[NETFILTER]: Redo policy lookups after NAT when neccessary
[linux-2.6/kvm.git] / net / ipv4 / ip_output.c
blob59fdac3a099a1a092a1d65233eb0480a05248908
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * The Internet Protocol (IP) output module.
8 * Version: $Id: ip_output.c,v 1.100 2002/02/01 22:01:03 davem Exp $
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Donald Becker, <becker@super.org>
13 * Alan Cox, <Alan.Cox@linux.org>
14 * Richard Underwood
15 * Stefan Becker, <stefanb@yello.ping.de>
16 * Jorge Cwik, <jorge@laser.satlink.net>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Hirokazu Takahashi, <taka@valinux.co.jp>
20 * See ip_input.c for original log
22 * Fixes:
23 * Alan Cox : Missing nonblock feature in ip_build_xmit.
24 * Mike Kilburn : htons() missing in ip_build_xmit.
25 * Bradford Johnson: Fix faulty handling of some frames when
26 * no route is found.
27 * Alexander Demenshin: Missing sk/skb free in ip_queue_xmit
28 * (in case if packet not accepted by
29 * output firewall rules)
30 * Mike McLagan : Routing by source
31 * Alexey Kuznetsov: use new route cache
32 * Andi Kleen: Fix broken PMTU recovery and remove
33 * some redundant tests.
34 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
35 * Andi Kleen : Replace ip_reply with ip_send_reply.
36 * Andi Kleen : Split fast and slow ip_build_xmit path
37 * for decreased register pressure on x86
38 * and more readibility.
39 * Marc Boucher : When call_out_firewall returns FW_QUEUE,
40 * silently drop skb instead of failing with -EPERM.
41 * Detlev Wengorz : Copy protocol for fragments.
42 * Hirokazu Takahashi: HW checksumming for outgoing UDP
43 * datagrams.
44 * Hirokazu Takahashi: sendfile() on UDP works now.
47 #include <asm/uaccess.h>
48 #include <asm/system.h>
49 #include <linux/module.h>
50 #include <linux/types.h>
51 #include <linux/kernel.h>
52 #include <linux/sched.h>
53 #include <linux/mm.h>
54 #include <linux/string.h>
55 #include <linux/errno.h>
56 #include <linux/config.h>
58 #include <linux/socket.h>
59 #include <linux/sockios.h>
60 #include <linux/in.h>
61 #include <linux/inet.h>
62 #include <linux/netdevice.h>
63 #include <linux/etherdevice.h>
64 #include <linux/proc_fs.h>
65 #include <linux/stat.h>
66 #include <linux/init.h>
68 #include <net/snmp.h>
69 #include <net/ip.h>
70 #include <net/protocol.h>
71 #include <net/route.h>
72 #include <linux/skbuff.h>
73 #include <net/sock.h>
74 #include <net/arp.h>
75 #include <net/icmp.h>
76 #include <net/checksum.h>
77 #include <net/inetpeer.h>
78 #include <net/checksum.h>
79 #include <linux/igmp.h>
80 #include <linux/netfilter_ipv4.h>
81 #include <linux/netfilter_bridge.h>
82 #include <linux/mroute.h>
83 #include <linux/netlink.h>
84 #include <linux/tcp.h>
86 int sysctl_ip_default_ttl = IPDEFTTL;
88 /* Generate a checksum for an outgoing IP datagram. */
89 __inline__ void ip_send_check(struct iphdr *iph)
91 iph->check = 0;
92 iph->check = ip_fast_csum((unsigned char *)iph, iph->ihl);
95 /* dev_loopback_xmit for use with netfilter. */
96 static int ip_dev_loopback_xmit(struct sk_buff *newskb)
98 newskb->mac.raw = newskb->data;
99 __skb_pull(newskb, newskb->nh.raw - newskb->data);
100 newskb->pkt_type = PACKET_LOOPBACK;
101 newskb->ip_summed = CHECKSUM_UNNECESSARY;
102 BUG_TRAP(newskb->dst);
103 netif_rx(newskb);
104 return 0;
107 static inline int ip_select_ttl(struct inet_sock *inet, struct dst_entry *dst)
109 int ttl = inet->uc_ttl;
111 if (ttl < 0)
112 ttl = dst_metric(dst, RTAX_HOPLIMIT);
113 return ttl;
117 * Add an ip header to a skbuff and send it out.
120 int ip_build_and_send_pkt(struct sk_buff *skb, struct sock *sk,
121 u32 saddr, u32 daddr, struct ip_options *opt)
123 struct inet_sock *inet = inet_sk(sk);
124 struct rtable *rt = (struct rtable *)skb->dst;
125 struct iphdr *iph;
127 /* Build the IP header. */
128 if (opt)
129 iph=(struct iphdr *)skb_push(skb,sizeof(struct iphdr) + opt->optlen);
130 else
131 iph=(struct iphdr *)skb_push(skb,sizeof(struct iphdr));
133 iph->version = 4;
134 iph->ihl = 5;
135 iph->tos = inet->tos;
136 if (ip_dont_fragment(sk, &rt->u.dst))
137 iph->frag_off = htons(IP_DF);
138 else
139 iph->frag_off = 0;
140 iph->ttl = ip_select_ttl(inet, &rt->u.dst);
141 iph->daddr = rt->rt_dst;
142 iph->saddr = rt->rt_src;
143 iph->protocol = sk->sk_protocol;
144 iph->tot_len = htons(skb->len);
145 ip_select_ident(iph, &rt->u.dst, sk);
146 skb->nh.iph = iph;
148 if (opt && opt->optlen) {
149 iph->ihl += opt->optlen>>2;
150 ip_options_build(skb, opt, daddr, rt, 0);
152 ip_send_check(iph);
154 skb->priority = sk->sk_priority;
156 /* Send it out. */
157 return NF_HOOK(PF_INET, NF_IP_LOCAL_OUT, skb, NULL, rt->u.dst.dev,
158 dst_output);
161 EXPORT_SYMBOL_GPL(ip_build_and_send_pkt);
163 static inline int ip_finish_output2(struct sk_buff *skb)
165 struct dst_entry *dst = skb->dst;
166 struct hh_cache *hh = dst->hh;
167 struct net_device *dev = dst->dev;
168 int hh_len = LL_RESERVED_SPACE(dev);
170 /* Be paranoid, rather than too clever. */
171 if (unlikely(skb_headroom(skb) < hh_len && dev->hard_header)) {
172 struct sk_buff *skb2;
174 skb2 = skb_realloc_headroom(skb, LL_RESERVED_SPACE(dev));
175 if (skb2 == NULL) {
176 kfree_skb(skb);
177 return -ENOMEM;
179 if (skb->sk)
180 skb_set_owner_w(skb2, skb->sk);
181 kfree_skb(skb);
182 skb = skb2;
185 if (hh) {
186 int hh_alen;
188 read_lock_bh(&hh->hh_lock);
189 hh_alen = HH_DATA_ALIGN(hh->hh_len);
190 memcpy(skb->data - hh_alen, hh->hh_data, hh_alen);
191 read_unlock_bh(&hh->hh_lock);
192 skb_push(skb, hh->hh_len);
193 return hh->hh_output(skb);
194 } else if (dst->neighbour)
195 return dst->neighbour->output(skb);
197 if (net_ratelimit())
198 printk(KERN_DEBUG "ip_finish_output2: No header cache and no neighbour!\n");
199 kfree_skb(skb);
200 return -EINVAL;
203 static inline int ip_finish_output(struct sk_buff *skb)
205 #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM)
206 /* Policy lookup after SNAT yielded a new policy */
207 if (skb->dst->xfrm != NULL)
208 return xfrm4_output_finish(skb);
209 #endif
210 if (skb->len > dst_mtu(skb->dst) &&
211 !(skb_shinfo(skb)->ufo_size || skb_shinfo(skb)->tso_size))
212 return ip_fragment(skb, ip_finish_output2);
213 else
214 return ip_finish_output2(skb);
217 int ip_mc_output(struct sk_buff *skb)
219 struct sock *sk = skb->sk;
220 struct rtable *rt = (struct rtable*)skb->dst;
221 struct net_device *dev = rt->u.dst.dev;
224 * If the indicated interface is up and running, send the packet.
226 IP_INC_STATS(IPSTATS_MIB_OUTREQUESTS);
228 skb->dev = dev;
229 skb->protocol = htons(ETH_P_IP);
232 * Multicasts are looped back for other local users
235 if (rt->rt_flags&RTCF_MULTICAST) {
236 if ((!sk || inet_sk(sk)->mc_loop)
237 #ifdef CONFIG_IP_MROUTE
238 /* Small optimization: do not loopback not local frames,
239 which returned after forwarding; they will be dropped
240 by ip_mr_input in any case.
241 Note, that local frames are looped back to be delivered
242 to local recipients.
244 This check is duplicated in ip_mr_input at the moment.
246 && ((rt->rt_flags&RTCF_LOCAL) || !(IPCB(skb)->flags&IPSKB_FORWARDED))
247 #endif
249 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
250 if (newskb)
251 NF_HOOK(PF_INET, NF_IP_POST_ROUTING, newskb, NULL,
252 newskb->dev,
253 ip_dev_loopback_xmit);
256 /* Multicasts with ttl 0 must not go beyond the host */
258 if (skb->nh.iph->ttl == 0) {
259 kfree_skb(skb);
260 return 0;
264 if (rt->rt_flags&RTCF_BROADCAST) {
265 struct sk_buff *newskb = skb_clone(skb, GFP_ATOMIC);
266 if (newskb)
267 NF_HOOK(PF_INET, NF_IP_POST_ROUTING, newskb, NULL,
268 newskb->dev, ip_dev_loopback_xmit);
271 return NF_HOOK(PF_INET, NF_IP_POST_ROUTING, skb, NULL, skb->dev,
272 ip_finish_output);
275 int ip_output(struct sk_buff *skb)
277 struct net_device *dev = skb->dst->dev;
279 IP_INC_STATS(IPSTATS_MIB_OUTREQUESTS);
281 skb->dev = dev;
282 skb->protocol = htons(ETH_P_IP);
284 return NF_HOOK(PF_INET, NF_IP_POST_ROUTING, skb, NULL, dev,
285 ip_finish_output);
288 int ip_queue_xmit(struct sk_buff *skb, int ipfragok)
290 struct sock *sk = skb->sk;
291 struct inet_sock *inet = inet_sk(sk);
292 struct ip_options *opt = inet->opt;
293 struct rtable *rt;
294 struct iphdr *iph;
296 /* Skip all of this if the packet is already routed,
297 * f.e. by something like SCTP.
299 rt = (struct rtable *) skb->dst;
300 if (rt != NULL)
301 goto packet_routed;
303 /* Make sure we can route this packet. */
304 rt = (struct rtable *)__sk_dst_check(sk, 0);
305 if (rt == NULL) {
306 u32 daddr;
308 /* Use correct destination address if we have options. */
309 daddr = inet->daddr;
310 if(opt && opt->srr)
311 daddr = opt->faddr;
314 struct flowi fl = { .oif = sk->sk_bound_dev_if,
315 .nl_u = { .ip4_u =
316 { .daddr = daddr,
317 .saddr = inet->saddr,
318 .tos = RT_CONN_FLAGS(sk) } },
319 .proto = sk->sk_protocol,
320 .uli_u = { .ports =
321 { .sport = inet->sport,
322 .dport = inet->dport } } };
324 /* If this fails, retransmit mechanism of transport layer will
325 * keep trying until route appears or the connection times
326 * itself out.
328 if (ip_route_output_flow(&rt, &fl, sk, 0))
329 goto no_route;
331 sk_setup_caps(sk, &rt->u.dst);
333 skb->dst = dst_clone(&rt->u.dst);
335 packet_routed:
336 if (opt && opt->is_strictroute && rt->rt_dst != rt->rt_gateway)
337 goto no_route;
339 /* OK, we know where to send it, allocate and build IP header. */
340 iph = (struct iphdr *) skb_push(skb, sizeof(struct iphdr) + (opt ? opt->optlen : 0));
341 *((__u16 *)iph) = htons((4 << 12) | (5 << 8) | (inet->tos & 0xff));
342 iph->tot_len = htons(skb->len);
343 if (ip_dont_fragment(sk, &rt->u.dst) && !ipfragok)
344 iph->frag_off = htons(IP_DF);
345 else
346 iph->frag_off = 0;
347 iph->ttl = ip_select_ttl(inet, &rt->u.dst);
348 iph->protocol = sk->sk_protocol;
349 iph->saddr = rt->rt_src;
350 iph->daddr = rt->rt_dst;
351 skb->nh.iph = iph;
352 /* Transport layer set skb->h.foo itself. */
354 if (opt && opt->optlen) {
355 iph->ihl += opt->optlen >> 2;
356 ip_options_build(skb, opt, inet->daddr, rt, 0);
359 ip_select_ident_more(iph, &rt->u.dst, sk,
360 (skb_shinfo(skb)->tso_segs ?: 1) - 1);
362 /* Add an IP checksum. */
363 ip_send_check(iph);
365 skb->priority = sk->sk_priority;
367 return NF_HOOK(PF_INET, NF_IP_LOCAL_OUT, skb, NULL, rt->u.dst.dev,
368 dst_output);
370 no_route:
371 IP_INC_STATS(IPSTATS_MIB_OUTNOROUTES);
372 kfree_skb(skb);
373 return -EHOSTUNREACH;
377 static void ip_copy_metadata(struct sk_buff *to, struct sk_buff *from)
379 to->pkt_type = from->pkt_type;
380 to->priority = from->priority;
381 to->protocol = from->protocol;
382 dst_release(to->dst);
383 to->dst = dst_clone(from->dst);
384 to->dev = from->dev;
386 /* Copy the flags to each fragment. */
387 IPCB(to)->flags = IPCB(from)->flags;
389 #ifdef CONFIG_NET_SCHED
390 to->tc_index = from->tc_index;
391 #endif
392 #ifdef CONFIG_NETFILTER
393 to->nfmark = from->nfmark;
394 /* Connection association is same as pre-frag packet */
395 nf_conntrack_put(to->nfct);
396 to->nfct = from->nfct;
397 nf_conntrack_get(to->nfct);
398 to->nfctinfo = from->nfctinfo;
399 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
400 to->ipvs_property = from->ipvs_property;
401 #endif
402 #ifdef CONFIG_BRIDGE_NETFILTER
403 nf_bridge_put(to->nf_bridge);
404 to->nf_bridge = from->nf_bridge;
405 nf_bridge_get(to->nf_bridge);
406 #endif
407 #endif
411 * This IP datagram is too large to be sent in one piece. Break it up into
412 * smaller pieces (each of size equal to IP header plus
413 * a block of the data of the original IP data part) that will yet fit in a
414 * single device frame, and queue such a frame for sending.
417 int ip_fragment(struct sk_buff *skb, int (*output)(struct sk_buff*))
419 struct iphdr *iph;
420 int raw = 0;
421 int ptr;
422 struct net_device *dev;
423 struct sk_buff *skb2;
424 unsigned int mtu, hlen, left, len, ll_rs;
425 int offset;
426 __be16 not_last_frag;
427 struct rtable *rt = (struct rtable*)skb->dst;
428 int err = 0;
430 dev = rt->u.dst.dev;
433 * Point into the IP datagram header.
436 iph = skb->nh.iph;
438 if (unlikely((iph->frag_off & htons(IP_DF)) && !skb->local_df)) {
439 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED,
440 htonl(dst_mtu(&rt->u.dst)));
441 kfree_skb(skb);
442 return -EMSGSIZE;
446 * Setup starting values.
449 hlen = iph->ihl * 4;
450 mtu = dst_mtu(&rt->u.dst) - hlen; /* Size of data space */
451 IPCB(skb)->flags |= IPSKB_FRAG_COMPLETE;
453 /* When frag_list is given, use it. First, check its validity:
454 * some transformers could create wrong frag_list or break existing
455 * one, it is not prohibited. In this case fall back to copying.
457 * LATER: this step can be merged to real generation of fragments,
458 * we can switch to copy when see the first bad fragment.
460 if (skb_shinfo(skb)->frag_list) {
461 struct sk_buff *frag;
462 int first_len = skb_pagelen(skb);
464 if (first_len - hlen > mtu ||
465 ((first_len - hlen) & 7) ||
466 (iph->frag_off & htons(IP_MF|IP_OFFSET)) ||
467 skb_cloned(skb))
468 goto slow_path;
470 for (frag = skb_shinfo(skb)->frag_list; frag; frag = frag->next) {
471 /* Correct geometry. */
472 if (frag->len > mtu ||
473 ((frag->len & 7) && frag->next) ||
474 skb_headroom(frag) < hlen)
475 goto slow_path;
477 /* Partially cloned skb? */
478 if (skb_shared(frag))
479 goto slow_path;
481 BUG_ON(frag->sk);
482 if (skb->sk) {
483 sock_hold(skb->sk);
484 frag->sk = skb->sk;
485 frag->destructor = sock_wfree;
486 skb->truesize -= frag->truesize;
490 /* Everything is OK. Generate! */
492 err = 0;
493 offset = 0;
494 frag = skb_shinfo(skb)->frag_list;
495 skb_shinfo(skb)->frag_list = NULL;
496 skb->data_len = first_len - skb_headlen(skb);
497 skb->len = first_len;
498 iph->tot_len = htons(first_len);
499 iph->frag_off = htons(IP_MF);
500 ip_send_check(iph);
502 for (;;) {
503 /* Prepare header of the next frame,
504 * before previous one went down. */
505 if (frag) {
506 frag->ip_summed = CHECKSUM_NONE;
507 frag->h.raw = frag->data;
508 frag->nh.raw = __skb_push(frag, hlen);
509 memcpy(frag->nh.raw, iph, hlen);
510 iph = frag->nh.iph;
511 iph->tot_len = htons(frag->len);
512 ip_copy_metadata(frag, skb);
513 if (offset == 0)
514 ip_options_fragment(frag);
515 offset += skb->len - hlen;
516 iph->frag_off = htons(offset>>3);
517 if (frag->next != NULL)
518 iph->frag_off |= htons(IP_MF);
519 /* Ready, complete checksum */
520 ip_send_check(iph);
523 err = output(skb);
525 if (err || !frag)
526 break;
528 skb = frag;
529 frag = skb->next;
530 skb->next = NULL;
533 if (err == 0) {
534 IP_INC_STATS(IPSTATS_MIB_FRAGOKS);
535 return 0;
538 while (frag) {
539 skb = frag->next;
540 kfree_skb(frag);
541 frag = skb;
543 IP_INC_STATS(IPSTATS_MIB_FRAGFAILS);
544 return err;
547 slow_path:
548 left = skb->len - hlen; /* Space per frame */
549 ptr = raw + hlen; /* Where to start from */
551 #ifdef CONFIG_BRIDGE_NETFILTER
552 /* for bridged IP traffic encapsulated inside f.e. a vlan header,
553 * we need to make room for the encapsulating header */
554 ll_rs = LL_RESERVED_SPACE_EXTRA(rt->u.dst.dev, nf_bridge_pad(skb));
555 mtu -= nf_bridge_pad(skb);
556 #else
557 ll_rs = LL_RESERVED_SPACE(rt->u.dst.dev);
558 #endif
560 * Fragment the datagram.
563 offset = (ntohs(iph->frag_off) & IP_OFFSET) << 3;
564 not_last_frag = iph->frag_off & htons(IP_MF);
567 * Keep copying data until we run out.
570 while(left > 0) {
571 len = left;
572 /* IF: it doesn't fit, use 'mtu' - the data space left */
573 if (len > mtu)
574 len = mtu;
575 /* IF: we are not sending upto and including the packet end
576 then align the next start on an eight byte boundary */
577 if (len < left) {
578 len &= ~7;
581 * Allocate buffer.
584 if ((skb2 = alloc_skb(len+hlen+ll_rs, GFP_ATOMIC)) == NULL) {
585 NETDEBUG(KERN_INFO "IP: frag: no memory for new fragment!\n");
586 err = -ENOMEM;
587 goto fail;
591 * Set up data on packet
594 ip_copy_metadata(skb2, skb);
595 skb_reserve(skb2, ll_rs);
596 skb_put(skb2, len + hlen);
597 skb2->nh.raw = skb2->data;
598 skb2->h.raw = skb2->data + hlen;
601 * Charge the memory for the fragment to any owner
602 * it might possess
605 if (skb->sk)
606 skb_set_owner_w(skb2, skb->sk);
609 * Copy the packet header into the new buffer.
612 memcpy(skb2->nh.raw, skb->data, hlen);
615 * Copy a block of the IP datagram.
617 if (skb_copy_bits(skb, ptr, skb2->h.raw, len))
618 BUG();
619 left -= len;
622 * Fill in the new header fields.
624 iph = skb2->nh.iph;
625 iph->frag_off = htons((offset >> 3));
627 /* ANK: dirty, but effective trick. Upgrade options only if
628 * the segment to be fragmented was THE FIRST (otherwise,
629 * options are already fixed) and make it ONCE
630 * on the initial skb, so that all the following fragments
631 * will inherit fixed options.
633 if (offset == 0)
634 ip_options_fragment(skb);
637 * Added AC : If we are fragmenting a fragment that's not the
638 * last fragment then keep MF on each bit
640 if (left > 0 || not_last_frag)
641 iph->frag_off |= htons(IP_MF);
642 ptr += len;
643 offset += len;
646 * Put this fragment into the sending queue.
649 IP_INC_STATS(IPSTATS_MIB_FRAGCREATES);
651 iph->tot_len = htons(len + hlen);
653 ip_send_check(iph);
655 err = output(skb2);
656 if (err)
657 goto fail;
659 kfree_skb(skb);
660 IP_INC_STATS(IPSTATS_MIB_FRAGOKS);
661 return err;
663 fail:
664 kfree_skb(skb);
665 IP_INC_STATS(IPSTATS_MIB_FRAGFAILS);
666 return err;
670 ip_generic_getfrag(void *from, char *to, int offset, int len, int odd, struct sk_buff *skb)
672 struct iovec *iov = from;
674 if (skb->ip_summed == CHECKSUM_HW) {
675 if (memcpy_fromiovecend(to, iov, offset, len) < 0)
676 return -EFAULT;
677 } else {
678 unsigned int csum = 0;
679 if (csum_partial_copy_fromiovecend(to, iov, offset, len, &csum) < 0)
680 return -EFAULT;
681 skb->csum = csum_block_add(skb->csum, csum, odd);
683 return 0;
686 static inline unsigned int
687 csum_page(struct page *page, int offset, int copy)
689 char *kaddr;
690 unsigned int csum;
691 kaddr = kmap(page);
692 csum = csum_partial(kaddr + offset, copy, 0);
693 kunmap(page);
694 return csum;
697 static inline int ip_ufo_append_data(struct sock *sk,
698 int getfrag(void *from, char *to, int offset, int len,
699 int odd, struct sk_buff *skb),
700 void *from, int length, int hh_len, int fragheaderlen,
701 int transhdrlen, int mtu,unsigned int flags)
703 struct sk_buff *skb;
704 int err;
706 /* There is support for UDP fragmentation offload by network
707 * device, so create one single skb packet containing complete
708 * udp datagram
710 if ((skb = skb_peek_tail(&sk->sk_write_queue)) == NULL) {
711 skb = sock_alloc_send_skb(sk,
712 hh_len + fragheaderlen + transhdrlen + 20,
713 (flags & MSG_DONTWAIT), &err);
715 if (skb == NULL)
716 return err;
718 /* reserve space for Hardware header */
719 skb_reserve(skb, hh_len);
721 /* create space for UDP/IP header */
722 skb_put(skb,fragheaderlen + transhdrlen);
724 /* initialize network header pointer */
725 skb->nh.raw = skb->data;
727 /* initialize protocol header pointer */
728 skb->h.raw = skb->data + fragheaderlen;
730 skb->ip_summed = CHECKSUM_HW;
731 skb->csum = 0;
732 sk->sk_sndmsg_off = 0;
735 err = skb_append_datato_frags(sk,skb, getfrag, from,
736 (length - transhdrlen));
737 if (!err) {
738 /* specify the length of each IP datagram fragment*/
739 skb_shinfo(skb)->ufo_size = (mtu - fragheaderlen);
740 __skb_queue_tail(&sk->sk_write_queue, skb);
742 return 0;
744 /* There is not enough support do UFO ,
745 * so follow normal path
747 kfree_skb(skb);
748 return err;
752 * ip_append_data() and ip_append_page() can make one large IP datagram
753 * from many pieces of data. Each pieces will be holded on the socket
754 * until ip_push_pending_frames() is called. Each piece can be a page
755 * or non-page data.
757 * Not only UDP, other transport protocols - e.g. raw sockets - can use
758 * this interface potentially.
760 * LATER: length must be adjusted by pad at tail, when it is required.
762 int ip_append_data(struct sock *sk,
763 int getfrag(void *from, char *to, int offset, int len,
764 int odd, struct sk_buff *skb),
765 void *from, int length, int transhdrlen,
766 struct ipcm_cookie *ipc, struct rtable *rt,
767 unsigned int flags)
769 struct inet_sock *inet = inet_sk(sk);
770 struct sk_buff *skb;
772 struct ip_options *opt = NULL;
773 int hh_len;
774 int exthdrlen;
775 int mtu;
776 int copy;
777 int err;
778 int offset = 0;
779 unsigned int maxfraglen, fragheaderlen;
780 int csummode = CHECKSUM_NONE;
782 if (flags&MSG_PROBE)
783 return 0;
785 if (skb_queue_empty(&sk->sk_write_queue)) {
787 * setup for corking.
789 opt = ipc->opt;
790 if (opt) {
791 if (inet->cork.opt == NULL) {
792 inet->cork.opt = kmalloc(sizeof(struct ip_options) + 40, sk->sk_allocation);
793 if (unlikely(inet->cork.opt == NULL))
794 return -ENOBUFS;
796 memcpy(inet->cork.opt, opt, sizeof(struct ip_options)+opt->optlen);
797 inet->cork.flags |= IPCORK_OPT;
798 inet->cork.addr = ipc->addr;
800 dst_hold(&rt->u.dst);
801 inet->cork.fragsize = mtu = dst_mtu(rt->u.dst.path);
802 inet->cork.rt = rt;
803 inet->cork.length = 0;
804 sk->sk_sndmsg_page = NULL;
805 sk->sk_sndmsg_off = 0;
806 if ((exthdrlen = rt->u.dst.header_len) != 0) {
807 length += exthdrlen;
808 transhdrlen += exthdrlen;
810 } else {
811 rt = inet->cork.rt;
812 if (inet->cork.flags & IPCORK_OPT)
813 opt = inet->cork.opt;
815 transhdrlen = 0;
816 exthdrlen = 0;
817 mtu = inet->cork.fragsize;
819 hh_len = LL_RESERVED_SPACE(rt->u.dst.dev);
821 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
822 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
824 if (inet->cork.length + length > 0xFFFF - fragheaderlen) {
825 ip_local_error(sk, EMSGSIZE, rt->rt_dst, inet->dport, mtu-exthdrlen);
826 return -EMSGSIZE;
830 * transhdrlen > 0 means that this is the first fragment and we wish
831 * it won't be fragmented in the future.
833 if (transhdrlen &&
834 length + fragheaderlen <= mtu &&
835 rt->u.dst.dev->features&(NETIF_F_IP_CSUM|NETIF_F_NO_CSUM|NETIF_F_HW_CSUM) &&
836 !exthdrlen)
837 csummode = CHECKSUM_HW;
839 inet->cork.length += length;
840 if (((length > mtu) && (sk->sk_protocol == IPPROTO_UDP)) &&
841 (rt->u.dst.dev->features & NETIF_F_UFO)) {
843 if(ip_ufo_append_data(sk, getfrag, from, length, hh_len,
844 fragheaderlen, transhdrlen, mtu, flags))
845 goto error;
847 return 0;
850 /* So, what's going on in the loop below?
852 * We use calculated fragment length to generate chained skb,
853 * each of segments is IP fragment ready for sending to network after
854 * adding appropriate IP header.
857 if ((skb = skb_peek_tail(&sk->sk_write_queue)) == NULL)
858 goto alloc_new_skb;
860 while (length > 0) {
861 /* Check if the remaining data fits into current packet. */
862 copy = mtu - skb->len;
863 if (copy < length)
864 copy = maxfraglen - skb->len;
865 if (copy <= 0) {
866 char *data;
867 unsigned int datalen;
868 unsigned int fraglen;
869 unsigned int fraggap;
870 unsigned int alloclen;
871 struct sk_buff *skb_prev;
872 alloc_new_skb:
873 skb_prev = skb;
874 if (skb_prev)
875 fraggap = skb_prev->len - maxfraglen;
876 else
877 fraggap = 0;
880 * If remaining data exceeds the mtu,
881 * we know we need more fragment(s).
883 datalen = length + fraggap;
884 if (datalen > mtu - fragheaderlen)
885 datalen = maxfraglen - fragheaderlen;
886 fraglen = datalen + fragheaderlen;
888 if ((flags & MSG_MORE) &&
889 !(rt->u.dst.dev->features&NETIF_F_SG))
890 alloclen = mtu;
891 else
892 alloclen = datalen + fragheaderlen;
894 /* The last fragment gets additional space at tail.
895 * Note, with MSG_MORE we overallocate on fragments,
896 * because we have no idea what fragment will be
897 * the last.
899 if (datalen == length)
900 alloclen += rt->u.dst.trailer_len;
902 if (transhdrlen) {
903 skb = sock_alloc_send_skb(sk,
904 alloclen + hh_len + 15,
905 (flags & MSG_DONTWAIT), &err);
906 } else {
907 skb = NULL;
908 if (atomic_read(&sk->sk_wmem_alloc) <=
909 2 * sk->sk_sndbuf)
910 skb = sock_wmalloc(sk,
911 alloclen + hh_len + 15, 1,
912 sk->sk_allocation);
913 if (unlikely(skb == NULL))
914 err = -ENOBUFS;
916 if (skb == NULL)
917 goto error;
920 * Fill in the control structures
922 skb->ip_summed = csummode;
923 skb->csum = 0;
924 skb_reserve(skb, hh_len);
927 * Find where to start putting bytes.
929 data = skb_put(skb, fraglen);
930 skb->nh.raw = data + exthdrlen;
931 data += fragheaderlen;
932 skb->h.raw = data + exthdrlen;
934 if (fraggap) {
935 skb->csum = skb_copy_and_csum_bits(
936 skb_prev, maxfraglen,
937 data + transhdrlen, fraggap, 0);
938 skb_prev->csum = csum_sub(skb_prev->csum,
939 skb->csum);
940 data += fraggap;
941 skb_trim(skb_prev, maxfraglen);
944 copy = datalen - transhdrlen - fraggap;
945 if (copy > 0 && getfrag(from, data + transhdrlen, offset, copy, fraggap, skb) < 0) {
946 err = -EFAULT;
947 kfree_skb(skb);
948 goto error;
951 offset += copy;
952 length -= datalen - fraggap;
953 transhdrlen = 0;
954 exthdrlen = 0;
955 csummode = CHECKSUM_NONE;
958 * Put the packet on the pending queue.
960 __skb_queue_tail(&sk->sk_write_queue, skb);
961 continue;
964 if (copy > length)
965 copy = length;
967 if (!(rt->u.dst.dev->features&NETIF_F_SG)) {
968 unsigned int off;
970 off = skb->len;
971 if (getfrag(from, skb_put(skb, copy),
972 offset, copy, off, skb) < 0) {
973 __skb_trim(skb, off);
974 err = -EFAULT;
975 goto error;
977 } else {
978 int i = skb_shinfo(skb)->nr_frags;
979 skb_frag_t *frag = &skb_shinfo(skb)->frags[i-1];
980 struct page *page = sk->sk_sndmsg_page;
981 int off = sk->sk_sndmsg_off;
982 unsigned int left;
984 if (page && (left = PAGE_SIZE - off) > 0) {
985 if (copy >= left)
986 copy = left;
987 if (page != frag->page) {
988 if (i == MAX_SKB_FRAGS) {
989 err = -EMSGSIZE;
990 goto error;
992 get_page(page);
993 skb_fill_page_desc(skb, i, page, sk->sk_sndmsg_off, 0);
994 frag = &skb_shinfo(skb)->frags[i];
996 } else if (i < MAX_SKB_FRAGS) {
997 if (copy > PAGE_SIZE)
998 copy = PAGE_SIZE;
999 page = alloc_pages(sk->sk_allocation, 0);
1000 if (page == NULL) {
1001 err = -ENOMEM;
1002 goto error;
1004 sk->sk_sndmsg_page = page;
1005 sk->sk_sndmsg_off = 0;
1007 skb_fill_page_desc(skb, i, page, 0, 0);
1008 frag = &skb_shinfo(skb)->frags[i];
1009 skb->truesize += PAGE_SIZE;
1010 atomic_add(PAGE_SIZE, &sk->sk_wmem_alloc);
1011 } else {
1012 err = -EMSGSIZE;
1013 goto error;
1015 if (getfrag(from, page_address(frag->page)+frag->page_offset+frag->size, offset, copy, skb->len, skb) < 0) {
1016 err = -EFAULT;
1017 goto error;
1019 sk->sk_sndmsg_off += copy;
1020 frag->size += copy;
1021 skb->len += copy;
1022 skb->data_len += copy;
1024 offset += copy;
1025 length -= copy;
1028 return 0;
1030 error:
1031 inet->cork.length -= length;
1032 IP_INC_STATS(IPSTATS_MIB_OUTDISCARDS);
1033 return err;
1036 ssize_t ip_append_page(struct sock *sk, struct page *page,
1037 int offset, size_t size, int flags)
1039 struct inet_sock *inet = inet_sk(sk);
1040 struct sk_buff *skb;
1041 struct rtable *rt;
1042 struct ip_options *opt = NULL;
1043 int hh_len;
1044 int mtu;
1045 int len;
1046 int err;
1047 unsigned int maxfraglen, fragheaderlen, fraggap;
1049 if (inet->hdrincl)
1050 return -EPERM;
1052 if (flags&MSG_PROBE)
1053 return 0;
1055 if (skb_queue_empty(&sk->sk_write_queue))
1056 return -EINVAL;
1058 rt = inet->cork.rt;
1059 if (inet->cork.flags & IPCORK_OPT)
1060 opt = inet->cork.opt;
1062 if (!(rt->u.dst.dev->features&NETIF_F_SG))
1063 return -EOPNOTSUPP;
1065 hh_len = LL_RESERVED_SPACE(rt->u.dst.dev);
1066 mtu = inet->cork.fragsize;
1068 fragheaderlen = sizeof(struct iphdr) + (opt ? opt->optlen : 0);
1069 maxfraglen = ((mtu - fragheaderlen) & ~7) + fragheaderlen;
1071 if (inet->cork.length + size > 0xFFFF - fragheaderlen) {
1072 ip_local_error(sk, EMSGSIZE, rt->rt_dst, inet->dport, mtu);
1073 return -EMSGSIZE;
1076 if ((skb = skb_peek_tail(&sk->sk_write_queue)) == NULL)
1077 return -EINVAL;
1079 inet->cork.length += size;
1080 if ((sk->sk_protocol == IPPROTO_UDP) &&
1081 (rt->u.dst.dev->features & NETIF_F_UFO))
1082 skb_shinfo(skb)->ufo_size = (mtu - fragheaderlen);
1085 while (size > 0) {
1086 int i;
1088 if (skb_shinfo(skb)->ufo_size)
1089 len = size;
1090 else {
1092 /* Check if the remaining data fits into current packet. */
1093 len = mtu - skb->len;
1094 if (len < size)
1095 len = maxfraglen - skb->len;
1097 if (len <= 0) {
1098 struct sk_buff *skb_prev;
1099 char *data;
1100 struct iphdr *iph;
1101 int alloclen;
1103 skb_prev = skb;
1104 fraggap = skb_prev->len - maxfraglen;
1106 alloclen = fragheaderlen + hh_len + fraggap + 15;
1107 skb = sock_wmalloc(sk, alloclen, 1, sk->sk_allocation);
1108 if (unlikely(!skb)) {
1109 err = -ENOBUFS;
1110 goto error;
1114 * Fill in the control structures
1116 skb->ip_summed = CHECKSUM_NONE;
1117 skb->csum = 0;
1118 skb_reserve(skb, hh_len);
1121 * Find where to start putting bytes.
1123 data = skb_put(skb, fragheaderlen + fraggap);
1124 skb->nh.iph = iph = (struct iphdr *)data;
1125 data += fragheaderlen;
1126 skb->h.raw = data;
1128 if (fraggap) {
1129 skb->csum = skb_copy_and_csum_bits(
1130 skb_prev, maxfraglen,
1131 data, fraggap, 0);
1132 skb_prev->csum = csum_sub(skb_prev->csum,
1133 skb->csum);
1134 skb_trim(skb_prev, maxfraglen);
1138 * Put the packet on the pending queue.
1140 __skb_queue_tail(&sk->sk_write_queue, skb);
1141 continue;
1144 i = skb_shinfo(skb)->nr_frags;
1145 if (len > size)
1146 len = size;
1147 if (skb_can_coalesce(skb, i, page, offset)) {
1148 skb_shinfo(skb)->frags[i-1].size += len;
1149 } else if (i < MAX_SKB_FRAGS) {
1150 get_page(page);
1151 skb_fill_page_desc(skb, i, page, offset, len);
1152 } else {
1153 err = -EMSGSIZE;
1154 goto error;
1157 if (skb->ip_summed == CHECKSUM_NONE) {
1158 unsigned int csum;
1159 csum = csum_page(page, offset, len);
1160 skb->csum = csum_block_add(skb->csum, csum, skb->len);
1163 skb->len += len;
1164 skb->data_len += len;
1165 offset += len;
1166 size -= len;
1168 return 0;
1170 error:
1171 inet->cork.length -= size;
1172 IP_INC_STATS(IPSTATS_MIB_OUTDISCARDS);
1173 return err;
1177 * Combined all pending IP fragments on the socket as one IP datagram
1178 * and push them out.
1180 int ip_push_pending_frames(struct sock *sk)
1182 struct sk_buff *skb, *tmp_skb;
1183 struct sk_buff **tail_skb;
1184 struct inet_sock *inet = inet_sk(sk);
1185 struct ip_options *opt = NULL;
1186 struct rtable *rt = inet->cork.rt;
1187 struct iphdr *iph;
1188 __be16 df = 0;
1189 __u8 ttl;
1190 int err = 0;
1192 if ((skb = __skb_dequeue(&sk->sk_write_queue)) == NULL)
1193 goto out;
1194 tail_skb = &(skb_shinfo(skb)->frag_list);
1196 /* move skb->data to ip header from ext header */
1197 if (skb->data < skb->nh.raw)
1198 __skb_pull(skb, skb->nh.raw - skb->data);
1199 while ((tmp_skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
1200 __skb_pull(tmp_skb, skb->h.raw - skb->nh.raw);
1201 *tail_skb = tmp_skb;
1202 tail_skb = &(tmp_skb->next);
1203 skb->len += tmp_skb->len;
1204 skb->data_len += tmp_skb->len;
1205 skb->truesize += tmp_skb->truesize;
1206 __sock_put(tmp_skb->sk);
1207 tmp_skb->destructor = NULL;
1208 tmp_skb->sk = NULL;
1211 /* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow
1212 * to fragment the frame generated here. No matter, what transforms
1213 * how transforms change size of the packet, it will come out.
1215 if (inet->pmtudisc != IP_PMTUDISC_DO)
1216 skb->local_df = 1;
1218 /* DF bit is set when we want to see DF on outgoing frames.
1219 * If local_df is set too, we still allow to fragment this frame
1220 * locally. */
1221 if (inet->pmtudisc == IP_PMTUDISC_DO ||
1222 (skb->len <= dst_mtu(&rt->u.dst) &&
1223 ip_dont_fragment(sk, &rt->u.dst)))
1224 df = htons(IP_DF);
1226 if (inet->cork.flags & IPCORK_OPT)
1227 opt = inet->cork.opt;
1229 if (rt->rt_type == RTN_MULTICAST)
1230 ttl = inet->mc_ttl;
1231 else
1232 ttl = ip_select_ttl(inet, &rt->u.dst);
1234 iph = (struct iphdr *)skb->data;
1235 iph->version = 4;
1236 iph->ihl = 5;
1237 if (opt) {
1238 iph->ihl += opt->optlen>>2;
1239 ip_options_build(skb, opt, inet->cork.addr, rt, 0);
1241 iph->tos = inet->tos;
1242 iph->tot_len = htons(skb->len);
1243 iph->frag_off = df;
1244 if (!df) {
1245 __ip_select_ident(iph, &rt->u.dst, 0);
1246 } else {
1247 iph->id = htons(inet->id++);
1249 iph->ttl = ttl;
1250 iph->protocol = sk->sk_protocol;
1251 iph->saddr = rt->rt_src;
1252 iph->daddr = rt->rt_dst;
1253 ip_send_check(iph);
1255 skb->priority = sk->sk_priority;
1256 skb->dst = dst_clone(&rt->u.dst);
1258 /* Netfilter gets whole the not fragmented skb. */
1259 err = NF_HOOK(PF_INET, NF_IP_LOCAL_OUT, skb, NULL,
1260 skb->dst->dev, dst_output);
1261 if (err) {
1262 if (err > 0)
1263 err = inet->recverr ? net_xmit_errno(err) : 0;
1264 if (err)
1265 goto error;
1268 out:
1269 inet->cork.flags &= ~IPCORK_OPT;
1270 kfree(inet->cork.opt);
1271 inet->cork.opt = NULL;
1272 if (inet->cork.rt) {
1273 ip_rt_put(inet->cork.rt);
1274 inet->cork.rt = NULL;
1276 return err;
1278 error:
1279 IP_INC_STATS(IPSTATS_MIB_OUTDISCARDS);
1280 goto out;
1284 * Throw away all pending data on the socket.
1286 void ip_flush_pending_frames(struct sock *sk)
1288 struct inet_sock *inet = inet_sk(sk);
1289 struct sk_buff *skb;
1291 while ((skb = __skb_dequeue_tail(&sk->sk_write_queue)) != NULL)
1292 kfree_skb(skb);
1294 inet->cork.flags &= ~IPCORK_OPT;
1295 kfree(inet->cork.opt);
1296 inet->cork.opt = NULL;
1297 if (inet->cork.rt) {
1298 ip_rt_put(inet->cork.rt);
1299 inet->cork.rt = NULL;
1305 * Fetch data from kernel space and fill in checksum if needed.
1307 static int ip_reply_glue_bits(void *dptr, char *to, int offset,
1308 int len, int odd, struct sk_buff *skb)
1310 unsigned int csum;
1312 csum = csum_partial_copy_nocheck(dptr+offset, to, len, 0);
1313 skb->csum = csum_block_add(skb->csum, csum, odd);
1314 return 0;
1318 * Generic function to send a packet as reply to another packet.
1319 * Used to send TCP resets so far. ICMP should use this function too.
1321 * Should run single threaded per socket because it uses the sock
1322 * structure to pass arguments.
1324 * LATER: switch from ip_build_xmit to ip_append_*
1326 void ip_send_reply(struct sock *sk, struct sk_buff *skb, struct ip_reply_arg *arg,
1327 unsigned int len)
1329 struct inet_sock *inet = inet_sk(sk);
1330 struct {
1331 struct ip_options opt;
1332 char data[40];
1333 } replyopts;
1334 struct ipcm_cookie ipc;
1335 u32 daddr;
1336 struct rtable *rt = (struct rtable*)skb->dst;
1338 if (ip_options_echo(&replyopts.opt, skb))
1339 return;
1341 daddr = ipc.addr = rt->rt_src;
1342 ipc.opt = NULL;
1344 if (replyopts.opt.optlen) {
1345 ipc.opt = &replyopts.opt;
1347 if (ipc.opt->srr)
1348 daddr = replyopts.opt.faddr;
1352 struct flowi fl = { .nl_u = { .ip4_u =
1353 { .daddr = daddr,
1354 .saddr = rt->rt_spec_dst,
1355 .tos = RT_TOS(skb->nh.iph->tos) } },
1356 /* Not quite clean, but right. */
1357 .uli_u = { .ports =
1358 { .sport = skb->h.th->dest,
1359 .dport = skb->h.th->source } },
1360 .proto = sk->sk_protocol };
1361 if (ip_route_output_key(&rt, &fl))
1362 return;
1365 /* And let IP do all the hard work.
1367 This chunk is not reenterable, hence spinlock.
1368 Note that it uses the fact, that this function is called
1369 with locally disabled BH and that sk cannot be already spinlocked.
1371 bh_lock_sock(sk);
1372 inet->tos = skb->nh.iph->tos;
1373 sk->sk_priority = skb->priority;
1374 sk->sk_protocol = skb->nh.iph->protocol;
1375 ip_append_data(sk, ip_reply_glue_bits, arg->iov->iov_base, len, 0,
1376 &ipc, rt, MSG_DONTWAIT);
1377 if ((skb = skb_peek(&sk->sk_write_queue)) != NULL) {
1378 if (arg->csumoffset >= 0)
1379 *((u16 *)skb->h.raw + arg->csumoffset) = csum_fold(csum_add(skb->csum, arg->csum));
1380 skb->ip_summed = CHECKSUM_NONE;
1381 ip_push_pending_frames(sk);
1384 bh_unlock_sock(sk);
1386 ip_rt_put(rt);
1389 void __init ip_init(void)
1391 ip_rt_init();
1392 inet_initpeers();
1394 #if defined(CONFIG_IP_MULTICAST) && defined(CONFIG_PROC_FS)
1395 igmp_mc_proc_init();
1396 #endif
1399 EXPORT_SYMBOL(ip_fragment);
1400 EXPORT_SYMBOL(ip_generic_getfrag);
1401 EXPORT_SYMBOL(ip_queue_xmit);
1402 EXPORT_SYMBOL(ip_send_check);