struct mem_section {
504 * This is, logically, a pointer to an array of struct
505 * pages. However, it is stored with some other magic.
506 * (see sparse.c::sparse_init_one_section())
508 * Making it a UL at least makes someone do a cast
509 * before using it wrong.
511 unsigned long section_mem_map;
514 #ifdef CONFIG_SPARSEMEM_EXTREME
515 #define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
516 #else
517 #define SECTIONS_PER_ROOT 1
518 #endif
520 #define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
521 #define NR_SECTION_ROOTS (NR_MEM_SECTIONS / SECTIONS_PER_ROOT)
522 #define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
524 #ifdef CONFIG_SPARSEMEM_EXTREME
525 extern struct mem_section *mem_section[NR_SECTION_ROOTS];
526 #else
527 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
528 #endif
530 static inline struct mem_section *__nr_to_section(unsigned long nr)
532 if (!mem_section[SECTION_NR_TO_ROOT(nr)])
533 return NULL;
534 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
536 extern int __section_nr(struct mem_section* ms);
539 * We use the lower bits of the mem_map pointer to store
540 * a little bit of information. There should be at least
541 * 3 bits here due to 32-bit alignment.
543 #define SECTION_MARKED_PRESENT (1UL<<0)
544 #define SECTION_HAS_MEM_MAP (1UL<<1)
545 #define SECTION_MAP_LAST_BIT (1UL<<2)
546 #define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
548 static inline struct page *__section_mem_map_addr(struct mem_section *section)
550 unsigned long map = section->section_mem_map;
551 map &= SECTION_MAP_MASK;
552 return (struct page *)map;
555 static inline int valid_section(struct mem_section *section)
557 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
560 static inline int section_has_mem_map(struct mem_section *section)
562 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
565 static inline int valid_section_nr(unsigned long nr)
567 return valid_section(__nr_to_section(nr));
570 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
572 return __nr_to_section(pfn_to_section_nr(pfn));
575 static inline int pfn_valid(unsigned long pfn)
577 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
578 return 0;
579 return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
583 * These are _only_ used during initialisation, therefore they
584 * can use __initdata ... They could have names to indicate
585 * this restriction.
587 #ifdef CONFIG_NUMA
588 #define pfn_to_nid(pfn) \
589 ({ \
590 unsigned long __pfn_to_nid_pfn = (pfn); \
591 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
593 #else
594 #define pfn_to_nid(pfn) (0)
595 #endif
597 #define early_pfn_valid(pfn) pfn_valid(pfn)
598 void sparse_init(void);
599 #else
600 #define sparse_init() do {} while (0)
601 #define sparse_index_init(_sec, _nid) do {} while (0)
602 #endif /* CONFIG_SPARSEMEM */
604 #ifndef early_pfn_valid
605 #define early_pfn_valid(pfn) (1)
606 #endif
608 void memory_present(int nid, unsigned long start, unsigned long end);
609 unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
611 #endif /* !__ASSEMBLY__ */
612 #endif /* __KERNEL__ */
613 #endif /* _LINUX_MMZONE_H */