2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
5 * Copyright (C) 2002, 2003 H. Peter Anvin
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->bm_write is the number of the last batch successfully written.
31 * conf->bm_flush is the number of the last batch that was closed to
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is bm_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/async.h>
51 #include <linux/seq_file.h>
52 #include <linux/cpu.h>
53 #include <linux/slab.h>
63 #define NR_STRIPES 256
64 #define STRIPE_SIZE PAGE_SIZE
65 #define STRIPE_SHIFT (PAGE_SHIFT - 9)
66 #define STRIPE_SECTORS (STRIPE_SIZE>>9)
67 #define IO_THRESHOLD 1
68 #define BYPASS_THRESHOLD 1
69 #define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
70 #define HASH_MASK (NR_HASH - 1)
72 #define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
74 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
75 * order without overlap. There may be several bio's per stripe+device, and
76 * a bio could span several devices.
77 * When walking this list for a particular stripe+device, we must never proceed
78 * beyond a bio that extends past this device, as the next bio might no longer
80 * This macro is used to determine the 'next' bio in the list, given the sector
81 * of the current stripe+device
83 #define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
85 * The following can be used to debug the driver
87 #define RAID5_PARANOIA 1
88 #if RAID5_PARANOIA && defined(CONFIG_SMP)
89 # define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
91 # define CHECK_DEVLOCK()
99 #define printk_rl(args...) ((void) (printk_ratelimit() && printk(args)))
102 * We maintain a biased count of active stripes in the bottom 16 bits of
103 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
105 static inline int raid5_bi_phys_segments(struct bio
*bio
)
107 return bio
->bi_phys_segments
& 0xffff;
110 static inline int raid5_bi_hw_segments(struct bio
*bio
)
112 return (bio
->bi_phys_segments
>> 16) & 0xffff;
115 static inline int raid5_dec_bi_phys_segments(struct bio
*bio
)
117 --bio
->bi_phys_segments
;
118 return raid5_bi_phys_segments(bio
);
121 static inline int raid5_dec_bi_hw_segments(struct bio
*bio
)
123 unsigned short val
= raid5_bi_hw_segments(bio
);
126 bio
->bi_phys_segments
= (val
<< 16) | raid5_bi_phys_segments(bio
);
130 static inline void raid5_set_bi_hw_segments(struct bio
*bio
, unsigned int cnt
)
132 bio
->bi_phys_segments
= raid5_bi_phys_segments(bio
) || (cnt
<< 16);
135 /* Find first data disk in a raid6 stripe */
136 static inline int raid6_d0(struct stripe_head
*sh
)
139 /* ddf always start from first device */
141 /* md starts just after Q block */
142 if (sh
->qd_idx
== sh
->disks
- 1)
145 return sh
->qd_idx
+ 1;
147 static inline int raid6_next_disk(int disk
, int raid_disks
)
150 return (disk
< raid_disks
) ? disk
: 0;
153 /* When walking through the disks in a raid5, starting at raid6_d0,
154 * We need to map each disk to a 'slot', where the data disks are slot
155 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
156 * is raid_disks-1. This help does that mapping.
158 static int raid6_idx_to_slot(int idx
, struct stripe_head
*sh
,
159 int *count
, int syndrome_disks
)
165 if (idx
== sh
->pd_idx
)
166 return syndrome_disks
;
167 if (idx
== sh
->qd_idx
)
168 return syndrome_disks
+ 1;
174 static void return_io(struct bio
*return_bi
)
176 struct bio
*bi
= return_bi
;
179 return_bi
= bi
->bi_next
;
187 static void print_raid5_conf (raid5_conf_t
*conf
);
189 static int stripe_operations_active(struct stripe_head
*sh
)
191 return sh
->check_state
|| sh
->reconstruct_state
||
192 test_bit(STRIPE_BIOFILL_RUN
, &sh
->state
) ||
193 test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
196 static void __release_stripe(raid5_conf_t
*conf
, struct stripe_head
*sh
)
198 if (atomic_dec_and_test(&sh
->count
)) {
199 BUG_ON(!list_empty(&sh
->lru
));
200 BUG_ON(atomic_read(&conf
->active_stripes
)==0);
201 if (test_bit(STRIPE_HANDLE
, &sh
->state
)) {
202 if (test_bit(STRIPE_DELAYED
, &sh
->state
)) {
203 list_add_tail(&sh
->lru
, &conf
->delayed_list
);
204 blk_plug_device(conf
->mddev
->queue
);
205 } else if (test_bit(STRIPE_BIT_DELAY
, &sh
->state
) &&
206 sh
->bm_seq
- conf
->seq_write
> 0) {
207 list_add_tail(&sh
->lru
, &conf
->bitmap_list
);
208 blk_plug_device(conf
->mddev
->queue
);
210 clear_bit(STRIPE_BIT_DELAY
, &sh
->state
);
211 list_add_tail(&sh
->lru
, &conf
->handle_list
);
213 md_wakeup_thread(conf
->mddev
->thread
);
215 BUG_ON(stripe_operations_active(sh
));
216 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
)) {
217 atomic_dec(&conf
->preread_active_stripes
);
218 if (atomic_read(&conf
->preread_active_stripes
) < IO_THRESHOLD
)
219 md_wakeup_thread(conf
->mddev
->thread
);
221 atomic_dec(&conf
->active_stripes
);
222 if (!test_bit(STRIPE_EXPANDING
, &sh
->state
)) {
223 list_add_tail(&sh
->lru
, &conf
->inactive_list
);
224 wake_up(&conf
->wait_for_stripe
);
225 if (conf
->retry_read_aligned
)
226 md_wakeup_thread(conf
->mddev
->thread
);
232 static void release_stripe(struct stripe_head
*sh
)
234 raid5_conf_t
*conf
= sh
->raid_conf
;
237 spin_lock_irqsave(&conf
->device_lock
, flags
);
238 __release_stripe(conf
, sh
);
239 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
242 static inline void remove_hash(struct stripe_head
*sh
)
244 pr_debug("remove_hash(), stripe %llu\n",
245 (unsigned long long)sh
->sector
);
247 hlist_del_init(&sh
->hash
);
250 static inline void insert_hash(raid5_conf_t
*conf
, struct stripe_head
*sh
)
252 struct hlist_head
*hp
= stripe_hash(conf
, sh
->sector
);
254 pr_debug("insert_hash(), stripe %llu\n",
255 (unsigned long long)sh
->sector
);
258 hlist_add_head(&sh
->hash
, hp
);
262 /* find an idle stripe, make sure it is unhashed, and return it. */
263 static struct stripe_head
*get_free_stripe(raid5_conf_t
*conf
)
265 struct stripe_head
*sh
= NULL
;
266 struct list_head
*first
;
269 if (list_empty(&conf
->inactive_list
))
271 first
= conf
->inactive_list
.next
;
272 sh
= list_entry(first
, struct stripe_head
, lru
);
273 list_del_init(first
);
275 atomic_inc(&conf
->active_stripes
);
280 static void shrink_buffers(struct stripe_head
*sh
, int num
)
285 for (i
=0; i
<num
; i
++) {
289 sh
->dev
[i
].page
= NULL
;
294 static int grow_buffers(struct stripe_head
*sh
, int num
)
298 for (i
=0; i
<num
; i
++) {
301 if (!(page
= alloc_page(GFP_KERNEL
))) {
304 sh
->dev
[i
].page
= page
;
309 static void raid5_build_block(struct stripe_head
*sh
, int i
, int previous
);
310 static void stripe_set_idx(sector_t stripe
, raid5_conf_t
*conf
, int previous
,
311 struct stripe_head
*sh
);
313 static void init_stripe(struct stripe_head
*sh
, sector_t sector
, int previous
)
315 raid5_conf_t
*conf
= sh
->raid_conf
;
318 BUG_ON(atomic_read(&sh
->count
) != 0);
319 BUG_ON(test_bit(STRIPE_HANDLE
, &sh
->state
));
320 BUG_ON(stripe_operations_active(sh
));
323 pr_debug("init_stripe called, stripe %llu\n",
324 (unsigned long long)sh
->sector
);
328 sh
->generation
= conf
->generation
- previous
;
329 sh
->disks
= previous
? conf
->previous_raid_disks
: conf
->raid_disks
;
331 stripe_set_idx(sector
, conf
, previous
, sh
);
335 for (i
= sh
->disks
; i
--; ) {
336 struct r5dev
*dev
= &sh
->dev
[i
];
338 if (dev
->toread
|| dev
->read
|| dev
->towrite
|| dev
->written
||
339 test_bit(R5_LOCKED
, &dev
->flags
)) {
340 printk(KERN_ERR
"sector=%llx i=%d %p %p %p %p %d\n",
341 (unsigned long long)sh
->sector
, i
, dev
->toread
,
342 dev
->read
, dev
->towrite
, dev
->written
,
343 test_bit(R5_LOCKED
, &dev
->flags
));
347 raid5_build_block(sh
, i
, previous
);
349 insert_hash(conf
, sh
);
352 static struct stripe_head
*__find_stripe(raid5_conf_t
*conf
, sector_t sector
,
355 struct stripe_head
*sh
;
356 struct hlist_node
*hn
;
359 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector
);
360 hlist_for_each_entry(sh
, hn
, stripe_hash(conf
, sector
), hash
)
361 if (sh
->sector
== sector
&& sh
->generation
== generation
)
363 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector
);
367 static void unplug_slaves(mddev_t
*mddev
);
368 static void raid5_unplug_device(struct request_queue
*q
);
370 static struct stripe_head
*
371 get_active_stripe(raid5_conf_t
*conf
, sector_t sector
,
372 int previous
, int noblock
, int noquiesce
)
374 struct stripe_head
*sh
;
376 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector
);
378 spin_lock_irq(&conf
->device_lock
);
381 wait_event_lock_irq(conf
->wait_for_stripe
,
382 conf
->quiesce
== 0 || noquiesce
,
383 conf
->device_lock
, /* nothing */);
384 sh
= __find_stripe(conf
, sector
, conf
->generation
- previous
);
386 if (!conf
->inactive_blocked
)
387 sh
= get_free_stripe(conf
);
388 if (noblock
&& sh
== NULL
)
391 conf
->inactive_blocked
= 1;
392 wait_event_lock_irq(conf
->wait_for_stripe
,
393 !list_empty(&conf
->inactive_list
) &&
394 (atomic_read(&conf
->active_stripes
)
395 < (conf
->max_nr_stripes
*3/4)
396 || !conf
->inactive_blocked
),
398 raid5_unplug_device(conf
->mddev
->queue
)
400 conf
->inactive_blocked
= 0;
402 init_stripe(sh
, sector
, previous
);
404 if (atomic_read(&sh
->count
)) {
405 BUG_ON(!list_empty(&sh
->lru
)
406 && !test_bit(STRIPE_EXPANDING
, &sh
->state
));
408 if (!test_bit(STRIPE_HANDLE
, &sh
->state
))
409 atomic_inc(&conf
->active_stripes
);
410 if (list_empty(&sh
->lru
) &&
411 !test_bit(STRIPE_EXPANDING
, &sh
->state
))
413 list_del_init(&sh
->lru
);
416 } while (sh
== NULL
);
419 atomic_inc(&sh
->count
);
421 spin_unlock_irq(&conf
->device_lock
);
426 raid5_end_read_request(struct bio
*bi
, int error
);
428 raid5_end_write_request(struct bio
*bi
, int error
);
430 static void ops_run_io(struct stripe_head
*sh
, struct stripe_head_state
*s
)
432 raid5_conf_t
*conf
= sh
->raid_conf
;
433 int i
, disks
= sh
->disks
;
437 for (i
= disks
; i
--; ) {
441 if (test_and_clear_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
))
443 else if (test_and_clear_bit(R5_Wantread
, &sh
->dev
[i
].flags
))
448 bi
= &sh
->dev
[i
].req
;
452 bi
->bi_end_io
= raid5_end_write_request
;
454 bi
->bi_end_io
= raid5_end_read_request
;
457 rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
458 if (rdev
&& test_bit(Faulty
, &rdev
->flags
))
461 atomic_inc(&rdev
->nr_pending
);
465 if (s
->syncing
|| s
->expanding
|| s
->expanded
)
466 md_sync_acct(rdev
->bdev
, STRIPE_SECTORS
);
468 set_bit(STRIPE_IO_STARTED
, &sh
->state
);
470 bi
->bi_bdev
= rdev
->bdev
;
471 pr_debug("%s: for %llu schedule op %ld on disc %d\n",
472 __func__
, (unsigned long long)sh
->sector
,
474 atomic_inc(&sh
->count
);
475 bi
->bi_sector
= sh
->sector
+ rdev
->data_offset
;
476 bi
->bi_flags
= 1 << BIO_UPTODATE
;
480 bi
->bi_io_vec
= &sh
->dev
[i
].vec
;
481 bi
->bi_io_vec
[0].bv_len
= STRIPE_SIZE
;
482 bi
->bi_io_vec
[0].bv_offset
= 0;
483 bi
->bi_size
= STRIPE_SIZE
;
486 test_bit(R5_ReWrite
, &sh
->dev
[i
].flags
))
487 atomic_add(STRIPE_SECTORS
,
488 &rdev
->corrected_errors
);
489 generic_make_request(bi
);
492 set_bit(STRIPE_DEGRADED
, &sh
->state
);
493 pr_debug("skip op %ld on disc %d for sector %llu\n",
494 bi
->bi_rw
, i
, (unsigned long long)sh
->sector
);
495 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
496 set_bit(STRIPE_HANDLE
, &sh
->state
);
501 static struct dma_async_tx_descriptor
*
502 async_copy_data(int frombio
, struct bio
*bio
, struct page
*page
,
503 sector_t sector
, struct dma_async_tx_descriptor
*tx
)
506 struct page
*bio_page
;
509 struct async_submit_ctl submit
;
510 enum async_tx_flags flags
= 0;
512 if (bio
->bi_sector
>= sector
)
513 page_offset
= (signed)(bio
->bi_sector
- sector
) * 512;
515 page_offset
= (signed)(sector
- bio
->bi_sector
) * -512;
518 flags
|= ASYNC_TX_FENCE
;
519 init_async_submit(&submit
, flags
, tx
, NULL
, NULL
, NULL
);
521 bio_for_each_segment(bvl
, bio
, i
) {
522 int len
= bio_iovec_idx(bio
, i
)->bv_len
;
526 if (page_offset
< 0) {
527 b_offset
= -page_offset
;
528 page_offset
+= b_offset
;
532 if (len
> 0 && page_offset
+ len
> STRIPE_SIZE
)
533 clen
= STRIPE_SIZE
- page_offset
;
538 b_offset
+= bio_iovec_idx(bio
, i
)->bv_offset
;
539 bio_page
= bio_iovec_idx(bio
, i
)->bv_page
;
541 tx
= async_memcpy(page
, bio_page
, page_offset
,
542 b_offset
, clen
, &submit
);
544 tx
= async_memcpy(bio_page
, page
, b_offset
,
545 page_offset
, clen
, &submit
);
547 /* chain the operations */
548 submit
.depend_tx
= tx
;
550 if (clen
< len
) /* hit end of page */
558 static void ops_complete_biofill(void *stripe_head_ref
)
560 struct stripe_head
*sh
= stripe_head_ref
;
561 struct bio
*return_bi
= NULL
;
562 raid5_conf_t
*conf
= sh
->raid_conf
;
565 pr_debug("%s: stripe %llu\n", __func__
,
566 (unsigned long long)sh
->sector
);
568 /* clear completed biofills */
569 spin_lock_irq(&conf
->device_lock
);
570 for (i
= sh
->disks
; i
--; ) {
571 struct r5dev
*dev
= &sh
->dev
[i
];
573 /* acknowledge completion of a biofill operation */
574 /* and check if we need to reply to a read request,
575 * new R5_Wantfill requests are held off until
576 * !STRIPE_BIOFILL_RUN
578 if (test_and_clear_bit(R5_Wantfill
, &dev
->flags
)) {
579 struct bio
*rbi
, *rbi2
;
584 while (rbi
&& rbi
->bi_sector
<
585 dev
->sector
+ STRIPE_SECTORS
) {
586 rbi2
= r5_next_bio(rbi
, dev
->sector
);
587 if (!raid5_dec_bi_phys_segments(rbi
)) {
588 rbi
->bi_next
= return_bi
;
595 spin_unlock_irq(&conf
->device_lock
);
596 clear_bit(STRIPE_BIOFILL_RUN
, &sh
->state
);
598 return_io(return_bi
);
600 set_bit(STRIPE_HANDLE
, &sh
->state
);
604 static void ops_run_biofill(struct stripe_head
*sh
)
606 struct dma_async_tx_descriptor
*tx
= NULL
;
607 raid5_conf_t
*conf
= sh
->raid_conf
;
608 struct async_submit_ctl submit
;
611 pr_debug("%s: stripe %llu\n", __func__
,
612 (unsigned long long)sh
->sector
);
614 for (i
= sh
->disks
; i
--; ) {
615 struct r5dev
*dev
= &sh
->dev
[i
];
616 if (test_bit(R5_Wantfill
, &dev
->flags
)) {
618 spin_lock_irq(&conf
->device_lock
);
619 dev
->read
= rbi
= dev
->toread
;
621 spin_unlock_irq(&conf
->device_lock
);
622 while (rbi
&& rbi
->bi_sector
<
623 dev
->sector
+ STRIPE_SECTORS
) {
624 tx
= async_copy_data(0, rbi
, dev
->page
,
626 rbi
= r5_next_bio(rbi
, dev
->sector
);
631 atomic_inc(&sh
->count
);
632 init_async_submit(&submit
, ASYNC_TX_ACK
, tx
, ops_complete_biofill
, sh
, NULL
);
633 async_trigger_callback(&submit
);
636 static void mark_target_uptodate(struct stripe_head
*sh
, int target
)
643 tgt
= &sh
->dev
[target
];
644 set_bit(R5_UPTODATE
, &tgt
->flags
);
645 BUG_ON(!test_bit(R5_Wantcompute
, &tgt
->flags
));
646 clear_bit(R5_Wantcompute
, &tgt
->flags
);
649 static void ops_complete_compute(void *stripe_head_ref
)
651 struct stripe_head
*sh
= stripe_head_ref
;
653 pr_debug("%s: stripe %llu\n", __func__
,
654 (unsigned long long)sh
->sector
);
656 /* mark the computed target(s) as uptodate */
657 mark_target_uptodate(sh
, sh
->ops
.target
);
658 mark_target_uptodate(sh
, sh
->ops
.target2
);
660 clear_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
661 if (sh
->check_state
== check_state_compute_run
)
662 sh
->check_state
= check_state_compute_result
;
663 set_bit(STRIPE_HANDLE
, &sh
->state
);
667 /* return a pointer to the address conversion region of the scribble buffer */
668 static addr_conv_t
*to_addr_conv(struct stripe_head
*sh
,
669 struct raid5_percpu
*percpu
)
671 return percpu
->scribble
+ sizeof(struct page
*) * (sh
->disks
+ 2);
674 static struct dma_async_tx_descriptor
*
675 ops_run_compute5(struct stripe_head
*sh
, struct raid5_percpu
*percpu
)
677 int disks
= sh
->disks
;
678 struct page
**xor_srcs
= percpu
->scribble
;
679 int target
= sh
->ops
.target
;
680 struct r5dev
*tgt
= &sh
->dev
[target
];
681 struct page
*xor_dest
= tgt
->page
;
683 struct dma_async_tx_descriptor
*tx
;
684 struct async_submit_ctl submit
;
687 pr_debug("%s: stripe %llu block: %d\n",
688 __func__
, (unsigned long long)sh
->sector
, target
);
689 BUG_ON(!test_bit(R5_Wantcompute
, &tgt
->flags
));
691 for (i
= disks
; i
--; )
693 xor_srcs
[count
++] = sh
->dev
[i
].page
;
695 atomic_inc(&sh
->count
);
697 init_async_submit(&submit
, ASYNC_TX_FENCE
|ASYNC_TX_XOR_ZERO_DST
, NULL
,
698 ops_complete_compute
, sh
, to_addr_conv(sh
, percpu
));
699 if (unlikely(count
== 1))
700 tx
= async_memcpy(xor_dest
, xor_srcs
[0], 0, 0, STRIPE_SIZE
, &submit
);
702 tx
= async_xor(xor_dest
, xor_srcs
, 0, count
, STRIPE_SIZE
, &submit
);
707 /* set_syndrome_sources - populate source buffers for gen_syndrome
708 * @srcs - (struct page *) array of size sh->disks
709 * @sh - stripe_head to parse
711 * Populates srcs in proper layout order for the stripe and returns the
712 * 'count' of sources to be used in a call to async_gen_syndrome. The P
713 * destination buffer is recorded in srcs[count] and the Q destination
714 * is recorded in srcs[count+1]].
716 static int set_syndrome_sources(struct page
**srcs
, struct stripe_head
*sh
)
718 int disks
= sh
->disks
;
719 int syndrome_disks
= sh
->ddf_layout
? disks
: (disks
- 2);
720 int d0_idx
= raid6_d0(sh
);
724 for (i
= 0; i
< disks
; i
++)
730 int slot
= raid6_idx_to_slot(i
, sh
, &count
, syndrome_disks
);
732 srcs
[slot
] = sh
->dev
[i
].page
;
733 i
= raid6_next_disk(i
, disks
);
734 } while (i
!= d0_idx
);
736 return syndrome_disks
;
739 static struct dma_async_tx_descriptor
*
740 ops_run_compute6_1(struct stripe_head
*sh
, struct raid5_percpu
*percpu
)
742 int disks
= sh
->disks
;
743 struct page
**blocks
= percpu
->scribble
;
745 int qd_idx
= sh
->qd_idx
;
746 struct dma_async_tx_descriptor
*tx
;
747 struct async_submit_ctl submit
;
753 if (sh
->ops
.target
< 0)
754 target
= sh
->ops
.target2
;
755 else if (sh
->ops
.target2
< 0)
756 target
= sh
->ops
.target
;
758 /* we should only have one valid target */
761 pr_debug("%s: stripe %llu block: %d\n",
762 __func__
, (unsigned long long)sh
->sector
, target
);
764 tgt
= &sh
->dev
[target
];
765 BUG_ON(!test_bit(R5_Wantcompute
, &tgt
->flags
));
768 atomic_inc(&sh
->count
);
770 if (target
== qd_idx
) {
771 count
= set_syndrome_sources(blocks
, sh
);
772 blocks
[count
] = NULL
; /* regenerating p is not necessary */
773 BUG_ON(blocks
[count
+1] != dest
); /* q should already be set */
774 init_async_submit(&submit
, ASYNC_TX_FENCE
, NULL
,
775 ops_complete_compute
, sh
,
776 to_addr_conv(sh
, percpu
));
777 tx
= async_gen_syndrome(blocks
, 0, count
+2, STRIPE_SIZE
, &submit
);
779 /* Compute any data- or p-drive using XOR */
781 for (i
= disks
; i
-- ; ) {
782 if (i
== target
|| i
== qd_idx
)
784 blocks
[count
++] = sh
->dev
[i
].page
;
787 init_async_submit(&submit
, ASYNC_TX_FENCE
|ASYNC_TX_XOR_ZERO_DST
,
788 NULL
, ops_complete_compute
, sh
,
789 to_addr_conv(sh
, percpu
));
790 tx
= async_xor(dest
, blocks
, 0, count
, STRIPE_SIZE
, &submit
);
796 static struct dma_async_tx_descriptor
*
797 ops_run_compute6_2(struct stripe_head
*sh
, struct raid5_percpu
*percpu
)
799 int i
, count
, disks
= sh
->disks
;
800 int syndrome_disks
= sh
->ddf_layout
? disks
: disks
-2;
801 int d0_idx
= raid6_d0(sh
);
802 int faila
= -1, failb
= -1;
803 int target
= sh
->ops
.target
;
804 int target2
= sh
->ops
.target2
;
805 struct r5dev
*tgt
= &sh
->dev
[target
];
806 struct r5dev
*tgt2
= &sh
->dev
[target2
];
807 struct dma_async_tx_descriptor
*tx
;
808 struct page
**blocks
= percpu
->scribble
;
809 struct async_submit_ctl submit
;
811 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
812 __func__
, (unsigned long long)sh
->sector
, target
, target2
);
813 BUG_ON(target
< 0 || target2
< 0);
814 BUG_ON(!test_bit(R5_Wantcompute
, &tgt
->flags
));
815 BUG_ON(!test_bit(R5_Wantcompute
, &tgt2
->flags
));
817 /* we need to open-code set_syndrome_sources to handle the
818 * slot number conversion for 'faila' and 'failb'
820 for (i
= 0; i
< disks
; i
++)
825 int slot
= raid6_idx_to_slot(i
, sh
, &count
, syndrome_disks
);
827 blocks
[slot
] = sh
->dev
[i
].page
;
833 i
= raid6_next_disk(i
, disks
);
834 } while (i
!= d0_idx
);
836 BUG_ON(faila
== failb
);
839 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
840 __func__
, (unsigned long long)sh
->sector
, faila
, failb
);
842 atomic_inc(&sh
->count
);
844 if (failb
== syndrome_disks
+1) {
845 /* Q disk is one of the missing disks */
846 if (faila
== syndrome_disks
) {
847 /* Missing P+Q, just recompute */
848 init_async_submit(&submit
, ASYNC_TX_FENCE
, NULL
,
849 ops_complete_compute
, sh
,
850 to_addr_conv(sh
, percpu
));
851 return async_gen_syndrome(blocks
, 0, syndrome_disks
+2,
852 STRIPE_SIZE
, &submit
);
856 int qd_idx
= sh
->qd_idx
;
858 /* Missing D+Q: recompute D from P, then recompute Q */
859 if (target
== qd_idx
)
860 data_target
= target2
;
862 data_target
= target
;
865 for (i
= disks
; i
-- ; ) {
866 if (i
== data_target
|| i
== qd_idx
)
868 blocks
[count
++] = sh
->dev
[i
].page
;
870 dest
= sh
->dev
[data_target
].page
;
871 init_async_submit(&submit
,
872 ASYNC_TX_FENCE
|ASYNC_TX_XOR_ZERO_DST
,
874 to_addr_conv(sh
, percpu
));
875 tx
= async_xor(dest
, blocks
, 0, count
, STRIPE_SIZE
,
878 count
= set_syndrome_sources(blocks
, sh
);
879 init_async_submit(&submit
, ASYNC_TX_FENCE
, tx
,
880 ops_complete_compute
, sh
,
881 to_addr_conv(sh
, percpu
));
882 return async_gen_syndrome(blocks
, 0, count
+2,
883 STRIPE_SIZE
, &submit
);
886 init_async_submit(&submit
, ASYNC_TX_FENCE
, NULL
,
887 ops_complete_compute
, sh
,
888 to_addr_conv(sh
, percpu
));
889 if (failb
== syndrome_disks
) {
890 /* We're missing D+P. */
891 return async_raid6_datap_recov(syndrome_disks
+2,
895 /* We're missing D+D. */
896 return async_raid6_2data_recov(syndrome_disks
+2,
897 STRIPE_SIZE
, faila
, failb
,
904 static void ops_complete_prexor(void *stripe_head_ref
)
906 struct stripe_head
*sh
= stripe_head_ref
;
908 pr_debug("%s: stripe %llu\n", __func__
,
909 (unsigned long long)sh
->sector
);
912 static struct dma_async_tx_descriptor
*
913 ops_run_prexor(struct stripe_head
*sh
, struct raid5_percpu
*percpu
,
914 struct dma_async_tx_descriptor
*tx
)
916 int disks
= sh
->disks
;
917 struct page
**xor_srcs
= percpu
->scribble
;
918 int count
= 0, pd_idx
= sh
->pd_idx
, i
;
919 struct async_submit_ctl submit
;
921 /* existing parity data subtracted */
922 struct page
*xor_dest
= xor_srcs
[count
++] = sh
->dev
[pd_idx
].page
;
924 pr_debug("%s: stripe %llu\n", __func__
,
925 (unsigned long long)sh
->sector
);
927 for (i
= disks
; i
--; ) {
928 struct r5dev
*dev
= &sh
->dev
[i
];
929 /* Only process blocks that are known to be uptodate */
930 if (test_bit(R5_Wantdrain
, &dev
->flags
))
931 xor_srcs
[count
++] = dev
->page
;
934 init_async_submit(&submit
, ASYNC_TX_FENCE
|ASYNC_TX_XOR_DROP_DST
, tx
,
935 ops_complete_prexor
, sh
, to_addr_conv(sh
, percpu
));
936 tx
= async_xor(xor_dest
, xor_srcs
, 0, count
, STRIPE_SIZE
, &submit
);
941 static struct dma_async_tx_descriptor
*
942 ops_run_biodrain(struct stripe_head
*sh
, struct dma_async_tx_descriptor
*tx
)
944 int disks
= sh
->disks
;
947 pr_debug("%s: stripe %llu\n", __func__
,
948 (unsigned long long)sh
->sector
);
950 for (i
= disks
; i
--; ) {
951 struct r5dev
*dev
= &sh
->dev
[i
];
954 if (test_and_clear_bit(R5_Wantdrain
, &dev
->flags
)) {
957 spin_lock(&sh
->lock
);
958 chosen
= dev
->towrite
;
960 BUG_ON(dev
->written
);
961 wbi
= dev
->written
= chosen
;
962 spin_unlock(&sh
->lock
);
964 while (wbi
&& wbi
->bi_sector
<
965 dev
->sector
+ STRIPE_SECTORS
) {
966 tx
= async_copy_data(1, wbi
, dev
->page
,
968 wbi
= r5_next_bio(wbi
, dev
->sector
);
976 static void ops_complete_reconstruct(void *stripe_head_ref
)
978 struct stripe_head
*sh
= stripe_head_ref
;
979 int disks
= sh
->disks
;
980 int pd_idx
= sh
->pd_idx
;
981 int qd_idx
= sh
->qd_idx
;
984 pr_debug("%s: stripe %llu\n", __func__
,
985 (unsigned long long)sh
->sector
);
987 for (i
= disks
; i
--; ) {
988 struct r5dev
*dev
= &sh
->dev
[i
];
990 if (dev
->written
|| i
== pd_idx
|| i
== qd_idx
)
991 set_bit(R5_UPTODATE
, &dev
->flags
);
994 if (sh
->reconstruct_state
== reconstruct_state_drain_run
)
995 sh
->reconstruct_state
= reconstruct_state_drain_result
;
996 else if (sh
->reconstruct_state
== reconstruct_state_prexor_drain_run
)
997 sh
->reconstruct_state
= reconstruct_state_prexor_drain_result
;
999 BUG_ON(sh
->reconstruct_state
!= reconstruct_state_run
);
1000 sh
->reconstruct_state
= reconstruct_state_result
;
1003 set_bit(STRIPE_HANDLE
, &sh
->state
);
1008 ops_run_reconstruct5(struct stripe_head
*sh
, struct raid5_percpu
*percpu
,
1009 struct dma_async_tx_descriptor
*tx
)
1011 int disks
= sh
->disks
;
1012 struct page
**xor_srcs
= percpu
->scribble
;
1013 struct async_submit_ctl submit
;
1014 int count
= 0, pd_idx
= sh
->pd_idx
, i
;
1015 struct page
*xor_dest
;
1017 unsigned long flags
;
1019 pr_debug("%s: stripe %llu\n", __func__
,
1020 (unsigned long long)sh
->sector
);
1022 /* check if prexor is active which means only process blocks
1023 * that are part of a read-modify-write (written)
1025 if (sh
->reconstruct_state
== reconstruct_state_prexor_drain_run
) {
1027 xor_dest
= xor_srcs
[count
++] = sh
->dev
[pd_idx
].page
;
1028 for (i
= disks
; i
--; ) {
1029 struct r5dev
*dev
= &sh
->dev
[i
];
1031 xor_srcs
[count
++] = dev
->page
;
1034 xor_dest
= sh
->dev
[pd_idx
].page
;
1035 for (i
= disks
; i
--; ) {
1036 struct r5dev
*dev
= &sh
->dev
[i
];
1038 xor_srcs
[count
++] = dev
->page
;
1042 /* 1/ if we prexor'd then the dest is reused as a source
1043 * 2/ if we did not prexor then we are redoing the parity
1044 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1045 * for the synchronous xor case
1047 flags
= ASYNC_TX_ACK
|
1048 (prexor
? ASYNC_TX_XOR_DROP_DST
: ASYNC_TX_XOR_ZERO_DST
);
1050 atomic_inc(&sh
->count
);
1052 init_async_submit(&submit
, flags
, tx
, ops_complete_reconstruct
, sh
,
1053 to_addr_conv(sh
, percpu
));
1054 if (unlikely(count
== 1))
1055 tx
= async_memcpy(xor_dest
, xor_srcs
[0], 0, 0, STRIPE_SIZE
, &submit
);
1057 tx
= async_xor(xor_dest
, xor_srcs
, 0, count
, STRIPE_SIZE
, &submit
);
1061 ops_run_reconstruct6(struct stripe_head
*sh
, struct raid5_percpu
*percpu
,
1062 struct dma_async_tx_descriptor
*tx
)
1064 struct async_submit_ctl submit
;
1065 struct page
**blocks
= percpu
->scribble
;
1068 pr_debug("%s: stripe %llu\n", __func__
, (unsigned long long)sh
->sector
);
1070 count
= set_syndrome_sources(blocks
, sh
);
1072 atomic_inc(&sh
->count
);
1074 init_async_submit(&submit
, ASYNC_TX_ACK
, tx
, ops_complete_reconstruct
,
1075 sh
, to_addr_conv(sh
, percpu
));
1076 async_gen_syndrome(blocks
, 0, count
+2, STRIPE_SIZE
, &submit
);
1079 static void ops_complete_check(void *stripe_head_ref
)
1081 struct stripe_head
*sh
= stripe_head_ref
;
1083 pr_debug("%s: stripe %llu\n", __func__
,
1084 (unsigned long long)sh
->sector
);
1086 sh
->check_state
= check_state_check_result
;
1087 set_bit(STRIPE_HANDLE
, &sh
->state
);
1091 static void ops_run_check_p(struct stripe_head
*sh
, struct raid5_percpu
*percpu
)
1093 int disks
= sh
->disks
;
1094 int pd_idx
= sh
->pd_idx
;
1095 int qd_idx
= sh
->qd_idx
;
1096 struct page
*xor_dest
;
1097 struct page
**xor_srcs
= percpu
->scribble
;
1098 struct dma_async_tx_descriptor
*tx
;
1099 struct async_submit_ctl submit
;
1103 pr_debug("%s: stripe %llu\n", __func__
,
1104 (unsigned long long)sh
->sector
);
1107 xor_dest
= sh
->dev
[pd_idx
].page
;
1108 xor_srcs
[count
++] = xor_dest
;
1109 for (i
= disks
; i
--; ) {
1110 if (i
== pd_idx
|| i
== qd_idx
)
1112 xor_srcs
[count
++] = sh
->dev
[i
].page
;
1115 init_async_submit(&submit
, 0, NULL
, NULL
, NULL
,
1116 to_addr_conv(sh
, percpu
));
1117 tx
= async_xor_val(xor_dest
, xor_srcs
, 0, count
, STRIPE_SIZE
,
1118 &sh
->ops
.zero_sum_result
, &submit
);
1120 atomic_inc(&sh
->count
);
1121 init_async_submit(&submit
, ASYNC_TX_ACK
, tx
, ops_complete_check
, sh
, NULL
);
1122 tx
= async_trigger_callback(&submit
);
1125 static void ops_run_check_pq(struct stripe_head
*sh
, struct raid5_percpu
*percpu
, int checkp
)
1127 struct page
**srcs
= percpu
->scribble
;
1128 struct async_submit_ctl submit
;
1131 pr_debug("%s: stripe %llu checkp: %d\n", __func__
,
1132 (unsigned long long)sh
->sector
, checkp
);
1134 count
= set_syndrome_sources(srcs
, sh
);
1138 atomic_inc(&sh
->count
);
1139 init_async_submit(&submit
, ASYNC_TX_ACK
, NULL
, ops_complete_check
,
1140 sh
, to_addr_conv(sh
, percpu
));
1141 async_syndrome_val(srcs
, 0, count
+2, STRIPE_SIZE
,
1142 &sh
->ops
.zero_sum_result
, percpu
->spare_page
, &submit
);
1145 static void __raid_run_ops(struct stripe_head
*sh
, unsigned long ops_request
)
1147 int overlap_clear
= 0, i
, disks
= sh
->disks
;
1148 struct dma_async_tx_descriptor
*tx
= NULL
;
1149 raid5_conf_t
*conf
= sh
->raid_conf
;
1150 int level
= conf
->level
;
1151 struct raid5_percpu
*percpu
;
1155 percpu
= per_cpu_ptr(conf
->percpu
, cpu
);
1156 if (test_bit(STRIPE_OP_BIOFILL
, &ops_request
)) {
1157 ops_run_biofill(sh
);
1161 if (test_bit(STRIPE_OP_COMPUTE_BLK
, &ops_request
)) {
1163 tx
= ops_run_compute5(sh
, percpu
);
1165 if (sh
->ops
.target2
< 0 || sh
->ops
.target
< 0)
1166 tx
= ops_run_compute6_1(sh
, percpu
);
1168 tx
= ops_run_compute6_2(sh
, percpu
);
1170 /* terminate the chain if reconstruct is not set to be run */
1171 if (tx
&& !test_bit(STRIPE_OP_RECONSTRUCT
, &ops_request
))
1175 if (test_bit(STRIPE_OP_PREXOR
, &ops_request
))
1176 tx
= ops_run_prexor(sh
, percpu
, tx
);
1178 if (test_bit(STRIPE_OP_BIODRAIN
, &ops_request
)) {
1179 tx
= ops_run_biodrain(sh
, tx
);
1183 if (test_bit(STRIPE_OP_RECONSTRUCT
, &ops_request
)) {
1185 ops_run_reconstruct5(sh
, percpu
, tx
);
1187 ops_run_reconstruct6(sh
, percpu
, tx
);
1190 if (test_bit(STRIPE_OP_CHECK
, &ops_request
)) {
1191 if (sh
->check_state
== check_state_run
)
1192 ops_run_check_p(sh
, percpu
);
1193 else if (sh
->check_state
== check_state_run_q
)
1194 ops_run_check_pq(sh
, percpu
, 0);
1195 else if (sh
->check_state
== check_state_run_pq
)
1196 ops_run_check_pq(sh
, percpu
, 1);
1202 for (i
= disks
; i
--; ) {
1203 struct r5dev
*dev
= &sh
->dev
[i
];
1204 if (test_and_clear_bit(R5_Overlap
, &dev
->flags
))
1205 wake_up(&sh
->raid_conf
->wait_for_overlap
);
1210 #ifdef CONFIG_MULTICORE_RAID456
1211 static void async_run_ops(void *param
, async_cookie_t cookie
)
1213 struct stripe_head
*sh
= param
;
1214 unsigned long ops_request
= sh
->ops
.request
;
1216 clear_bit_unlock(STRIPE_OPS_REQ_PENDING
, &sh
->state
);
1217 wake_up(&sh
->ops
.wait_for_ops
);
1219 __raid_run_ops(sh
, ops_request
);
1223 static void raid_run_ops(struct stripe_head
*sh
, unsigned long ops_request
)
1225 /* since handle_stripe can be called outside of raid5d context
1226 * we need to ensure sh->ops.request is de-staged before another
1229 wait_event(sh
->ops
.wait_for_ops
,
1230 !test_and_set_bit_lock(STRIPE_OPS_REQ_PENDING
, &sh
->state
));
1231 sh
->ops
.request
= ops_request
;
1233 atomic_inc(&sh
->count
);
1234 async_schedule(async_run_ops
, sh
);
1237 #define raid_run_ops __raid_run_ops
1240 static int grow_one_stripe(raid5_conf_t
*conf
)
1242 struct stripe_head
*sh
;
1243 int disks
= max(conf
->raid_disks
, conf
->previous_raid_disks
);
1244 sh
= kmem_cache_alloc(conf
->slab_cache
, GFP_KERNEL
);
1247 memset(sh
, 0, sizeof(*sh
) + (disks
-1)*sizeof(struct r5dev
));
1248 sh
->raid_conf
= conf
;
1249 spin_lock_init(&sh
->lock
);
1250 #ifdef CONFIG_MULTICORE_RAID456
1251 init_waitqueue_head(&sh
->ops
.wait_for_ops
);
1254 if (grow_buffers(sh
, disks
)) {
1255 shrink_buffers(sh
, disks
);
1256 kmem_cache_free(conf
->slab_cache
, sh
);
1259 /* we just created an active stripe so... */
1260 atomic_set(&sh
->count
, 1);
1261 atomic_inc(&conf
->active_stripes
);
1262 INIT_LIST_HEAD(&sh
->lru
);
1267 static int grow_stripes(raid5_conf_t
*conf
, int num
)
1269 struct kmem_cache
*sc
;
1270 int devs
= max(conf
->raid_disks
, conf
->previous_raid_disks
);
1272 sprintf(conf
->cache_name
[0],
1273 "raid%d-%s", conf
->level
, mdname(conf
->mddev
));
1274 sprintf(conf
->cache_name
[1],
1275 "raid%d-%s-alt", conf
->level
, mdname(conf
->mddev
));
1276 conf
->active_name
= 0;
1277 sc
= kmem_cache_create(conf
->cache_name
[conf
->active_name
],
1278 sizeof(struct stripe_head
)+(devs
-1)*sizeof(struct r5dev
),
1282 conf
->slab_cache
= sc
;
1283 conf
->pool_size
= devs
;
1285 if (!grow_one_stripe(conf
))
1291 * scribble_len - return the required size of the scribble region
1292 * @num - total number of disks in the array
1294 * The size must be enough to contain:
1295 * 1/ a struct page pointer for each device in the array +2
1296 * 2/ room to convert each entry in (1) to its corresponding dma
1297 * (dma_map_page()) or page (page_address()) address.
1299 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1300 * calculate over all devices (not just the data blocks), using zeros in place
1301 * of the P and Q blocks.
1303 static size_t scribble_len(int num
)
1307 len
= sizeof(struct page
*) * (num
+2) + sizeof(addr_conv_t
) * (num
+2);
1312 static int resize_stripes(raid5_conf_t
*conf
, int newsize
)
1314 /* Make all the stripes able to hold 'newsize' devices.
1315 * New slots in each stripe get 'page' set to a new page.
1317 * This happens in stages:
1318 * 1/ create a new kmem_cache and allocate the required number of
1320 * 2/ gather all the old stripe_heads and tranfer the pages across
1321 * to the new stripe_heads. This will have the side effect of
1322 * freezing the array as once all stripe_heads have been collected,
1323 * no IO will be possible. Old stripe heads are freed once their
1324 * pages have been transferred over, and the old kmem_cache is
1325 * freed when all stripes are done.
1326 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
1327 * we simple return a failre status - no need to clean anything up.
1328 * 4/ allocate new pages for the new slots in the new stripe_heads.
1329 * If this fails, we don't bother trying the shrink the
1330 * stripe_heads down again, we just leave them as they are.
1331 * As each stripe_head is processed the new one is released into
1334 * Once step2 is started, we cannot afford to wait for a write,
1335 * so we use GFP_NOIO allocations.
1337 struct stripe_head
*osh
, *nsh
;
1338 LIST_HEAD(newstripes
);
1339 struct disk_info
*ndisks
;
1342 struct kmem_cache
*sc
;
1345 if (newsize
<= conf
->pool_size
)
1346 return 0; /* never bother to shrink */
1348 err
= md_allow_write(conf
->mddev
);
1353 sc
= kmem_cache_create(conf
->cache_name
[1-conf
->active_name
],
1354 sizeof(struct stripe_head
)+(newsize
-1)*sizeof(struct r5dev
),
1359 for (i
= conf
->max_nr_stripes
; i
; i
--) {
1360 nsh
= kmem_cache_alloc(sc
, GFP_KERNEL
);
1364 memset(nsh
, 0, sizeof(*nsh
) + (newsize
-1)*sizeof(struct r5dev
));
1366 nsh
->raid_conf
= conf
;
1367 spin_lock_init(&nsh
->lock
);
1368 #ifdef CONFIG_MULTICORE_RAID456
1369 init_waitqueue_head(&nsh
->ops
.wait_for_ops
);
1372 list_add(&nsh
->lru
, &newstripes
);
1375 /* didn't get enough, give up */
1376 while (!list_empty(&newstripes
)) {
1377 nsh
= list_entry(newstripes
.next
, struct stripe_head
, lru
);
1378 list_del(&nsh
->lru
);
1379 kmem_cache_free(sc
, nsh
);
1381 kmem_cache_destroy(sc
);
1384 /* Step 2 - Must use GFP_NOIO now.
1385 * OK, we have enough stripes, start collecting inactive
1386 * stripes and copying them over
1388 list_for_each_entry(nsh
, &newstripes
, lru
) {
1389 spin_lock_irq(&conf
->device_lock
);
1390 wait_event_lock_irq(conf
->wait_for_stripe
,
1391 !list_empty(&conf
->inactive_list
),
1393 unplug_slaves(conf
->mddev
)
1395 osh
= get_free_stripe(conf
);
1396 spin_unlock_irq(&conf
->device_lock
);
1397 atomic_set(&nsh
->count
, 1);
1398 for(i
=0; i
<conf
->pool_size
; i
++)
1399 nsh
->dev
[i
].page
= osh
->dev
[i
].page
;
1400 for( ; i
<newsize
; i
++)
1401 nsh
->dev
[i
].page
= NULL
;
1402 kmem_cache_free(conf
->slab_cache
, osh
);
1404 kmem_cache_destroy(conf
->slab_cache
);
1407 * At this point, we are holding all the stripes so the array
1408 * is completely stalled, so now is a good time to resize
1409 * conf->disks and the scribble region
1411 ndisks
= kzalloc(newsize
* sizeof(struct disk_info
), GFP_NOIO
);
1413 for (i
=0; i
<conf
->raid_disks
; i
++)
1414 ndisks
[i
] = conf
->disks
[i
];
1416 conf
->disks
= ndisks
;
1421 conf
->scribble_len
= scribble_len(newsize
);
1422 for_each_present_cpu(cpu
) {
1423 struct raid5_percpu
*percpu
;
1426 percpu
= per_cpu_ptr(conf
->percpu
, cpu
);
1427 scribble
= kmalloc(conf
->scribble_len
, GFP_NOIO
);
1430 kfree(percpu
->scribble
);
1431 percpu
->scribble
= scribble
;
1439 /* Step 4, return new stripes to service */
1440 while(!list_empty(&newstripes
)) {
1441 nsh
= list_entry(newstripes
.next
, struct stripe_head
, lru
);
1442 list_del_init(&nsh
->lru
);
1444 for (i
=conf
->raid_disks
; i
< newsize
; i
++)
1445 if (nsh
->dev
[i
].page
== NULL
) {
1446 struct page
*p
= alloc_page(GFP_NOIO
);
1447 nsh
->dev
[i
].page
= p
;
1451 release_stripe(nsh
);
1453 /* critical section pass, GFP_NOIO no longer needed */
1455 conf
->slab_cache
= sc
;
1456 conf
->active_name
= 1-conf
->active_name
;
1457 conf
->pool_size
= newsize
;
1461 static int drop_one_stripe(raid5_conf_t
*conf
)
1463 struct stripe_head
*sh
;
1465 spin_lock_irq(&conf
->device_lock
);
1466 sh
= get_free_stripe(conf
);
1467 spin_unlock_irq(&conf
->device_lock
);
1470 BUG_ON(atomic_read(&sh
->count
));
1471 shrink_buffers(sh
, conf
->pool_size
);
1472 kmem_cache_free(conf
->slab_cache
, sh
);
1473 atomic_dec(&conf
->active_stripes
);
1477 static void shrink_stripes(raid5_conf_t
*conf
)
1479 while (drop_one_stripe(conf
))
1482 if (conf
->slab_cache
)
1483 kmem_cache_destroy(conf
->slab_cache
);
1484 conf
->slab_cache
= NULL
;
1487 static void raid5_end_read_request(struct bio
* bi
, int error
)
1489 struct stripe_head
*sh
= bi
->bi_private
;
1490 raid5_conf_t
*conf
= sh
->raid_conf
;
1491 int disks
= sh
->disks
, i
;
1492 int uptodate
= test_bit(BIO_UPTODATE
, &bi
->bi_flags
);
1493 char b
[BDEVNAME_SIZE
];
1497 for (i
=0 ; i
<disks
; i
++)
1498 if (bi
== &sh
->dev
[i
].req
)
1501 pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1502 (unsigned long long)sh
->sector
, i
, atomic_read(&sh
->count
),
1510 set_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
);
1511 if (test_bit(R5_ReadError
, &sh
->dev
[i
].flags
)) {
1512 rdev
= conf
->disks
[i
].rdev
;
1513 printk_rl(KERN_INFO
"md/raid:%s: read error corrected"
1514 " (%lu sectors at %llu on %s)\n",
1515 mdname(conf
->mddev
), STRIPE_SECTORS
,
1516 (unsigned long long)(sh
->sector
1517 + rdev
->data_offset
),
1518 bdevname(rdev
->bdev
, b
));
1519 clear_bit(R5_ReadError
, &sh
->dev
[i
].flags
);
1520 clear_bit(R5_ReWrite
, &sh
->dev
[i
].flags
);
1522 if (atomic_read(&conf
->disks
[i
].rdev
->read_errors
))
1523 atomic_set(&conf
->disks
[i
].rdev
->read_errors
, 0);
1525 const char *bdn
= bdevname(conf
->disks
[i
].rdev
->bdev
, b
);
1527 rdev
= conf
->disks
[i
].rdev
;
1529 clear_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
);
1530 atomic_inc(&rdev
->read_errors
);
1531 if (conf
->mddev
->degraded
>= conf
->max_degraded
)
1532 printk_rl(KERN_WARNING
1533 "md/raid:%s: read error not correctable "
1534 "(sector %llu on %s).\n",
1535 mdname(conf
->mddev
),
1536 (unsigned long long)(sh
->sector
1537 + rdev
->data_offset
),
1539 else if (test_bit(R5_ReWrite
, &sh
->dev
[i
].flags
))
1541 printk_rl(KERN_WARNING
1542 "md/raid:%s: read error NOT corrected!! "
1543 "(sector %llu on %s).\n",
1544 mdname(conf
->mddev
),
1545 (unsigned long long)(sh
->sector
1546 + rdev
->data_offset
),
1548 else if (atomic_read(&rdev
->read_errors
)
1549 > conf
->max_nr_stripes
)
1551 "md/raid:%s: Too many read errors, failing device %s.\n",
1552 mdname(conf
->mddev
), bdn
);
1556 set_bit(R5_ReadError
, &sh
->dev
[i
].flags
);
1558 clear_bit(R5_ReadError
, &sh
->dev
[i
].flags
);
1559 clear_bit(R5_ReWrite
, &sh
->dev
[i
].flags
);
1560 md_error(conf
->mddev
, rdev
);
1563 rdev_dec_pending(conf
->disks
[i
].rdev
, conf
->mddev
);
1564 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
1565 set_bit(STRIPE_HANDLE
, &sh
->state
);
1569 static void raid5_end_write_request(struct bio
*bi
, int error
)
1571 struct stripe_head
*sh
= bi
->bi_private
;
1572 raid5_conf_t
*conf
= sh
->raid_conf
;
1573 int disks
= sh
->disks
, i
;
1574 int uptodate
= test_bit(BIO_UPTODATE
, &bi
->bi_flags
);
1576 for (i
=0 ; i
<disks
; i
++)
1577 if (bi
== &sh
->dev
[i
].req
)
1580 pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1581 (unsigned long long)sh
->sector
, i
, atomic_read(&sh
->count
),
1589 md_error(conf
->mddev
, conf
->disks
[i
].rdev
);
1591 rdev_dec_pending(conf
->disks
[i
].rdev
, conf
->mddev
);
1593 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
1594 set_bit(STRIPE_HANDLE
, &sh
->state
);
1599 static sector_t
compute_blocknr(struct stripe_head
*sh
, int i
, int previous
);
1601 static void raid5_build_block(struct stripe_head
*sh
, int i
, int previous
)
1603 struct r5dev
*dev
= &sh
->dev
[i
];
1605 bio_init(&dev
->req
);
1606 dev
->req
.bi_io_vec
= &dev
->vec
;
1608 dev
->req
.bi_max_vecs
++;
1609 dev
->vec
.bv_page
= dev
->page
;
1610 dev
->vec
.bv_len
= STRIPE_SIZE
;
1611 dev
->vec
.bv_offset
= 0;
1613 dev
->req
.bi_sector
= sh
->sector
;
1614 dev
->req
.bi_private
= sh
;
1617 dev
->sector
= compute_blocknr(sh
, i
, previous
);
1620 static void error(mddev_t
*mddev
, mdk_rdev_t
*rdev
)
1622 char b
[BDEVNAME_SIZE
];
1623 raid5_conf_t
*conf
= mddev
->private;
1624 pr_debug("raid456: error called\n");
1626 if (!test_bit(Faulty
, &rdev
->flags
)) {
1627 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
1628 if (test_and_clear_bit(In_sync
, &rdev
->flags
)) {
1629 unsigned long flags
;
1630 spin_lock_irqsave(&conf
->device_lock
, flags
);
1632 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1634 * if recovery was running, make sure it aborts.
1636 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
1638 set_bit(Faulty
, &rdev
->flags
);
1640 "md/raid:%s: Disk failure on %s, disabling device.\n"
1642 "md/raid:%s: Operation continuing on %d devices.\n",
1644 bdevname(rdev
->bdev
, b
),
1646 conf
->raid_disks
- mddev
->degraded
);
1651 * Input: a 'big' sector number,
1652 * Output: index of the data and parity disk, and the sector # in them.
1654 static sector_t
raid5_compute_sector(raid5_conf_t
*conf
, sector_t r_sector
,
1655 int previous
, int *dd_idx
,
1656 struct stripe_head
*sh
)
1658 sector_t stripe
, stripe2
;
1659 sector_t chunk_number
;
1660 unsigned int chunk_offset
;
1663 sector_t new_sector
;
1664 int algorithm
= previous
? conf
->prev_algo
1666 int sectors_per_chunk
= previous
? conf
->prev_chunk_sectors
1667 : conf
->chunk_sectors
;
1668 int raid_disks
= previous
? conf
->previous_raid_disks
1670 int data_disks
= raid_disks
- conf
->max_degraded
;
1672 /* First compute the information on this sector */
1675 * Compute the chunk number and the sector offset inside the chunk
1677 chunk_offset
= sector_div(r_sector
, sectors_per_chunk
);
1678 chunk_number
= r_sector
;
1681 * Compute the stripe number
1683 stripe
= chunk_number
;
1684 *dd_idx
= sector_div(stripe
, data_disks
);
1687 * Select the parity disk based on the user selected algorithm.
1689 pd_idx
= qd_idx
= ~0;
1690 switch(conf
->level
) {
1692 pd_idx
= data_disks
;
1695 switch (algorithm
) {
1696 case ALGORITHM_LEFT_ASYMMETRIC
:
1697 pd_idx
= data_disks
- sector_div(stripe2
, raid_disks
);
1698 if (*dd_idx
>= pd_idx
)
1701 case ALGORITHM_RIGHT_ASYMMETRIC
:
1702 pd_idx
= sector_div(stripe2
, raid_disks
);
1703 if (*dd_idx
>= pd_idx
)
1706 case ALGORITHM_LEFT_SYMMETRIC
:
1707 pd_idx
= data_disks
- sector_div(stripe2
, raid_disks
);
1708 *dd_idx
= (pd_idx
+ 1 + *dd_idx
) % raid_disks
;
1710 case ALGORITHM_RIGHT_SYMMETRIC
:
1711 pd_idx
= sector_div(stripe2
, raid_disks
);
1712 *dd_idx
= (pd_idx
+ 1 + *dd_idx
) % raid_disks
;
1714 case ALGORITHM_PARITY_0
:
1718 case ALGORITHM_PARITY_N
:
1719 pd_idx
= data_disks
;
1727 switch (algorithm
) {
1728 case ALGORITHM_LEFT_ASYMMETRIC
:
1729 pd_idx
= raid_disks
- 1 - sector_div(stripe2
, raid_disks
);
1730 qd_idx
= pd_idx
+ 1;
1731 if (pd_idx
== raid_disks
-1) {
1732 (*dd_idx
)++; /* Q D D D P */
1734 } else if (*dd_idx
>= pd_idx
)
1735 (*dd_idx
) += 2; /* D D P Q D */
1737 case ALGORITHM_RIGHT_ASYMMETRIC
:
1738 pd_idx
= sector_div(stripe2
, raid_disks
);
1739 qd_idx
= pd_idx
+ 1;
1740 if (pd_idx
== raid_disks
-1) {
1741 (*dd_idx
)++; /* Q D D D P */
1743 } else if (*dd_idx
>= pd_idx
)
1744 (*dd_idx
) += 2; /* D D P Q D */
1746 case ALGORITHM_LEFT_SYMMETRIC
:
1747 pd_idx
= raid_disks
- 1 - sector_div(stripe2
, raid_disks
);
1748 qd_idx
= (pd_idx
+ 1) % raid_disks
;
1749 *dd_idx
= (pd_idx
+ 2 + *dd_idx
) % raid_disks
;
1751 case ALGORITHM_RIGHT_SYMMETRIC
:
1752 pd_idx
= sector_div(stripe2
, raid_disks
);
1753 qd_idx
= (pd_idx
+ 1) % raid_disks
;
1754 *dd_idx
= (pd_idx
+ 2 + *dd_idx
) % raid_disks
;
1757 case ALGORITHM_PARITY_0
:
1762 case ALGORITHM_PARITY_N
:
1763 pd_idx
= data_disks
;
1764 qd_idx
= data_disks
+ 1;
1767 case ALGORITHM_ROTATING_ZERO_RESTART
:
1768 /* Exactly the same as RIGHT_ASYMMETRIC, but or
1769 * of blocks for computing Q is different.
1771 pd_idx
= sector_div(stripe2
, raid_disks
);
1772 qd_idx
= pd_idx
+ 1;
1773 if (pd_idx
== raid_disks
-1) {
1774 (*dd_idx
)++; /* Q D D D P */
1776 } else if (*dd_idx
>= pd_idx
)
1777 (*dd_idx
) += 2; /* D D P Q D */
1781 case ALGORITHM_ROTATING_N_RESTART
:
1782 /* Same a left_asymmetric, by first stripe is
1783 * D D D P Q rather than
1787 pd_idx
= raid_disks
- 1 - sector_div(stripe2
, raid_disks
);
1788 qd_idx
= pd_idx
+ 1;
1789 if (pd_idx
== raid_disks
-1) {
1790 (*dd_idx
)++; /* Q D D D P */
1792 } else if (*dd_idx
>= pd_idx
)
1793 (*dd_idx
) += 2; /* D D P Q D */
1797 case ALGORITHM_ROTATING_N_CONTINUE
:
1798 /* Same as left_symmetric but Q is before P */
1799 pd_idx
= raid_disks
- 1 - sector_div(stripe2
, raid_disks
);
1800 qd_idx
= (pd_idx
+ raid_disks
- 1) % raid_disks
;
1801 *dd_idx
= (pd_idx
+ 1 + *dd_idx
) % raid_disks
;
1805 case ALGORITHM_LEFT_ASYMMETRIC_6
:
1806 /* RAID5 left_asymmetric, with Q on last device */
1807 pd_idx
= data_disks
- sector_div(stripe2
, raid_disks
-1);
1808 if (*dd_idx
>= pd_idx
)
1810 qd_idx
= raid_disks
- 1;
1813 case ALGORITHM_RIGHT_ASYMMETRIC_6
:
1814 pd_idx
= sector_div(stripe2
, raid_disks
-1);
1815 if (*dd_idx
>= pd_idx
)
1817 qd_idx
= raid_disks
- 1;
1820 case ALGORITHM_LEFT_SYMMETRIC_6
:
1821 pd_idx
= data_disks
- sector_div(stripe2
, raid_disks
-1);
1822 *dd_idx
= (pd_idx
+ 1 + *dd_idx
) % (raid_disks
-1);
1823 qd_idx
= raid_disks
- 1;
1826 case ALGORITHM_RIGHT_SYMMETRIC_6
:
1827 pd_idx
= sector_div(stripe2
, raid_disks
-1);
1828 *dd_idx
= (pd_idx
+ 1 + *dd_idx
) % (raid_disks
-1);
1829 qd_idx
= raid_disks
- 1;
1832 case ALGORITHM_PARITY_0_6
:
1835 qd_idx
= raid_disks
- 1;
1845 sh
->pd_idx
= pd_idx
;
1846 sh
->qd_idx
= qd_idx
;
1847 sh
->ddf_layout
= ddf_layout
;
1850 * Finally, compute the new sector number
1852 new_sector
= (sector_t
)stripe
* sectors_per_chunk
+ chunk_offset
;
1857 static sector_t
compute_blocknr(struct stripe_head
*sh
, int i
, int previous
)
1859 raid5_conf_t
*conf
= sh
->raid_conf
;
1860 int raid_disks
= sh
->disks
;
1861 int data_disks
= raid_disks
- conf
->max_degraded
;
1862 sector_t new_sector
= sh
->sector
, check
;
1863 int sectors_per_chunk
= previous
? conf
->prev_chunk_sectors
1864 : conf
->chunk_sectors
;
1865 int algorithm
= previous
? conf
->prev_algo
1869 sector_t chunk_number
;
1870 int dummy1
, dd_idx
= i
;
1872 struct stripe_head sh2
;
1875 chunk_offset
= sector_div(new_sector
, sectors_per_chunk
);
1876 stripe
= new_sector
;
1878 if (i
== sh
->pd_idx
)
1880 switch(conf
->level
) {
1883 switch (algorithm
) {
1884 case ALGORITHM_LEFT_ASYMMETRIC
:
1885 case ALGORITHM_RIGHT_ASYMMETRIC
:
1889 case ALGORITHM_LEFT_SYMMETRIC
:
1890 case ALGORITHM_RIGHT_SYMMETRIC
:
1893 i
-= (sh
->pd_idx
+ 1);
1895 case ALGORITHM_PARITY_0
:
1898 case ALGORITHM_PARITY_N
:
1905 if (i
== sh
->qd_idx
)
1906 return 0; /* It is the Q disk */
1907 switch (algorithm
) {
1908 case ALGORITHM_LEFT_ASYMMETRIC
:
1909 case ALGORITHM_RIGHT_ASYMMETRIC
:
1910 case ALGORITHM_ROTATING_ZERO_RESTART
:
1911 case ALGORITHM_ROTATING_N_RESTART
:
1912 if (sh
->pd_idx
== raid_disks
-1)
1913 i
--; /* Q D D D P */
1914 else if (i
> sh
->pd_idx
)
1915 i
-= 2; /* D D P Q D */
1917 case ALGORITHM_LEFT_SYMMETRIC
:
1918 case ALGORITHM_RIGHT_SYMMETRIC
:
1919 if (sh
->pd_idx
== raid_disks
-1)
1920 i
--; /* Q D D D P */
1925 i
-= (sh
->pd_idx
+ 2);
1928 case ALGORITHM_PARITY_0
:
1931 case ALGORITHM_PARITY_N
:
1933 case ALGORITHM_ROTATING_N_CONTINUE
:
1934 /* Like left_symmetric, but P is before Q */
1935 if (sh
->pd_idx
== 0)
1936 i
--; /* P D D D Q */
1941 i
-= (sh
->pd_idx
+ 1);
1944 case ALGORITHM_LEFT_ASYMMETRIC_6
:
1945 case ALGORITHM_RIGHT_ASYMMETRIC_6
:
1949 case ALGORITHM_LEFT_SYMMETRIC_6
:
1950 case ALGORITHM_RIGHT_SYMMETRIC_6
:
1952 i
+= data_disks
+ 1;
1953 i
-= (sh
->pd_idx
+ 1);
1955 case ALGORITHM_PARITY_0_6
:
1964 chunk_number
= stripe
* data_disks
+ i
;
1965 r_sector
= chunk_number
* sectors_per_chunk
+ chunk_offset
;
1967 check
= raid5_compute_sector(conf
, r_sector
,
1968 previous
, &dummy1
, &sh2
);
1969 if (check
!= sh
->sector
|| dummy1
!= dd_idx
|| sh2
.pd_idx
!= sh
->pd_idx
1970 || sh2
.qd_idx
!= sh
->qd_idx
) {
1971 printk(KERN_ERR
"md/raid:%s: compute_blocknr: map not correct\n",
1972 mdname(conf
->mddev
));
1980 schedule_reconstruction(struct stripe_head
*sh
, struct stripe_head_state
*s
,
1981 int rcw
, int expand
)
1983 int i
, pd_idx
= sh
->pd_idx
, disks
= sh
->disks
;
1984 raid5_conf_t
*conf
= sh
->raid_conf
;
1985 int level
= conf
->level
;
1988 /* if we are not expanding this is a proper write request, and
1989 * there will be bios with new data to be drained into the
1993 sh
->reconstruct_state
= reconstruct_state_drain_run
;
1994 set_bit(STRIPE_OP_BIODRAIN
, &s
->ops_request
);
1996 sh
->reconstruct_state
= reconstruct_state_run
;
1998 set_bit(STRIPE_OP_RECONSTRUCT
, &s
->ops_request
);
2000 for (i
= disks
; i
--; ) {
2001 struct r5dev
*dev
= &sh
->dev
[i
];
2004 set_bit(R5_LOCKED
, &dev
->flags
);
2005 set_bit(R5_Wantdrain
, &dev
->flags
);
2007 clear_bit(R5_UPTODATE
, &dev
->flags
);
2011 if (s
->locked
+ conf
->max_degraded
== disks
)
2012 if (!test_and_set_bit(STRIPE_FULL_WRITE
, &sh
->state
))
2013 atomic_inc(&conf
->pending_full_writes
);
2016 BUG_ON(!(test_bit(R5_UPTODATE
, &sh
->dev
[pd_idx
].flags
) ||
2017 test_bit(R5_Wantcompute
, &sh
->dev
[pd_idx
].flags
)));
2019 sh
->reconstruct_state
= reconstruct_state_prexor_drain_run
;
2020 set_bit(STRIPE_OP_PREXOR
, &s
->ops_request
);
2021 set_bit(STRIPE_OP_BIODRAIN
, &s
->ops_request
);
2022 set_bit(STRIPE_OP_RECONSTRUCT
, &s
->ops_request
);
2024 for (i
= disks
; i
--; ) {
2025 struct r5dev
*dev
= &sh
->dev
[i
];
2030 (test_bit(R5_UPTODATE
, &dev
->flags
) ||
2031 test_bit(R5_Wantcompute
, &dev
->flags
))) {
2032 set_bit(R5_Wantdrain
, &dev
->flags
);
2033 set_bit(R5_LOCKED
, &dev
->flags
);
2034 clear_bit(R5_UPTODATE
, &dev
->flags
);
2040 /* keep the parity disk(s) locked while asynchronous operations
2043 set_bit(R5_LOCKED
, &sh
->dev
[pd_idx
].flags
);
2044 clear_bit(R5_UPTODATE
, &sh
->dev
[pd_idx
].flags
);
2048 int qd_idx
= sh
->qd_idx
;
2049 struct r5dev
*dev
= &sh
->dev
[qd_idx
];
2051 set_bit(R5_LOCKED
, &dev
->flags
);
2052 clear_bit(R5_UPTODATE
, &dev
->flags
);
2056 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2057 __func__
, (unsigned long long)sh
->sector
,
2058 s
->locked
, s
->ops_request
);
2062 * Each stripe/dev can have one or more bion attached.
2063 * toread/towrite point to the first in a chain.
2064 * The bi_next chain must be in order.
2066 static int add_stripe_bio(struct stripe_head
*sh
, struct bio
*bi
, int dd_idx
, int forwrite
)
2069 raid5_conf_t
*conf
= sh
->raid_conf
;
2072 pr_debug("adding bh b#%llu to stripe s#%llu\n",
2073 (unsigned long long)bi
->bi_sector
,
2074 (unsigned long long)sh
->sector
);
2077 spin_lock(&sh
->lock
);
2078 spin_lock_irq(&conf
->device_lock
);
2080 bip
= &sh
->dev
[dd_idx
].towrite
;
2081 if (*bip
== NULL
&& sh
->dev
[dd_idx
].written
== NULL
)
2084 bip
= &sh
->dev
[dd_idx
].toread
;
2085 while (*bip
&& (*bip
)->bi_sector
< bi
->bi_sector
) {
2086 if ((*bip
)->bi_sector
+ ((*bip
)->bi_size
>> 9) > bi
->bi_sector
)
2088 bip
= & (*bip
)->bi_next
;
2090 if (*bip
&& (*bip
)->bi_sector
< bi
->bi_sector
+ ((bi
->bi_size
)>>9))
2093 BUG_ON(*bip
&& bi
->bi_next
&& (*bip
) != bi
->bi_next
);
2097 bi
->bi_phys_segments
++;
2098 spin_unlock_irq(&conf
->device_lock
);
2099 spin_unlock(&sh
->lock
);
2101 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2102 (unsigned long long)bi
->bi_sector
,
2103 (unsigned long long)sh
->sector
, dd_idx
);
2105 if (conf
->mddev
->bitmap
&& firstwrite
) {
2106 bitmap_startwrite(conf
->mddev
->bitmap
, sh
->sector
,
2108 sh
->bm_seq
= conf
->seq_flush
+1;
2109 set_bit(STRIPE_BIT_DELAY
, &sh
->state
);
2113 /* check if page is covered */
2114 sector_t sector
= sh
->dev
[dd_idx
].sector
;
2115 for (bi
=sh
->dev
[dd_idx
].towrite
;
2116 sector
< sh
->dev
[dd_idx
].sector
+ STRIPE_SECTORS
&&
2117 bi
&& bi
->bi_sector
<= sector
;
2118 bi
= r5_next_bio(bi
, sh
->dev
[dd_idx
].sector
)) {
2119 if (bi
->bi_sector
+ (bi
->bi_size
>>9) >= sector
)
2120 sector
= bi
->bi_sector
+ (bi
->bi_size
>>9);
2122 if (sector
>= sh
->dev
[dd_idx
].sector
+ STRIPE_SECTORS
)
2123 set_bit(R5_OVERWRITE
, &sh
->dev
[dd_idx
].flags
);
2128 set_bit(R5_Overlap
, &sh
->dev
[dd_idx
].flags
);
2129 spin_unlock_irq(&conf
->device_lock
);
2130 spin_unlock(&sh
->lock
);
2134 static void end_reshape(raid5_conf_t
*conf
);
2136 static void stripe_set_idx(sector_t stripe
, raid5_conf_t
*conf
, int previous
,
2137 struct stripe_head
*sh
)
2139 int sectors_per_chunk
=
2140 previous
? conf
->prev_chunk_sectors
: conf
->chunk_sectors
;
2142 int chunk_offset
= sector_div(stripe
, sectors_per_chunk
);
2143 int disks
= previous
? conf
->previous_raid_disks
: conf
->raid_disks
;
2145 raid5_compute_sector(conf
,
2146 stripe
* (disks
- conf
->max_degraded
)
2147 *sectors_per_chunk
+ chunk_offset
,
2153 handle_failed_stripe(raid5_conf_t
*conf
, struct stripe_head
*sh
,
2154 struct stripe_head_state
*s
, int disks
,
2155 struct bio
**return_bi
)
2158 for (i
= disks
; i
--; ) {
2162 if (test_bit(R5_ReadError
, &sh
->dev
[i
].flags
)) {
2165 rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
2166 if (rdev
&& test_bit(In_sync
, &rdev
->flags
))
2167 /* multiple read failures in one stripe */
2168 md_error(conf
->mddev
, rdev
);
2171 spin_lock_irq(&conf
->device_lock
);
2172 /* fail all writes first */
2173 bi
= sh
->dev
[i
].towrite
;
2174 sh
->dev
[i
].towrite
= NULL
;
2180 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[i
].flags
))
2181 wake_up(&conf
->wait_for_overlap
);
2183 while (bi
&& bi
->bi_sector
<
2184 sh
->dev
[i
].sector
+ STRIPE_SECTORS
) {
2185 struct bio
*nextbi
= r5_next_bio(bi
, sh
->dev
[i
].sector
);
2186 clear_bit(BIO_UPTODATE
, &bi
->bi_flags
);
2187 if (!raid5_dec_bi_phys_segments(bi
)) {
2188 md_write_end(conf
->mddev
);
2189 bi
->bi_next
= *return_bi
;
2194 /* and fail all 'written' */
2195 bi
= sh
->dev
[i
].written
;
2196 sh
->dev
[i
].written
= NULL
;
2197 if (bi
) bitmap_end
= 1;
2198 while (bi
&& bi
->bi_sector
<
2199 sh
->dev
[i
].sector
+ STRIPE_SECTORS
) {
2200 struct bio
*bi2
= r5_next_bio(bi
, sh
->dev
[i
].sector
);
2201 clear_bit(BIO_UPTODATE
, &bi
->bi_flags
);
2202 if (!raid5_dec_bi_phys_segments(bi
)) {
2203 md_write_end(conf
->mddev
);
2204 bi
->bi_next
= *return_bi
;
2210 /* fail any reads if this device is non-operational and
2211 * the data has not reached the cache yet.
2213 if (!test_bit(R5_Wantfill
, &sh
->dev
[i
].flags
) &&
2214 (!test_bit(R5_Insync
, &sh
->dev
[i
].flags
) ||
2215 test_bit(R5_ReadError
, &sh
->dev
[i
].flags
))) {
2216 bi
= sh
->dev
[i
].toread
;
2217 sh
->dev
[i
].toread
= NULL
;
2218 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[i
].flags
))
2219 wake_up(&conf
->wait_for_overlap
);
2220 if (bi
) s
->to_read
--;
2221 while (bi
&& bi
->bi_sector
<
2222 sh
->dev
[i
].sector
+ STRIPE_SECTORS
) {
2223 struct bio
*nextbi
=
2224 r5_next_bio(bi
, sh
->dev
[i
].sector
);
2225 clear_bit(BIO_UPTODATE
, &bi
->bi_flags
);
2226 if (!raid5_dec_bi_phys_segments(bi
)) {
2227 bi
->bi_next
= *return_bi
;
2233 spin_unlock_irq(&conf
->device_lock
);
2235 bitmap_endwrite(conf
->mddev
->bitmap
, sh
->sector
,
2236 STRIPE_SECTORS
, 0, 0);
2239 if (test_and_clear_bit(STRIPE_FULL_WRITE
, &sh
->state
))
2240 if (atomic_dec_and_test(&conf
->pending_full_writes
))
2241 md_wakeup_thread(conf
->mddev
->thread
);
2244 /* fetch_block5 - checks the given member device to see if its data needs
2245 * to be read or computed to satisfy a request.
2247 * Returns 1 when no more member devices need to be checked, otherwise returns
2248 * 0 to tell the loop in handle_stripe_fill5 to continue
2250 static int fetch_block5(struct stripe_head
*sh
, struct stripe_head_state
*s
,
2251 int disk_idx
, int disks
)
2253 struct r5dev
*dev
= &sh
->dev
[disk_idx
];
2254 struct r5dev
*failed_dev
= &sh
->dev
[s
->failed_num
];
2256 /* is the data in this block needed, and can we get it? */
2257 if (!test_bit(R5_LOCKED
, &dev
->flags
) &&
2258 !test_bit(R5_UPTODATE
, &dev
->flags
) &&
2260 (dev
->towrite
&& !test_bit(R5_OVERWRITE
, &dev
->flags
)) ||
2261 s
->syncing
|| s
->expanding
||
2263 (failed_dev
->toread
||
2264 (failed_dev
->towrite
&&
2265 !test_bit(R5_OVERWRITE
, &failed_dev
->flags
)))))) {
2266 /* We would like to get this block, possibly by computing it,
2267 * otherwise read it if the backing disk is insync
2269 if ((s
->uptodate
== disks
- 1) &&
2270 (s
->failed
&& disk_idx
== s
->failed_num
)) {
2271 set_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
2272 set_bit(STRIPE_OP_COMPUTE_BLK
, &s
->ops_request
);
2273 set_bit(R5_Wantcompute
, &dev
->flags
);
2274 sh
->ops
.target
= disk_idx
;
2275 sh
->ops
.target2
= -1;
2277 /* Careful: from this point on 'uptodate' is in the eye
2278 * of raid_run_ops which services 'compute' operations
2279 * before writes. R5_Wantcompute flags a block that will
2280 * be R5_UPTODATE by the time it is needed for a
2281 * subsequent operation.
2284 return 1; /* uptodate + compute == disks */
2285 } else if (test_bit(R5_Insync
, &dev
->flags
)) {
2286 set_bit(R5_LOCKED
, &dev
->flags
);
2287 set_bit(R5_Wantread
, &dev
->flags
);
2289 pr_debug("Reading block %d (sync=%d)\n", disk_idx
,
2298 * handle_stripe_fill5 - read or compute data to satisfy pending requests.
2300 static void handle_stripe_fill5(struct stripe_head
*sh
,
2301 struct stripe_head_state
*s
, int disks
)
2305 /* look for blocks to read/compute, skip this if a compute
2306 * is already in flight, or if the stripe contents are in the
2307 * midst of changing due to a write
2309 if (!test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
) && !sh
->check_state
&&
2310 !sh
->reconstruct_state
)
2311 for (i
= disks
; i
--; )
2312 if (fetch_block5(sh
, s
, i
, disks
))
2314 set_bit(STRIPE_HANDLE
, &sh
->state
);
2317 /* fetch_block6 - checks the given member device to see if its data needs
2318 * to be read or computed to satisfy a request.
2320 * Returns 1 when no more member devices need to be checked, otherwise returns
2321 * 0 to tell the loop in handle_stripe_fill6 to continue
2323 static int fetch_block6(struct stripe_head
*sh
, struct stripe_head_state
*s
,
2324 struct r6_state
*r6s
, int disk_idx
, int disks
)
2326 struct r5dev
*dev
= &sh
->dev
[disk_idx
];
2327 struct r5dev
*fdev
[2] = { &sh
->dev
[r6s
->failed_num
[0]],
2328 &sh
->dev
[r6s
->failed_num
[1]] };
2330 if (!test_bit(R5_LOCKED
, &dev
->flags
) &&
2331 !test_bit(R5_UPTODATE
, &dev
->flags
) &&
2333 (dev
->towrite
&& !test_bit(R5_OVERWRITE
, &dev
->flags
)) ||
2334 s
->syncing
|| s
->expanding
||
2336 (fdev
[0]->toread
|| s
->to_write
)) ||
2338 (fdev
[1]->toread
|| s
->to_write
)))) {
2339 /* we would like to get this block, possibly by computing it,
2340 * otherwise read it if the backing disk is insync
2342 BUG_ON(test_bit(R5_Wantcompute
, &dev
->flags
));
2343 BUG_ON(test_bit(R5_Wantread
, &dev
->flags
));
2344 if ((s
->uptodate
== disks
- 1) &&
2345 (s
->failed
&& (disk_idx
== r6s
->failed_num
[0] ||
2346 disk_idx
== r6s
->failed_num
[1]))) {
2347 /* have disk failed, and we're requested to fetch it;
2350 pr_debug("Computing stripe %llu block %d\n",
2351 (unsigned long long)sh
->sector
, disk_idx
);
2352 set_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
2353 set_bit(STRIPE_OP_COMPUTE_BLK
, &s
->ops_request
);
2354 set_bit(R5_Wantcompute
, &dev
->flags
);
2355 sh
->ops
.target
= disk_idx
;
2356 sh
->ops
.target2
= -1; /* no 2nd target */
2360 } else if (s
->uptodate
== disks
-2 && s
->failed
>= 2) {
2361 /* Computing 2-failure is *very* expensive; only
2362 * do it if failed >= 2
2365 for (other
= disks
; other
--; ) {
2366 if (other
== disk_idx
)
2368 if (!test_bit(R5_UPTODATE
,
2369 &sh
->dev
[other
].flags
))
2373 pr_debug("Computing stripe %llu blocks %d,%d\n",
2374 (unsigned long long)sh
->sector
,
2376 set_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
2377 set_bit(STRIPE_OP_COMPUTE_BLK
, &s
->ops_request
);
2378 set_bit(R5_Wantcompute
, &sh
->dev
[disk_idx
].flags
);
2379 set_bit(R5_Wantcompute
, &sh
->dev
[other
].flags
);
2380 sh
->ops
.target
= disk_idx
;
2381 sh
->ops
.target2
= other
;
2385 } else if (test_bit(R5_Insync
, &dev
->flags
)) {
2386 set_bit(R5_LOCKED
, &dev
->flags
);
2387 set_bit(R5_Wantread
, &dev
->flags
);
2389 pr_debug("Reading block %d (sync=%d)\n",
2390 disk_idx
, s
->syncing
);
2398 * handle_stripe_fill6 - read or compute data to satisfy pending requests.
2400 static void handle_stripe_fill6(struct stripe_head
*sh
,
2401 struct stripe_head_state
*s
, struct r6_state
*r6s
,
2406 /* look for blocks to read/compute, skip this if a compute
2407 * is already in flight, or if the stripe contents are in the
2408 * midst of changing due to a write
2410 if (!test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
) && !sh
->check_state
&&
2411 !sh
->reconstruct_state
)
2412 for (i
= disks
; i
--; )
2413 if (fetch_block6(sh
, s
, r6s
, i
, disks
))
2415 set_bit(STRIPE_HANDLE
, &sh
->state
);
2419 /* handle_stripe_clean_event
2420 * any written block on an uptodate or failed drive can be returned.
2421 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2422 * never LOCKED, so we don't need to test 'failed' directly.
2424 static void handle_stripe_clean_event(raid5_conf_t
*conf
,
2425 struct stripe_head
*sh
, int disks
, struct bio
**return_bi
)
2430 for (i
= disks
; i
--; )
2431 if (sh
->dev
[i
].written
) {
2433 if (!test_bit(R5_LOCKED
, &dev
->flags
) &&
2434 test_bit(R5_UPTODATE
, &dev
->flags
)) {
2435 /* We can return any write requests */
2436 struct bio
*wbi
, *wbi2
;
2438 pr_debug("Return write for disc %d\n", i
);
2439 spin_lock_irq(&conf
->device_lock
);
2441 dev
->written
= NULL
;
2442 while (wbi
&& wbi
->bi_sector
<
2443 dev
->sector
+ STRIPE_SECTORS
) {
2444 wbi2
= r5_next_bio(wbi
, dev
->sector
);
2445 if (!raid5_dec_bi_phys_segments(wbi
)) {
2446 md_write_end(conf
->mddev
);
2447 wbi
->bi_next
= *return_bi
;
2452 if (dev
->towrite
== NULL
)
2454 spin_unlock_irq(&conf
->device_lock
);
2456 bitmap_endwrite(conf
->mddev
->bitmap
,
2459 !test_bit(STRIPE_DEGRADED
, &sh
->state
),
2464 if (test_and_clear_bit(STRIPE_FULL_WRITE
, &sh
->state
))
2465 if (atomic_dec_and_test(&conf
->pending_full_writes
))
2466 md_wakeup_thread(conf
->mddev
->thread
);
2469 static void handle_stripe_dirtying5(raid5_conf_t
*conf
,
2470 struct stripe_head
*sh
, struct stripe_head_state
*s
, int disks
)
2472 int rmw
= 0, rcw
= 0, i
;
2473 for (i
= disks
; i
--; ) {
2474 /* would I have to read this buffer for read_modify_write */
2475 struct r5dev
*dev
= &sh
->dev
[i
];
2476 if ((dev
->towrite
|| i
== sh
->pd_idx
) &&
2477 !test_bit(R5_LOCKED
, &dev
->flags
) &&
2478 !(test_bit(R5_UPTODATE
, &dev
->flags
) ||
2479 test_bit(R5_Wantcompute
, &dev
->flags
))) {
2480 if (test_bit(R5_Insync
, &dev
->flags
))
2483 rmw
+= 2*disks
; /* cannot read it */
2485 /* Would I have to read this buffer for reconstruct_write */
2486 if (!test_bit(R5_OVERWRITE
, &dev
->flags
) && i
!= sh
->pd_idx
&&
2487 !test_bit(R5_LOCKED
, &dev
->flags
) &&
2488 !(test_bit(R5_UPTODATE
, &dev
->flags
) ||
2489 test_bit(R5_Wantcompute
, &dev
->flags
))) {
2490 if (test_bit(R5_Insync
, &dev
->flags
)) rcw
++;
2495 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2496 (unsigned long long)sh
->sector
, rmw
, rcw
);
2497 set_bit(STRIPE_HANDLE
, &sh
->state
);
2498 if (rmw
< rcw
&& rmw
> 0)
2499 /* prefer read-modify-write, but need to get some data */
2500 for (i
= disks
; i
--; ) {
2501 struct r5dev
*dev
= &sh
->dev
[i
];
2502 if ((dev
->towrite
|| i
== sh
->pd_idx
) &&
2503 !test_bit(R5_LOCKED
, &dev
->flags
) &&
2504 !(test_bit(R5_UPTODATE
, &dev
->flags
) ||
2505 test_bit(R5_Wantcompute
, &dev
->flags
)) &&
2506 test_bit(R5_Insync
, &dev
->flags
)) {
2508 test_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
)) {
2509 pr_debug("Read_old block "
2510 "%d for r-m-w\n", i
);
2511 set_bit(R5_LOCKED
, &dev
->flags
);
2512 set_bit(R5_Wantread
, &dev
->flags
);
2515 set_bit(STRIPE_DELAYED
, &sh
->state
);
2516 set_bit(STRIPE_HANDLE
, &sh
->state
);
2520 if (rcw
<= rmw
&& rcw
> 0)
2521 /* want reconstruct write, but need to get some data */
2522 for (i
= disks
; i
--; ) {
2523 struct r5dev
*dev
= &sh
->dev
[i
];
2524 if (!test_bit(R5_OVERWRITE
, &dev
->flags
) &&
2526 !test_bit(R5_LOCKED
, &dev
->flags
) &&
2527 !(test_bit(R5_UPTODATE
, &dev
->flags
) ||
2528 test_bit(R5_Wantcompute
, &dev
->flags
)) &&
2529 test_bit(R5_Insync
, &dev
->flags
)) {
2531 test_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
)) {
2532 pr_debug("Read_old block "
2533 "%d for Reconstruct\n", i
);
2534 set_bit(R5_LOCKED
, &dev
->flags
);
2535 set_bit(R5_Wantread
, &dev
->flags
);
2538 set_bit(STRIPE_DELAYED
, &sh
->state
);
2539 set_bit(STRIPE_HANDLE
, &sh
->state
);
2543 /* now if nothing is locked, and if we have enough data,
2544 * we can start a write request
2546 /* since handle_stripe can be called at any time we need to handle the
2547 * case where a compute block operation has been submitted and then a
2548 * subsequent call wants to start a write request. raid_run_ops only
2549 * handles the case where compute block and reconstruct are requested
2550 * simultaneously. If this is not the case then new writes need to be
2551 * held off until the compute completes.
2553 if ((s
->req_compute
|| !test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
)) &&
2554 (s
->locked
== 0 && (rcw
== 0 || rmw
== 0) &&
2555 !test_bit(STRIPE_BIT_DELAY
, &sh
->state
)))
2556 schedule_reconstruction(sh
, s
, rcw
== 0, 0);
2559 static void handle_stripe_dirtying6(raid5_conf_t
*conf
,
2560 struct stripe_head
*sh
, struct stripe_head_state
*s
,
2561 struct r6_state
*r6s
, int disks
)
2563 int rcw
= 0, pd_idx
= sh
->pd_idx
, i
;
2564 int qd_idx
= sh
->qd_idx
;
2566 set_bit(STRIPE_HANDLE
, &sh
->state
);
2567 for (i
= disks
; i
--; ) {
2568 struct r5dev
*dev
= &sh
->dev
[i
];
2569 /* check if we haven't enough data */
2570 if (!test_bit(R5_OVERWRITE
, &dev
->flags
) &&
2571 i
!= pd_idx
&& i
!= qd_idx
&&
2572 !test_bit(R5_LOCKED
, &dev
->flags
) &&
2573 !(test_bit(R5_UPTODATE
, &dev
->flags
) ||
2574 test_bit(R5_Wantcompute
, &dev
->flags
))) {
2576 if (!test_bit(R5_Insync
, &dev
->flags
))
2577 continue; /* it's a failed drive */
2580 test_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
)) {
2581 pr_debug("Read_old stripe %llu "
2582 "block %d for Reconstruct\n",
2583 (unsigned long long)sh
->sector
, i
);
2584 set_bit(R5_LOCKED
, &dev
->flags
);
2585 set_bit(R5_Wantread
, &dev
->flags
);
2588 pr_debug("Request delayed stripe %llu "
2589 "block %d for Reconstruct\n",
2590 (unsigned long long)sh
->sector
, i
);
2591 set_bit(STRIPE_DELAYED
, &sh
->state
);
2592 set_bit(STRIPE_HANDLE
, &sh
->state
);
2596 /* now if nothing is locked, and if we have enough data, we can start a
2599 if ((s
->req_compute
|| !test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
)) &&
2600 s
->locked
== 0 && rcw
== 0 &&
2601 !test_bit(STRIPE_BIT_DELAY
, &sh
->state
)) {
2602 schedule_reconstruction(sh
, s
, 1, 0);
2606 static void handle_parity_checks5(raid5_conf_t
*conf
, struct stripe_head
*sh
,
2607 struct stripe_head_state
*s
, int disks
)
2609 struct r5dev
*dev
= NULL
;
2611 set_bit(STRIPE_HANDLE
, &sh
->state
);
2613 switch (sh
->check_state
) {
2614 case check_state_idle
:
2615 /* start a new check operation if there are no failures */
2616 if (s
->failed
== 0) {
2617 BUG_ON(s
->uptodate
!= disks
);
2618 sh
->check_state
= check_state_run
;
2619 set_bit(STRIPE_OP_CHECK
, &s
->ops_request
);
2620 clear_bit(R5_UPTODATE
, &sh
->dev
[sh
->pd_idx
].flags
);
2624 dev
= &sh
->dev
[s
->failed_num
];
2626 case check_state_compute_result
:
2627 sh
->check_state
= check_state_idle
;
2629 dev
= &sh
->dev
[sh
->pd_idx
];
2631 /* check that a write has not made the stripe insync */
2632 if (test_bit(STRIPE_INSYNC
, &sh
->state
))
2635 /* either failed parity check, or recovery is happening */
2636 BUG_ON(!test_bit(R5_UPTODATE
, &dev
->flags
));
2637 BUG_ON(s
->uptodate
!= disks
);
2639 set_bit(R5_LOCKED
, &dev
->flags
);
2641 set_bit(R5_Wantwrite
, &dev
->flags
);
2643 clear_bit(STRIPE_DEGRADED
, &sh
->state
);
2644 set_bit(STRIPE_INSYNC
, &sh
->state
);
2646 case check_state_run
:
2647 break; /* we will be called again upon completion */
2648 case check_state_check_result
:
2649 sh
->check_state
= check_state_idle
;
2651 /* if a failure occurred during the check operation, leave
2652 * STRIPE_INSYNC not set and let the stripe be handled again
2657 /* handle a successful check operation, if parity is correct
2658 * we are done. Otherwise update the mismatch count and repair
2659 * parity if !MD_RECOVERY_CHECK
2661 if ((sh
->ops
.zero_sum_result
& SUM_CHECK_P_RESULT
) == 0)
2662 /* parity is correct (on disc,
2663 * not in buffer any more)
2665 set_bit(STRIPE_INSYNC
, &sh
->state
);
2667 conf
->mddev
->resync_mismatches
+= STRIPE_SECTORS
;
2668 if (test_bit(MD_RECOVERY_CHECK
, &conf
->mddev
->recovery
))
2669 /* don't try to repair!! */
2670 set_bit(STRIPE_INSYNC
, &sh
->state
);
2672 sh
->check_state
= check_state_compute_run
;
2673 set_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
2674 set_bit(STRIPE_OP_COMPUTE_BLK
, &s
->ops_request
);
2675 set_bit(R5_Wantcompute
,
2676 &sh
->dev
[sh
->pd_idx
].flags
);
2677 sh
->ops
.target
= sh
->pd_idx
;
2678 sh
->ops
.target2
= -1;
2683 case check_state_compute_run
:
2686 printk(KERN_ERR
"%s: unknown check_state: %d sector: %llu\n",
2687 __func__
, sh
->check_state
,
2688 (unsigned long long) sh
->sector
);
2694 static void handle_parity_checks6(raid5_conf_t
*conf
, struct stripe_head
*sh
,
2695 struct stripe_head_state
*s
,
2696 struct r6_state
*r6s
, int disks
)
2698 int pd_idx
= sh
->pd_idx
;
2699 int qd_idx
= sh
->qd_idx
;
2702 set_bit(STRIPE_HANDLE
, &sh
->state
);
2704 BUG_ON(s
->failed
> 2);
2706 /* Want to check and possibly repair P and Q.
2707 * However there could be one 'failed' device, in which
2708 * case we can only check one of them, possibly using the
2709 * other to generate missing data
2712 switch (sh
->check_state
) {
2713 case check_state_idle
:
2714 /* start a new check operation if there are < 2 failures */
2715 if (s
->failed
== r6s
->q_failed
) {
2716 /* The only possible failed device holds Q, so it
2717 * makes sense to check P (If anything else were failed,
2718 * we would have used P to recreate it).
2720 sh
->check_state
= check_state_run
;
2722 if (!r6s
->q_failed
&& s
->failed
< 2) {
2723 /* Q is not failed, and we didn't use it to generate
2724 * anything, so it makes sense to check it
2726 if (sh
->check_state
== check_state_run
)
2727 sh
->check_state
= check_state_run_pq
;
2729 sh
->check_state
= check_state_run_q
;
2732 /* discard potentially stale zero_sum_result */
2733 sh
->ops
.zero_sum_result
= 0;
2735 if (sh
->check_state
== check_state_run
) {
2736 /* async_xor_zero_sum destroys the contents of P */
2737 clear_bit(R5_UPTODATE
, &sh
->dev
[pd_idx
].flags
);
2740 if (sh
->check_state
>= check_state_run
&&
2741 sh
->check_state
<= check_state_run_pq
) {
2742 /* async_syndrome_zero_sum preserves P and Q, so
2743 * no need to mark them !uptodate here
2745 set_bit(STRIPE_OP_CHECK
, &s
->ops_request
);
2749 /* we have 2-disk failure */
2750 BUG_ON(s
->failed
!= 2);
2752 case check_state_compute_result
:
2753 sh
->check_state
= check_state_idle
;
2755 /* check that a write has not made the stripe insync */
2756 if (test_bit(STRIPE_INSYNC
, &sh
->state
))
2759 /* now write out any block on a failed drive,
2760 * or P or Q if they were recomputed
2762 BUG_ON(s
->uptodate
< disks
- 1); /* We don't need Q to recover */
2763 if (s
->failed
== 2) {
2764 dev
= &sh
->dev
[r6s
->failed_num
[1]];
2766 set_bit(R5_LOCKED
, &dev
->flags
);
2767 set_bit(R5_Wantwrite
, &dev
->flags
);
2769 if (s
->failed
>= 1) {
2770 dev
= &sh
->dev
[r6s
->failed_num
[0]];
2772 set_bit(R5_LOCKED
, &dev
->flags
);
2773 set_bit(R5_Wantwrite
, &dev
->flags
);
2775 if (sh
->ops
.zero_sum_result
& SUM_CHECK_P_RESULT
) {
2776 dev
= &sh
->dev
[pd_idx
];
2778 set_bit(R5_LOCKED
, &dev
->flags
);
2779 set_bit(R5_Wantwrite
, &dev
->flags
);
2781 if (sh
->ops
.zero_sum_result
& SUM_CHECK_Q_RESULT
) {
2782 dev
= &sh
->dev
[qd_idx
];
2784 set_bit(R5_LOCKED
, &dev
->flags
);
2785 set_bit(R5_Wantwrite
, &dev
->flags
);
2787 clear_bit(STRIPE_DEGRADED
, &sh
->state
);
2789 set_bit(STRIPE_INSYNC
, &sh
->state
);
2791 case check_state_run
:
2792 case check_state_run_q
:
2793 case check_state_run_pq
:
2794 break; /* we will be called again upon completion */
2795 case check_state_check_result
:
2796 sh
->check_state
= check_state_idle
;
2798 /* handle a successful check operation, if parity is correct
2799 * we are done. Otherwise update the mismatch count and repair
2800 * parity if !MD_RECOVERY_CHECK
2802 if (sh
->ops
.zero_sum_result
== 0) {
2803 /* both parities are correct */
2805 set_bit(STRIPE_INSYNC
, &sh
->state
);
2807 /* in contrast to the raid5 case we can validate
2808 * parity, but still have a failure to write
2811 sh
->check_state
= check_state_compute_result
;
2812 /* Returning at this point means that we may go
2813 * off and bring p and/or q uptodate again so
2814 * we make sure to check zero_sum_result again
2815 * to verify if p or q need writeback
2819 conf
->mddev
->resync_mismatches
+= STRIPE_SECTORS
;
2820 if (test_bit(MD_RECOVERY_CHECK
, &conf
->mddev
->recovery
))
2821 /* don't try to repair!! */
2822 set_bit(STRIPE_INSYNC
, &sh
->state
);
2824 int *target
= &sh
->ops
.target
;
2826 sh
->ops
.target
= -1;
2827 sh
->ops
.target2
= -1;
2828 sh
->check_state
= check_state_compute_run
;
2829 set_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
2830 set_bit(STRIPE_OP_COMPUTE_BLK
, &s
->ops_request
);
2831 if (sh
->ops
.zero_sum_result
& SUM_CHECK_P_RESULT
) {
2832 set_bit(R5_Wantcompute
,
2833 &sh
->dev
[pd_idx
].flags
);
2835 target
= &sh
->ops
.target2
;
2838 if (sh
->ops
.zero_sum_result
& SUM_CHECK_Q_RESULT
) {
2839 set_bit(R5_Wantcompute
,
2840 &sh
->dev
[qd_idx
].flags
);
2847 case check_state_compute_run
:
2850 printk(KERN_ERR
"%s: unknown check_state: %d sector: %llu\n",
2851 __func__
, sh
->check_state
,
2852 (unsigned long long) sh
->sector
);
2857 static void handle_stripe_expansion(raid5_conf_t
*conf
, struct stripe_head
*sh
,
2858 struct r6_state
*r6s
)
2862 /* We have read all the blocks in this stripe and now we need to
2863 * copy some of them into a target stripe for expand.
2865 struct dma_async_tx_descriptor
*tx
= NULL
;
2866 clear_bit(STRIPE_EXPAND_SOURCE
, &sh
->state
);
2867 for (i
= 0; i
< sh
->disks
; i
++)
2868 if (i
!= sh
->pd_idx
&& i
!= sh
->qd_idx
) {
2870 struct stripe_head
*sh2
;
2871 struct async_submit_ctl submit
;
2873 sector_t bn
= compute_blocknr(sh
, i
, 1);
2874 sector_t s
= raid5_compute_sector(conf
, bn
, 0,
2876 sh2
= get_active_stripe(conf
, s
, 0, 1, 1);
2878 /* so far only the early blocks of this stripe
2879 * have been requested. When later blocks
2880 * get requested, we will try again
2883 if (!test_bit(STRIPE_EXPANDING
, &sh2
->state
) ||
2884 test_bit(R5_Expanded
, &sh2
->dev
[dd_idx
].flags
)) {
2885 /* must have already done this block */
2886 release_stripe(sh2
);
2890 /* place all the copies on one channel */
2891 init_async_submit(&submit
, 0, tx
, NULL
, NULL
, NULL
);
2892 tx
= async_memcpy(sh2
->dev
[dd_idx
].page
,
2893 sh
->dev
[i
].page
, 0, 0, STRIPE_SIZE
,
2896 set_bit(R5_Expanded
, &sh2
->dev
[dd_idx
].flags
);
2897 set_bit(R5_UPTODATE
, &sh2
->dev
[dd_idx
].flags
);
2898 for (j
= 0; j
< conf
->raid_disks
; j
++)
2899 if (j
!= sh2
->pd_idx
&&
2900 (!r6s
|| j
!= sh2
->qd_idx
) &&
2901 !test_bit(R5_Expanded
, &sh2
->dev
[j
].flags
))
2903 if (j
== conf
->raid_disks
) {
2904 set_bit(STRIPE_EXPAND_READY
, &sh2
->state
);
2905 set_bit(STRIPE_HANDLE
, &sh2
->state
);
2907 release_stripe(sh2
);
2910 /* done submitting copies, wait for them to complete */
2913 dma_wait_for_async_tx(tx
);
2919 * handle_stripe - do things to a stripe.
2921 * We lock the stripe and then examine the state of various bits
2922 * to see what needs to be done.
2924 * return some read request which now have data
2925 * return some write requests which are safely on disc
2926 * schedule a read on some buffers
2927 * schedule a write of some buffers
2928 * return confirmation of parity correctness
2930 * buffers are taken off read_list or write_list, and bh_cache buffers
2931 * get BH_Lock set before the stripe lock is released.
2935 static void handle_stripe5(struct stripe_head
*sh
)
2937 raid5_conf_t
*conf
= sh
->raid_conf
;
2938 int disks
= sh
->disks
, i
;
2939 struct bio
*return_bi
= NULL
;
2940 struct stripe_head_state s
;
2942 mdk_rdev_t
*blocked_rdev
= NULL
;
2944 int dec_preread_active
= 0;
2946 memset(&s
, 0, sizeof(s
));
2947 pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d check:%d "
2948 "reconstruct:%d\n", (unsigned long long)sh
->sector
, sh
->state
,
2949 atomic_read(&sh
->count
), sh
->pd_idx
, sh
->check_state
,
2950 sh
->reconstruct_state
);
2952 spin_lock(&sh
->lock
);
2953 clear_bit(STRIPE_HANDLE
, &sh
->state
);
2954 clear_bit(STRIPE_DELAYED
, &sh
->state
);
2956 s
.syncing
= test_bit(STRIPE_SYNCING
, &sh
->state
);
2957 s
.expanding
= test_bit(STRIPE_EXPAND_SOURCE
, &sh
->state
);
2958 s
.expanded
= test_bit(STRIPE_EXPAND_READY
, &sh
->state
);
2960 /* Now to look around and see what can be done */
2962 for (i
=disks
; i
--; ) {
2966 clear_bit(R5_Insync
, &dev
->flags
);
2968 pr_debug("check %d: state 0x%lx toread %p read %p write %p "
2969 "written %p\n", i
, dev
->flags
, dev
->toread
, dev
->read
,
2970 dev
->towrite
, dev
->written
);
2972 /* maybe we can request a biofill operation
2974 * new wantfill requests are only permitted while
2975 * ops_complete_biofill is guaranteed to be inactive
2977 if (test_bit(R5_UPTODATE
, &dev
->flags
) && dev
->toread
&&
2978 !test_bit(STRIPE_BIOFILL_RUN
, &sh
->state
))
2979 set_bit(R5_Wantfill
, &dev
->flags
);
2981 /* now count some things */
2982 if (test_bit(R5_LOCKED
, &dev
->flags
)) s
.locked
++;
2983 if (test_bit(R5_UPTODATE
, &dev
->flags
)) s
.uptodate
++;
2984 if (test_bit(R5_Wantcompute
, &dev
->flags
)) s
.compute
++;
2986 if (test_bit(R5_Wantfill
, &dev
->flags
))
2988 else if (dev
->toread
)
2992 if (!test_bit(R5_OVERWRITE
, &dev
->flags
))
2997 rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
2998 if (blocked_rdev
== NULL
&&
2999 rdev
&& unlikely(test_bit(Blocked
, &rdev
->flags
))) {
3000 blocked_rdev
= rdev
;
3001 atomic_inc(&rdev
->nr_pending
);
3003 if (!rdev
|| !test_bit(In_sync
, &rdev
->flags
)) {
3004 /* The ReadError flag will just be confusing now */
3005 clear_bit(R5_ReadError
, &dev
->flags
);
3006 clear_bit(R5_ReWrite
, &dev
->flags
);
3008 if (!rdev
|| !test_bit(In_sync
, &rdev
->flags
)
3009 || test_bit(R5_ReadError
, &dev
->flags
)) {
3013 set_bit(R5_Insync
, &dev
->flags
);
3017 if (unlikely(blocked_rdev
)) {
3018 if (s
.syncing
|| s
.expanding
|| s
.expanded
||
3019 s
.to_write
|| s
.written
) {
3020 set_bit(STRIPE_HANDLE
, &sh
->state
);
3023 /* There is nothing for the blocked_rdev to block */
3024 rdev_dec_pending(blocked_rdev
, conf
->mddev
);
3025 blocked_rdev
= NULL
;
3028 if (s
.to_fill
&& !test_bit(STRIPE_BIOFILL_RUN
, &sh
->state
)) {
3029 set_bit(STRIPE_OP_BIOFILL
, &s
.ops_request
);
3030 set_bit(STRIPE_BIOFILL_RUN
, &sh
->state
);
3033 pr_debug("locked=%d uptodate=%d to_read=%d"
3034 " to_write=%d failed=%d failed_num=%d\n",
3035 s
.locked
, s
.uptodate
, s
.to_read
, s
.to_write
,
3036 s
.failed
, s
.failed_num
);
3037 /* check if the array has lost two devices and, if so, some requests might
3040 if (s
.failed
> 1 && s
.to_read
+s
.to_write
+s
.written
)
3041 handle_failed_stripe(conf
, sh
, &s
, disks
, &return_bi
);
3042 if (s
.failed
> 1 && s
.syncing
) {
3043 md_done_sync(conf
->mddev
, STRIPE_SECTORS
,0);
3044 clear_bit(STRIPE_SYNCING
, &sh
->state
);
3048 /* might be able to return some write requests if the parity block
3049 * is safe, or on a failed drive
3051 dev
= &sh
->dev
[sh
->pd_idx
];
3053 ((test_bit(R5_Insync
, &dev
->flags
) &&
3054 !test_bit(R5_LOCKED
, &dev
->flags
) &&
3055 test_bit(R5_UPTODATE
, &dev
->flags
)) ||
3056 (s
.failed
== 1 && s
.failed_num
== sh
->pd_idx
)))
3057 handle_stripe_clean_event(conf
, sh
, disks
, &return_bi
);
3059 /* Now we might consider reading some blocks, either to check/generate
3060 * parity, or to satisfy requests
3061 * or to load a block that is being partially written.
3063 if (s
.to_read
|| s
.non_overwrite
||
3064 (s
.syncing
&& (s
.uptodate
+ s
.compute
< disks
)) || s
.expanding
)
3065 handle_stripe_fill5(sh
, &s
, disks
);
3067 /* Now we check to see if any write operations have recently
3071 if (sh
->reconstruct_state
== reconstruct_state_prexor_drain_result
)
3073 if (sh
->reconstruct_state
== reconstruct_state_drain_result
||
3074 sh
->reconstruct_state
== reconstruct_state_prexor_drain_result
) {
3075 sh
->reconstruct_state
= reconstruct_state_idle
;
3077 /* All the 'written' buffers and the parity block are ready to
3078 * be written back to disk
3080 BUG_ON(!test_bit(R5_UPTODATE
, &sh
->dev
[sh
->pd_idx
].flags
));
3081 for (i
= disks
; i
--; ) {
3083 if (test_bit(R5_LOCKED
, &dev
->flags
) &&
3084 (i
== sh
->pd_idx
|| dev
->written
)) {
3085 pr_debug("Writing block %d\n", i
);
3086 set_bit(R5_Wantwrite
, &dev
->flags
);
3089 if (!test_bit(R5_Insync
, &dev
->flags
) ||
3090 (i
== sh
->pd_idx
&& s
.failed
== 0))
3091 set_bit(STRIPE_INSYNC
, &sh
->state
);
3094 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
3095 dec_preread_active
= 1;
3098 /* Now to consider new write requests and what else, if anything
3099 * should be read. We do not handle new writes when:
3100 * 1/ A 'write' operation (copy+xor) is already in flight.
3101 * 2/ A 'check' operation is in flight, as it may clobber the parity
3104 if (s
.to_write
&& !sh
->reconstruct_state
&& !sh
->check_state
)
3105 handle_stripe_dirtying5(conf
, sh
, &s
, disks
);
3107 /* maybe we need to check and possibly fix the parity for this stripe
3108 * Any reads will already have been scheduled, so we just see if enough
3109 * data is available. The parity check is held off while parity
3110 * dependent operations are in flight.
3112 if (sh
->check_state
||
3113 (s
.syncing
&& s
.locked
== 0 &&
3114 !test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
) &&
3115 !test_bit(STRIPE_INSYNC
, &sh
->state
)))
3116 handle_parity_checks5(conf
, sh
, &s
, disks
);
3118 if (s
.syncing
&& s
.locked
== 0 && test_bit(STRIPE_INSYNC
, &sh
->state
)) {
3119 md_done_sync(conf
->mddev
, STRIPE_SECTORS
,1);
3120 clear_bit(STRIPE_SYNCING
, &sh
->state
);
3123 /* If the failed drive is just a ReadError, then we might need to progress
3124 * the repair/check process
3126 if (s
.failed
== 1 && !conf
->mddev
->ro
&&
3127 test_bit(R5_ReadError
, &sh
->dev
[s
.failed_num
].flags
)
3128 && !test_bit(R5_LOCKED
, &sh
->dev
[s
.failed_num
].flags
)
3129 && test_bit(R5_UPTODATE
, &sh
->dev
[s
.failed_num
].flags
)
3131 dev
= &sh
->dev
[s
.failed_num
];
3132 if (!test_bit(R5_ReWrite
, &dev
->flags
)) {
3133 set_bit(R5_Wantwrite
, &dev
->flags
);
3134 set_bit(R5_ReWrite
, &dev
->flags
);
3135 set_bit(R5_LOCKED
, &dev
->flags
);
3138 /* let's read it back */
3139 set_bit(R5_Wantread
, &dev
->flags
);
3140 set_bit(R5_LOCKED
, &dev
->flags
);
3145 /* Finish reconstruct operations initiated by the expansion process */
3146 if (sh
->reconstruct_state
== reconstruct_state_result
) {
3147 struct stripe_head
*sh2
3148 = get_active_stripe(conf
, sh
->sector
, 1, 1, 1);
3149 if (sh2
&& test_bit(STRIPE_EXPAND_SOURCE
, &sh2
->state
)) {
3150 /* sh cannot be written until sh2 has been read.
3151 * so arrange for sh to be delayed a little
3153 set_bit(STRIPE_DELAYED
, &sh
->state
);
3154 set_bit(STRIPE_HANDLE
, &sh
->state
);
3155 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE
,
3157 atomic_inc(&conf
->preread_active_stripes
);
3158 release_stripe(sh2
);
3162 release_stripe(sh2
);
3164 sh
->reconstruct_state
= reconstruct_state_idle
;
3165 clear_bit(STRIPE_EXPANDING
, &sh
->state
);
3166 for (i
= conf
->raid_disks
; i
--; ) {
3167 set_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
);
3168 set_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
3173 if (s
.expanded
&& test_bit(STRIPE_EXPANDING
, &sh
->state
) &&
3174 !sh
->reconstruct_state
) {
3175 /* Need to write out all blocks after computing parity */
3176 sh
->disks
= conf
->raid_disks
;
3177 stripe_set_idx(sh
->sector
, conf
, 0, sh
);
3178 schedule_reconstruction(sh
, &s
, 1, 1);
3179 } else if (s
.expanded
&& !sh
->reconstruct_state
&& s
.locked
== 0) {
3180 clear_bit(STRIPE_EXPAND_READY
, &sh
->state
);
3181 atomic_dec(&conf
->reshape_stripes
);
3182 wake_up(&conf
->wait_for_overlap
);
3183 md_done_sync(conf
->mddev
, STRIPE_SECTORS
, 1);
3186 if (s
.expanding
&& s
.locked
== 0 &&
3187 !test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
))
3188 handle_stripe_expansion(conf
, sh
, NULL
);
3191 spin_unlock(&sh
->lock
);
3193 /* wait for this device to become unblocked */
3194 if (unlikely(blocked_rdev
))
3195 md_wait_for_blocked_rdev(blocked_rdev
, conf
->mddev
);
3198 raid_run_ops(sh
, s
.ops_request
);
3202 if (dec_preread_active
) {
3203 /* We delay this until after ops_run_io so that if make_request
3204 * is waiting on a barrier, it won't continue until the writes
3205 * have actually been submitted.
3207 atomic_dec(&conf
->preread_active_stripes
);
3208 if (atomic_read(&conf
->preread_active_stripes
) <
3210 md_wakeup_thread(conf
->mddev
->thread
);
3212 return_io(return_bi
);
3215 static void handle_stripe6(struct stripe_head
*sh
)
3217 raid5_conf_t
*conf
= sh
->raid_conf
;
3218 int disks
= sh
->disks
;
3219 struct bio
*return_bi
= NULL
;
3220 int i
, pd_idx
= sh
->pd_idx
, qd_idx
= sh
->qd_idx
;
3221 struct stripe_head_state s
;
3222 struct r6_state r6s
;
3223 struct r5dev
*dev
, *pdev
, *qdev
;
3224 mdk_rdev_t
*blocked_rdev
= NULL
;
3225 int dec_preread_active
= 0;
3227 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3228 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3229 (unsigned long long)sh
->sector
, sh
->state
,
3230 atomic_read(&sh
->count
), pd_idx
, qd_idx
,
3231 sh
->check_state
, sh
->reconstruct_state
);
3232 memset(&s
, 0, sizeof(s
));
3234 spin_lock(&sh
->lock
);
3235 clear_bit(STRIPE_HANDLE
, &sh
->state
);
3236 clear_bit(STRIPE_DELAYED
, &sh
->state
);
3238 s
.syncing
= test_bit(STRIPE_SYNCING
, &sh
->state
);
3239 s
.expanding
= test_bit(STRIPE_EXPAND_SOURCE
, &sh
->state
);
3240 s
.expanded
= test_bit(STRIPE_EXPAND_READY
, &sh
->state
);
3241 /* Now to look around and see what can be done */
3244 for (i
=disks
; i
--; ) {
3247 clear_bit(R5_Insync
, &dev
->flags
);
3249 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3250 i
, dev
->flags
, dev
->toread
, dev
->towrite
, dev
->written
);
3251 /* maybe we can reply to a read
3253 * new wantfill requests are only permitted while
3254 * ops_complete_biofill is guaranteed to be inactive
3256 if (test_bit(R5_UPTODATE
, &dev
->flags
) && dev
->toread
&&
3257 !test_bit(STRIPE_BIOFILL_RUN
, &sh
->state
))
3258 set_bit(R5_Wantfill
, &dev
->flags
);
3260 /* now count some things */
3261 if (test_bit(R5_LOCKED
, &dev
->flags
)) s
.locked
++;
3262 if (test_bit(R5_UPTODATE
, &dev
->flags
)) s
.uptodate
++;
3263 if (test_bit(R5_Wantcompute
, &dev
->flags
)) {
3265 BUG_ON(s
.compute
> 2);
3268 if (test_bit(R5_Wantfill
, &dev
->flags
)) {
3270 } else if (dev
->toread
)
3274 if (!test_bit(R5_OVERWRITE
, &dev
->flags
))
3279 rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
3280 if (blocked_rdev
== NULL
&&
3281 rdev
&& unlikely(test_bit(Blocked
, &rdev
->flags
))) {
3282 blocked_rdev
= rdev
;
3283 atomic_inc(&rdev
->nr_pending
);
3285 if (!rdev
|| !test_bit(In_sync
, &rdev
->flags
)) {
3286 /* The ReadError flag will just be confusing now */
3287 clear_bit(R5_ReadError
, &dev
->flags
);
3288 clear_bit(R5_ReWrite
, &dev
->flags
);
3290 if (!rdev
|| !test_bit(In_sync
, &rdev
->flags
)
3291 || test_bit(R5_ReadError
, &dev
->flags
)) {
3293 r6s
.failed_num
[s
.failed
] = i
;
3296 set_bit(R5_Insync
, &dev
->flags
);
3300 if (unlikely(blocked_rdev
)) {
3301 if (s
.syncing
|| s
.expanding
|| s
.expanded
||
3302 s
.to_write
|| s
.written
) {
3303 set_bit(STRIPE_HANDLE
, &sh
->state
);
3306 /* There is nothing for the blocked_rdev to block */
3307 rdev_dec_pending(blocked_rdev
, conf
->mddev
);
3308 blocked_rdev
= NULL
;
3311 if (s
.to_fill
&& !test_bit(STRIPE_BIOFILL_RUN
, &sh
->state
)) {
3312 set_bit(STRIPE_OP_BIOFILL
, &s
.ops_request
);
3313 set_bit(STRIPE_BIOFILL_RUN
, &sh
->state
);
3316 pr_debug("locked=%d uptodate=%d to_read=%d"
3317 " to_write=%d failed=%d failed_num=%d,%d\n",
3318 s
.locked
, s
.uptodate
, s
.to_read
, s
.to_write
, s
.failed
,
3319 r6s
.failed_num
[0], r6s
.failed_num
[1]);
3320 /* check if the array has lost >2 devices and, if so, some requests
3321 * might need to be failed
3323 if (s
.failed
> 2 && s
.to_read
+s
.to_write
+s
.written
)
3324 handle_failed_stripe(conf
, sh
, &s
, disks
, &return_bi
);
3325 if (s
.failed
> 2 && s
.syncing
) {
3326 md_done_sync(conf
->mddev
, STRIPE_SECTORS
,0);
3327 clear_bit(STRIPE_SYNCING
, &sh
->state
);
3332 * might be able to return some write requests if the parity blocks
3333 * are safe, or on a failed drive
3335 pdev
= &sh
->dev
[pd_idx
];
3336 r6s
.p_failed
= (s
.failed
>= 1 && r6s
.failed_num
[0] == pd_idx
)
3337 || (s
.failed
>= 2 && r6s
.failed_num
[1] == pd_idx
);
3338 qdev
= &sh
->dev
[qd_idx
];
3339 r6s
.q_failed
= (s
.failed
>= 1 && r6s
.failed_num
[0] == qd_idx
)
3340 || (s
.failed
>= 2 && r6s
.failed_num
[1] == qd_idx
);
3343 ( r6s
.p_failed
|| ((test_bit(R5_Insync
, &pdev
->flags
)
3344 && !test_bit(R5_LOCKED
, &pdev
->flags
)
3345 && test_bit(R5_UPTODATE
, &pdev
->flags
)))) &&
3346 ( r6s
.q_failed
|| ((test_bit(R5_Insync
, &qdev
->flags
)
3347 && !test_bit(R5_LOCKED
, &qdev
->flags
)
3348 && test_bit(R5_UPTODATE
, &qdev
->flags
)))))
3349 handle_stripe_clean_event(conf
, sh
, disks
, &return_bi
);
3351 /* Now we might consider reading some blocks, either to check/generate
3352 * parity, or to satisfy requests
3353 * or to load a block that is being partially written.
3355 if (s
.to_read
|| s
.non_overwrite
|| (s
.to_write
&& s
.failed
) ||
3356 (s
.syncing
&& (s
.uptodate
+ s
.compute
< disks
)) || s
.expanding
)
3357 handle_stripe_fill6(sh
, &s
, &r6s
, disks
);
3359 /* Now we check to see if any write operations have recently
3362 if (sh
->reconstruct_state
== reconstruct_state_drain_result
) {
3364 sh
->reconstruct_state
= reconstruct_state_idle
;
3365 /* All the 'written' buffers and the parity blocks are ready to
3366 * be written back to disk
3368 BUG_ON(!test_bit(R5_UPTODATE
, &sh
->dev
[sh
->pd_idx
].flags
));
3369 BUG_ON(!test_bit(R5_UPTODATE
, &sh
->dev
[qd_idx
].flags
));
3370 for (i
= disks
; i
--; ) {
3372 if (test_bit(R5_LOCKED
, &dev
->flags
) &&
3373 (i
== sh
->pd_idx
|| i
== qd_idx
||
3375 pr_debug("Writing block %d\n", i
);
3376 BUG_ON(!test_bit(R5_UPTODATE
, &dev
->flags
));
3377 set_bit(R5_Wantwrite
, &dev
->flags
);
3378 if (!test_bit(R5_Insync
, &dev
->flags
) ||
3379 ((i
== sh
->pd_idx
|| i
== qd_idx
) &&
3381 set_bit(STRIPE_INSYNC
, &sh
->state
);
3384 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
3385 dec_preread_active
= 1;
3388 /* Now to consider new write requests and what else, if anything
3389 * should be read. We do not handle new writes when:
3390 * 1/ A 'write' operation (copy+gen_syndrome) is already in flight.
3391 * 2/ A 'check' operation is in flight, as it may clobber the parity
3394 if (s
.to_write
&& !sh
->reconstruct_state
&& !sh
->check_state
)
3395 handle_stripe_dirtying6(conf
, sh
, &s
, &r6s
, disks
);
3397 /* maybe we need to check and possibly fix the parity for this stripe
3398 * Any reads will already have been scheduled, so we just see if enough
3399 * data is available. The parity check is held off while parity
3400 * dependent operations are in flight.
3402 if (sh
->check_state
||
3403 (s
.syncing
&& s
.locked
== 0 &&
3404 !test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
) &&
3405 !test_bit(STRIPE_INSYNC
, &sh
->state
)))
3406 handle_parity_checks6(conf
, sh
, &s
, &r6s
, disks
);
3408 if (s
.syncing
&& s
.locked
== 0 && test_bit(STRIPE_INSYNC
, &sh
->state
)) {
3409 md_done_sync(conf
->mddev
, STRIPE_SECTORS
,1);
3410 clear_bit(STRIPE_SYNCING
, &sh
->state
);
3413 /* If the failed drives are just a ReadError, then we might need
3414 * to progress the repair/check process
3416 if (s
.failed
<= 2 && !conf
->mddev
->ro
)
3417 for (i
= 0; i
< s
.failed
; i
++) {
3418 dev
= &sh
->dev
[r6s
.failed_num
[i
]];
3419 if (test_bit(R5_ReadError
, &dev
->flags
)
3420 && !test_bit(R5_LOCKED
, &dev
->flags
)
3421 && test_bit(R5_UPTODATE
, &dev
->flags
)
3423 if (!test_bit(R5_ReWrite
, &dev
->flags
)) {
3424 set_bit(R5_Wantwrite
, &dev
->flags
);
3425 set_bit(R5_ReWrite
, &dev
->flags
);
3426 set_bit(R5_LOCKED
, &dev
->flags
);
3429 /* let's read it back */
3430 set_bit(R5_Wantread
, &dev
->flags
);
3431 set_bit(R5_LOCKED
, &dev
->flags
);
3437 /* Finish reconstruct operations initiated by the expansion process */
3438 if (sh
->reconstruct_state
== reconstruct_state_result
) {
3439 sh
->reconstruct_state
= reconstruct_state_idle
;
3440 clear_bit(STRIPE_EXPANDING
, &sh
->state
);
3441 for (i
= conf
->raid_disks
; i
--; ) {
3442 set_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
);
3443 set_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
3448 if (s
.expanded
&& test_bit(STRIPE_EXPANDING
, &sh
->state
) &&
3449 !sh
->reconstruct_state
) {
3450 struct stripe_head
*sh2
3451 = get_active_stripe(conf
, sh
->sector
, 1, 1, 1);
3452 if (sh2
&& test_bit(STRIPE_EXPAND_SOURCE
, &sh2
->state
)) {
3453 /* sh cannot be written until sh2 has been read.
3454 * so arrange for sh to be delayed a little
3456 set_bit(STRIPE_DELAYED
, &sh
->state
);
3457 set_bit(STRIPE_HANDLE
, &sh
->state
);
3458 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE
,
3460 atomic_inc(&conf
->preread_active_stripes
);
3461 release_stripe(sh2
);
3465 release_stripe(sh2
);
3467 /* Need to write out all blocks after computing P&Q */
3468 sh
->disks
= conf
->raid_disks
;
3469 stripe_set_idx(sh
->sector
, conf
, 0, sh
);
3470 schedule_reconstruction(sh
, &s
, 1, 1);
3471 } else if (s
.expanded
&& !sh
->reconstruct_state
&& s
.locked
== 0) {
3472 clear_bit(STRIPE_EXPAND_READY
, &sh
->state
);
3473 atomic_dec(&conf
->reshape_stripes
);
3474 wake_up(&conf
->wait_for_overlap
);
3475 md_done_sync(conf
->mddev
, STRIPE_SECTORS
, 1);
3478 if (s
.expanding
&& s
.locked
== 0 &&
3479 !test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
))
3480 handle_stripe_expansion(conf
, sh
, &r6s
);
3483 spin_unlock(&sh
->lock
);
3485 /* wait for this device to become unblocked */
3486 if (unlikely(blocked_rdev
))
3487 md_wait_for_blocked_rdev(blocked_rdev
, conf
->mddev
);
3490 raid_run_ops(sh
, s
.ops_request
);
3495 if (dec_preread_active
) {
3496 /* We delay this until after ops_run_io so that if make_request
3497 * is waiting on a barrier, it won't continue until the writes
3498 * have actually been submitted.
3500 atomic_dec(&conf
->preread_active_stripes
);
3501 if (atomic_read(&conf
->preread_active_stripes
) <
3503 md_wakeup_thread(conf
->mddev
->thread
);
3506 return_io(return_bi
);
3509 static void handle_stripe(struct stripe_head
*sh
)
3511 if (sh
->raid_conf
->level
== 6)
3517 static void raid5_activate_delayed(raid5_conf_t
*conf
)
3519 if (atomic_read(&conf
->preread_active_stripes
) < IO_THRESHOLD
) {
3520 while (!list_empty(&conf
->delayed_list
)) {
3521 struct list_head
*l
= conf
->delayed_list
.next
;
3522 struct stripe_head
*sh
;
3523 sh
= list_entry(l
, struct stripe_head
, lru
);
3525 clear_bit(STRIPE_DELAYED
, &sh
->state
);
3526 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
3527 atomic_inc(&conf
->preread_active_stripes
);
3528 list_add_tail(&sh
->lru
, &conf
->hold_list
);
3531 blk_plug_device(conf
->mddev
->queue
);
3534 static void activate_bit_delay(raid5_conf_t
*conf
)
3536 /* device_lock is held */
3537 struct list_head head
;
3538 list_add(&head
, &conf
->bitmap_list
);
3539 list_del_init(&conf
->bitmap_list
);
3540 while (!list_empty(&head
)) {
3541 struct stripe_head
*sh
= list_entry(head
.next
, struct stripe_head
, lru
);
3542 list_del_init(&sh
->lru
);
3543 atomic_inc(&sh
->count
);
3544 __release_stripe(conf
, sh
);
3548 static void unplug_slaves(mddev_t
*mddev
)
3550 raid5_conf_t
*conf
= mddev
->private;
3552 int devs
= max(conf
->raid_disks
, conf
->previous_raid_disks
);
3555 for (i
= 0; i
< devs
; i
++) {
3556 mdk_rdev_t
*rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
3557 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
) && atomic_read(&rdev
->nr_pending
)) {
3558 struct request_queue
*r_queue
= bdev_get_queue(rdev
->bdev
);
3560 atomic_inc(&rdev
->nr_pending
);
3563 blk_unplug(r_queue
);
3565 rdev_dec_pending(rdev
, mddev
);
3572 static void raid5_unplug_device(struct request_queue
*q
)
3574 mddev_t
*mddev
= q
->queuedata
;
3575 raid5_conf_t
*conf
= mddev
->private;
3576 unsigned long flags
;
3578 spin_lock_irqsave(&conf
->device_lock
, flags
);
3580 if (blk_remove_plug(q
)) {
3582 raid5_activate_delayed(conf
);
3584 md_wakeup_thread(mddev
->thread
);
3586 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
3588 unplug_slaves(mddev
);
3591 static int raid5_congested(void *data
, int bits
)
3593 mddev_t
*mddev
= data
;
3594 raid5_conf_t
*conf
= mddev
->private;
3596 /* No difference between reads and writes. Just check
3597 * how busy the stripe_cache is
3600 if (mddev_congested(mddev
, bits
))
3602 if (conf
->inactive_blocked
)
3606 if (list_empty_careful(&conf
->inactive_list
))
3612 /* We want read requests to align with chunks where possible,
3613 * but write requests don't need to.
3615 static int raid5_mergeable_bvec(struct request_queue
*q
,
3616 struct bvec_merge_data
*bvm
,
3617 struct bio_vec
*biovec
)
3619 mddev_t
*mddev
= q
->queuedata
;
3620 sector_t sector
= bvm
->bi_sector
+ get_start_sect(bvm
->bi_bdev
);
3622 unsigned int chunk_sectors
= mddev
->chunk_sectors
;
3623 unsigned int bio_sectors
= bvm
->bi_size
>> 9;
3625 if ((bvm
->bi_rw
& 1) == WRITE
)
3626 return biovec
->bv_len
; /* always allow writes to be mergeable */
3628 if (mddev
->new_chunk_sectors
< mddev
->chunk_sectors
)
3629 chunk_sectors
= mddev
->new_chunk_sectors
;
3630 max
= (chunk_sectors
- ((sector
& (chunk_sectors
- 1)) + bio_sectors
)) << 9;
3631 if (max
< 0) max
= 0;
3632 if (max
<= biovec
->bv_len
&& bio_sectors
== 0)
3633 return biovec
->bv_len
;
3639 static int in_chunk_boundary(mddev_t
*mddev
, struct bio
*bio
)
3641 sector_t sector
= bio
->bi_sector
+ get_start_sect(bio
->bi_bdev
);
3642 unsigned int chunk_sectors
= mddev
->chunk_sectors
;
3643 unsigned int bio_sectors
= bio
->bi_size
>> 9;
3645 if (mddev
->new_chunk_sectors
< mddev
->chunk_sectors
)
3646 chunk_sectors
= mddev
->new_chunk_sectors
;
3647 return chunk_sectors
>=
3648 ((sector
& (chunk_sectors
- 1)) + bio_sectors
);
3652 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
3653 * later sampled by raid5d.
3655 static void add_bio_to_retry(struct bio
*bi
,raid5_conf_t
*conf
)
3657 unsigned long flags
;
3659 spin_lock_irqsave(&conf
->device_lock
, flags
);
3661 bi
->bi_next
= conf
->retry_read_aligned_list
;
3662 conf
->retry_read_aligned_list
= bi
;
3664 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
3665 md_wakeup_thread(conf
->mddev
->thread
);
3669 static struct bio
*remove_bio_from_retry(raid5_conf_t
*conf
)
3673 bi
= conf
->retry_read_aligned
;
3675 conf
->retry_read_aligned
= NULL
;
3678 bi
= conf
->retry_read_aligned_list
;
3680 conf
->retry_read_aligned_list
= bi
->bi_next
;
3683 * this sets the active strip count to 1 and the processed
3684 * strip count to zero (upper 8 bits)
3686 bi
->bi_phys_segments
= 1; /* biased count of active stripes */
3694 * The "raid5_align_endio" should check if the read succeeded and if it
3695 * did, call bio_endio on the original bio (having bio_put the new bio
3697 * If the read failed..
3699 static void raid5_align_endio(struct bio
*bi
, int error
)
3701 struct bio
* raid_bi
= bi
->bi_private
;
3704 int uptodate
= test_bit(BIO_UPTODATE
, &bi
->bi_flags
);
3709 rdev
= (void*)raid_bi
->bi_next
;
3710 raid_bi
->bi_next
= NULL
;
3711 mddev
= rdev
->mddev
;
3712 conf
= mddev
->private;
3714 rdev_dec_pending(rdev
, conf
->mddev
);
3716 if (!error
&& uptodate
) {
3717 bio_endio(raid_bi
, 0);
3718 if (atomic_dec_and_test(&conf
->active_aligned_reads
))
3719 wake_up(&conf
->wait_for_stripe
);
3724 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3726 add_bio_to_retry(raid_bi
, conf
);
3729 static int bio_fits_rdev(struct bio
*bi
)
3731 struct request_queue
*q
= bdev_get_queue(bi
->bi_bdev
);
3733 if ((bi
->bi_size
>>9) > queue_max_sectors(q
))
3735 blk_recount_segments(q
, bi
);
3736 if (bi
->bi_phys_segments
> queue_max_segments(q
))
3739 if (q
->merge_bvec_fn
)
3740 /* it's too hard to apply the merge_bvec_fn at this stage,
3749 static int chunk_aligned_read(mddev_t
*mddev
, struct bio
* raid_bio
)
3751 raid5_conf_t
*conf
= mddev
->private;
3753 struct bio
* align_bi
;
3756 if (!in_chunk_boundary(mddev
, raid_bio
)) {
3757 pr_debug("chunk_aligned_read : non aligned\n");
3761 * use bio_clone to make a copy of the bio
3763 align_bi
= bio_clone(raid_bio
, GFP_NOIO
);
3767 * set bi_end_io to a new function, and set bi_private to the
3770 align_bi
->bi_end_io
= raid5_align_endio
;
3771 align_bi
->bi_private
= raid_bio
;
3775 align_bi
->bi_sector
= raid5_compute_sector(conf
, raid_bio
->bi_sector
,
3780 rdev
= rcu_dereference(conf
->disks
[dd_idx
].rdev
);
3781 if (rdev
&& test_bit(In_sync
, &rdev
->flags
)) {
3782 atomic_inc(&rdev
->nr_pending
);
3784 raid_bio
->bi_next
= (void*)rdev
;
3785 align_bi
->bi_bdev
= rdev
->bdev
;
3786 align_bi
->bi_flags
&= ~(1 << BIO_SEG_VALID
);
3787 align_bi
->bi_sector
+= rdev
->data_offset
;
3789 if (!bio_fits_rdev(align_bi
)) {
3790 /* too big in some way */
3792 rdev_dec_pending(rdev
, mddev
);
3796 spin_lock_irq(&conf
->device_lock
);
3797 wait_event_lock_irq(conf
->wait_for_stripe
,
3799 conf
->device_lock
, /* nothing */);
3800 atomic_inc(&conf
->active_aligned_reads
);
3801 spin_unlock_irq(&conf
->device_lock
);
3803 generic_make_request(align_bi
);
3812 /* __get_priority_stripe - get the next stripe to process
3814 * Full stripe writes are allowed to pass preread active stripes up until
3815 * the bypass_threshold is exceeded. In general the bypass_count
3816 * increments when the handle_list is handled before the hold_list; however, it
3817 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3818 * stripe with in flight i/o. The bypass_count will be reset when the
3819 * head of the hold_list has changed, i.e. the head was promoted to the
3822 static struct stripe_head
*__get_priority_stripe(raid5_conf_t
*conf
)
3824 struct stripe_head
*sh
;
3826 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3828 list_empty(&conf
->handle_list
) ? "empty" : "busy",
3829 list_empty(&conf
->hold_list
) ? "empty" : "busy",
3830 atomic_read(&conf
->pending_full_writes
), conf
->bypass_count
);
3832 if (!list_empty(&conf
->handle_list
)) {
3833 sh
= list_entry(conf
->handle_list
.next
, typeof(*sh
), lru
);
3835 if (list_empty(&conf
->hold_list
))
3836 conf
->bypass_count
= 0;
3837 else if (!test_bit(STRIPE_IO_STARTED
, &sh
->state
)) {
3838 if (conf
->hold_list
.next
== conf
->last_hold
)
3839 conf
->bypass_count
++;
3841 conf
->last_hold
= conf
->hold_list
.next
;
3842 conf
->bypass_count
-= conf
->bypass_threshold
;
3843 if (conf
->bypass_count
< 0)
3844 conf
->bypass_count
= 0;
3847 } else if (!list_empty(&conf
->hold_list
) &&
3848 ((conf
->bypass_threshold
&&
3849 conf
->bypass_count
> conf
->bypass_threshold
) ||
3850 atomic_read(&conf
->pending_full_writes
) == 0)) {
3851 sh
= list_entry(conf
->hold_list
.next
,
3853 conf
->bypass_count
-= conf
->bypass_threshold
;
3854 if (conf
->bypass_count
< 0)
3855 conf
->bypass_count
= 0;
3859 list_del_init(&sh
->lru
);
3860 atomic_inc(&sh
->count
);
3861 BUG_ON(atomic_read(&sh
->count
) != 1);
3865 static int make_request(mddev_t
*mddev
, struct bio
* bi
)
3867 raid5_conf_t
*conf
= mddev
->private;
3869 sector_t new_sector
;
3870 sector_t logical_sector
, last_sector
;
3871 struct stripe_head
*sh
;
3872 const int rw
= bio_data_dir(bi
);
3875 if (unlikely(bio_rw_flagged(bi
, BIO_RW_BARRIER
))) {
3876 /* Drain all pending writes. We only really need
3877 * to ensure they have been submitted, but this is
3880 mddev
->pers
->quiesce(mddev
, 1);
3881 mddev
->pers
->quiesce(mddev
, 0);
3882 md_barrier_request(mddev
, bi
);
3886 md_write_start(mddev
, bi
);
3889 mddev
->reshape_position
== MaxSector
&&
3890 chunk_aligned_read(mddev
,bi
))
3893 logical_sector
= bi
->bi_sector
& ~((sector_t
)STRIPE_SECTORS
-1);
3894 last_sector
= bi
->bi_sector
+ (bi
->bi_size
>>9);
3896 bi
->bi_phys_segments
= 1; /* over-loaded to count active stripes */
3898 for (;logical_sector
< last_sector
; logical_sector
+= STRIPE_SECTORS
) {
3900 int disks
, data_disks
;
3905 disks
= conf
->raid_disks
;
3906 prepare_to_wait(&conf
->wait_for_overlap
, &w
, TASK_UNINTERRUPTIBLE
);
3907 if (unlikely(conf
->reshape_progress
!= MaxSector
)) {
3908 /* spinlock is needed as reshape_progress may be
3909 * 64bit on a 32bit platform, and so it might be
3910 * possible to see a half-updated value
3911 * Ofcourse reshape_progress could change after
3912 * the lock is dropped, so once we get a reference
3913 * to the stripe that we think it is, we will have
3916 spin_lock_irq(&conf
->device_lock
);
3917 if (mddev
->delta_disks
< 0
3918 ? logical_sector
< conf
->reshape_progress
3919 : logical_sector
>= conf
->reshape_progress
) {
3920 disks
= conf
->previous_raid_disks
;
3923 if (mddev
->delta_disks
< 0
3924 ? logical_sector
< conf
->reshape_safe
3925 : logical_sector
>= conf
->reshape_safe
) {
3926 spin_unlock_irq(&conf
->device_lock
);
3931 spin_unlock_irq(&conf
->device_lock
);
3933 data_disks
= disks
- conf
->max_degraded
;
3935 new_sector
= raid5_compute_sector(conf
, logical_sector
,
3938 pr_debug("raid456: make_request, sector %llu logical %llu\n",
3939 (unsigned long long)new_sector
,
3940 (unsigned long long)logical_sector
);
3942 sh
= get_active_stripe(conf
, new_sector
, previous
,
3943 (bi
->bi_rw
&RWA_MASK
), 0);
3945 if (unlikely(previous
)) {
3946 /* expansion might have moved on while waiting for a
3947 * stripe, so we must do the range check again.
3948 * Expansion could still move past after this
3949 * test, but as we are holding a reference to
3950 * 'sh', we know that if that happens,
3951 * STRIPE_EXPANDING will get set and the expansion
3952 * won't proceed until we finish with the stripe.
3955 spin_lock_irq(&conf
->device_lock
);
3956 if (mddev
->delta_disks
< 0
3957 ? logical_sector
>= conf
->reshape_progress
3958 : logical_sector
< conf
->reshape_progress
)
3959 /* mismatch, need to try again */
3961 spin_unlock_irq(&conf
->device_lock
);
3969 if (bio_data_dir(bi
) == WRITE
&&
3970 logical_sector
>= mddev
->suspend_lo
&&
3971 logical_sector
< mddev
->suspend_hi
) {
3973 /* As the suspend_* range is controlled by
3974 * userspace, we want an interruptible
3977 flush_signals(current
);
3978 prepare_to_wait(&conf
->wait_for_overlap
,
3979 &w
, TASK_INTERRUPTIBLE
);
3980 if (logical_sector
>= mddev
->suspend_lo
&&
3981 logical_sector
< mddev
->suspend_hi
)
3986 if (test_bit(STRIPE_EXPANDING
, &sh
->state
) ||
3987 !add_stripe_bio(sh
, bi
, dd_idx
, (bi
->bi_rw
&RW_MASK
))) {
3988 /* Stripe is busy expanding or
3989 * add failed due to overlap. Flush everything
3992 raid5_unplug_device(mddev
->queue
);
3997 finish_wait(&conf
->wait_for_overlap
, &w
);
3998 set_bit(STRIPE_HANDLE
, &sh
->state
);
3999 clear_bit(STRIPE_DELAYED
, &sh
->state
);
4000 if (mddev
->barrier
&&
4001 !test_and_set_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
4002 atomic_inc(&conf
->preread_active_stripes
);
4005 /* cannot get stripe for read-ahead, just give-up */
4006 clear_bit(BIO_UPTODATE
, &bi
->bi_flags
);
4007 finish_wait(&conf
->wait_for_overlap
, &w
);
4012 spin_lock_irq(&conf
->device_lock
);
4013 remaining
= raid5_dec_bi_phys_segments(bi
);
4014 spin_unlock_irq(&conf
->device_lock
);
4015 if (remaining
== 0) {
4018 md_write_end(mddev
);
4023 if (mddev
->barrier
) {
4024 /* We need to wait for the stripes to all be handled.
4025 * So: wait for preread_active_stripes to drop to 0.
4027 wait_event(mddev
->thread
->wqueue
,
4028 atomic_read(&conf
->preread_active_stripes
) == 0);
4033 static sector_t
raid5_size(mddev_t
*mddev
, sector_t sectors
, int raid_disks
);
4035 static sector_t
reshape_request(mddev_t
*mddev
, sector_t sector_nr
, int *skipped
)
4037 /* reshaping is quite different to recovery/resync so it is
4038 * handled quite separately ... here.
4040 * On each call to sync_request, we gather one chunk worth of
4041 * destination stripes and flag them as expanding.
4042 * Then we find all the source stripes and request reads.
4043 * As the reads complete, handle_stripe will copy the data
4044 * into the destination stripe and release that stripe.
4046 raid5_conf_t
*conf
= mddev
->private;
4047 struct stripe_head
*sh
;
4048 sector_t first_sector
, last_sector
;
4049 int raid_disks
= conf
->previous_raid_disks
;
4050 int data_disks
= raid_disks
- conf
->max_degraded
;
4051 int new_data_disks
= conf
->raid_disks
- conf
->max_degraded
;
4054 sector_t writepos
, readpos
, safepos
;
4055 sector_t stripe_addr
;
4056 int reshape_sectors
;
4057 struct list_head stripes
;
4059 if (sector_nr
== 0) {
4060 /* If restarting in the middle, skip the initial sectors */
4061 if (mddev
->delta_disks
< 0 &&
4062 conf
->reshape_progress
< raid5_size(mddev
, 0, 0)) {
4063 sector_nr
= raid5_size(mddev
, 0, 0)
4064 - conf
->reshape_progress
;
4065 } else if (mddev
->delta_disks
>= 0 &&
4066 conf
->reshape_progress
> 0)
4067 sector_nr
= conf
->reshape_progress
;
4068 sector_div(sector_nr
, new_data_disks
);
4070 mddev
->curr_resync_completed
= sector_nr
;
4071 sysfs_notify(&mddev
->kobj
, NULL
, "sync_completed");
4077 /* We need to process a full chunk at a time.
4078 * If old and new chunk sizes differ, we need to process the
4081 if (mddev
->new_chunk_sectors
> mddev
->chunk_sectors
)
4082 reshape_sectors
= mddev
->new_chunk_sectors
;
4084 reshape_sectors
= mddev
->chunk_sectors
;
4086 /* we update the metadata when there is more than 3Meg
4087 * in the block range (that is rather arbitrary, should
4088 * probably be time based) or when the data about to be
4089 * copied would over-write the source of the data at
4090 * the front of the range.
4091 * i.e. one new_stripe along from reshape_progress new_maps
4092 * to after where reshape_safe old_maps to
4094 writepos
= conf
->reshape_progress
;
4095 sector_div(writepos
, new_data_disks
);
4096 readpos
= conf
->reshape_progress
;
4097 sector_div(readpos
, data_disks
);
4098 safepos
= conf
->reshape_safe
;
4099 sector_div(safepos
, data_disks
);
4100 if (mddev
->delta_disks
< 0) {
4101 writepos
-= min_t(sector_t
, reshape_sectors
, writepos
);
4102 readpos
+= reshape_sectors
;
4103 safepos
+= reshape_sectors
;
4105 writepos
+= reshape_sectors
;
4106 readpos
-= min_t(sector_t
, reshape_sectors
, readpos
);
4107 safepos
-= min_t(sector_t
, reshape_sectors
, safepos
);
4110 /* 'writepos' is the most advanced device address we might write.
4111 * 'readpos' is the least advanced device address we might read.
4112 * 'safepos' is the least address recorded in the metadata as having
4114 * If 'readpos' is behind 'writepos', then there is no way that we can
4115 * ensure safety in the face of a crash - that must be done by userspace
4116 * making a backup of the data. So in that case there is no particular
4117 * rush to update metadata.
4118 * Otherwise if 'safepos' is behind 'writepos', then we really need to
4119 * update the metadata to advance 'safepos' to match 'readpos' so that
4120 * we can be safe in the event of a crash.
4121 * So we insist on updating metadata if safepos is behind writepos and
4122 * readpos is beyond writepos.
4123 * In any case, update the metadata every 10 seconds.
4124 * Maybe that number should be configurable, but I'm not sure it is
4125 * worth it.... maybe it could be a multiple of safemode_delay???
4127 if ((mddev
->delta_disks
< 0
4128 ? (safepos
> writepos
&& readpos
< writepos
)
4129 : (safepos
< writepos
&& readpos
> writepos
)) ||
4130 time_after(jiffies
, conf
->reshape_checkpoint
+ 10*HZ
)) {
4131 /* Cannot proceed until we've updated the superblock... */
4132 wait_event(conf
->wait_for_overlap
,
4133 atomic_read(&conf
->reshape_stripes
)==0);
4134 mddev
->reshape_position
= conf
->reshape_progress
;
4135 mddev
->curr_resync_completed
= mddev
->curr_resync
;
4136 conf
->reshape_checkpoint
= jiffies
;
4137 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
4138 md_wakeup_thread(mddev
->thread
);
4139 wait_event(mddev
->sb_wait
, mddev
->flags
== 0 ||
4140 kthread_should_stop());
4141 spin_lock_irq(&conf
->device_lock
);
4142 conf
->reshape_safe
= mddev
->reshape_position
;
4143 spin_unlock_irq(&conf
->device_lock
);
4144 wake_up(&conf
->wait_for_overlap
);
4145 sysfs_notify(&mddev
->kobj
, NULL
, "sync_completed");
4148 if (mddev
->delta_disks
< 0) {
4149 BUG_ON(conf
->reshape_progress
== 0);
4150 stripe_addr
= writepos
;
4151 BUG_ON((mddev
->dev_sectors
&
4152 ~((sector_t
)reshape_sectors
- 1))
4153 - reshape_sectors
- stripe_addr
4156 BUG_ON(writepos
!= sector_nr
+ reshape_sectors
);
4157 stripe_addr
= sector_nr
;
4159 INIT_LIST_HEAD(&stripes
);
4160 for (i
= 0; i
< reshape_sectors
; i
+= STRIPE_SECTORS
) {
4162 int skipped_disk
= 0;
4163 sh
= get_active_stripe(conf
, stripe_addr
+i
, 0, 0, 1);
4164 set_bit(STRIPE_EXPANDING
, &sh
->state
);
4165 atomic_inc(&conf
->reshape_stripes
);
4166 /* If any of this stripe is beyond the end of the old
4167 * array, then we need to zero those blocks
4169 for (j
=sh
->disks
; j
--;) {
4171 if (j
== sh
->pd_idx
)
4173 if (conf
->level
== 6 &&
4176 s
= compute_blocknr(sh
, j
, 0);
4177 if (s
< raid5_size(mddev
, 0, 0)) {
4181 memset(page_address(sh
->dev
[j
].page
), 0, STRIPE_SIZE
);
4182 set_bit(R5_Expanded
, &sh
->dev
[j
].flags
);
4183 set_bit(R5_UPTODATE
, &sh
->dev
[j
].flags
);
4185 if (!skipped_disk
) {
4186 set_bit(STRIPE_EXPAND_READY
, &sh
->state
);
4187 set_bit(STRIPE_HANDLE
, &sh
->state
);
4189 list_add(&sh
->lru
, &stripes
);
4191 spin_lock_irq(&conf
->device_lock
);
4192 if (mddev
->delta_disks
< 0)
4193 conf
->reshape_progress
-= reshape_sectors
* new_data_disks
;
4195 conf
->reshape_progress
+= reshape_sectors
* new_data_disks
;
4196 spin_unlock_irq(&conf
->device_lock
);
4197 /* Ok, those stripe are ready. We can start scheduling
4198 * reads on the source stripes.
4199 * The source stripes are determined by mapping the first and last
4200 * block on the destination stripes.
4203 raid5_compute_sector(conf
, stripe_addr
*(new_data_disks
),
4206 raid5_compute_sector(conf
, ((stripe_addr
+reshape_sectors
)
4207 * new_data_disks
- 1),
4209 if (last_sector
>= mddev
->dev_sectors
)
4210 last_sector
= mddev
->dev_sectors
- 1;
4211 while (first_sector
<= last_sector
) {
4212 sh
= get_active_stripe(conf
, first_sector
, 1, 0, 1);
4213 set_bit(STRIPE_EXPAND_SOURCE
, &sh
->state
);
4214 set_bit(STRIPE_HANDLE
, &sh
->state
);
4216 first_sector
+= STRIPE_SECTORS
;
4218 /* Now that the sources are clearly marked, we can release
4219 * the destination stripes
4221 while (!list_empty(&stripes
)) {
4222 sh
= list_entry(stripes
.next
, struct stripe_head
, lru
);
4223 list_del_init(&sh
->lru
);
4226 /* If this takes us to the resync_max point where we have to pause,
4227 * then we need to write out the superblock.
4229 sector_nr
+= reshape_sectors
;
4230 if ((sector_nr
- mddev
->curr_resync_completed
) * 2
4231 >= mddev
->resync_max
- mddev
->curr_resync_completed
) {
4232 /* Cannot proceed until we've updated the superblock... */
4233 wait_event(conf
->wait_for_overlap
,
4234 atomic_read(&conf
->reshape_stripes
) == 0);
4235 mddev
->reshape_position
= conf
->reshape_progress
;
4236 mddev
->curr_resync_completed
= mddev
->curr_resync
+ reshape_sectors
;
4237 conf
->reshape_checkpoint
= jiffies
;
4238 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
4239 md_wakeup_thread(mddev
->thread
);
4240 wait_event(mddev
->sb_wait
,
4241 !test_bit(MD_CHANGE_DEVS
, &mddev
->flags
)
4242 || kthread_should_stop());
4243 spin_lock_irq(&conf
->device_lock
);
4244 conf
->reshape_safe
= mddev
->reshape_position
;
4245 spin_unlock_irq(&conf
->device_lock
);
4246 wake_up(&conf
->wait_for_overlap
);
4247 sysfs_notify(&mddev
->kobj
, NULL
, "sync_completed");
4249 return reshape_sectors
;
4252 /* FIXME go_faster isn't used */
4253 static inline sector_t
sync_request(mddev_t
*mddev
, sector_t sector_nr
, int *skipped
, int go_faster
)
4255 raid5_conf_t
*conf
= mddev
->private;
4256 struct stripe_head
*sh
;
4257 sector_t max_sector
= mddev
->dev_sectors
;
4259 int still_degraded
= 0;
4262 if (sector_nr
>= max_sector
) {
4263 /* just being told to finish up .. nothing much to do */
4264 unplug_slaves(mddev
);
4266 if (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
)) {
4271 if (mddev
->curr_resync
< max_sector
) /* aborted */
4272 bitmap_end_sync(mddev
->bitmap
, mddev
->curr_resync
,
4274 else /* completed sync */
4276 bitmap_close_sync(mddev
->bitmap
);
4281 /* Allow raid5_quiesce to complete */
4282 wait_event(conf
->wait_for_overlap
, conf
->quiesce
!= 2);
4284 if (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
))
4285 return reshape_request(mddev
, sector_nr
, skipped
);
4287 /* No need to check resync_max as we never do more than one
4288 * stripe, and as resync_max will always be on a chunk boundary,
4289 * if the check in md_do_sync didn't fire, there is no chance
4290 * of overstepping resync_max here
4293 /* if there is too many failed drives and we are trying
4294 * to resync, then assert that we are finished, because there is
4295 * nothing we can do.
4297 if (mddev
->degraded
>= conf
->max_degraded
&&
4298 test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
)) {
4299 sector_t rv
= mddev
->dev_sectors
- sector_nr
;
4303 if (!bitmap_start_sync(mddev
->bitmap
, sector_nr
, &sync_blocks
, 1) &&
4304 !test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
) &&
4305 !conf
->fullsync
&& sync_blocks
>= STRIPE_SECTORS
) {
4306 /* we can skip this block, and probably more */
4307 sync_blocks
/= STRIPE_SECTORS
;
4309 return sync_blocks
* STRIPE_SECTORS
; /* keep things rounded to whole stripes */
4313 bitmap_cond_end_sync(mddev
->bitmap
, sector_nr
);
4315 sh
= get_active_stripe(conf
, sector_nr
, 0, 1, 0);
4317 sh
= get_active_stripe(conf
, sector_nr
, 0, 0, 0);
4318 /* make sure we don't swamp the stripe cache if someone else
4319 * is trying to get access
4321 schedule_timeout_uninterruptible(1);
4323 /* Need to check if array will still be degraded after recovery/resync
4324 * We don't need to check the 'failed' flag as when that gets set,
4327 for (i
= 0; i
< conf
->raid_disks
; i
++)
4328 if (conf
->disks
[i
].rdev
== NULL
)
4331 bitmap_start_sync(mddev
->bitmap
, sector_nr
, &sync_blocks
, still_degraded
);
4333 spin_lock(&sh
->lock
);
4334 set_bit(STRIPE_SYNCING
, &sh
->state
);
4335 clear_bit(STRIPE_INSYNC
, &sh
->state
);
4336 spin_unlock(&sh
->lock
);
4341 return STRIPE_SECTORS
;
4344 static int retry_aligned_read(raid5_conf_t
*conf
, struct bio
*raid_bio
)
4346 /* We may not be able to submit a whole bio at once as there
4347 * may not be enough stripe_heads available.
4348 * We cannot pre-allocate enough stripe_heads as we may need
4349 * more than exist in the cache (if we allow ever large chunks).
4350 * So we do one stripe head at a time and record in
4351 * ->bi_hw_segments how many have been done.
4353 * We *know* that this entire raid_bio is in one chunk, so
4354 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4356 struct stripe_head
*sh
;
4358 sector_t sector
, logical_sector
, last_sector
;
4363 logical_sector
= raid_bio
->bi_sector
& ~((sector_t
)STRIPE_SECTORS
-1);
4364 sector
= raid5_compute_sector(conf
, logical_sector
,
4366 last_sector
= raid_bio
->bi_sector
+ (raid_bio
->bi_size
>>9);
4368 for (; logical_sector
< last_sector
;
4369 logical_sector
+= STRIPE_SECTORS
,
4370 sector
+= STRIPE_SECTORS
,
4373 if (scnt
< raid5_bi_hw_segments(raid_bio
))
4374 /* already done this stripe */
4377 sh
= get_active_stripe(conf
, sector
, 0, 1, 0);
4380 /* failed to get a stripe - must wait */
4381 raid5_set_bi_hw_segments(raid_bio
, scnt
);
4382 conf
->retry_read_aligned
= raid_bio
;
4386 set_bit(R5_ReadError
, &sh
->dev
[dd_idx
].flags
);
4387 if (!add_stripe_bio(sh
, raid_bio
, dd_idx
, 0)) {
4389 raid5_set_bi_hw_segments(raid_bio
, scnt
);
4390 conf
->retry_read_aligned
= raid_bio
;
4398 spin_lock_irq(&conf
->device_lock
);
4399 remaining
= raid5_dec_bi_phys_segments(raid_bio
);
4400 spin_unlock_irq(&conf
->device_lock
);
4402 bio_endio(raid_bio
, 0);
4403 if (atomic_dec_and_test(&conf
->active_aligned_reads
))
4404 wake_up(&conf
->wait_for_stripe
);
4410 * This is our raid5 kernel thread.
4412 * We scan the hash table for stripes which can be handled now.
4413 * During the scan, completed stripes are saved for us by the interrupt
4414 * handler, so that they will not have to wait for our next wakeup.
4416 static void raid5d(mddev_t
*mddev
)
4418 struct stripe_head
*sh
;
4419 raid5_conf_t
*conf
= mddev
->private;
4422 pr_debug("+++ raid5d active\n");
4424 md_check_recovery(mddev
);
4427 spin_lock_irq(&conf
->device_lock
);
4431 if (conf
->seq_flush
!= conf
->seq_write
) {
4432 int seq
= conf
->seq_flush
;
4433 spin_unlock_irq(&conf
->device_lock
);
4434 bitmap_unplug(mddev
->bitmap
);
4435 spin_lock_irq(&conf
->device_lock
);
4436 conf
->seq_write
= seq
;
4437 activate_bit_delay(conf
);
4440 while ((bio
= remove_bio_from_retry(conf
))) {
4442 spin_unlock_irq(&conf
->device_lock
);
4443 ok
= retry_aligned_read(conf
, bio
);
4444 spin_lock_irq(&conf
->device_lock
);
4450 sh
= __get_priority_stripe(conf
);
4454 spin_unlock_irq(&conf
->device_lock
);
4461 spin_lock_irq(&conf
->device_lock
);
4463 pr_debug("%d stripes handled\n", handled
);
4465 spin_unlock_irq(&conf
->device_lock
);
4467 async_tx_issue_pending_all();
4468 unplug_slaves(mddev
);
4470 pr_debug("--- raid5d inactive\n");
4474 raid5_show_stripe_cache_size(mddev_t
*mddev
, char *page
)
4476 raid5_conf_t
*conf
= mddev
->private;
4478 return sprintf(page
, "%d\n", conf
->max_nr_stripes
);
4484 raid5_store_stripe_cache_size(mddev_t
*mddev
, const char *page
, size_t len
)
4486 raid5_conf_t
*conf
= mddev
->private;
4490 if (len
>= PAGE_SIZE
)
4495 if (strict_strtoul(page
, 10, &new))
4497 if (new <= 16 || new > 32768)
4499 while (new < conf
->max_nr_stripes
) {
4500 if (drop_one_stripe(conf
))
4501 conf
->max_nr_stripes
--;
4505 err
= md_allow_write(mddev
);
4508 while (new > conf
->max_nr_stripes
) {
4509 if (grow_one_stripe(conf
))
4510 conf
->max_nr_stripes
++;
4516 static struct md_sysfs_entry
4517 raid5_stripecache_size
= __ATTR(stripe_cache_size
, S_IRUGO
| S_IWUSR
,
4518 raid5_show_stripe_cache_size
,
4519 raid5_store_stripe_cache_size
);
4522 raid5_show_preread_threshold(mddev_t
*mddev
, char *page
)
4524 raid5_conf_t
*conf
= mddev
->private;
4526 return sprintf(page
, "%d\n", conf
->bypass_threshold
);
4532 raid5_store_preread_threshold(mddev_t
*mddev
, const char *page
, size_t len
)
4534 raid5_conf_t
*conf
= mddev
->private;
4536 if (len
>= PAGE_SIZE
)
4541 if (strict_strtoul(page
, 10, &new))
4543 if (new > conf
->max_nr_stripes
)
4545 conf
->bypass_threshold
= new;
4549 static struct md_sysfs_entry
4550 raid5_preread_bypass_threshold
= __ATTR(preread_bypass_threshold
,
4552 raid5_show_preread_threshold
,
4553 raid5_store_preread_threshold
);
4556 stripe_cache_active_show(mddev_t
*mddev
, char *page
)
4558 raid5_conf_t
*conf
= mddev
->private;
4560 return sprintf(page
, "%d\n", atomic_read(&conf
->active_stripes
));
4565 static struct md_sysfs_entry
4566 raid5_stripecache_active
= __ATTR_RO(stripe_cache_active
);
4568 static struct attribute
*raid5_attrs
[] = {
4569 &raid5_stripecache_size
.attr
,
4570 &raid5_stripecache_active
.attr
,
4571 &raid5_preread_bypass_threshold
.attr
,
4574 static struct attribute_group raid5_attrs_group
= {
4576 .attrs
= raid5_attrs
,
4580 raid5_size(mddev_t
*mddev
, sector_t sectors
, int raid_disks
)
4582 raid5_conf_t
*conf
= mddev
->private;
4585 sectors
= mddev
->dev_sectors
;
4587 /* size is defined by the smallest of previous and new size */
4588 raid_disks
= min(conf
->raid_disks
, conf
->previous_raid_disks
);
4590 sectors
&= ~((sector_t
)mddev
->chunk_sectors
- 1);
4591 sectors
&= ~((sector_t
)mddev
->new_chunk_sectors
- 1);
4592 return sectors
* (raid_disks
- conf
->max_degraded
);
4595 static void raid5_free_percpu(raid5_conf_t
*conf
)
4597 struct raid5_percpu
*percpu
;
4604 for_each_possible_cpu(cpu
) {
4605 percpu
= per_cpu_ptr(conf
->percpu
, cpu
);
4606 safe_put_page(percpu
->spare_page
);
4607 kfree(percpu
->scribble
);
4609 #ifdef CONFIG_HOTPLUG_CPU
4610 unregister_cpu_notifier(&conf
->cpu_notify
);
4614 free_percpu(conf
->percpu
);
4617 static void free_conf(raid5_conf_t
*conf
)
4619 shrink_stripes(conf
);
4620 raid5_free_percpu(conf
);
4622 kfree(conf
->stripe_hashtbl
);
4626 #ifdef CONFIG_HOTPLUG_CPU
4627 static int raid456_cpu_notify(struct notifier_block
*nfb
, unsigned long action
,
4630 raid5_conf_t
*conf
= container_of(nfb
, raid5_conf_t
, cpu_notify
);
4631 long cpu
= (long)hcpu
;
4632 struct raid5_percpu
*percpu
= per_cpu_ptr(conf
->percpu
, cpu
);
4635 case CPU_UP_PREPARE
:
4636 case CPU_UP_PREPARE_FROZEN
:
4637 if (conf
->level
== 6 && !percpu
->spare_page
)
4638 percpu
->spare_page
= alloc_page(GFP_KERNEL
);
4639 if (!percpu
->scribble
)
4640 percpu
->scribble
= kmalloc(conf
->scribble_len
, GFP_KERNEL
);
4642 if (!percpu
->scribble
||
4643 (conf
->level
== 6 && !percpu
->spare_page
)) {
4644 safe_put_page(percpu
->spare_page
);
4645 kfree(percpu
->scribble
);
4646 pr_err("%s: failed memory allocation for cpu%ld\n",
4648 return notifier_from_errno(-ENOMEM
);
4652 case CPU_DEAD_FROZEN
:
4653 safe_put_page(percpu
->spare_page
);
4654 kfree(percpu
->scribble
);
4655 percpu
->spare_page
= NULL
;
4656 percpu
->scribble
= NULL
;
4665 static int raid5_alloc_percpu(raid5_conf_t
*conf
)
4668 struct page
*spare_page
;
4669 struct raid5_percpu __percpu
*allcpus
;
4673 allcpus
= alloc_percpu(struct raid5_percpu
);
4676 conf
->percpu
= allcpus
;
4680 for_each_present_cpu(cpu
) {
4681 if (conf
->level
== 6) {
4682 spare_page
= alloc_page(GFP_KERNEL
);
4687 per_cpu_ptr(conf
->percpu
, cpu
)->spare_page
= spare_page
;
4689 scribble
= kmalloc(conf
->scribble_len
, GFP_KERNEL
);
4694 per_cpu_ptr(conf
->percpu
, cpu
)->scribble
= scribble
;
4696 #ifdef CONFIG_HOTPLUG_CPU
4697 conf
->cpu_notify
.notifier_call
= raid456_cpu_notify
;
4698 conf
->cpu_notify
.priority
= 0;
4700 err
= register_cpu_notifier(&conf
->cpu_notify
);
4707 static raid5_conf_t
*setup_conf(mddev_t
*mddev
)
4710 int raid_disk
, memory
, max_disks
;
4712 struct disk_info
*disk
;
4714 if (mddev
->new_level
!= 5
4715 && mddev
->new_level
!= 4
4716 && mddev
->new_level
!= 6) {
4717 printk(KERN_ERR
"md/raid:%s: raid level not set to 4/5/6 (%d)\n",
4718 mdname(mddev
), mddev
->new_level
);
4719 return ERR_PTR(-EIO
);
4721 if ((mddev
->new_level
== 5
4722 && !algorithm_valid_raid5(mddev
->new_layout
)) ||
4723 (mddev
->new_level
== 6
4724 && !algorithm_valid_raid6(mddev
->new_layout
))) {
4725 printk(KERN_ERR
"md/raid:%s: layout %d not supported\n",
4726 mdname(mddev
), mddev
->new_layout
);
4727 return ERR_PTR(-EIO
);
4729 if (mddev
->new_level
== 6 && mddev
->raid_disks
< 4) {
4730 printk(KERN_ERR
"md/raid:%s: not enough configured devices (%d, minimum 4)\n",
4731 mdname(mddev
), mddev
->raid_disks
);
4732 return ERR_PTR(-EINVAL
);
4735 if (!mddev
->new_chunk_sectors
||
4736 (mddev
->new_chunk_sectors
<< 9) % PAGE_SIZE
||
4737 !is_power_of_2(mddev
->new_chunk_sectors
)) {
4738 printk(KERN_ERR
"md/raid:%s: invalid chunk size %d\n",
4739 mdname(mddev
), mddev
->new_chunk_sectors
<< 9);
4740 return ERR_PTR(-EINVAL
);
4743 conf
= kzalloc(sizeof(raid5_conf_t
), GFP_KERNEL
);
4746 spin_lock_init(&conf
->device_lock
);
4747 init_waitqueue_head(&conf
->wait_for_stripe
);
4748 init_waitqueue_head(&conf
->wait_for_overlap
);
4749 INIT_LIST_HEAD(&conf
->handle_list
);
4750 INIT_LIST_HEAD(&conf
->hold_list
);
4751 INIT_LIST_HEAD(&conf
->delayed_list
);
4752 INIT_LIST_HEAD(&conf
->bitmap_list
);
4753 INIT_LIST_HEAD(&conf
->inactive_list
);
4754 atomic_set(&conf
->active_stripes
, 0);
4755 atomic_set(&conf
->preread_active_stripes
, 0);
4756 atomic_set(&conf
->active_aligned_reads
, 0);
4757 conf
->bypass_threshold
= BYPASS_THRESHOLD
;
4759 conf
->raid_disks
= mddev
->raid_disks
;
4760 if (mddev
->reshape_position
== MaxSector
)
4761 conf
->previous_raid_disks
= mddev
->raid_disks
;
4763 conf
->previous_raid_disks
= mddev
->raid_disks
- mddev
->delta_disks
;
4764 max_disks
= max(conf
->raid_disks
, conf
->previous_raid_disks
);
4765 conf
->scribble_len
= scribble_len(max_disks
);
4767 conf
->disks
= kzalloc(max_disks
* sizeof(struct disk_info
),
4772 conf
->mddev
= mddev
;
4774 if ((conf
->stripe_hashtbl
= kzalloc(PAGE_SIZE
, GFP_KERNEL
)) == NULL
)
4777 conf
->level
= mddev
->new_level
;
4778 if (raid5_alloc_percpu(conf
) != 0)
4781 pr_debug("raid456: run(%s) called.\n", mdname(mddev
));
4783 list_for_each_entry(rdev
, &mddev
->disks
, same_set
) {
4784 raid_disk
= rdev
->raid_disk
;
4785 if (raid_disk
>= max_disks
4788 disk
= conf
->disks
+ raid_disk
;
4792 if (test_bit(In_sync
, &rdev
->flags
)) {
4793 char b
[BDEVNAME_SIZE
];
4794 printk(KERN_INFO
"md/raid:%s: device %s operational as raid"
4796 mdname(mddev
), bdevname(rdev
->bdev
, b
), raid_disk
);
4798 /* Cannot rely on bitmap to complete recovery */
4802 conf
->chunk_sectors
= mddev
->new_chunk_sectors
;
4803 conf
->level
= mddev
->new_level
;
4804 if (conf
->level
== 6)
4805 conf
->max_degraded
= 2;
4807 conf
->max_degraded
= 1;
4808 conf
->algorithm
= mddev
->new_layout
;
4809 conf
->max_nr_stripes
= NR_STRIPES
;
4810 conf
->reshape_progress
= mddev
->reshape_position
;
4811 if (conf
->reshape_progress
!= MaxSector
) {
4812 conf
->prev_chunk_sectors
= mddev
->chunk_sectors
;
4813 conf
->prev_algo
= mddev
->layout
;
4816 memory
= conf
->max_nr_stripes
* (sizeof(struct stripe_head
) +
4817 max_disks
* ((sizeof(struct bio
) + PAGE_SIZE
))) / 1024;
4818 if (grow_stripes(conf
, conf
->max_nr_stripes
)) {
4820 "md/raid:%s: couldn't allocate %dkB for buffers\n",
4821 mdname(mddev
), memory
);
4824 printk(KERN_INFO
"md/raid:%s: allocated %dkB\n",
4825 mdname(mddev
), memory
);
4827 conf
->thread
= md_register_thread(raid5d
, mddev
, NULL
);
4828 if (!conf
->thread
) {
4830 "md/raid:%s: couldn't allocate thread.\n",
4840 return ERR_PTR(-EIO
);
4842 return ERR_PTR(-ENOMEM
);
4846 static int only_parity(int raid_disk
, int algo
, int raid_disks
, int max_degraded
)
4849 case ALGORITHM_PARITY_0
:
4850 if (raid_disk
< max_degraded
)
4853 case ALGORITHM_PARITY_N
:
4854 if (raid_disk
>= raid_disks
- max_degraded
)
4857 case ALGORITHM_PARITY_0_6
:
4858 if (raid_disk
== 0 ||
4859 raid_disk
== raid_disks
- 1)
4862 case ALGORITHM_LEFT_ASYMMETRIC_6
:
4863 case ALGORITHM_RIGHT_ASYMMETRIC_6
:
4864 case ALGORITHM_LEFT_SYMMETRIC_6
:
4865 case ALGORITHM_RIGHT_SYMMETRIC_6
:
4866 if (raid_disk
== raid_disks
- 1)
4872 static int run(mddev_t
*mddev
)
4875 int working_disks
= 0, chunk_size
;
4876 int dirty_parity_disks
= 0;
4878 sector_t reshape_offset
= 0;
4880 if (mddev
->recovery_cp
!= MaxSector
)
4881 printk(KERN_NOTICE
"md/raid:%s: not clean"
4882 " -- starting background reconstruction\n",
4884 if (mddev
->reshape_position
!= MaxSector
) {
4885 /* Check that we can continue the reshape.
4886 * Currently only disks can change, it must
4887 * increase, and we must be past the point where
4888 * a stripe over-writes itself
4890 sector_t here_new
, here_old
;
4892 int max_degraded
= (mddev
->level
== 6 ? 2 : 1);
4894 if (mddev
->new_level
!= mddev
->level
) {
4895 printk(KERN_ERR
"md/raid:%s: unsupported reshape "
4896 "required - aborting.\n",
4900 old_disks
= mddev
->raid_disks
- mddev
->delta_disks
;
4901 /* reshape_position must be on a new-stripe boundary, and one
4902 * further up in new geometry must map after here in old
4905 here_new
= mddev
->reshape_position
;
4906 if (sector_div(here_new
, mddev
->new_chunk_sectors
*
4907 (mddev
->raid_disks
- max_degraded
))) {
4908 printk(KERN_ERR
"md/raid:%s: reshape_position not "
4909 "on a stripe boundary\n", mdname(mddev
));
4912 reshape_offset
= here_new
* mddev
->new_chunk_sectors
;
4913 /* here_new is the stripe we will write to */
4914 here_old
= mddev
->reshape_position
;
4915 sector_div(here_old
, mddev
->chunk_sectors
*
4916 (old_disks
-max_degraded
));
4917 /* here_old is the first stripe that we might need to read
4919 if (mddev
->delta_disks
== 0) {
4920 /* We cannot be sure it is safe to start an in-place
4921 * reshape. It is only safe if user-space if monitoring
4922 * and taking constant backups.
4923 * mdadm always starts a situation like this in
4924 * readonly mode so it can take control before
4925 * allowing any writes. So just check for that.
4927 if ((here_new
* mddev
->new_chunk_sectors
!=
4928 here_old
* mddev
->chunk_sectors
) ||
4930 printk(KERN_ERR
"md/raid:%s: in-place reshape must be started"
4931 " in read-only mode - aborting\n",
4935 } else if (mddev
->delta_disks
< 0
4936 ? (here_new
* mddev
->new_chunk_sectors
<=
4937 here_old
* mddev
->chunk_sectors
)
4938 : (here_new
* mddev
->new_chunk_sectors
>=
4939 here_old
* mddev
->chunk_sectors
)) {
4940 /* Reading from the same stripe as writing to - bad */
4941 printk(KERN_ERR
"md/raid:%s: reshape_position too early for "
4942 "auto-recovery - aborting.\n",
4946 printk(KERN_INFO
"md/raid:%s: reshape will continue\n",
4948 /* OK, we should be able to continue; */
4950 BUG_ON(mddev
->level
!= mddev
->new_level
);
4951 BUG_ON(mddev
->layout
!= mddev
->new_layout
);
4952 BUG_ON(mddev
->chunk_sectors
!= mddev
->new_chunk_sectors
);
4953 BUG_ON(mddev
->delta_disks
!= 0);
4956 if (mddev
->private == NULL
)
4957 conf
= setup_conf(mddev
);
4959 conf
= mddev
->private;
4962 return PTR_ERR(conf
);
4964 mddev
->thread
= conf
->thread
;
4965 conf
->thread
= NULL
;
4966 mddev
->private = conf
;
4969 * 0 for a fully functional array, 1 or 2 for a degraded array.
4971 list_for_each_entry(rdev
, &mddev
->disks
, same_set
) {
4972 if (rdev
->raid_disk
< 0)
4974 if (test_bit(In_sync
, &rdev
->flags
))
4976 /* This disc is not fully in-sync. However if it
4977 * just stored parity (beyond the recovery_offset),
4978 * when we don't need to be concerned about the
4979 * array being dirty.
4980 * When reshape goes 'backwards', we never have
4981 * partially completed devices, so we only need
4982 * to worry about reshape going forwards.
4984 /* Hack because v0.91 doesn't store recovery_offset properly. */
4985 if (mddev
->major_version
== 0 &&
4986 mddev
->minor_version
> 90)
4987 rdev
->recovery_offset
= reshape_offset
;
4989 if (rdev
->recovery_offset
< reshape_offset
) {
4990 /* We need to check old and new layout */
4991 if (!only_parity(rdev
->raid_disk
,
4994 conf
->max_degraded
))
4997 if (!only_parity(rdev
->raid_disk
,
4999 conf
->previous_raid_disks
,
5000 conf
->max_degraded
))
5002 dirty_parity_disks
++;
5005 mddev
->degraded
= (max(conf
->raid_disks
, conf
->previous_raid_disks
)
5008 if (mddev
->degraded
> conf
->max_degraded
) {
5009 printk(KERN_ERR
"md/raid:%s: not enough operational devices"
5010 " (%d/%d failed)\n",
5011 mdname(mddev
), mddev
->degraded
, conf
->raid_disks
);
5015 /* device size must be a multiple of chunk size */
5016 mddev
->dev_sectors
&= ~(mddev
->chunk_sectors
- 1);
5017 mddev
->resync_max_sectors
= mddev
->dev_sectors
;
5019 if (mddev
->degraded
> dirty_parity_disks
&&
5020 mddev
->recovery_cp
!= MaxSector
) {
5021 if (mddev
->ok_start_degraded
)
5023 "md/raid:%s: starting dirty degraded array"
5024 " - data corruption possible.\n",
5028 "md/raid:%s: cannot start dirty degraded array.\n",
5034 if (mddev
->degraded
== 0)
5035 printk(KERN_INFO
"md/raid:%s: raid level %d active with %d out of %d"
5036 " devices, algorithm %d\n", mdname(mddev
), conf
->level
,
5037 mddev
->raid_disks
-mddev
->degraded
, mddev
->raid_disks
,
5040 printk(KERN_ALERT
"md/raid:%s: raid level %d active with %d"
5041 " out of %d devices, algorithm %d\n",
5042 mdname(mddev
), conf
->level
,
5043 mddev
->raid_disks
- mddev
->degraded
,
5044 mddev
->raid_disks
, mddev
->new_layout
);
5046 print_raid5_conf(conf
);
5048 if (conf
->reshape_progress
!= MaxSector
) {
5049 conf
->reshape_safe
= conf
->reshape_progress
;
5050 atomic_set(&conf
->reshape_stripes
, 0);
5051 clear_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
);
5052 clear_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
);
5053 set_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
);
5054 set_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
);
5055 mddev
->sync_thread
= md_register_thread(md_do_sync
, mddev
,
5059 /* read-ahead size must cover two whole stripes, which is
5060 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
5063 int data_disks
= conf
->previous_raid_disks
- conf
->max_degraded
;
5064 int stripe
= data_disks
*
5065 ((mddev
->chunk_sectors
<< 9) / PAGE_SIZE
);
5066 if (mddev
->queue
->backing_dev_info
.ra_pages
< 2 * stripe
)
5067 mddev
->queue
->backing_dev_info
.ra_pages
= 2 * stripe
;
5070 /* Ok, everything is just fine now */
5071 if (mddev
->to_remove
== &raid5_attrs_group
)
5072 mddev
->to_remove
= NULL
;
5073 else if (sysfs_create_group(&mddev
->kobj
, &raid5_attrs_group
))
5075 "md/raid:%s: failed to create sysfs attributes.\n",
5078 mddev
->queue
->queue_lock
= &conf
->device_lock
;
5080 mddev
->queue
->unplug_fn
= raid5_unplug_device
;
5081 mddev
->queue
->backing_dev_info
.congested_data
= mddev
;
5082 mddev
->queue
->backing_dev_info
.congested_fn
= raid5_congested
;
5084 md_set_array_sectors(mddev
, raid5_size(mddev
, 0, 0));
5086 blk_queue_merge_bvec(mddev
->queue
, raid5_mergeable_bvec
);
5087 chunk_size
= mddev
->chunk_sectors
<< 9;
5088 blk_queue_io_min(mddev
->queue
, chunk_size
);
5089 blk_queue_io_opt(mddev
->queue
, chunk_size
*
5090 (conf
->raid_disks
- conf
->max_degraded
));
5092 list_for_each_entry(rdev
, &mddev
->disks
, same_set
)
5093 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
5094 rdev
->data_offset
<< 9);
5098 md_unregister_thread(mddev
->thread
);
5099 mddev
->thread
= NULL
;
5101 print_raid5_conf(conf
);
5104 mddev
->private = NULL
;
5105 printk(KERN_ALERT
"md/raid:%s: failed to run raid set.\n", mdname(mddev
));
5109 static int stop(mddev_t
*mddev
)
5111 raid5_conf_t
*conf
= mddev
->private;
5113 md_unregister_thread(mddev
->thread
);
5114 mddev
->thread
= NULL
;
5115 mddev
->queue
->backing_dev_info
.congested_fn
= NULL
;
5116 blk_sync_queue(mddev
->queue
); /* the unplug fn references 'conf'*/
5118 mddev
->private = NULL
;
5119 mddev
->to_remove
= &raid5_attrs_group
;
5124 static void print_sh(struct seq_file
*seq
, struct stripe_head
*sh
)
5128 seq_printf(seq
, "sh %llu, pd_idx %d, state %ld.\n",
5129 (unsigned long long)sh
->sector
, sh
->pd_idx
, sh
->state
);
5130 seq_printf(seq
, "sh %llu, count %d.\n",
5131 (unsigned long long)sh
->sector
, atomic_read(&sh
->count
));
5132 seq_printf(seq
, "sh %llu, ", (unsigned long long)sh
->sector
);
5133 for (i
= 0; i
< sh
->disks
; i
++) {
5134 seq_printf(seq
, "(cache%d: %p %ld) ",
5135 i
, sh
->dev
[i
].page
, sh
->dev
[i
].flags
);
5137 seq_printf(seq
, "\n");
5140 static void printall(struct seq_file
*seq
, raid5_conf_t
*conf
)
5142 struct stripe_head
*sh
;
5143 struct hlist_node
*hn
;
5146 spin_lock_irq(&conf
->device_lock
);
5147 for (i
= 0; i
< NR_HASH
; i
++) {
5148 hlist_for_each_entry(sh
, hn
, &conf
->stripe_hashtbl
[i
], hash
) {
5149 if (sh
->raid_conf
!= conf
)
5154 spin_unlock_irq(&conf
->device_lock
);
5158 static void status(struct seq_file
*seq
, mddev_t
*mddev
)
5160 raid5_conf_t
*conf
= mddev
->private;
5163 seq_printf(seq
, " level %d, %dk chunk, algorithm %d", mddev
->level
,
5164 mddev
->chunk_sectors
/ 2, mddev
->layout
);
5165 seq_printf (seq
, " [%d/%d] [", conf
->raid_disks
, conf
->raid_disks
- mddev
->degraded
);
5166 for (i
= 0; i
< conf
->raid_disks
; i
++)
5167 seq_printf (seq
, "%s",
5168 conf
->disks
[i
].rdev
&&
5169 test_bit(In_sync
, &conf
->disks
[i
].rdev
->flags
) ? "U" : "_");
5170 seq_printf (seq
, "]");
5172 seq_printf (seq
, "\n");
5173 printall(seq
, conf
);
5177 static void print_raid5_conf (raid5_conf_t
*conf
)
5180 struct disk_info
*tmp
;
5182 printk(KERN_DEBUG
"RAID conf printout:\n");
5184 printk("(conf==NULL)\n");
5187 printk(KERN_DEBUG
" --- level:%d rd:%d wd:%d\n", conf
->level
,
5189 conf
->raid_disks
- conf
->mddev
->degraded
);
5191 for (i
= 0; i
< conf
->raid_disks
; i
++) {
5192 char b
[BDEVNAME_SIZE
];
5193 tmp
= conf
->disks
+ i
;
5195 printk(KERN_DEBUG
" disk %d, o:%d, dev:%s\n",
5196 i
, !test_bit(Faulty
, &tmp
->rdev
->flags
),
5197 bdevname(tmp
->rdev
->bdev
, b
));
5201 static int raid5_spare_active(mddev_t
*mddev
)
5204 raid5_conf_t
*conf
= mddev
->private;
5205 struct disk_info
*tmp
;
5207 for (i
= 0; i
< conf
->raid_disks
; i
++) {
5208 tmp
= conf
->disks
+ i
;
5210 && !test_bit(Faulty
, &tmp
->rdev
->flags
)
5211 && !test_and_set_bit(In_sync
, &tmp
->rdev
->flags
)) {
5212 unsigned long flags
;
5213 spin_lock_irqsave(&conf
->device_lock
, flags
);
5215 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
5218 print_raid5_conf(conf
);
5222 static int raid5_remove_disk(mddev_t
*mddev
, int number
)
5224 raid5_conf_t
*conf
= mddev
->private;
5227 struct disk_info
*p
= conf
->disks
+ number
;
5229 print_raid5_conf(conf
);
5232 if (number
>= conf
->raid_disks
&&
5233 conf
->reshape_progress
== MaxSector
)
5234 clear_bit(In_sync
, &rdev
->flags
);
5236 if (test_bit(In_sync
, &rdev
->flags
) ||
5237 atomic_read(&rdev
->nr_pending
)) {
5241 /* Only remove non-faulty devices if recovery
5244 if (!test_bit(Faulty
, &rdev
->flags
) &&
5245 mddev
->degraded
<= conf
->max_degraded
&&
5246 number
< conf
->raid_disks
) {
5252 if (atomic_read(&rdev
->nr_pending
)) {
5253 /* lost the race, try later */
5260 print_raid5_conf(conf
);
5264 static int raid5_add_disk(mddev_t
*mddev
, mdk_rdev_t
*rdev
)
5266 raid5_conf_t
*conf
= mddev
->private;
5269 struct disk_info
*p
;
5271 int last
= conf
->raid_disks
- 1;
5273 if (mddev
->degraded
> conf
->max_degraded
)
5274 /* no point adding a device */
5277 if (rdev
->raid_disk
>= 0)
5278 first
= last
= rdev
->raid_disk
;
5281 * find the disk ... but prefer rdev->saved_raid_disk
5284 if (rdev
->saved_raid_disk
>= 0 &&
5285 rdev
->saved_raid_disk
>= first
&&
5286 conf
->disks
[rdev
->saved_raid_disk
].rdev
== NULL
)
5287 disk
= rdev
->saved_raid_disk
;
5290 for ( ; disk
<= last
; disk
++)
5291 if ((p
=conf
->disks
+ disk
)->rdev
== NULL
) {
5292 clear_bit(In_sync
, &rdev
->flags
);
5293 rdev
->raid_disk
= disk
;
5295 if (rdev
->saved_raid_disk
!= disk
)
5297 rcu_assign_pointer(p
->rdev
, rdev
);
5300 print_raid5_conf(conf
);
5304 static int raid5_resize(mddev_t
*mddev
, sector_t sectors
)
5306 /* no resync is happening, and there is enough space
5307 * on all devices, so we can resize.
5308 * We need to make sure resync covers any new space.
5309 * If the array is shrinking we should possibly wait until
5310 * any io in the removed space completes, but it hardly seems
5313 sectors
&= ~((sector_t
)mddev
->chunk_sectors
- 1);
5314 md_set_array_sectors(mddev
, raid5_size(mddev
, sectors
,
5315 mddev
->raid_disks
));
5316 if (mddev
->array_sectors
>
5317 raid5_size(mddev
, sectors
, mddev
->raid_disks
))
5319 set_capacity(mddev
->gendisk
, mddev
->array_sectors
);
5320 revalidate_disk(mddev
->gendisk
);
5321 if (sectors
> mddev
->dev_sectors
&& mddev
->recovery_cp
== MaxSector
) {
5322 mddev
->recovery_cp
= mddev
->dev_sectors
;
5323 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
5325 mddev
->dev_sectors
= sectors
;
5326 mddev
->resync_max_sectors
= sectors
;
5330 static int check_stripe_cache(mddev_t
*mddev
)
5332 /* Can only proceed if there are plenty of stripe_heads.
5333 * We need a minimum of one full stripe,, and for sensible progress
5334 * it is best to have about 4 times that.
5335 * If we require 4 times, then the default 256 4K stripe_heads will
5336 * allow for chunk sizes up to 256K, which is probably OK.
5337 * If the chunk size is greater, user-space should request more
5338 * stripe_heads first.
5340 raid5_conf_t
*conf
= mddev
->private;
5341 if (((mddev
->chunk_sectors
<< 9) / STRIPE_SIZE
) * 4
5342 > conf
->max_nr_stripes
||
5343 ((mddev
->new_chunk_sectors
<< 9) / STRIPE_SIZE
) * 4
5344 > conf
->max_nr_stripes
) {
5345 printk(KERN_WARNING
"md/raid:%s: reshape: not enough stripes. Needed %lu\n",
5347 ((max(mddev
->chunk_sectors
, mddev
->new_chunk_sectors
) << 9)
5354 static int check_reshape(mddev_t
*mddev
)
5356 raid5_conf_t
*conf
= mddev
->private;
5358 if (mddev
->delta_disks
== 0 &&
5359 mddev
->new_layout
== mddev
->layout
&&
5360 mddev
->new_chunk_sectors
== mddev
->chunk_sectors
)
5361 return 0; /* nothing to do */
5363 /* Cannot grow a bitmap yet */
5365 if (mddev
->degraded
> conf
->max_degraded
)
5367 if (mddev
->delta_disks
< 0) {
5368 /* We might be able to shrink, but the devices must
5369 * be made bigger first.
5370 * For raid6, 4 is the minimum size.
5371 * Otherwise 2 is the minimum
5374 if (mddev
->level
== 6)
5376 if (mddev
->raid_disks
+ mddev
->delta_disks
< min
)
5380 if (!check_stripe_cache(mddev
))
5383 return resize_stripes(conf
, conf
->raid_disks
+ mddev
->delta_disks
);
5386 static int raid5_start_reshape(mddev_t
*mddev
)
5388 raid5_conf_t
*conf
= mddev
->private;
5391 int added_devices
= 0;
5392 unsigned long flags
;
5394 if (test_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
))
5397 if (!check_stripe_cache(mddev
))
5400 list_for_each_entry(rdev
, &mddev
->disks
, same_set
)
5401 if (rdev
->raid_disk
< 0 &&
5402 !test_bit(Faulty
, &rdev
->flags
))
5405 if (spares
- mddev
->degraded
< mddev
->delta_disks
- conf
->max_degraded
)
5406 /* Not enough devices even to make a degraded array
5411 /* Refuse to reduce size of the array. Any reductions in
5412 * array size must be through explicit setting of array_size
5415 if (raid5_size(mddev
, 0, conf
->raid_disks
+ mddev
->delta_disks
)
5416 < mddev
->array_sectors
) {
5417 printk(KERN_ERR
"md/raid:%s: array size must be reduced "
5418 "before number of disks\n", mdname(mddev
));
5422 atomic_set(&conf
->reshape_stripes
, 0);
5423 spin_lock_irq(&conf
->device_lock
);
5424 conf
->previous_raid_disks
= conf
->raid_disks
;
5425 conf
->raid_disks
+= mddev
->delta_disks
;
5426 conf
->prev_chunk_sectors
= conf
->chunk_sectors
;
5427 conf
->chunk_sectors
= mddev
->new_chunk_sectors
;
5428 conf
->prev_algo
= conf
->algorithm
;
5429 conf
->algorithm
= mddev
->new_layout
;
5430 if (mddev
->delta_disks
< 0)
5431 conf
->reshape_progress
= raid5_size(mddev
, 0, 0);
5433 conf
->reshape_progress
= 0;
5434 conf
->reshape_safe
= conf
->reshape_progress
;
5436 spin_unlock_irq(&conf
->device_lock
);
5438 /* Add some new drives, as many as will fit.
5439 * We know there are enough to make the newly sized array work.
5441 list_for_each_entry(rdev
, &mddev
->disks
, same_set
)
5442 if (rdev
->raid_disk
< 0 &&
5443 !test_bit(Faulty
, &rdev
->flags
)) {
5444 if (raid5_add_disk(mddev
, rdev
) == 0) {
5446 if (rdev
->raid_disk
>= conf
->previous_raid_disks
) {
5447 set_bit(In_sync
, &rdev
->flags
);
5450 rdev
->recovery_offset
= 0;
5451 sprintf(nm
, "rd%d", rdev
->raid_disk
);
5452 if (sysfs_create_link(&mddev
->kobj
,
5455 "md/raid:%s: failed to create "
5462 /* When a reshape changes the number of devices, ->degraded
5463 * is measured against the large of the pre and post number of
5465 if (mddev
->delta_disks
> 0) {
5466 spin_lock_irqsave(&conf
->device_lock
, flags
);
5467 mddev
->degraded
+= (conf
->raid_disks
- conf
->previous_raid_disks
)
5469 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
5471 mddev
->raid_disks
= conf
->raid_disks
;
5472 mddev
->reshape_position
= conf
->reshape_progress
;
5473 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
5475 clear_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
);
5476 clear_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
);
5477 set_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
);
5478 set_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
);
5479 mddev
->sync_thread
= md_register_thread(md_do_sync
, mddev
,
5481 if (!mddev
->sync_thread
) {
5482 mddev
->recovery
= 0;
5483 spin_lock_irq(&conf
->device_lock
);
5484 mddev
->raid_disks
= conf
->raid_disks
= conf
->previous_raid_disks
;
5485 conf
->reshape_progress
= MaxSector
;
5486 spin_unlock_irq(&conf
->device_lock
);
5489 conf
->reshape_checkpoint
= jiffies
;
5490 md_wakeup_thread(mddev
->sync_thread
);
5491 md_new_event(mddev
);
5495 /* This is called from the reshape thread and should make any
5496 * changes needed in 'conf'
5498 static void end_reshape(raid5_conf_t
*conf
)
5501 if (!test_bit(MD_RECOVERY_INTR
, &conf
->mddev
->recovery
)) {
5503 spin_lock_irq(&conf
->device_lock
);
5504 conf
->previous_raid_disks
= conf
->raid_disks
;
5505 conf
->reshape_progress
= MaxSector
;
5506 spin_unlock_irq(&conf
->device_lock
);
5507 wake_up(&conf
->wait_for_overlap
);
5509 /* read-ahead size must cover two whole stripes, which is
5510 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
5513 int data_disks
= conf
->raid_disks
- conf
->max_degraded
;
5514 int stripe
= data_disks
* ((conf
->chunk_sectors
<< 9)
5516 if (conf
->mddev
->queue
->backing_dev_info
.ra_pages
< 2 * stripe
)
5517 conf
->mddev
->queue
->backing_dev_info
.ra_pages
= 2 * stripe
;
5522 /* This is called from the raid5d thread with mddev_lock held.
5523 * It makes config changes to the device.
5525 static void raid5_finish_reshape(mddev_t
*mddev
)
5527 raid5_conf_t
*conf
= mddev
->private;
5529 if (!test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
)) {
5531 if (mddev
->delta_disks
> 0) {
5532 md_set_array_sectors(mddev
, raid5_size(mddev
, 0, 0));
5533 set_capacity(mddev
->gendisk
, mddev
->array_sectors
);
5534 revalidate_disk(mddev
->gendisk
);
5537 mddev
->degraded
= conf
->raid_disks
;
5538 for (d
= 0; d
< conf
->raid_disks
; d
++)
5539 if (conf
->disks
[d
].rdev
&&
5541 &conf
->disks
[d
].rdev
->flags
))
5543 for (d
= conf
->raid_disks
;
5544 d
< conf
->raid_disks
- mddev
->delta_disks
;
5546 mdk_rdev_t
*rdev
= conf
->disks
[d
].rdev
;
5547 if (rdev
&& raid5_remove_disk(mddev
, d
) == 0) {
5549 sprintf(nm
, "rd%d", rdev
->raid_disk
);
5550 sysfs_remove_link(&mddev
->kobj
, nm
);
5551 rdev
->raid_disk
= -1;
5555 mddev
->layout
= conf
->algorithm
;
5556 mddev
->chunk_sectors
= conf
->chunk_sectors
;
5557 mddev
->reshape_position
= MaxSector
;
5558 mddev
->delta_disks
= 0;
5562 static void raid5_quiesce(mddev_t
*mddev
, int state
)
5564 raid5_conf_t
*conf
= mddev
->private;
5567 case 2: /* resume for a suspend */
5568 wake_up(&conf
->wait_for_overlap
);
5571 case 1: /* stop all writes */
5572 spin_lock_irq(&conf
->device_lock
);
5573 /* '2' tells resync/reshape to pause so that all
5574 * active stripes can drain
5577 wait_event_lock_irq(conf
->wait_for_stripe
,
5578 atomic_read(&conf
->active_stripes
) == 0 &&
5579 atomic_read(&conf
->active_aligned_reads
) == 0,
5580 conf
->device_lock
, /* nothing */);
5582 spin_unlock_irq(&conf
->device_lock
);
5583 /* allow reshape to continue */
5584 wake_up(&conf
->wait_for_overlap
);
5587 case 0: /* re-enable writes */
5588 spin_lock_irq(&conf
->device_lock
);
5590 wake_up(&conf
->wait_for_stripe
);
5591 wake_up(&conf
->wait_for_overlap
);
5592 spin_unlock_irq(&conf
->device_lock
);
5598 static void *raid45_takeover_raid0(mddev_t
*mddev
, int level
)
5600 struct raid0_private_data
*raid0_priv
= mddev
->private;
5602 /* for raid0 takeover only one zone is supported */
5603 if (raid0_priv
->nr_strip_zones
> 1) {
5604 printk(KERN_ERR
"md/raid:%s: cannot takeover raid0 with more than one zone.\n",
5606 return ERR_PTR(-EINVAL
);
5609 mddev
->new_level
= level
;
5610 mddev
->new_layout
= ALGORITHM_PARITY_N
;
5611 mddev
->new_chunk_sectors
= mddev
->chunk_sectors
;
5612 mddev
->raid_disks
+= 1;
5613 mddev
->delta_disks
= 1;
5614 /* make sure it will be not marked as dirty */
5615 mddev
->recovery_cp
= MaxSector
;
5617 return setup_conf(mddev
);
5621 static void *raid5_takeover_raid1(mddev_t
*mddev
)
5625 if (mddev
->raid_disks
!= 2 ||
5626 mddev
->degraded
> 1)
5627 return ERR_PTR(-EINVAL
);
5629 /* Should check if there are write-behind devices? */
5631 chunksect
= 64*2; /* 64K by default */
5633 /* The array must be an exact multiple of chunksize */
5634 while (chunksect
&& (mddev
->array_sectors
& (chunksect
-1)))
5637 if ((chunksect
<<9) < STRIPE_SIZE
)
5638 /* array size does not allow a suitable chunk size */
5639 return ERR_PTR(-EINVAL
);
5641 mddev
->new_level
= 5;
5642 mddev
->new_layout
= ALGORITHM_LEFT_SYMMETRIC
;
5643 mddev
->new_chunk_sectors
= chunksect
;
5645 return setup_conf(mddev
);
5648 static void *raid5_takeover_raid6(mddev_t
*mddev
)
5652 switch (mddev
->layout
) {
5653 case ALGORITHM_LEFT_ASYMMETRIC_6
:
5654 new_layout
= ALGORITHM_LEFT_ASYMMETRIC
;
5656 case ALGORITHM_RIGHT_ASYMMETRIC_6
:
5657 new_layout
= ALGORITHM_RIGHT_ASYMMETRIC
;
5659 case ALGORITHM_LEFT_SYMMETRIC_6
:
5660 new_layout
= ALGORITHM_LEFT_SYMMETRIC
;
5662 case ALGORITHM_RIGHT_SYMMETRIC_6
:
5663 new_layout
= ALGORITHM_RIGHT_SYMMETRIC
;
5665 case ALGORITHM_PARITY_0_6
:
5666 new_layout
= ALGORITHM_PARITY_0
;
5668 case ALGORITHM_PARITY_N
:
5669 new_layout
= ALGORITHM_PARITY_N
;
5672 return ERR_PTR(-EINVAL
);
5674 mddev
->new_level
= 5;
5675 mddev
->new_layout
= new_layout
;
5676 mddev
->delta_disks
= -1;
5677 mddev
->raid_disks
-= 1;
5678 return setup_conf(mddev
);
5682 static int raid5_check_reshape(mddev_t
*mddev
)
5684 /* For a 2-drive array, the layout and chunk size can be changed
5685 * immediately as not restriping is needed.
5686 * For larger arrays we record the new value - after validation
5687 * to be used by a reshape pass.
5689 raid5_conf_t
*conf
= mddev
->private;
5690 int new_chunk
= mddev
->new_chunk_sectors
;
5692 if (mddev
->new_layout
>= 0 && !algorithm_valid_raid5(mddev
->new_layout
))
5694 if (new_chunk
> 0) {
5695 if (!is_power_of_2(new_chunk
))
5697 if (new_chunk
< (PAGE_SIZE
>>9))
5699 if (mddev
->array_sectors
& (new_chunk
-1))
5700 /* not factor of array size */
5704 /* They look valid */
5706 if (mddev
->raid_disks
== 2) {
5707 /* can make the change immediately */
5708 if (mddev
->new_layout
>= 0) {
5709 conf
->algorithm
= mddev
->new_layout
;
5710 mddev
->layout
= mddev
->new_layout
;
5712 if (new_chunk
> 0) {
5713 conf
->chunk_sectors
= new_chunk
;
5714 mddev
->chunk_sectors
= new_chunk
;
5716 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
5717 md_wakeup_thread(mddev
->thread
);
5719 return check_reshape(mddev
);
5722 static int raid6_check_reshape(mddev_t
*mddev
)
5724 int new_chunk
= mddev
->new_chunk_sectors
;
5726 if (mddev
->new_layout
>= 0 && !algorithm_valid_raid6(mddev
->new_layout
))
5728 if (new_chunk
> 0) {
5729 if (!is_power_of_2(new_chunk
))
5731 if (new_chunk
< (PAGE_SIZE
>> 9))
5733 if (mddev
->array_sectors
& (new_chunk
-1))
5734 /* not factor of array size */
5738 /* They look valid */
5739 return check_reshape(mddev
);
5742 static void *raid5_takeover(mddev_t
*mddev
)
5744 /* raid5 can take over:
5745 * raid0 - if there is only one strip zone - make it a raid4 layout
5746 * raid1 - if there are two drives. We need to know the chunk size
5747 * raid4 - trivial - just use a raid4 layout.
5748 * raid6 - Providing it is a *_6 layout
5750 if (mddev
->level
== 0)
5751 return raid45_takeover_raid0(mddev
, 5);
5752 if (mddev
->level
== 1)
5753 return raid5_takeover_raid1(mddev
);
5754 if (mddev
->level
== 4) {
5755 mddev
->new_layout
= ALGORITHM_PARITY_N
;
5756 mddev
->new_level
= 5;
5757 return setup_conf(mddev
);
5759 if (mddev
->level
== 6)
5760 return raid5_takeover_raid6(mddev
);
5762 return ERR_PTR(-EINVAL
);
5765 static void *raid4_takeover(mddev_t
*mddev
)
5767 /* raid4 can take over:
5768 * raid0 - if there is only one strip zone
5769 * raid5 - if layout is right
5771 if (mddev
->level
== 0)
5772 return raid45_takeover_raid0(mddev
, 4);
5773 if (mddev
->level
== 5 &&
5774 mddev
->layout
== ALGORITHM_PARITY_N
) {
5775 mddev
->new_layout
= 0;
5776 mddev
->new_level
= 4;
5777 return setup_conf(mddev
);
5779 return ERR_PTR(-EINVAL
);
5782 static struct mdk_personality raid5_personality
;
5784 static void *raid6_takeover(mddev_t
*mddev
)
5786 /* Currently can only take over a raid5. We map the
5787 * personality to an equivalent raid6 personality
5788 * with the Q block at the end.
5792 if (mddev
->pers
!= &raid5_personality
)
5793 return ERR_PTR(-EINVAL
);
5794 if (mddev
->degraded
> 1)
5795 return ERR_PTR(-EINVAL
);
5796 if (mddev
->raid_disks
> 253)
5797 return ERR_PTR(-EINVAL
);
5798 if (mddev
->raid_disks
< 3)
5799 return ERR_PTR(-EINVAL
);
5801 switch (mddev
->layout
) {
5802 case ALGORITHM_LEFT_ASYMMETRIC
:
5803 new_layout
= ALGORITHM_LEFT_ASYMMETRIC_6
;
5805 case ALGORITHM_RIGHT_ASYMMETRIC
:
5806 new_layout
= ALGORITHM_RIGHT_ASYMMETRIC_6
;
5808 case ALGORITHM_LEFT_SYMMETRIC
:
5809 new_layout
= ALGORITHM_LEFT_SYMMETRIC_6
;
5811 case ALGORITHM_RIGHT_SYMMETRIC
:
5812 new_layout
= ALGORITHM_RIGHT_SYMMETRIC_6
;
5814 case ALGORITHM_PARITY_0
:
5815 new_layout
= ALGORITHM_PARITY_0_6
;
5817 case ALGORITHM_PARITY_N
:
5818 new_layout
= ALGORITHM_PARITY_N
;
5821 return ERR_PTR(-EINVAL
);
5823 mddev
->new_level
= 6;
5824 mddev
->new_layout
= new_layout
;
5825 mddev
->delta_disks
= 1;
5826 mddev
->raid_disks
+= 1;
5827 return setup_conf(mddev
);
5831 static struct mdk_personality raid6_personality
=
5835 .owner
= THIS_MODULE
,
5836 .make_request
= make_request
,
5840 .error_handler
= error
,
5841 .hot_add_disk
= raid5_add_disk
,
5842 .hot_remove_disk
= raid5_remove_disk
,
5843 .spare_active
= raid5_spare_active
,
5844 .sync_request
= sync_request
,
5845 .resize
= raid5_resize
,
5847 .check_reshape
= raid6_check_reshape
,
5848 .start_reshape
= raid5_start_reshape
,
5849 .finish_reshape
= raid5_finish_reshape
,
5850 .quiesce
= raid5_quiesce
,
5851 .takeover
= raid6_takeover
,
5853 static struct mdk_personality raid5_personality
=
5857 .owner
= THIS_MODULE
,
5858 .make_request
= make_request
,
5862 .error_handler
= error
,
5863 .hot_add_disk
= raid5_add_disk
,
5864 .hot_remove_disk
= raid5_remove_disk
,
5865 .spare_active
= raid5_spare_active
,
5866 .sync_request
= sync_request
,
5867 .resize
= raid5_resize
,
5869 .check_reshape
= raid5_check_reshape
,
5870 .start_reshape
= raid5_start_reshape
,
5871 .finish_reshape
= raid5_finish_reshape
,
5872 .quiesce
= raid5_quiesce
,
5873 .takeover
= raid5_takeover
,
5876 static struct mdk_personality raid4_personality
=
5880 .owner
= THIS_MODULE
,
5881 .make_request
= make_request
,
5885 .error_handler
= error
,
5886 .hot_add_disk
= raid5_add_disk
,
5887 .hot_remove_disk
= raid5_remove_disk
,
5888 .spare_active
= raid5_spare_active
,
5889 .sync_request
= sync_request
,
5890 .resize
= raid5_resize
,
5892 .check_reshape
= raid5_check_reshape
,
5893 .start_reshape
= raid5_start_reshape
,
5894 .finish_reshape
= raid5_finish_reshape
,
5895 .quiesce
= raid5_quiesce
,
5896 .takeover
= raid4_takeover
,
5899 static int __init
raid5_init(void)
5901 register_md_personality(&raid6_personality
);
5902 register_md_personality(&raid5_personality
);
5903 register_md_personality(&raid4_personality
);
5907 static void raid5_exit(void)
5909 unregister_md_personality(&raid6_personality
);
5910 unregister_md_personality(&raid5_personality
);
5911 unregister_md_personality(&raid4_personality
);
5914 module_init(raid5_init
);
5915 module_exit(raid5_exit
);
5916 MODULE_LICENSE("GPL");
5917 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
5918 MODULE_ALIAS("md-personality-4"); /* RAID5 */
5919 MODULE_ALIAS("md-raid5");
5920 MODULE_ALIAS("md-raid4");
5921 MODULE_ALIAS("md-level-5");
5922 MODULE_ALIAS("md-level-4");
5923 MODULE_ALIAS("md-personality-8"); /* RAID6 */
5924 MODULE_ALIAS("md-raid6");
5925 MODULE_ALIAS("md-level-6");
5927 /* This used to be two separate modules, they were: */
5928 MODULE_ALIAS("raid5");
5929 MODULE_ALIAS("raid6");