2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
5 * Copyright (C) 2002, 2003 H. Peter Anvin
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->bm_write is the number of the last batch successfully written.
31 * conf->bm_flush is the number of the last batch that was closed to
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is bm_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/async.h>
51 #include <linux/seq_file.h>
52 #include <linux/cpu.h>
61 #define NR_STRIPES 256
62 #define STRIPE_SIZE PAGE_SIZE
63 #define STRIPE_SHIFT (PAGE_SHIFT - 9)
64 #define STRIPE_SECTORS (STRIPE_SIZE>>9)
65 #define IO_THRESHOLD 1
66 #define BYPASS_THRESHOLD 1
67 #define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
68 #define HASH_MASK (NR_HASH - 1)
70 #define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
72 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
73 * order without overlap. There may be several bio's per stripe+device, and
74 * a bio could span several devices.
75 * When walking this list for a particular stripe+device, we must never proceed
76 * beyond a bio that extends past this device, as the next bio might no longer
78 * This macro is used to determine the 'next' bio in the list, given the sector
79 * of the current stripe+device
81 #define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
83 * The following can be used to debug the driver
85 #define RAID5_PARANOIA 1
86 #if RAID5_PARANOIA && defined(CONFIG_SMP)
87 # define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
89 # define CHECK_DEVLOCK()
97 #define printk_rl(args...) ((void) (printk_ratelimit() && printk(args)))
100 * We maintain a biased count of active stripes in the bottom 16 bits of
101 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
103 static inline int raid5_bi_phys_segments(struct bio
*bio
)
105 return bio
->bi_phys_segments
& 0xffff;
108 static inline int raid5_bi_hw_segments(struct bio
*bio
)
110 return (bio
->bi_phys_segments
>> 16) & 0xffff;
113 static inline int raid5_dec_bi_phys_segments(struct bio
*bio
)
115 --bio
->bi_phys_segments
;
116 return raid5_bi_phys_segments(bio
);
119 static inline int raid5_dec_bi_hw_segments(struct bio
*bio
)
121 unsigned short val
= raid5_bi_hw_segments(bio
);
124 bio
->bi_phys_segments
= (val
<< 16) | raid5_bi_phys_segments(bio
);
128 static inline void raid5_set_bi_hw_segments(struct bio
*bio
, unsigned int cnt
)
130 bio
->bi_phys_segments
= raid5_bi_phys_segments(bio
) || (cnt
<< 16);
133 /* Find first data disk in a raid6 stripe */
134 static inline int raid6_d0(struct stripe_head
*sh
)
137 /* ddf always start from first device */
139 /* md starts just after Q block */
140 if (sh
->qd_idx
== sh
->disks
- 1)
143 return sh
->qd_idx
+ 1;
145 static inline int raid6_next_disk(int disk
, int raid_disks
)
148 return (disk
< raid_disks
) ? disk
: 0;
151 /* When walking through the disks in a raid5, starting at raid6_d0,
152 * We need to map each disk to a 'slot', where the data disks are slot
153 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
154 * is raid_disks-1. This help does that mapping.
156 static int raid6_idx_to_slot(int idx
, struct stripe_head
*sh
,
157 int *count
, int syndrome_disks
)
161 if (idx
== sh
->pd_idx
)
162 return syndrome_disks
;
163 if (idx
== sh
->qd_idx
)
164 return syndrome_disks
+ 1;
169 static void return_io(struct bio
*return_bi
)
171 struct bio
*bi
= return_bi
;
174 return_bi
= bi
->bi_next
;
182 static void print_raid5_conf (raid5_conf_t
*conf
);
184 static int stripe_operations_active(struct stripe_head
*sh
)
186 return sh
->check_state
|| sh
->reconstruct_state
||
187 test_bit(STRIPE_BIOFILL_RUN
, &sh
->state
) ||
188 test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
191 static void __release_stripe(raid5_conf_t
*conf
, struct stripe_head
*sh
)
193 if (atomic_dec_and_test(&sh
->count
)) {
194 BUG_ON(!list_empty(&sh
->lru
));
195 BUG_ON(atomic_read(&conf
->active_stripes
)==0);
196 if (test_bit(STRIPE_HANDLE
, &sh
->state
)) {
197 if (test_bit(STRIPE_DELAYED
, &sh
->state
)) {
198 list_add_tail(&sh
->lru
, &conf
->delayed_list
);
199 blk_plug_device(conf
->mddev
->queue
);
200 } else if (test_bit(STRIPE_BIT_DELAY
, &sh
->state
) &&
201 sh
->bm_seq
- conf
->seq_write
> 0) {
202 list_add_tail(&sh
->lru
, &conf
->bitmap_list
);
203 blk_plug_device(conf
->mddev
->queue
);
205 clear_bit(STRIPE_BIT_DELAY
, &sh
->state
);
206 list_add_tail(&sh
->lru
, &conf
->handle_list
);
208 md_wakeup_thread(conf
->mddev
->thread
);
210 BUG_ON(stripe_operations_active(sh
));
211 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
)) {
212 atomic_dec(&conf
->preread_active_stripes
);
213 if (atomic_read(&conf
->preread_active_stripes
) < IO_THRESHOLD
)
214 md_wakeup_thread(conf
->mddev
->thread
);
216 atomic_dec(&conf
->active_stripes
);
217 if (!test_bit(STRIPE_EXPANDING
, &sh
->state
)) {
218 list_add_tail(&sh
->lru
, &conf
->inactive_list
);
219 wake_up(&conf
->wait_for_stripe
);
220 if (conf
->retry_read_aligned
)
221 md_wakeup_thread(conf
->mddev
->thread
);
227 static void release_stripe(struct stripe_head
*sh
)
229 raid5_conf_t
*conf
= sh
->raid_conf
;
232 spin_lock_irqsave(&conf
->device_lock
, flags
);
233 __release_stripe(conf
, sh
);
234 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
237 static inline void remove_hash(struct stripe_head
*sh
)
239 pr_debug("remove_hash(), stripe %llu\n",
240 (unsigned long long)sh
->sector
);
242 hlist_del_init(&sh
->hash
);
245 static inline void insert_hash(raid5_conf_t
*conf
, struct stripe_head
*sh
)
247 struct hlist_head
*hp
= stripe_hash(conf
, sh
->sector
);
249 pr_debug("insert_hash(), stripe %llu\n",
250 (unsigned long long)sh
->sector
);
253 hlist_add_head(&sh
->hash
, hp
);
257 /* find an idle stripe, make sure it is unhashed, and return it. */
258 static struct stripe_head
*get_free_stripe(raid5_conf_t
*conf
)
260 struct stripe_head
*sh
= NULL
;
261 struct list_head
*first
;
264 if (list_empty(&conf
->inactive_list
))
266 first
= conf
->inactive_list
.next
;
267 sh
= list_entry(first
, struct stripe_head
, lru
);
268 list_del_init(first
);
270 atomic_inc(&conf
->active_stripes
);
275 static void shrink_buffers(struct stripe_head
*sh
, int num
)
280 for (i
=0; i
<num
; i
++) {
284 sh
->dev
[i
].page
= NULL
;
289 static int grow_buffers(struct stripe_head
*sh
, int num
)
293 for (i
=0; i
<num
; i
++) {
296 if (!(page
= alloc_page(GFP_KERNEL
))) {
299 sh
->dev
[i
].page
= page
;
304 static void raid5_build_block(struct stripe_head
*sh
, int i
, int previous
);
305 static void stripe_set_idx(sector_t stripe
, raid5_conf_t
*conf
, int previous
,
306 struct stripe_head
*sh
);
308 static void init_stripe(struct stripe_head
*sh
, sector_t sector
, int previous
)
310 raid5_conf_t
*conf
= sh
->raid_conf
;
313 BUG_ON(atomic_read(&sh
->count
) != 0);
314 BUG_ON(test_bit(STRIPE_HANDLE
, &sh
->state
));
315 BUG_ON(stripe_operations_active(sh
));
318 pr_debug("init_stripe called, stripe %llu\n",
319 (unsigned long long)sh
->sector
);
323 sh
->generation
= conf
->generation
- previous
;
324 sh
->disks
= previous
? conf
->previous_raid_disks
: conf
->raid_disks
;
326 stripe_set_idx(sector
, conf
, previous
, sh
);
330 for (i
= sh
->disks
; i
--; ) {
331 struct r5dev
*dev
= &sh
->dev
[i
];
333 if (dev
->toread
|| dev
->read
|| dev
->towrite
|| dev
->written
||
334 test_bit(R5_LOCKED
, &dev
->flags
)) {
335 printk(KERN_ERR
"sector=%llx i=%d %p %p %p %p %d\n",
336 (unsigned long long)sh
->sector
, i
, dev
->toread
,
337 dev
->read
, dev
->towrite
, dev
->written
,
338 test_bit(R5_LOCKED
, &dev
->flags
));
342 raid5_build_block(sh
, i
, previous
);
344 insert_hash(conf
, sh
);
347 static struct stripe_head
*__find_stripe(raid5_conf_t
*conf
, sector_t sector
,
350 struct stripe_head
*sh
;
351 struct hlist_node
*hn
;
354 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector
);
355 hlist_for_each_entry(sh
, hn
, stripe_hash(conf
, sector
), hash
)
356 if (sh
->sector
== sector
&& sh
->generation
== generation
)
358 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector
);
362 static void unplug_slaves(mddev_t
*mddev
);
363 static void raid5_unplug_device(struct request_queue
*q
);
365 static struct stripe_head
*
366 get_active_stripe(raid5_conf_t
*conf
, sector_t sector
,
367 int previous
, int noblock
, int noquiesce
)
369 struct stripe_head
*sh
;
371 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector
);
373 spin_lock_irq(&conf
->device_lock
);
376 wait_event_lock_irq(conf
->wait_for_stripe
,
377 conf
->quiesce
== 0 || noquiesce
,
378 conf
->device_lock
, /* nothing */);
379 sh
= __find_stripe(conf
, sector
, conf
->generation
- previous
);
381 if (!conf
->inactive_blocked
)
382 sh
= get_free_stripe(conf
);
383 if (noblock
&& sh
== NULL
)
386 conf
->inactive_blocked
= 1;
387 wait_event_lock_irq(conf
->wait_for_stripe
,
388 !list_empty(&conf
->inactive_list
) &&
389 (atomic_read(&conf
->active_stripes
)
390 < (conf
->max_nr_stripes
*3/4)
391 || !conf
->inactive_blocked
),
393 raid5_unplug_device(conf
->mddev
->queue
)
395 conf
->inactive_blocked
= 0;
397 init_stripe(sh
, sector
, previous
);
399 if (atomic_read(&sh
->count
)) {
400 BUG_ON(!list_empty(&sh
->lru
)
401 && !test_bit(STRIPE_EXPANDING
, &sh
->state
));
403 if (!test_bit(STRIPE_HANDLE
, &sh
->state
))
404 atomic_inc(&conf
->active_stripes
);
405 if (list_empty(&sh
->lru
) &&
406 !test_bit(STRIPE_EXPANDING
, &sh
->state
))
408 list_del_init(&sh
->lru
);
411 } while (sh
== NULL
);
414 atomic_inc(&sh
->count
);
416 spin_unlock_irq(&conf
->device_lock
);
421 raid5_end_read_request(struct bio
*bi
, int error
);
423 raid5_end_write_request(struct bio
*bi
, int error
);
425 static void ops_run_io(struct stripe_head
*sh
, struct stripe_head_state
*s
)
427 raid5_conf_t
*conf
= sh
->raid_conf
;
428 int i
, disks
= sh
->disks
;
432 for (i
= disks
; i
--; ) {
436 if (test_and_clear_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
))
438 else if (test_and_clear_bit(R5_Wantread
, &sh
->dev
[i
].flags
))
443 bi
= &sh
->dev
[i
].req
;
447 bi
->bi_end_io
= raid5_end_write_request
;
449 bi
->bi_end_io
= raid5_end_read_request
;
452 rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
453 if (rdev
&& test_bit(Faulty
, &rdev
->flags
))
456 atomic_inc(&rdev
->nr_pending
);
460 if (s
->syncing
|| s
->expanding
|| s
->expanded
)
461 md_sync_acct(rdev
->bdev
, STRIPE_SECTORS
);
463 set_bit(STRIPE_IO_STARTED
, &sh
->state
);
465 bi
->bi_bdev
= rdev
->bdev
;
466 pr_debug("%s: for %llu schedule op %ld on disc %d\n",
467 __func__
, (unsigned long long)sh
->sector
,
469 atomic_inc(&sh
->count
);
470 bi
->bi_sector
= sh
->sector
+ rdev
->data_offset
;
471 bi
->bi_flags
= 1 << BIO_UPTODATE
;
475 bi
->bi_io_vec
= &sh
->dev
[i
].vec
;
476 bi
->bi_io_vec
[0].bv_len
= STRIPE_SIZE
;
477 bi
->bi_io_vec
[0].bv_offset
= 0;
478 bi
->bi_size
= STRIPE_SIZE
;
481 test_bit(R5_ReWrite
, &sh
->dev
[i
].flags
))
482 atomic_add(STRIPE_SECTORS
,
483 &rdev
->corrected_errors
);
484 generic_make_request(bi
);
487 set_bit(STRIPE_DEGRADED
, &sh
->state
);
488 pr_debug("skip op %ld on disc %d for sector %llu\n",
489 bi
->bi_rw
, i
, (unsigned long long)sh
->sector
);
490 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
491 set_bit(STRIPE_HANDLE
, &sh
->state
);
496 static struct dma_async_tx_descriptor
*
497 async_copy_data(int frombio
, struct bio
*bio
, struct page
*page
,
498 sector_t sector
, struct dma_async_tx_descriptor
*tx
)
501 struct page
*bio_page
;
504 struct async_submit_ctl submit
;
505 enum async_tx_flags flags
= 0;
507 if (bio
->bi_sector
>= sector
)
508 page_offset
= (signed)(bio
->bi_sector
- sector
) * 512;
510 page_offset
= (signed)(sector
- bio
->bi_sector
) * -512;
513 flags
|= ASYNC_TX_FENCE
;
514 init_async_submit(&submit
, flags
, tx
, NULL
, NULL
, NULL
);
516 bio_for_each_segment(bvl
, bio
, i
) {
517 int len
= bio_iovec_idx(bio
, i
)->bv_len
;
521 if (page_offset
< 0) {
522 b_offset
= -page_offset
;
523 page_offset
+= b_offset
;
527 if (len
> 0 && page_offset
+ len
> STRIPE_SIZE
)
528 clen
= STRIPE_SIZE
- page_offset
;
533 b_offset
+= bio_iovec_idx(bio
, i
)->bv_offset
;
534 bio_page
= bio_iovec_idx(bio
, i
)->bv_page
;
536 tx
= async_memcpy(page
, bio_page
, page_offset
,
537 b_offset
, clen
, &submit
);
539 tx
= async_memcpy(bio_page
, page
, b_offset
,
540 page_offset
, clen
, &submit
);
542 /* chain the operations */
543 submit
.depend_tx
= tx
;
545 if (clen
< len
) /* hit end of page */
553 static void ops_complete_biofill(void *stripe_head_ref
)
555 struct stripe_head
*sh
= stripe_head_ref
;
556 struct bio
*return_bi
= NULL
;
557 raid5_conf_t
*conf
= sh
->raid_conf
;
560 pr_debug("%s: stripe %llu\n", __func__
,
561 (unsigned long long)sh
->sector
);
563 /* clear completed biofills */
564 spin_lock_irq(&conf
->device_lock
);
565 for (i
= sh
->disks
; i
--; ) {
566 struct r5dev
*dev
= &sh
->dev
[i
];
568 /* acknowledge completion of a biofill operation */
569 /* and check if we need to reply to a read request,
570 * new R5_Wantfill requests are held off until
571 * !STRIPE_BIOFILL_RUN
573 if (test_and_clear_bit(R5_Wantfill
, &dev
->flags
)) {
574 struct bio
*rbi
, *rbi2
;
579 while (rbi
&& rbi
->bi_sector
<
580 dev
->sector
+ STRIPE_SECTORS
) {
581 rbi2
= r5_next_bio(rbi
, dev
->sector
);
582 if (!raid5_dec_bi_phys_segments(rbi
)) {
583 rbi
->bi_next
= return_bi
;
590 spin_unlock_irq(&conf
->device_lock
);
591 clear_bit(STRIPE_BIOFILL_RUN
, &sh
->state
);
593 return_io(return_bi
);
595 set_bit(STRIPE_HANDLE
, &sh
->state
);
599 static void ops_run_biofill(struct stripe_head
*sh
)
601 struct dma_async_tx_descriptor
*tx
= NULL
;
602 raid5_conf_t
*conf
= sh
->raid_conf
;
603 struct async_submit_ctl submit
;
606 pr_debug("%s: stripe %llu\n", __func__
,
607 (unsigned long long)sh
->sector
);
609 for (i
= sh
->disks
; i
--; ) {
610 struct r5dev
*dev
= &sh
->dev
[i
];
611 if (test_bit(R5_Wantfill
, &dev
->flags
)) {
613 spin_lock_irq(&conf
->device_lock
);
614 dev
->read
= rbi
= dev
->toread
;
616 spin_unlock_irq(&conf
->device_lock
);
617 while (rbi
&& rbi
->bi_sector
<
618 dev
->sector
+ STRIPE_SECTORS
) {
619 tx
= async_copy_data(0, rbi
, dev
->page
,
621 rbi
= r5_next_bio(rbi
, dev
->sector
);
626 atomic_inc(&sh
->count
);
627 init_async_submit(&submit
, ASYNC_TX_ACK
, tx
, ops_complete_biofill
, sh
, NULL
);
628 async_trigger_callback(&submit
);
631 static void mark_target_uptodate(struct stripe_head
*sh
, int target
)
638 tgt
= &sh
->dev
[target
];
639 set_bit(R5_UPTODATE
, &tgt
->flags
);
640 BUG_ON(!test_bit(R5_Wantcompute
, &tgt
->flags
));
641 clear_bit(R5_Wantcompute
, &tgt
->flags
);
644 static void ops_complete_compute(void *stripe_head_ref
)
646 struct stripe_head
*sh
= stripe_head_ref
;
648 pr_debug("%s: stripe %llu\n", __func__
,
649 (unsigned long long)sh
->sector
);
651 /* mark the computed target(s) as uptodate */
652 mark_target_uptodate(sh
, sh
->ops
.target
);
653 mark_target_uptodate(sh
, sh
->ops
.target2
);
655 clear_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
656 if (sh
->check_state
== check_state_compute_run
)
657 sh
->check_state
= check_state_compute_result
;
658 set_bit(STRIPE_HANDLE
, &sh
->state
);
662 /* return a pointer to the address conversion region of the scribble buffer */
663 static addr_conv_t
*to_addr_conv(struct stripe_head
*sh
,
664 struct raid5_percpu
*percpu
)
666 return percpu
->scribble
+ sizeof(struct page
*) * (sh
->disks
+ 2);
669 static struct dma_async_tx_descriptor
*
670 ops_run_compute5(struct stripe_head
*sh
, struct raid5_percpu
*percpu
)
672 int disks
= sh
->disks
;
673 struct page
**xor_srcs
= percpu
->scribble
;
674 int target
= sh
->ops
.target
;
675 struct r5dev
*tgt
= &sh
->dev
[target
];
676 struct page
*xor_dest
= tgt
->page
;
678 struct dma_async_tx_descriptor
*tx
;
679 struct async_submit_ctl submit
;
682 pr_debug("%s: stripe %llu block: %d\n",
683 __func__
, (unsigned long long)sh
->sector
, target
);
684 BUG_ON(!test_bit(R5_Wantcompute
, &tgt
->flags
));
686 for (i
= disks
; i
--; )
688 xor_srcs
[count
++] = sh
->dev
[i
].page
;
690 atomic_inc(&sh
->count
);
692 init_async_submit(&submit
, ASYNC_TX_FENCE
|ASYNC_TX_XOR_ZERO_DST
, NULL
,
693 ops_complete_compute
, sh
, to_addr_conv(sh
, percpu
));
694 if (unlikely(count
== 1))
695 tx
= async_memcpy(xor_dest
, xor_srcs
[0], 0, 0, STRIPE_SIZE
, &submit
);
697 tx
= async_xor(xor_dest
, xor_srcs
, 0, count
, STRIPE_SIZE
, &submit
);
702 /* set_syndrome_sources - populate source buffers for gen_syndrome
703 * @srcs - (struct page *) array of size sh->disks
704 * @sh - stripe_head to parse
706 * Populates srcs in proper layout order for the stripe and returns the
707 * 'count' of sources to be used in a call to async_gen_syndrome. The P
708 * destination buffer is recorded in srcs[count] and the Q destination
709 * is recorded in srcs[count+1]].
711 static int set_syndrome_sources(struct page
**srcs
, struct stripe_head
*sh
)
713 int disks
= sh
->disks
;
714 int syndrome_disks
= sh
->ddf_layout
? disks
: (disks
- 2);
715 int d0_idx
= raid6_d0(sh
);
719 for (i
= 0; i
< disks
; i
++)
720 srcs
[i
] = (void *)raid6_empty_zero_page
;
725 int slot
= raid6_idx_to_slot(i
, sh
, &count
, syndrome_disks
);
727 srcs
[slot
] = sh
->dev
[i
].page
;
728 i
= raid6_next_disk(i
, disks
);
729 } while (i
!= d0_idx
);
730 BUG_ON(count
!= syndrome_disks
);
735 static struct dma_async_tx_descriptor
*
736 ops_run_compute6_1(struct stripe_head
*sh
, struct raid5_percpu
*percpu
)
738 int disks
= sh
->disks
;
739 struct page
**blocks
= percpu
->scribble
;
741 int qd_idx
= sh
->qd_idx
;
742 struct dma_async_tx_descriptor
*tx
;
743 struct async_submit_ctl submit
;
749 if (sh
->ops
.target
< 0)
750 target
= sh
->ops
.target2
;
751 else if (sh
->ops
.target2
< 0)
752 target
= sh
->ops
.target
;
754 /* we should only have one valid target */
757 pr_debug("%s: stripe %llu block: %d\n",
758 __func__
, (unsigned long long)sh
->sector
, target
);
760 tgt
= &sh
->dev
[target
];
761 BUG_ON(!test_bit(R5_Wantcompute
, &tgt
->flags
));
764 atomic_inc(&sh
->count
);
766 if (target
== qd_idx
) {
767 count
= set_syndrome_sources(blocks
, sh
);
768 blocks
[count
] = NULL
; /* regenerating p is not necessary */
769 BUG_ON(blocks
[count
+1] != dest
); /* q should already be set */
770 init_async_submit(&submit
, ASYNC_TX_FENCE
, NULL
,
771 ops_complete_compute
, sh
,
772 to_addr_conv(sh
, percpu
));
773 tx
= async_gen_syndrome(blocks
, 0, count
+2, STRIPE_SIZE
, &submit
);
775 /* Compute any data- or p-drive using XOR */
777 for (i
= disks
; i
-- ; ) {
778 if (i
== target
|| i
== qd_idx
)
780 blocks
[count
++] = sh
->dev
[i
].page
;
783 init_async_submit(&submit
, ASYNC_TX_FENCE
|ASYNC_TX_XOR_ZERO_DST
,
784 NULL
, ops_complete_compute
, sh
,
785 to_addr_conv(sh
, percpu
));
786 tx
= async_xor(dest
, blocks
, 0, count
, STRIPE_SIZE
, &submit
);
792 static struct dma_async_tx_descriptor
*
793 ops_run_compute6_2(struct stripe_head
*sh
, struct raid5_percpu
*percpu
)
795 int i
, count
, disks
= sh
->disks
;
796 int syndrome_disks
= sh
->ddf_layout
? disks
: disks
-2;
797 int d0_idx
= raid6_d0(sh
);
798 int faila
= -1, failb
= -1;
799 int target
= sh
->ops
.target
;
800 int target2
= sh
->ops
.target2
;
801 struct r5dev
*tgt
= &sh
->dev
[target
];
802 struct r5dev
*tgt2
= &sh
->dev
[target2
];
803 struct dma_async_tx_descriptor
*tx
;
804 struct page
**blocks
= percpu
->scribble
;
805 struct async_submit_ctl submit
;
807 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
808 __func__
, (unsigned long long)sh
->sector
, target
, target2
);
809 BUG_ON(target
< 0 || target2
< 0);
810 BUG_ON(!test_bit(R5_Wantcompute
, &tgt
->flags
));
811 BUG_ON(!test_bit(R5_Wantcompute
, &tgt2
->flags
));
813 /* we need to open-code set_syndrome_sources to handle the
814 * slot number conversion for 'faila' and 'failb'
816 for (i
= 0; i
< disks
; i
++)
817 blocks
[i
] = (void *)raid6_empty_zero_page
;
821 int slot
= raid6_idx_to_slot(i
, sh
, &count
, syndrome_disks
);
823 blocks
[slot
] = sh
->dev
[i
].page
;
829 i
= raid6_next_disk(i
, disks
);
830 } while (i
!= d0_idx
);
831 BUG_ON(count
!= syndrome_disks
);
833 BUG_ON(faila
== failb
);
836 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
837 __func__
, (unsigned long long)sh
->sector
, faila
, failb
);
839 atomic_inc(&sh
->count
);
841 if (failb
== syndrome_disks
+1) {
842 /* Q disk is one of the missing disks */
843 if (faila
== syndrome_disks
) {
844 /* Missing P+Q, just recompute */
845 init_async_submit(&submit
, ASYNC_TX_FENCE
, NULL
,
846 ops_complete_compute
, sh
,
847 to_addr_conv(sh
, percpu
));
848 return async_gen_syndrome(blocks
, 0, count
+2,
849 STRIPE_SIZE
, &submit
);
853 int qd_idx
= sh
->qd_idx
;
855 /* Missing D+Q: recompute D from P, then recompute Q */
856 if (target
== qd_idx
)
857 data_target
= target2
;
859 data_target
= target
;
862 for (i
= disks
; i
-- ; ) {
863 if (i
== data_target
|| i
== qd_idx
)
865 blocks
[count
++] = sh
->dev
[i
].page
;
867 dest
= sh
->dev
[data_target
].page
;
868 init_async_submit(&submit
,
869 ASYNC_TX_FENCE
|ASYNC_TX_XOR_ZERO_DST
,
871 to_addr_conv(sh
, percpu
));
872 tx
= async_xor(dest
, blocks
, 0, count
, STRIPE_SIZE
,
875 count
= set_syndrome_sources(blocks
, sh
);
876 init_async_submit(&submit
, ASYNC_TX_FENCE
, tx
,
877 ops_complete_compute
, sh
,
878 to_addr_conv(sh
, percpu
));
879 return async_gen_syndrome(blocks
, 0, count
+2,
880 STRIPE_SIZE
, &submit
);
883 init_async_submit(&submit
, ASYNC_TX_FENCE
, NULL
,
884 ops_complete_compute
, sh
,
885 to_addr_conv(sh
, percpu
));
886 if (failb
== syndrome_disks
) {
887 /* We're missing D+P. */
888 return async_raid6_datap_recov(syndrome_disks
+2,
892 /* We're missing D+D. */
893 return async_raid6_2data_recov(syndrome_disks
+2,
894 STRIPE_SIZE
, faila
, failb
,
901 static void ops_complete_prexor(void *stripe_head_ref
)
903 struct stripe_head
*sh
= stripe_head_ref
;
905 pr_debug("%s: stripe %llu\n", __func__
,
906 (unsigned long long)sh
->sector
);
909 static struct dma_async_tx_descriptor
*
910 ops_run_prexor(struct stripe_head
*sh
, struct raid5_percpu
*percpu
,
911 struct dma_async_tx_descriptor
*tx
)
913 int disks
= sh
->disks
;
914 struct page
**xor_srcs
= percpu
->scribble
;
915 int count
= 0, pd_idx
= sh
->pd_idx
, i
;
916 struct async_submit_ctl submit
;
918 /* existing parity data subtracted */
919 struct page
*xor_dest
= xor_srcs
[count
++] = sh
->dev
[pd_idx
].page
;
921 pr_debug("%s: stripe %llu\n", __func__
,
922 (unsigned long long)sh
->sector
);
924 for (i
= disks
; i
--; ) {
925 struct r5dev
*dev
= &sh
->dev
[i
];
926 /* Only process blocks that are known to be uptodate */
927 if (test_bit(R5_Wantdrain
, &dev
->flags
))
928 xor_srcs
[count
++] = dev
->page
;
931 init_async_submit(&submit
, ASYNC_TX_FENCE
|ASYNC_TX_XOR_DROP_DST
, tx
,
932 ops_complete_prexor
, sh
, to_addr_conv(sh
, percpu
));
933 tx
= async_xor(xor_dest
, xor_srcs
, 0, count
, STRIPE_SIZE
, &submit
);
938 static struct dma_async_tx_descriptor
*
939 ops_run_biodrain(struct stripe_head
*sh
, struct dma_async_tx_descriptor
*tx
)
941 int disks
= sh
->disks
;
944 pr_debug("%s: stripe %llu\n", __func__
,
945 (unsigned long long)sh
->sector
);
947 for (i
= disks
; i
--; ) {
948 struct r5dev
*dev
= &sh
->dev
[i
];
951 if (test_and_clear_bit(R5_Wantdrain
, &dev
->flags
)) {
954 spin_lock(&sh
->lock
);
955 chosen
= dev
->towrite
;
957 BUG_ON(dev
->written
);
958 wbi
= dev
->written
= chosen
;
959 spin_unlock(&sh
->lock
);
961 while (wbi
&& wbi
->bi_sector
<
962 dev
->sector
+ STRIPE_SECTORS
) {
963 tx
= async_copy_data(1, wbi
, dev
->page
,
965 wbi
= r5_next_bio(wbi
, dev
->sector
);
973 static void ops_complete_reconstruct(void *stripe_head_ref
)
975 struct stripe_head
*sh
= stripe_head_ref
;
976 int disks
= sh
->disks
;
977 int pd_idx
= sh
->pd_idx
;
978 int qd_idx
= sh
->qd_idx
;
981 pr_debug("%s: stripe %llu\n", __func__
,
982 (unsigned long long)sh
->sector
);
984 for (i
= disks
; i
--; ) {
985 struct r5dev
*dev
= &sh
->dev
[i
];
987 if (dev
->written
|| i
== pd_idx
|| i
== qd_idx
)
988 set_bit(R5_UPTODATE
, &dev
->flags
);
991 if (sh
->reconstruct_state
== reconstruct_state_drain_run
)
992 sh
->reconstruct_state
= reconstruct_state_drain_result
;
993 else if (sh
->reconstruct_state
== reconstruct_state_prexor_drain_run
)
994 sh
->reconstruct_state
= reconstruct_state_prexor_drain_result
;
996 BUG_ON(sh
->reconstruct_state
!= reconstruct_state_run
);
997 sh
->reconstruct_state
= reconstruct_state_result
;
1000 set_bit(STRIPE_HANDLE
, &sh
->state
);
1005 ops_run_reconstruct5(struct stripe_head
*sh
, struct raid5_percpu
*percpu
,
1006 struct dma_async_tx_descriptor
*tx
)
1008 int disks
= sh
->disks
;
1009 struct page
**xor_srcs
= percpu
->scribble
;
1010 struct async_submit_ctl submit
;
1011 int count
= 0, pd_idx
= sh
->pd_idx
, i
;
1012 struct page
*xor_dest
;
1014 unsigned long flags
;
1016 pr_debug("%s: stripe %llu\n", __func__
,
1017 (unsigned long long)sh
->sector
);
1019 /* check if prexor is active which means only process blocks
1020 * that are part of a read-modify-write (written)
1022 if (sh
->reconstruct_state
== reconstruct_state_prexor_drain_run
) {
1024 xor_dest
= xor_srcs
[count
++] = sh
->dev
[pd_idx
].page
;
1025 for (i
= disks
; i
--; ) {
1026 struct r5dev
*dev
= &sh
->dev
[i
];
1028 xor_srcs
[count
++] = dev
->page
;
1031 xor_dest
= sh
->dev
[pd_idx
].page
;
1032 for (i
= disks
; i
--; ) {
1033 struct r5dev
*dev
= &sh
->dev
[i
];
1035 xor_srcs
[count
++] = dev
->page
;
1039 /* 1/ if we prexor'd then the dest is reused as a source
1040 * 2/ if we did not prexor then we are redoing the parity
1041 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1042 * for the synchronous xor case
1044 flags
= ASYNC_TX_ACK
|
1045 (prexor
? ASYNC_TX_XOR_DROP_DST
: ASYNC_TX_XOR_ZERO_DST
);
1047 atomic_inc(&sh
->count
);
1049 init_async_submit(&submit
, flags
, tx
, ops_complete_reconstruct
, sh
,
1050 to_addr_conv(sh
, percpu
));
1051 if (unlikely(count
== 1))
1052 tx
= async_memcpy(xor_dest
, xor_srcs
[0], 0, 0, STRIPE_SIZE
, &submit
);
1054 tx
= async_xor(xor_dest
, xor_srcs
, 0, count
, STRIPE_SIZE
, &submit
);
1058 ops_run_reconstruct6(struct stripe_head
*sh
, struct raid5_percpu
*percpu
,
1059 struct dma_async_tx_descriptor
*tx
)
1061 struct async_submit_ctl submit
;
1062 struct page
**blocks
= percpu
->scribble
;
1065 pr_debug("%s: stripe %llu\n", __func__
, (unsigned long long)sh
->sector
);
1067 count
= set_syndrome_sources(blocks
, sh
);
1069 atomic_inc(&sh
->count
);
1071 init_async_submit(&submit
, ASYNC_TX_ACK
, tx
, ops_complete_reconstruct
,
1072 sh
, to_addr_conv(sh
, percpu
));
1073 async_gen_syndrome(blocks
, 0, count
+2, STRIPE_SIZE
, &submit
);
1076 static void ops_complete_check(void *stripe_head_ref
)
1078 struct stripe_head
*sh
= stripe_head_ref
;
1080 pr_debug("%s: stripe %llu\n", __func__
,
1081 (unsigned long long)sh
->sector
);
1083 sh
->check_state
= check_state_check_result
;
1084 set_bit(STRIPE_HANDLE
, &sh
->state
);
1088 static void ops_run_check_p(struct stripe_head
*sh
, struct raid5_percpu
*percpu
)
1090 int disks
= sh
->disks
;
1091 int pd_idx
= sh
->pd_idx
;
1092 int qd_idx
= sh
->qd_idx
;
1093 struct page
*xor_dest
;
1094 struct page
**xor_srcs
= percpu
->scribble
;
1095 struct dma_async_tx_descriptor
*tx
;
1096 struct async_submit_ctl submit
;
1100 pr_debug("%s: stripe %llu\n", __func__
,
1101 (unsigned long long)sh
->sector
);
1104 xor_dest
= sh
->dev
[pd_idx
].page
;
1105 xor_srcs
[count
++] = xor_dest
;
1106 for (i
= disks
; i
--; ) {
1107 if (i
== pd_idx
|| i
== qd_idx
)
1109 xor_srcs
[count
++] = sh
->dev
[i
].page
;
1112 init_async_submit(&submit
, 0, NULL
, NULL
, NULL
,
1113 to_addr_conv(sh
, percpu
));
1114 tx
= async_xor_val(xor_dest
, xor_srcs
, 0, count
, STRIPE_SIZE
,
1115 &sh
->ops
.zero_sum_result
, &submit
);
1117 atomic_inc(&sh
->count
);
1118 init_async_submit(&submit
, ASYNC_TX_ACK
, tx
, ops_complete_check
, sh
, NULL
);
1119 tx
= async_trigger_callback(&submit
);
1122 static void ops_run_check_pq(struct stripe_head
*sh
, struct raid5_percpu
*percpu
, int checkp
)
1124 struct page
**srcs
= percpu
->scribble
;
1125 struct async_submit_ctl submit
;
1128 pr_debug("%s: stripe %llu checkp: %d\n", __func__
,
1129 (unsigned long long)sh
->sector
, checkp
);
1131 count
= set_syndrome_sources(srcs
, sh
);
1135 atomic_inc(&sh
->count
);
1136 init_async_submit(&submit
, ASYNC_TX_ACK
, NULL
, ops_complete_check
,
1137 sh
, to_addr_conv(sh
, percpu
));
1138 async_syndrome_val(srcs
, 0, count
+2, STRIPE_SIZE
,
1139 &sh
->ops
.zero_sum_result
, percpu
->spare_page
, &submit
);
1142 static void raid_run_ops(struct stripe_head
*sh
, unsigned long ops_request
)
1144 int overlap_clear
= 0, i
, disks
= sh
->disks
;
1145 struct dma_async_tx_descriptor
*tx
= NULL
;
1146 raid5_conf_t
*conf
= sh
->raid_conf
;
1147 int level
= conf
->level
;
1148 struct raid5_percpu
*percpu
;
1152 percpu
= per_cpu_ptr(conf
->percpu
, cpu
);
1153 if (test_bit(STRIPE_OP_BIOFILL
, &ops_request
)) {
1154 ops_run_biofill(sh
);
1158 if (test_bit(STRIPE_OP_COMPUTE_BLK
, &ops_request
)) {
1160 tx
= ops_run_compute5(sh
, percpu
);
1162 if (sh
->ops
.target2
< 0 || sh
->ops
.target
< 0)
1163 tx
= ops_run_compute6_1(sh
, percpu
);
1165 tx
= ops_run_compute6_2(sh
, percpu
);
1167 /* terminate the chain if reconstruct is not set to be run */
1168 if (tx
&& !test_bit(STRIPE_OP_RECONSTRUCT
, &ops_request
))
1172 if (test_bit(STRIPE_OP_PREXOR
, &ops_request
))
1173 tx
= ops_run_prexor(sh
, percpu
, tx
);
1175 if (test_bit(STRIPE_OP_BIODRAIN
, &ops_request
)) {
1176 tx
= ops_run_biodrain(sh
, tx
);
1180 if (test_bit(STRIPE_OP_RECONSTRUCT
, &ops_request
)) {
1182 ops_run_reconstruct5(sh
, percpu
, tx
);
1184 ops_run_reconstruct6(sh
, percpu
, tx
);
1187 if (test_bit(STRIPE_OP_CHECK
, &ops_request
)) {
1188 if (sh
->check_state
== check_state_run
)
1189 ops_run_check_p(sh
, percpu
);
1190 else if (sh
->check_state
== check_state_run_q
)
1191 ops_run_check_pq(sh
, percpu
, 0);
1192 else if (sh
->check_state
== check_state_run_pq
)
1193 ops_run_check_pq(sh
, percpu
, 1);
1199 for (i
= disks
; i
--; ) {
1200 struct r5dev
*dev
= &sh
->dev
[i
];
1201 if (test_and_clear_bit(R5_Overlap
, &dev
->flags
))
1202 wake_up(&sh
->raid_conf
->wait_for_overlap
);
1207 static int grow_one_stripe(raid5_conf_t
*conf
)
1209 struct stripe_head
*sh
;
1210 sh
= kmem_cache_alloc(conf
->slab_cache
, GFP_KERNEL
);
1213 memset(sh
, 0, sizeof(*sh
) + (conf
->raid_disks
-1)*sizeof(struct r5dev
));
1214 sh
->raid_conf
= conf
;
1215 spin_lock_init(&sh
->lock
);
1217 if (grow_buffers(sh
, conf
->raid_disks
)) {
1218 shrink_buffers(sh
, conf
->raid_disks
);
1219 kmem_cache_free(conf
->slab_cache
, sh
);
1222 sh
->disks
= conf
->raid_disks
;
1223 /* we just created an active stripe so... */
1224 atomic_set(&sh
->count
, 1);
1225 atomic_inc(&conf
->active_stripes
);
1226 INIT_LIST_HEAD(&sh
->lru
);
1231 static int grow_stripes(raid5_conf_t
*conf
, int num
)
1233 struct kmem_cache
*sc
;
1234 int devs
= conf
->raid_disks
;
1236 sprintf(conf
->cache_name
[0],
1237 "raid%d-%s", conf
->level
, mdname(conf
->mddev
));
1238 sprintf(conf
->cache_name
[1],
1239 "raid%d-%s-alt", conf
->level
, mdname(conf
->mddev
));
1240 conf
->active_name
= 0;
1241 sc
= kmem_cache_create(conf
->cache_name
[conf
->active_name
],
1242 sizeof(struct stripe_head
)+(devs
-1)*sizeof(struct r5dev
),
1246 conf
->slab_cache
= sc
;
1247 conf
->pool_size
= devs
;
1249 if (!grow_one_stripe(conf
))
1255 * scribble_len - return the required size of the scribble region
1256 * @num - total number of disks in the array
1258 * The size must be enough to contain:
1259 * 1/ a struct page pointer for each device in the array +2
1260 * 2/ room to convert each entry in (1) to its corresponding dma
1261 * (dma_map_page()) or page (page_address()) address.
1263 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1264 * calculate over all devices (not just the data blocks), using zeros in place
1265 * of the P and Q blocks.
1267 static size_t scribble_len(int num
)
1271 len
= sizeof(struct page
*) * (num
+2) + sizeof(addr_conv_t
) * (num
+2);
1276 static int resize_stripes(raid5_conf_t
*conf
, int newsize
)
1278 /* Make all the stripes able to hold 'newsize' devices.
1279 * New slots in each stripe get 'page' set to a new page.
1281 * This happens in stages:
1282 * 1/ create a new kmem_cache and allocate the required number of
1284 * 2/ gather all the old stripe_heads and tranfer the pages across
1285 * to the new stripe_heads. This will have the side effect of
1286 * freezing the array as once all stripe_heads have been collected,
1287 * no IO will be possible. Old stripe heads are freed once their
1288 * pages have been transferred over, and the old kmem_cache is
1289 * freed when all stripes are done.
1290 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
1291 * we simple return a failre status - no need to clean anything up.
1292 * 4/ allocate new pages for the new slots in the new stripe_heads.
1293 * If this fails, we don't bother trying the shrink the
1294 * stripe_heads down again, we just leave them as they are.
1295 * As each stripe_head is processed the new one is released into
1298 * Once step2 is started, we cannot afford to wait for a write,
1299 * so we use GFP_NOIO allocations.
1301 struct stripe_head
*osh
, *nsh
;
1302 LIST_HEAD(newstripes
);
1303 struct disk_info
*ndisks
;
1306 struct kmem_cache
*sc
;
1309 if (newsize
<= conf
->pool_size
)
1310 return 0; /* never bother to shrink */
1312 err
= md_allow_write(conf
->mddev
);
1317 sc
= kmem_cache_create(conf
->cache_name
[1-conf
->active_name
],
1318 sizeof(struct stripe_head
)+(newsize
-1)*sizeof(struct r5dev
),
1323 for (i
= conf
->max_nr_stripes
; i
; i
--) {
1324 nsh
= kmem_cache_alloc(sc
, GFP_KERNEL
);
1328 memset(nsh
, 0, sizeof(*nsh
) + (newsize
-1)*sizeof(struct r5dev
));
1330 nsh
->raid_conf
= conf
;
1331 spin_lock_init(&nsh
->lock
);
1333 list_add(&nsh
->lru
, &newstripes
);
1336 /* didn't get enough, give up */
1337 while (!list_empty(&newstripes
)) {
1338 nsh
= list_entry(newstripes
.next
, struct stripe_head
, lru
);
1339 list_del(&nsh
->lru
);
1340 kmem_cache_free(sc
, nsh
);
1342 kmem_cache_destroy(sc
);
1345 /* Step 2 - Must use GFP_NOIO now.
1346 * OK, we have enough stripes, start collecting inactive
1347 * stripes and copying them over
1349 list_for_each_entry(nsh
, &newstripes
, lru
) {
1350 spin_lock_irq(&conf
->device_lock
);
1351 wait_event_lock_irq(conf
->wait_for_stripe
,
1352 !list_empty(&conf
->inactive_list
),
1354 unplug_slaves(conf
->mddev
)
1356 osh
= get_free_stripe(conf
);
1357 spin_unlock_irq(&conf
->device_lock
);
1358 atomic_set(&nsh
->count
, 1);
1359 for(i
=0; i
<conf
->pool_size
; i
++)
1360 nsh
->dev
[i
].page
= osh
->dev
[i
].page
;
1361 for( ; i
<newsize
; i
++)
1362 nsh
->dev
[i
].page
= NULL
;
1363 kmem_cache_free(conf
->slab_cache
, osh
);
1365 kmem_cache_destroy(conf
->slab_cache
);
1368 * At this point, we are holding all the stripes so the array
1369 * is completely stalled, so now is a good time to resize
1370 * conf->disks and the scribble region
1372 ndisks
= kzalloc(newsize
* sizeof(struct disk_info
), GFP_NOIO
);
1374 for (i
=0; i
<conf
->raid_disks
; i
++)
1375 ndisks
[i
] = conf
->disks
[i
];
1377 conf
->disks
= ndisks
;
1382 conf
->scribble_len
= scribble_len(newsize
);
1383 for_each_present_cpu(cpu
) {
1384 struct raid5_percpu
*percpu
;
1387 percpu
= per_cpu_ptr(conf
->percpu
, cpu
);
1388 scribble
= kmalloc(conf
->scribble_len
, GFP_NOIO
);
1391 kfree(percpu
->scribble
);
1392 percpu
->scribble
= scribble
;
1400 /* Step 4, return new stripes to service */
1401 while(!list_empty(&newstripes
)) {
1402 nsh
= list_entry(newstripes
.next
, struct stripe_head
, lru
);
1403 list_del_init(&nsh
->lru
);
1405 for (i
=conf
->raid_disks
; i
< newsize
; i
++)
1406 if (nsh
->dev
[i
].page
== NULL
) {
1407 struct page
*p
= alloc_page(GFP_NOIO
);
1408 nsh
->dev
[i
].page
= p
;
1412 release_stripe(nsh
);
1414 /* critical section pass, GFP_NOIO no longer needed */
1416 conf
->slab_cache
= sc
;
1417 conf
->active_name
= 1-conf
->active_name
;
1418 conf
->pool_size
= newsize
;
1422 static int drop_one_stripe(raid5_conf_t
*conf
)
1424 struct stripe_head
*sh
;
1426 spin_lock_irq(&conf
->device_lock
);
1427 sh
= get_free_stripe(conf
);
1428 spin_unlock_irq(&conf
->device_lock
);
1431 BUG_ON(atomic_read(&sh
->count
));
1432 shrink_buffers(sh
, conf
->pool_size
);
1433 kmem_cache_free(conf
->slab_cache
, sh
);
1434 atomic_dec(&conf
->active_stripes
);
1438 static void shrink_stripes(raid5_conf_t
*conf
)
1440 while (drop_one_stripe(conf
))
1443 if (conf
->slab_cache
)
1444 kmem_cache_destroy(conf
->slab_cache
);
1445 conf
->slab_cache
= NULL
;
1448 static void raid5_end_read_request(struct bio
* bi
, int error
)
1450 struct stripe_head
*sh
= bi
->bi_private
;
1451 raid5_conf_t
*conf
= sh
->raid_conf
;
1452 int disks
= sh
->disks
, i
;
1453 int uptodate
= test_bit(BIO_UPTODATE
, &bi
->bi_flags
);
1454 char b
[BDEVNAME_SIZE
];
1458 for (i
=0 ; i
<disks
; i
++)
1459 if (bi
== &sh
->dev
[i
].req
)
1462 pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1463 (unsigned long long)sh
->sector
, i
, atomic_read(&sh
->count
),
1471 set_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
);
1472 if (test_bit(R5_ReadError
, &sh
->dev
[i
].flags
)) {
1473 rdev
= conf
->disks
[i
].rdev
;
1474 printk_rl(KERN_INFO
"raid5:%s: read error corrected"
1475 " (%lu sectors at %llu on %s)\n",
1476 mdname(conf
->mddev
), STRIPE_SECTORS
,
1477 (unsigned long long)(sh
->sector
1478 + rdev
->data_offset
),
1479 bdevname(rdev
->bdev
, b
));
1480 clear_bit(R5_ReadError
, &sh
->dev
[i
].flags
);
1481 clear_bit(R5_ReWrite
, &sh
->dev
[i
].flags
);
1483 if (atomic_read(&conf
->disks
[i
].rdev
->read_errors
))
1484 atomic_set(&conf
->disks
[i
].rdev
->read_errors
, 0);
1486 const char *bdn
= bdevname(conf
->disks
[i
].rdev
->bdev
, b
);
1488 rdev
= conf
->disks
[i
].rdev
;
1490 clear_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
);
1491 atomic_inc(&rdev
->read_errors
);
1492 if (conf
->mddev
->degraded
)
1493 printk_rl(KERN_WARNING
1494 "raid5:%s: read error not correctable "
1495 "(sector %llu on %s).\n",
1496 mdname(conf
->mddev
),
1497 (unsigned long long)(sh
->sector
1498 + rdev
->data_offset
),
1500 else if (test_bit(R5_ReWrite
, &sh
->dev
[i
].flags
))
1502 printk_rl(KERN_WARNING
1503 "raid5:%s: read error NOT corrected!! "
1504 "(sector %llu on %s).\n",
1505 mdname(conf
->mddev
),
1506 (unsigned long long)(sh
->sector
1507 + rdev
->data_offset
),
1509 else if (atomic_read(&rdev
->read_errors
)
1510 > conf
->max_nr_stripes
)
1512 "raid5:%s: Too many read errors, failing device %s.\n",
1513 mdname(conf
->mddev
), bdn
);
1517 set_bit(R5_ReadError
, &sh
->dev
[i
].flags
);
1519 clear_bit(R5_ReadError
, &sh
->dev
[i
].flags
);
1520 clear_bit(R5_ReWrite
, &sh
->dev
[i
].flags
);
1521 md_error(conf
->mddev
, rdev
);
1524 rdev_dec_pending(conf
->disks
[i
].rdev
, conf
->mddev
);
1525 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
1526 set_bit(STRIPE_HANDLE
, &sh
->state
);
1530 static void raid5_end_write_request(struct bio
*bi
, int error
)
1532 struct stripe_head
*sh
= bi
->bi_private
;
1533 raid5_conf_t
*conf
= sh
->raid_conf
;
1534 int disks
= sh
->disks
, i
;
1535 int uptodate
= test_bit(BIO_UPTODATE
, &bi
->bi_flags
);
1537 for (i
=0 ; i
<disks
; i
++)
1538 if (bi
== &sh
->dev
[i
].req
)
1541 pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1542 (unsigned long long)sh
->sector
, i
, atomic_read(&sh
->count
),
1550 md_error(conf
->mddev
, conf
->disks
[i
].rdev
);
1552 rdev_dec_pending(conf
->disks
[i
].rdev
, conf
->mddev
);
1554 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
1555 set_bit(STRIPE_HANDLE
, &sh
->state
);
1560 static sector_t
compute_blocknr(struct stripe_head
*sh
, int i
, int previous
);
1562 static void raid5_build_block(struct stripe_head
*sh
, int i
, int previous
)
1564 struct r5dev
*dev
= &sh
->dev
[i
];
1566 bio_init(&dev
->req
);
1567 dev
->req
.bi_io_vec
= &dev
->vec
;
1569 dev
->req
.bi_max_vecs
++;
1570 dev
->vec
.bv_page
= dev
->page
;
1571 dev
->vec
.bv_len
= STRIPE_SIZE
;
1572 dev
->vec
.bv_offset
= 0;
1574 dev
->req
.bi_sector
= sh
->sector
;
1575 dev
->req
.bi_private
= sh
;
1578 dev
->sector
= compute_blocknr(sh
, i
, previous
);
1581 static void error(mddev_t
*mddev
, mdk_rdev_t
*rdev
)
1583 char b
[BDEVNAME_SIZE
];
1584 raid5_conf_t
*conf
= (raid5_conf_t
*) mddev
->private;
1585 pr_debug("raid5: error called\n");
1587 if (!test_bit(Faulty
, &rdev
->flags
)) {
1588 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
1589 if (test_and_clear_bit(In_sync
, &rdev
->flags
)) {
1590 unsigned long flags
;
1591 spin_lock_irqsave(&conf
->device_lock
, flags
);
1593 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1595 * if recovery was running, make sure it aborts.
1597 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
1599 set_bit(Faulty
, &rdev
->flags
);
1601 "raid5: Disk failure on %s, disabling device.\n"
1602 "raid5: Operation continuing on %d devices.\n",
1603 bdevname(rdev
->bdev
,b
), conf
->raid_disks
- mddev
->degraded
);
1608 * Input: a 'big' sector number,
1609 * Output: index of the data and parity disk, and the sector # in them.
1611 static sector_t
raid5_compute_sector(raid5_conf_t
*conf
, sector_t r_sector
,
1612 int previous
, int *dd_idx
,
1613 struct stripe_head
*sh
)
1616 unsigned long chunk_number
;
1617 unsigned int chunk_offset
;
1620 sector_t new_sector
;
1621 int algorithm
= previous
? conf
->prev_algo
1623 int sectors_per_chunk
= previous
? conf
->prev_chunk_sectors
1624 : conf
->chunk_sectors
;
1625 int raid_disks
= previous
? conf
->previous_raid_disks
1627 int data_disks
= raid_disks
- conf
->max_degraded
;
1629 /* First compute the information on this sector */
1632 * Compute the chunk number and the sector offset inside the chunk
1634 chunk_offset
= sector_div(r_sector
, sectors_per_chunk
);
1635 chunk_number
= r_sector
;
1636 BUG_ON(r_sector
!= chunk_number
);
1639 * Compute the stripe number
1641 stripe
= chunk_number
/ data_disks
;
1644 * Compute the data disk and parity disk indexes inside the stripe
1646 *dd_idx
= chunk_number
% data_disks
;
1649 * Select the parity disk based on the user selected algorithm.
1651 pd_idx
= qd_idx
= ~0;
1652 switch(conf
->level
) {
1654 pd_idx
= data_disks
;
1657 switch (algorithm
) {
1658 case ALGORITHM_LEFT_ASYMMETRIC
:
1659 pd_idx
= data_disks
- stripe
% raid_disks
;
1660 if (*dd_idx
>= pd_idx
)
1663 case ALGORITHM_RIGHT_ASYMMETRIC
:
1664 pd_idx
= stripe
% raid_disks
;
1665 if (*dd_idx
>= pd_idx
)
1668 case ALGORITHM_LEFT_SYMMETRIC
:
1669 pd_idx
= data_disks
- stripe
% raid_disks
;
1670 *dd_idx
= (pd_idx
+ 1 + *dd_idx
) % raid_disks
;
1672 case ALGORITHM_RIGHT_SYMMETRIC
:
1673 pd_idx
= stripe
% raid_disks
;
1674 *dd_idx
= (pd_idx
+ 1 + *dd_idx
) % raid_disks
;
1676 case ALGORITHM_PARITY_0
:
1680 case ALGORITHM_PARITY_N
:
1681 pd_idx
= data_disks
;
1684 printk(KERN_ERR
"raid5: unsupported algorithm %d\n",
1691 switch (algorithm
) {
1692 case ALGORITHM_LEFT_ASYMMETRIC
:
1693 pd_idx
= raid_disks
- 1 - (stripe
% raid_disks
);
1694 qd_idx
= pd_idx
+ 1;
1695 if (pd_idx
== raid_disks
-1) {
1696 (*dd_idx
)++; /* Q D D D P */
1698 } else if (*dd_idx
>= pd_idx
)
1699 (*dd_idx
) += 2; /* D D P Q D */
1701 case ALGORITHM_RIGHT_ASYMMETRIC
:
1702 pd_idx
= stripe
% raid_disks
;
1703 qd_idx
= pd_idx
+ 1;
1704 if (pd_idx
== raid_disks
-1) {
1705 (*dd_idx
)++; /* Q D D D P */
1707 } else if (*dd_idx
>= pd_idx
)
1708 (*dd_idx
) += 2; /* D D P Q D */
1710 case ALGORITHM_LEFT_SYMMETRIC
:
1711 pd_idx
= raid_disks
- 1 - (stripe
% raid_disks
);
1712 qd_idx
= (pd_idx
+ 1) % raid_disks
;
1713 *dd_idx
= (pd_idx
+ 2 + *dd_idx
) % raid_disks
;
1715 case ALGORITHM_RIGHT_SYMMETRIC
:
1716 pd_idx
= stripe
% raid_disks
;
1717 qd_idx
= (pd_idx
+ 1) % raid_disks
;
1718 *dd_idx
= (pd_idx
+ 2 + *dd_idx
) % raid_disks
;
1721 case ALGORITHM_PARITY_0
:
1726 case ALGORITHM_PARITY_N
:
1727 pd_idx
= data_disks
;
1728 qd_idx
= data_disks
+ 1;
1731 case ALGORITHM_ROTATING_ZERO_RESTART
:
1732 /* Exactly the same as RIGHT_ASYMMETRIC, but or
1733 * of blocks for computing Q is different.
1735 pd_idx
= stripe
% raid_disks
;
1736 qd_idx
= pd_idx
+ 1;
1737 if (pd_idx
== raid_disks
-1) {
1738 (*dd_idx
)++; /* Q D D D P */
1740 } else if (*dd_idx
>= pd_idx
)
1741 (*dd_idx
) += 2; /* D D P Q D */
1745 case ALGORITHM_ROTATING_N_RESTART
:
1746 /* Same a left_asymmetric, by first stripe is
1747 * D D D P Q rather than
1750 pd_idx
= raid_disks
- 1 - ((stripe
+ 1) % raid_disks
);
1751 qd_idx
= pd_idx
+ 1;
1752 if (pd_idx
== raid_disks
-1) {
1753 (*dd_idx
)++; /* Q D D D P */
1755 } else if (*dd_idx
>= pd_idx
)
1756 (*dd_idx
) += 2; /* D D P Q D */
1760 case ALGORITHM_ROTATING_N_CONTINUE
:
1761 /* Same as left_symmetric but Q is before P */
1762 pd_idx
= raid_disks
- 1 - (stripe
% raid_disks
);
1763 qd_idx
= (pd_idx
+ raid_disks
- 1) % raid_disks
;
1764 *dd_idx
= (pd_idx
+ 1 + *dd_idx
) % raid_disks
;
1768 case ALGORITHM_LEFT_ASYMMETRIC_6
:
1769 /* RAID5 left_asymmetric, with Q on last device */
1770 pd_idx
= data_disks
- stripe
% (raid_disks
-1);
1771 if (*dd_idx
>= pd_idx
)
1773 qd_idx
= raid_disks
- 1;
1776 case ALGORITHM_RIGHT_ASYMMETRIC_6
:
1777 pd_idx
= stripe
% (raid_disks
-1);
1778 if (*dd_idx
>= pd_idx
)
1780 qd_idx
= raid_disks
- 1;
1783 case ALGORITHM_LEFT_SYMMETRIC_6
:
1784 pd_idx
= data_disks
- stripe
% (raid_disks
-1);
1785 *dd_idx
= (pd_idx
+ 1 + *dd_idx
) % (raid_disks
-1);
1786 qd_idx
= raid_disks
- 1;
1789 case ALGORITHM_RIGHT_SYMMETRIC_6
:
1790 pd_idx
= stripe
% (raid_disks
-1);
1791 *dd_idx
= (pd_idx
+ 1 + *dd_idx
) % (raid_disks
-1);
1792 qd_idx
= raid_disks
- 1;
1795 case ALGORITHM_PARITY_0_6
:
1798 qd_idx
= raid_disks
- 1;
1803 printk(KERN_CRIT
"raid6: unsupported algorithm %d\n",
1811 sh
->pd_idx
= pd_idx
;
1812 sh
->qd_idx
= qd_idx
;
1813 sh
->ddf_layout
= ddf_layout
;
1816 * Finally, compute the new sector number
1818 new_sector
= (sector_t
)stripe
* sectors_per_chunk
+ chunk_offset
;
1823 static sector_t
compute_blocknr(struct stripe_head
*sh
, int i
, int previous
)
1825 raid5_conf_t
*conf
= sh
->raid_conf
;
1826 int raid_disks
= sh
->disks
;
1827 int data_disks
= raid_disks
- conf
->max_degraded
;
1828 sector_t new_sector
= sh
->sector
, check
;
1829 int sectors_per_chunk
= previous
? conf
->prev_chunk_sectors
1830 : conf
->chunk_sectors
;
1831 int algorithm
= previous
? conf
->prev_algo
1835 int chunk_number
, dummy1
, dd_idx
= i
;
1837 struct stripe_head sh2
;
1840 chunk_offset
= sector_div(new_sector
, sectors_per_chunk
);
1841 stripe
= new_sector
;
1842 BUG_ON(new_sector
!= stripe
);
1844 if (i
== sh
->pd_idx
)
1846 switch(conf
->level
) {
1849 switch (algorithm
) {
1850 case ALGORITHM_LEFT_ASYMMETRIC
:
1851 case ALGORITHM_RIGHT_ASYMMETRIC
:
1855 case ALGORITHM_LEFT_SYMMETRIC
:
1856 case ALGORITHM_RIGHT_SYMMETRIC
:
1859 i
-= (sh
->pd_idx
+ 1);
1861 case ALGORITHM_PARITY_0
:
1864 case ALGORITHM_PARITY_N
:
1867 printk(KERN_ERR
"raid5: unsupported algorithm %d\n",
1873 if (i
== sh
->qd_idx
)
1874 return 0; /* It is the Q disk */
1875 switch (algorithm
) {
1876 case ALGORITHM_LEFT_ASYMMETRIC
:
1877 case ALGORITHM_RIGHT_ASYMMETRIC
:
1878 case ALGORITHM_ROTATING_ZERO_RESTART
:
1879 case ALGORITHM_ROTATING_N_RESTART
:
1880 if (sh
->pd_idx
== raid_disks
-1)
1881 i
--; /* Q D D D P */
1882 else if (i
> sh
->pd_idx
)
1883 i
-= 2; /* D D P Q D */
1885 case ALGORITHM_LEFT_SYMMETRIC
:
1886 case ALGORITHM_RIGHT_SYMMETRIC
:
1887 if (sh
->pd_idx
== raid_disks
-1)
1888 i
--; /* Q D D D P */
1893 i
-= (sh
->pd_idx
+ 2);
1896 case ALGORITHM_PARITY_0
:
1899 case ALGORITHM_PARITY_N
:
1901 case ALGORITHM_ROTATING_N_CONTINUE
:
1902 if (sh
->pd_idx
== 0)
1903 i
--; /* P D D D Q */
1904 else if (i
> sh
->pd_idx
)
1905 i
-= 2; /* D D Q P D */
1907 case ALGORITHM_LEFT_ASYMMETRIC_6
:
1908 case ALGORITHM_RIGHT_ASYMMETRIC_6
:
1912 case ALGORITHM_LEFT_SYMMETRIC_6
:
1913 case ALGORITHM_RIGHT_SYMMETRIC_6
:
1915 i
+= data_disks
+ 1;
1916 i
-= (sh
->pd_idx
+ 1);
1918 case ALGORITHM_PARITY_0_6
:
1922 printk(KERN_CRIT
"raid6: unsupported algorithm %d\n",
1929 chunk_number
= stripe
* data_disks
+ i
;
1930 r_sector
= (sector_t
)chunk_number
* sectors_per_chunk
+ chunk_offset
;
1932 check
= raid5_compute_sector(conf
, r_sector
,
1933 previous
, &dummy1
, &sh2
);
1934 if (check
!= sh
->sector
|| dummy1
!= dd_idx
|| sh2
.pd_idx
!= sh
->pd_idx
1935 || sh2
.qd_idx
!= sh
->qd_idx
) {
1936 printk(KERN_ERR
"compute_blocknr: map not correct\n");
1944 schedule_reconstruction(struct stripe_head
*sh
, struct stripe_head_state
*s
,
1945 int rcw
, int expand
)
1947 int i
, pd_idx
= sh
->pd_idx
, disks
= sh
->disks
;
1948 raid5_conf_t
*conf
= sh
->raid_conf
;
1949 int level
= conf
->level
;
1952 /* if we are not expanding this is a proper write request, and
1953 * there will be bios with new data to be drained into the
1957 sh
->reconstruct_state
= reconstruct_state_drain_run
;
1958 set_bit(STRIPE_OP_BIODRAIN
, &s
->ops_request
);
1960 sh
->reconstruct_state
= reconstruct_state_run
;
1962 set_bit(STRIPE_OP_RECONSTRUCT
, &s
->ops_request
);
1964 for (i
= disks
; i
--; ) {
1965 struct r5dev
*dev
= &sh
->dev
[i
];
1968 set_bit(R5_LOCKED
, &dev
->flags
);
1969 set_bit(R5_Wantdrain
, &dev
->flags
);
1971 clear_bit(R5_UPTODATE
, &dev
->flags
);
1975 if (s
->locked
+ conf
->max_degraded
== disks
)
1976 if (!test_and_set_bit(STRIPE_FULL_WRITE
, &sh
->state
))
1977 atomic_inc(&conf
->pending_full_writes
);
1980 BUG_ON(!(test_bit(R5_UPTODATE
, &sh
->dev
[pd_idx
].flags
) ||
1981 test_bit(R5_Wantcompute
, &sh
->dev
[pd_idx
].flags
)));
1983 sh
->reconstruct_state
= reconstruct_state_prexor_drain_run
;
1984 set_bit(STRIPE_OP_PREXOR
, &s
->ops_request
);
1985 set_bit(STRIPE_OP_BIODRAIN
, &s
->ops_request
);
1986 set_bit(STRIPE_OP_RECONSTRUCT
, &s
->ops_request
);
1988 for (i
= disks
; i
--; ) {
1989 struct r5dev
*dev
= &sh
->dev
[i
];
1994 (test_bit(R5_UPTODATE
, &dev
->flags
) ||
1995 test_bit(R5_Wantcompute
, &dev
->flags
))) {
1996 set_bit(R5_Wantdrain
, &dev
->flags
);
1997 set_bit(R5_LOCKED
, &dev
->flags
);
1998 clear_bit(R5_UPTODATE
, &dev
->flags
);
2004 /* keep the parity disk(s) locked while asynchronous operations
2007 set_bit(R5_LOCKED
, &sh
->dev
[pd_idx
].flags
);
2008 clear_bit(R5_UPTODATE
, &sh
->dev
[pd_idx
].flags
);
2012 int qd_idx
= sh
->qd_idx
;
2013 struct r5dev
*dev
= &sh
->dev
[qd_idx
];
2015 set_bit(R5_LOCKED
, &dev
->flags
);
2016 clear_bit(R5_UPTODATE
, &dev
->flags
);
2020 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2021 __func__
, (unsigned long long)sh
->sector
,
2022 s
->locked
, s
->ops_request
);
2026 * Each stripe/dev can have one or more bion attached.
2027 * toread/towrite point to the first in a chain.
2028 * The bi_next chain must be in order.
2030 static int add_stripe_bio(struct stripe_head
*sh
, struct bio
*bi
, int dd_idx
, int forwrite
)
2033 raid5_conf_t
*conf
= sh
->raid_conf
;
2036 pr_debug("adding bh b#%llu to stripe s#%llu\n",
2037 (unsigned long long)bi
->bi_sector
,
2038 (unsigned long long)sh
->sector
);
2041 spin_lock(&sh
->lock
);
2042 spin_lock_irq(&conf
->device_lock
);
2044 bip
= &sh
->dev
[dd_idx
].towrite
;
2045 if (*bip
== NULL
&& sh
->dev
[dd_idx
].written
== NULL
)
2048 bip
= &sh
->dev
[dd_idx
].toread
;
2049 while (*bip
&& (*bip
)->bi_sector
< bi
->bi_sector
) {
2050 if ((*bip
)->bi_sector
+ ((*bip
)->bi_size
>> 9) > bi
->bi_sector
)
2052 bip
= & (*bip
)->bi_next
;
2054 if (*bip
&& (*bip
)->bi_sector
< bi
->bi_sector
+ ((bi
->bi_size
)>>9))
2057 BUG_ON(*bip
&& bi
->bi_next
&& (*bip
) != bi
->bi_next
);
2061 bi
->bi_phys_segments
++;
2062 spin_unlock_irq(&conf
->device_lock
);
2063 spin_unlock(&sh
->lock
);
2065 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2066 (unsigned long long)bi
->bi_sector
,
2067 (unsigned long long)sh
->sector
, dd_idx
);
2069 if (conf
->mddev
->bitmap
&& firstwrite
) {
2070 bitmap_startwrite(conf
->mddev
->bitmap
, sh
->sector
,
2072 sh
->bm_seq
= conf
->seq_flush
+1;
2073 set_bit(STRIPE_BIT_DELAY
, &sh
->state
);
2077 /* check if page is covered */
2078 sector_t sector
= sh
->dev
[dd_idx
].sector
;
2079 for (bi
=sh
->dev
[dd_idx
].towrite
;
2080 sector
< sh
->dev
[dd_idx
].sector
+ STRIPE_SECTORS
&&
2081 bi
&& bi
->bi_sector
<= sector
;
2082 bi
= r5_next_bio(bi
, sh
->dev
[dd_idx
].sector
)) {
2083 if (bi
->bi_sector
+ (bi
->bi_size
>>9) >= sector
)
2084 sector
= bi
->bi_sector
+ (bi
->bi_size
>>9);
2086 if (sector
>= sh
->dev
[dd_idx
].sector
+ STRIPE_SECTORS
)
2087 set_bit(R5_OVERWRITE
, &sh
->dev
[dd_idx
].flags
);
2092 set_bit(R5_Overlap
, &sh
->dev
[dd_idx
].flags
);
2093 spin_unlock_irq(&conf
->device_lock
);
2094 spin_unlock(&sh
->lock
);
2098 static void end_reshape(raid5_conf_t
*conf
);
2100 static void stripe_set_idx(sector_t stripe
, raid5_conf_t
*conf
, int previous
,
2101 struct stripe_head
*sh
)
2103 int sectors_per_chunk
=
2104 previous
? conf
->prev_chunk_sectors
: conf
->chunk_sectors
;
2106 int chunk_offset
= sector_div(stripe
, sectors_per_chunk
);
2107 int disks
= previous
? conf
->previous_raid_disks
: conf
->raid_disks
;
2109 raid5_compute_sector(conf
,
2110 stripe
* (disks
- conf
->max_degraded
)
2111 *sectors_per_chunk
+ chunk_offset
,
2117 handle_failed_stripe(raid5_conf_t
*conf
, struct stripe_head
*sh
,
2118 struct stripe_head_state
*s
, int disks
,
2119 struct bio
**return_bi
)
2122 for (i
= disks
; i
--; ) {
2126 if (test_bit(R5_ReadError
, &sh
->dev
[i
].flags
)) {
2129 rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
2130 if (rdev
&& test_bit(In_sync
, &rdev
->flags
))
2131 /* multiple read failures in one stripe */
2132 md_error(conf
->mddev
, rdev
);
2135 spin_lock_irq(&conf
->device_lock
);
2136 /* fail all writes first */
2137 bi
= sh
->dev
[i
].towrite
;
2138 sh
->dev
[i
].towrite
= NULL
;
2144 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[i
].flags
))
2145 wake_up(&conf
->wait_for_overlap
);
2147 while (bi
&& bi
->bi_sector
<
2148 sh
->dev
[i
].sector
+ STRIPE_SECTORS
) {
2149 struct bio
*nextbi
= r5_next_bio(bi
, sh
->dev
[i
].sector
);
2150 clear_bit(BIO_UPTODATE
, &bi
->bi_flags
);
2151 if (!raid5_dec_bi_phys_segments(bi
)) {
2152 md_write_end(conf
->mddev
);
2153 bi
->bi_next
= *return_bi
;
2158 /* and fail all 'written' */
2159 bi
= sh
->dev
[i
].written
;
2160 sh
->dev
[i
].written
= NULL
;
2161 if (bi
) bitmap_end
= 1;
2162 while (bi
&& bi
->bi_sector
<
2163 sh
->dev
[i
].sector
+ STRIPE_SECTORS
) {
2164 struct bio
*bi2
= r5_next_bio(bi
, sh
->dev
[i
].sector
);
2165 clear_bit(BIO_UPTODATE
, &bi
->bi_flags
);
2166 if (!raid5_dec_bi_phys_segments(bi
)) {
2167 md_write_end(conf
->mddev
);
2168 bi
->bi_next
= *return_bi
;
2174 /* fail any reads if this device is non-operational and
2175 * the data has not reached the cache yet.
2177 if (!test_bit(R5_Wantfill
, &sh
->dev
[i
].flags
) &&
2178 (!test_bit(R5_Insync
, &sh
->dev
[i
].flags
) ||
2179 test_bit(R5_ReadError
, &sh
->dev
[i
].flags
))) {
2180 bi
= sh
->dev
[i
].toread
;
2181 sh
->dev
[i
].toread
= NULL
;
2182 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[i
].flags
))
2183 wake_up(&conf
->wait_for_overlap
);
2184 if (bi
) s
->to_read
--;
2185 while (bi
&& bi
->bi_sector
<
2186 sh
->dev
[i
].sector
+ STRIPE_SECTORS
) {
2187 struct bio
*nextbi
=
2188 r5_next_bio(bi
, sh
->dev
[i
].sector
);
2189 clear_bit(BIO_UPTODATE
, &bi
->bi_flags
);
2190 if (!raid5_dec_bi_phys_segments(bi
)) {
2191 bi
->bi_next
= *return_bi
;
2197 spin_unlock_irq(&conf
->device_lock
);
2199 bitmap_endwrite(conf
->mddev
->bitmap
, sh
->sector
,
2200 STRIPE_SECTORS
, 0, 0);
2203 if (test_and_clear_bit(STRIPE_FULL_WRITE
, &sh
->state
))
2204 if (atomic_dec_and_test(&conf
->pending_full_writes
))
2205 md_wakeup_thread(conf
->mddev
->thread
);
2208 /* fetch_block5 - checks the given member device to see if its data needs
2209 * to be read or computed to satisfy a request.
2211 * Returns 1 when no more member devices need to be checked, otherwise returns
2212 * 0 to tell the loop in handle_stripe_fill5 to continue
2214 static int fetch_block5(struct stripe_head
*sh
, struct stripe_head_state
*s
,
2215 int disk_idx
, int disks
)
2217 struct r5dev
*dev
= &sh
->dev
[disk_idx
];
2218 struct r5dev
*failed_dev
= &sh
->dev
[s
->failed_num
];
2220 /* is the data in this block needed, and can we get it? */
2221 if (!test_bit(R5_LOCKED
, &dev
->flags
) &&
2222 !test_bit(R5_UPTODATE
, &dev
->flags
) &&
2224 (dev
->towrite
&& !test_bit(R5_OVERWRITE
, &dev
->flags
)) ||
2225 s
->syncing
|| s
->expanding
||
2227 (failed_dev
->toread
||
2228 (failed_dev
->towrite
&&
2229 !test_bit(R5_OVERWRITE
, &failed_dev
->flags
)))))) {
2230 /* We would like to get this block, possibly by computing it,
2231 * otherwise read it if the backing disk is insync
2233 if ((s
->uptodate
== disks
- 1) &&
2234 (s
->failed
&& disk_idx
== s
->failed_num
)) {
2235 set_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
2236 set_bit(STRIPE_OP_COMPUTE_BLK
, &s
->ops_request
);
2237 set_bit(R5_Wantcompute
, &dev
->flags
);
2238 sh
->ops
.target
= disk_idx
;
2239 sh
->ops
.target2
= -1;
2241 /* Careful: from this point on 'uptodate' is in the eye
2242 * of raid_run_ops which services 'compute' operations
2243 * before writes. R5_Wantcompute flags a block that will
2244 * be R5_UPTODATE by the time it is needed for a
2245 * subsequent operation.
2248 return 1; /* uptodate + compute == disks */
2249 } else if (test_bit(R5_Insync
, &dev
->flags
)) {
2250 set_bit(R5_LOCKED
, &dev
->flags
);
2251 set_bit(R5_Wantread
, &dev
->flags
);
2253 pr_debug("Reading block %d (sync=%d)\n", disk_idx
,
2262 * handle_stripe_fill5 - read or compute data to satisfy pending requests.
2264 static void handle_stripe_fill5(struct stripe_head
*sh
,
2265 struct stripe_head_state
*s
, int disks
)
2269 /* look for blocks to read/compute, skip this if a compute
2270 * is already in flight, or if the stripe contents are in the
2271 * midst of changing due to a write
2273 if (!test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
) && !sh
->check_state
&&
2274 !sh
->reconstruct_state
)
2275 for (i
= disks
; i
--; )
2276 if (fetch_block5(sh
, s
, i
, disks
))
2278 set_bit(STRIPE_HANDLE
, &sh
->state
);
2281 /* fetch_block6 - checks the given member device to see if its data needs
2282 * to be read or computed to satisfy a request.
2284 * Returns 1 when no more member devices need to be checked, otherwise returns
2285 * 0 to tell the loop in handle_stripe_fill6 to continue
2287 static int fetch_block6(struct stripe_head
*sh
, struct stripe_head_state
*s
,
2288 struct r6_state
*r6s
, int disk_idx
, int disks
)
2290 struct r5dev
*dev
= &sh
->dev
[disk_idx
];
2291 struct r5dev
*fdev
[2] = { &sh
->dev
[r6s
->failed_num
[0]],
2292 &sh
->dev
[r6s
->failed_num
[1]] };
2294 if (!test_bit(R5_LOCKED
, &dev
->flags
) &&
2295 !test_bit(R5_UPTODATE
, &dev
->flags
) &&
2297 (dev
->towrite
&& !test_bit(R5_OVERWRITE
, &dev
->flags
)) ||
2298 s
->syncing
|| s
->expanding
||
2300 (fdev
[0]->toread
|| s
->to_write
)) ||
2302 (fdev
[1]->toread
|| s
->to_write
)))) {
2303 /* we would like to get this block, possibly by computing it,
2304 * otherwise read it if the backing disk is insync
2306 BUG_ON(test_bit(R5_Wantcompute
, &dev
->flags
));
2307 BUG_ON(test_bit(R5_Wantread
, &dev
->flags
));
2308 if ((s
->uptodate
== disks
- 1) &&
2309 (s
->failed
&& (disk_idx
== r6s
->failed_num
[0] ||
2310 disk_idx
== r6s
->failed_num
[1]))) {
2311 /* have disk failed, and we're requested to fetch it;
2314 pr_debug("Computing stripe %llu block %d\n",
2315 (unsigned long long)sh
->sector
, disk_idx
);
2316 set_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
2317 set_bit(STRIPE_OP_COMPUTE_BLK
, &s
->ops_request
);
2318 set_bit(R5_Wantcompute
, &dev
->flags
);
2319 sh
->ops
.target
= disk_idx
;
2320 sh
->ops
.target2
= -1; /* no 2nd target */
2324 } else if (s
->uptodate
== disks
-2 && s
->failed
>= 2) {
2325 /* Computing 2-failure is *very* expensive; only
2326 * do it if failed >= 2
2329 for (other
= disks
; other
--; ) {
2330 if (other
== disk_idx
)
2332 if (!test_bit(R5_UPTODATE
,
2333 &sh
->dev
[other
].flags
))
2337 pr_debug("Computing stripe %llu blocks %d,%d\n",
2338 (unsigned long long)sh
->sector
,
2340 set_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
2341 set_bit(STRIPE_OP_COMPUTE_BLK
, &s
->ops_request
);
2342 set_bit(R5_Wantcompute
, &sh
->dev
[disk_idx
].flags
);
2343 set_bit(R5_Wantcompute
, &sh
->dev
[other
].flags
);
2344 sh
->ops
.target
= disk_idx
;
2345 sh
->ops
.target2
= other
;
2349 } else if (test_bit(R5_Insync
, &dev
->flags
)) {
2350 set_bit(R5_LOCKED
, &dev
->flags
);
2351 set_bit(R5_Wantread
, &dev
->flags
);
2353 pr_debug("Reading block %d (sync=%d)\n",
2354 disk_idx
, s
->syncing
);
2362 * handle_stripe_fill6 - read or compute data to satisfy pending requests.
2364 static void handle_stripe_fill6(struct stripe_head
*sh
,
2365 struct stripe_head_state
*s
, struct r6_state
*r6s
,
2370 /* look for blocks to read/compute, skip this if a compute
2371 * is already in flight, or if the stripe contents are in the
2372 * midst of changing due to a write
2374 if (!test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
) && !sh
->check_state
&&
2375 !sh
->reconstruct_state
)
2376 for (i
= disks
; i
--; )
2377 if (fetch_block6(sh
, s
, r6s
, i
, disks
))
2379 set_bit(STRIPE_HANDLE
, &sh
->state
);
2383 /* handle_stripe_clean_event
2384 * any written block on an uptodate or failed drive can be returned.
2385 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2386 * never LOCKED, so we don't need to test 'failed' directly.
2388 static void handle_stripe_clean_event(raid5_conf_t
*conf
,
2389 struct stripe_head
*sh
, int disks
, struct bio
**return_bi
)
2394 for (i
= disks
; i
--; )
2395 if (sh
->dev
[i
].written
) {
2397 if (!test_bit(R5_LOCKED
, &dev
->flags
) &&
2398 test_bit(R5_UPTODATE
, &dev
->flags
)) {
2399 /* We can return any write requests */
2400 struct bio
*wbi
, *wbi2
;
2402 pr_debug("Return write for disc %d\n", i
);
2403 spin_lock_irq(&conf
->device_lock
);
2405 dev
->written
= NULL
;
2406 while (wbi
&& wbi
->bi_sector
<
2407 dev
->sector
+ STRIPE_SECTORS
) {
2408 wbi2
= r5_next_bio(wbi
, dev
->sector
);
2409 if (!raid5_dec_bi_phys_segments(wbi
)) {
2410 md_write_end(conf
->mddev
);
2411 wbi
->bi_next
= *return_bi
;
2416 if (dev
->towrite
== NULL
)
2418 spin_unlock_irq(&conf
->device_lock
);
2420 bitmap_endwrite(conf
->mddev
->bitmap
,
2423 !test_bit(STRIPE_DEGRADED
, &sh
->state
),
2428 if (test_and_clear_bit(STRIPE_FULL_WRITE
, &sh
->state
))
2429 if (atomic_dec_and_test(&conf
->pending_full_writes
))
2430 md_wakeup_thread(conf
->mddev
->thread
);
2433 static void handle_stripe_dirtying5(raid5_conf_t
*conf
,
2434 struct stripe_head
*sh
, struct stripe_head_state
*s
, int disks
)
2436 int rmw
= 0, rcw
= 0, i
;
2437 for (i
= disks
; i
--; ) {
2438 /* would I have to read this buffer for read_modify_write */
2439 struct r5dev
*dev
= &sh
->dev
[i
];
2440 if ((dev
->towrite
|| i
== sh
->pd_idx
) &&
2441 !test_bit(R5_LOCKED
, &dev
->flags
) &&
2442 !(test_bit(R5_UPTODATE
, &dev
->flags
) ||
2443 test_bit(R5_Wantcompute
, &dev
->flags
))) {
2444 if (test_bit(R5_Insync
, &dev
->flags
))
2447 rmw
+= 2*disks
; /* cannot read it */
2449 /* Would I have to read this buffer for reconstruct_write */
2450 if (!test_bit(R5_OVERWRITE
, &dev
->flags
) && i
!= sh
->pd_idx
&&
2451 !test_bit(R5_LOCKED
, &dev
->flags
) &&
2452 !(test_bit(R5_UPTODATE
, &dev
->flags
) ||
2453 test_bit(R5_Wantcompute
, &dev
->flags
))) {
2454 if (test_bit(R5_Insync
, &dev
->flags
)) rcw
++;
2459 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2460 (unsigned long long)sh
->sector
, rmw
, rcw
);
2461 set_bit(STRIPE_HANDLE
, &sh
->state
);
2462 if (rmw
< rcw
&& rmw
> 0)
2463 /* prefer read-modify-write, but need to get some data */
2464 for (i
= disks
; i
--; ) {
2465 struct r5dev
*dev
= &sh
->dev
[i
];
2466 if ((dev
->towrite
|| i
== sh
->pd_idx
) &&
2467 !test_bit(R5_LOCKED
, &dev
->flags
) &&
2468 !(test_bit(R5_UPTODATE
, &dev
->flags
) ||
2469 test_bit(R5_Wantcompute
, &dev
->flags
)) &&
2470 test_bit(R5_Insync
, &dev
->flags
)) {
2472 test_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
)) {
2473 pr_debug("Read_old block "
2474 "%d for r-m-w\n", i
);
2475 set_bit(R5_LOCKED
, &dev
->flags
);
2476 set_bit(R5_Wantread
, &dev
->flags
);
2479 set_bit(STRIPE_DELAYED
, &sh
->state
);
2480 set_bit(STRIPE_HANDLE
, &sh
->state
);
2484 if (rcw
<= rmw
&& rcw
> 0)
2485 /* want reconstruct write, but need to get some data */
2486 for (i
= disks
; i
--; ) {
2487 struct r5dev
*dev
= &sh
->dev
[i
];
2488 if (!test_bit(R5_OVERWRITE
, &dev
->flags
) &&
2490 !test_bit(R5_LOCKED
, &dev
->flags
) &&
2491 !(test_bit(R5_UPTODATE
, &dev
->flags
) ||
2492 test_bit(R5_Wantcompute
, &dev
->flags
)) &&
2493 test_bit(R5_Insync
, &dev
->flags
)) {
2495 test_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
)) {
2496 pr_debug("Read_old block "
2497 "%d for Reconstruct\n", i
);
2498 set_bit(R5_LOCKED
, &dev
->flags
);
2499 set_bit(R5_Wantread
, &dev
->flags
);
2502 set_bit(STRIPE_DELAYED
, &sh
->state
);
2503 set_bit(STRIPE_HANDLE
, &sh
->state
);
2507 /* now if nothing is locked, and if we have enough data,
2508 * we can start a write request
2510 /* since handle_stripe can be called at any time we need to handle the
2511 * case where a compute block operation has been submitted and then a
2512 * subsequent call wants to start a write request. raid_run_ops only
2513 * handles the case where compute block and reconstruct are requested
2514 * simultaneously. If this is not the case then new writes need to be
2515 * held off until the compute completes.
2517 if ((s
->req_compute
|| !test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
)) &&
2518 (s
->locked
== 0 && (rcw
== 0 || rmw
== 0) &&
2519 !test_bit(STRIPE_BIT_DELAY
, &sh
->state
)))
2520 schedule_reconstruction(sh
, s
, rcw
== 0, 0);
2523 static void handle_stripe_dirtying6(raid5_conf_t
*conf
,
2524 struct stripe_head
*sh
, struct stripe_head_state
*s
,
2525 struct r6_state
*r6s
, int disks
)
2527 int rcw
= 0, pd_idx
= sh
->pd_idx
, i
;
2528 int qd_idx
= sh
->qd_idx
;
2530 set_bit(STRIPE_HANDLE
, &sh
->state
);
2531 for (i
= disks
; i
--; ) {
2532 struct r5dev
*dev
= &sh
->dev
[i
];
2533 /* check if we haven't enough data */
2534 if (!test_bit(R5_OVERWRITE
, &dev
->flags
) &&
2535 i
!= pd_idx
&& i
!= qd_idx
&&
2536 !test_bit(R5_LOCKED
, &dev
->flags
) &&
2537 !(test_bit(R5_UPTODATE
, &dev
->flags
) ||
2538 test_bit(R5_Wantcompute
, &dev
->flags
))) {
2540 if (!test_bit(R5_Insync
, &dev
->flags
))
2541 continue; /* it's a failed drive */
2544 test_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
)) {
2545 pr_debug("Read_old stripe %llu "
2546 "block %d for Reconstruct\n",
2547 (unsigned long long)sh
->sector
, i
);
2548 set_bit(R5_LOCKED
, &dev
->flags
);
2549 set_bit(R5_Wantread
, &dev
->flags
);
2552 pr_debug("Request delayed stripe %llu "
2553 "block %d for Reconstruct\n",
2554 (unsigned long long)sh
->sector
, i
);
2555 set_bit(STRIPE_DELAYED
, &sh
->state
);
2556 set_bit(STRIPE_HANDLE
, &sh
->state
);
2560 /* now if nothing is locked, and if we have enough data, we can start a
2563 if ((s
->req_compute
|| !test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
)) &&
2564 s
->locked
== 0 && rcw
== 0 &&
2565 !test_bit(STRIPE_BIT_DELAY
, &sh
->state
)) {
2566 schedule_reconstruction(sh
, s
, 1, 0);
2570 static void handle_parity_checks5(raid5_conf_t
*conf
, struct stripe_head
*sh
,
2571 struct stripe_head_state
*s
, int disks
)
2573 struct r5dev
*dev
= NULL
;
2575 set_bit(STRIPE_HANDLE
, &sh
->state
);
2577 switch (sh
->check_state
) {
2578 case check_state_idle
:
2579 /* start a new check operation if there are no failures */
2580 if (s
->failed
== 0) {
2581 BUG_ON(s
->uptodate
!= disks
);
2582 sh
->check_state
= check_state_run
;
2583 set_bit(STRIPE_OP_CHECK
, &s
->ops_request
);
2584 clear_bit(R5_UPTODATE
, &sh
->dev
[sh
->pd_idx
].flags
);
2588 dev
= &sh
->dev
[s
->failed_num
];
2590 case check_state_compute_result
:
2591 sh
->check_state
= check_state_idle
;
2593 dev
= &sh
->dev
[sh
->pd_idx
];
2595 /* check that a write has not made the stripe insync */
2596 if (test_bit(STRIPE_INSYNC
, &sh
->state
))
2599 /* either failed parity check, or recovery is happening */
2600 BUG_ON(!test_bit(R5_UPTODATE
, &dev
->flags
));
2601 BUG_ON(s
->uptodate
!= disks
);
2603 set_bit(R5_LOCKED
, &dev
->flags
);
2605 set_bit(R5_Wantwrite
, &dev
->flags
);
2607 clear_bit(STRIPE_DEGRADED
, &sh
->state
);
2608 set_bit(STRIPE_INSYNC
, &sh
->state
);
2610 case check_state_run
:
2611 break; /* we will be called again upon completion */
2612 case check_state_check_result
:
2613 sh
->check_state
= check_state_idle
;
2615 /* if a failure occurred during the check operation, leave
2616 * STRIPE_INSYNC not set and let the stripe be handled again
2621 /* handle a successful check operation, if parity is correct
2622 * we are done. Otherwise update the mismatch count and repair
2623 * parity if !MD_RECOVERY_CHECK
2625 if ((sh
->ops
.zero_sum_result
& SUM_CHECK_P_RESULT
) == 0)
2626 /* parity is correct (on disc,
2627 * not in buffer any more)
2629 set_bit(STRIPE_INSYNC
, &sh
->state
);
2631 conf
->mddev
->resync_mismatches
+= STRIPE_SECTORS
;
2632 if (test_bit(MD_RECOVERY_CHECK
, &conf
->mddev
->recovery
))
2633 /* don't try to repair!! */
2634 set_bit(STRIPE_INSYNC
, &sh
->state
);
2636 sh
->check_state
= check_state_compute_run
;
2637 set_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
2638 set_bit(STRIPE_OP_COMPUTE_BLK
, &s
->ops_request
);
2639 set_bit(R5_Wantcompute
,
2640 &sh
->dev
[sh
->pd_idx
].flags
);
2641 sh
->ops
.target
= sh
->pd_idx
;
2642 sh
->ops
.target2
= -1;
2647 case check_state_compute_run
:
2650 printk(KERN_ERR
"%s: unknown check_state: %d sector: %llu\n",
2651 __func__
, sh
->check_state
,
2652 (unsigned long long) sh
->sector
);
2658 static void handle_parity_checks6(raid5_conf_t
*conf
, struct stripe_head
*sh
,
2659 struct stripe_head_state
*s
,
2660 struct r6_state
*r6s
, int disks
)
2662 int pd_idx
= sh
->pd_idx
;
2663 int qd_idx
= sh
->qd_idx
;
2666 set_bit(STRIPE_HANDLE
, &sh
->state
);
2668 BUG_ON(s
->failed
> 2);
2670 /* Want to check and possibly repair P and Q.
2671 * However there could be one 'failed' device, in which
2672 * case we can only check one of them, possibly using the
2673 * other to generate missing data
2676 switch (sh
->check_state
) {
2677 case check_state_idle
:
2678 /* start a new check operation if there are < 2 failures */
2679 if (s
->failed
== r6s
->q_failed
) {
2680 /* The only possible failed device holds Q, so it
2681 * makes sense to check P (If anything else were failed,
2682 * we would have used P to recreate it).
2684 sh
->check_state
= check_state_run
;
2686 if (!r6s
->q_failed
&& s
->failed
< 2) {
2687 /* Q is not failed, and we didn't use it to generate
2688 * anything, so it makes sense to check it
2690 if (sh
->check_state
== check_state_run
)
2691 sh
->check_state
= check_state_run_pq
;
2693 sh
->check_state
= check_state_run_q
;
2696 /* discard potentially stale zero_sum_result */
2697 sh
->ops
.zero_sum_result
= 0;
2699 if (sh
->check_state
== check_state_run
) {
2700 /* async_xor_zero_sum destroys the contents of P */
2701 clear_bit(R5_UPTODATE
, &sh
->dev
[pd_idx
].flags
);
2704 if (sh
->check_state
>= check_state_run
&&
2705 sh
->check_state
<= check_state_run_pq
) {
2706 /* async_syndrome_zero_sum preserves P and Q, so
2707 * no need to mark them !uptodate here
2709 set_bit(STRIPE_OP_CHECK
, &s
->ops_request
);
2713 /* we have 2-disk failure */
2714 BUG_ON(s
->failed
!= 2);
2716 case check_state_compute_result
:
2717 sh
->check_state
= check_state_idle
;
2719 /* check that a write has not made the stripe insync */
2720 if (test_bit(STRIPE_INSYNC
, &sh
->state
))
2723 /* now write out any block on a failed drive,
2724 * or P or Q if they were recomputed
2726 BUG_ON(s
->uptodate
< disks
- 1); /* We don't need Q to recover */
2727 if (s
->failed
== 2) {
2728 dev
= &sh
->dev
[r6s
->failed_num
[1]];
2730 set_bit(R5_LOCKED
, &dev
->flags
);
2731 set_bit(R5_Wantwrite
, &dev
->flags
);
2733 if (s
->failed
>= 1) {
2734 dev
= &sh
->dev
[r6s
->failed_num
[0]];
2736 set_bit(R5_LOCKED
, &dev
->flags
);
2737 set_bit(R5_Wantwrite
, &dev
->flags
);
2739 if (sh
->ops
.zero_sum_result
& SUM_CHECK_P_RESULT
) {
2740 dev
= &sh
->dev
[pd_idx
];
2742 set_bit(R5_LOCKED
, &dev
->flags
);
2743 set_bit(R5_Wantwrite
, &dev
->flags
);
2745 if (sh
->ops
.zero_sum_result
& SUM_CHECK_Q_RESULT
) {
2746 dev
= &sh
->dev
[qd_idx
];
2748 set_bit(R5_LOCKED
, &dev
->flags
);
2749 set_bit(R5_Wantwrite
, &dev
->flags
);
2751 clear_bit(STRIPE_DEGRADED
, &sh
->state
);
2753 set_bit(STRIPE_INSYNC
, &sh
->state
);
2755 case check_state_run
:
2756 case check_state_run_q
:
2757 case check_state_run_pq
:
2758 break; /* we will be called again upon completion */
2759 case check_state_check_result
:
2760 sh
->check_state
= check_state_idle
;
2762 /* handle a successful check operation, if parity is correct
2763 * we are done. Otherwise update the mismatch count and repair
2764 * parity if !MD_RECOVERY_CHECK
2766 if (sh
->ops
.zero_sum_result
== 0) {
2767 /* both parities are correct */
2769 set_bit(STRIPE_INSYNC
, &sh
->state
);
2771 /* in contrast to the raid5 case we can validate
2772 * parity, but still have a failure to write
2775 sh
->check_state
= check_state_compute_result
;
2776 /* Returning at this point means that we may go
2777 * off and bring p and/or q uptodate again so
2778 * we make sure to check zero_sum_result again
2779 * to verify if p or q need writeback
2783 conf
->mddev
->resync_mismatches
+= STRIPE_SECTORS
;
2784 if (test_bit(MD_RECOVERY_CHECK
, &conf
->mddev
->recovery
))
2785 /* don't try to repair!! */
2786 set_bit(STRIPE_INSYNC
, &sh
->state
);
2788 int *target
= &sh
->ops
.target
;
2790 sh
->ops
.target
= -1;
2791 sh
->ops
.target2
= -1;
2792 sh
->check_state
= check_state_compute_run
;
2793 set_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
2794 set_bit(STRIPE_OP_COMPUTE_BLK
, &s
->ops_request
);
2795 if (sh
->ops
.zero_sum_result
& SUM_CHECK_P_RESULT
) {
2796 set_bit(R5_Wantcompute
,
2797 &sh
->dev
[pd_idx
].flags
);
2799 target
= &sh
->ops
.target2
;
2802 if (sh
->ops
.zero_sum_result
& SUM_CHECK_Q_RESULT
) {
2803 set_bit(R5_Wantcompute
,
2804 &sh
->dev
[qd_idx
].flags
);
2811 case check_state_compute_run
:
2814 printk(KERN_ERR
"%s: unknown check_state: %d sector: %llu\n",
2815 __func__
, sh
->check_state
,
2816 (unsigned long long) sh
->sector
);
2821 static void handle_stripe_expansion(raid5_conf_t
*conf
, struct stripe_head
*sh
,
2822 struct r6_state
*r6s
)
2826 /* We have read all the blocks in this stripe and now we need to
2827 * copy some of them into a target stripe for expand.
2829 struct dma_async_tx_descriptor
*tx
= NULL
;
2830 clear_bit(STRIPE_EXPAND_SOURCE
, &sh
->state
);
2831 for (i
= 0; i
< sh
->disks
; i
++)
2832 if (i
!= sh
->pd_idx
&& i
!= sh
->qd_idx
) {
2834 struct stripe_head
*sh2
;
2835 struct async_submit_ctl submit
;
2837 sector_t bn
= compute_blocknr(sh
, i
, 1);
2838 sector_t s
= raid5_compute_sector(conf
, bn
, 0,
2840 sh2
= get_active_stripe(conf
, s
, 0, 1, 1);
2842 /* so far only the early blocks of this stripe
2843 * have been requested. When later blocks
2844 * get requested, we will try again
2847 if (!test_bit(STRIPE_EXPANDING
, &sh2
->state
) ||
2848 test_bit(R5_Expanded
, &sh2
->dev
[dd_idx
].flags
)) {
2849 /* must have already done this block */
2850 release_stripe(sh2
);
2854 /* place all the copies on one channel */
2855 init_async_submit(&submit
, 0, tx
, NULL
, NULL
, NULL
);
2856 tx
= async_memcpy(sh2
->dev
[dd_idx
].page
,
2857 sh
->dev
[i
].page
, 0, 0, STRIPE_SIZE
,
2860 set_bit(R5_Expanded
, &sh2
->dev
[dd_idx
].flags
);
2861 set_bit(R5_UPTODATE
, &sh2
->dev
[dd_idx
].flags
);
2862 for (j
= 0; j
< conf
->raid_disks
; j
++)
2863 if (j
!= sh2
->pd_idx
&&
2864 (!r6s
|| j
!= sh2
->qd_idx
) &&
2865 !test_bit(R5_Expanded
, &sh2
->dev
[j
].flags
))
2867 if (j
== conf
->raid_disks
) {
2868 set_bit(STRIPE_EXPAND_READY
, &sh2
->state
);
2869 set_bit(STRIPE_HANDLE
, &sh2
->state
);
2871 release_stripe(sh2
);
2874 /* done submitting copies, wait for them to complete */
2877 dma_wait_for_async_tx(tx
);
2883 * handle_stripe - do things to a stripe.
2885 * We lock the stripe and then examine the state of various bits
2886 * to see what needs to be done.
2888 * return some read request which now have data
2889 * return some write requests which are safely on disc
2890 * schedule a read on some buffers
2891 * schedule a write of some buffers
2892 * return confirmation of parity correctness
2894 * buffers are taken off read_list or write_list, and bh_cache buffers
2895 * get BH_Lock set before the stripe lock is released.
2899 static bool handle_stripe5(struct stripe_head
*sh
)
2901 raid5_conf_t
*conf
= sh
->raid_conf
;
2902 int disks
= sh
->disks
, i
;
2903 struct bio
*return_bi
= NULL
;
2904 struct stripe_head_state s
;
2906 mdk_rdev_t
*blocked_rdev
= NULL
;
2909 memset(&s
, 0, sizeof(s
));
2910 pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d check:%d "
2911 "reconstruct:%d\n", (unsigned long long)sh
->sector
, sh
->state
,
2912 atomic_read(&sh
->count
), sh
->pd_idx
, sh
->check_state
,
2913 sh
->reconstruct_state
);
2915 spin_lock(&sh
->lock
);
2916 clear_bit(STRIPE_HANDLE
, &sh
->state
);
2917 clear_bit(STRIPE_DELAYED
, &sh
->state
);
2919 s
.syncing
= test_bit(STRIPE_SYNCING
, &sh
->state
);
2920 s
.expanding
= test_bit(STRIPE_EXPAND_SOURCE
, &sh
->state
);
2921 s
.expanded
= test_bit(STRIPE_EXPAND_READY
, &sh
->state
);
2923 /* Now to look around and see what can be done */
2925 for (i
=disks
; i
--; ) {
2929 clear_bit(R5_Insync
, &dev
->flags
);
2931 pr_debug("check %d: state 0x%lx toread %p read %p write %p "
2932 "written %p\n", i
, dev
->flags
, dev
->toread
, dev
->read
,
2933 dev
->towrite
, dev
->written
);
2935 /* maybe we can request a biofill operation
2937 * new wantfill requests are only permitted while
2938 * ops_complete_biofill is guaranteed to be inactive
2940 if (test_bit(R5_UPTODATE
, &dev
->flags
) && dev
->toread
&&
2941 !test_bit(STRIPE_BIOFILL_RUN
, &sh
->state
))
2942 set_bit(R5_Wantfill
, &dev
->flags
);
2944 /* now count some things */
2945 if (test_bit(R5_LOCKED
, &dev
->flags
)) s
.locked
++;
2946 if (test_bit(R5_UPTODATE
, &dev
->flags
)) s
.uptodate
++;
2947 if (test_bit(R5_Wantcompute
, &dev
->flags
)) s
.compute
++;
2949 if (test_bit(R5_Wantfill
, &dev
->flags
))
2951 else if (dev
->toread
)
2955 if (!test_bit(R5_OVERWRITE
, &dev
->flags
))
2960 rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
2961 if (blocked_rdev
== NULL
&&
2962 rdev
&& unlikely(test_bit(Blocked
, &rdev
->flags
))) {
2963 blocked_rdev
= rdev
;
2964 atomic_inc(&rdev
->nr_pending
);
2966 if (!rdev
|| !test_bit(In_sync
, &rdev
->flags
)) {
2967 /* The ReadError flag will just be confusing now */
2968 clear_bit(R5_ReadError
, &dev
->flags
);
2969 clear_bit(R5_ReWrite
, &dev
->flags
);
2971 if (!rdev
|| !test_bit(In_sync
, &rdev
->flags
)
2972 || test_bit(R5_ReadError
, &dev
->flags
)) {
2976 set_bit(R5_Insync
, &dev
->flags
);
2980 if (unlikely(blocked_rdev
)) {
2981 if (s
.syncing
|| s
.expanding
|| s
.expanded
||
2982 s
.to_write
|| s
.written
) {
2983 set_bit(STRIPE_HANDLE
, &sh
->state
);
2986 /* There is nothing for the blocked_rdev to block */
2987 rdev_dec_pending(blocked_rdev
, conf
->mddev
);
2988 blocked_rdev
= NULL
;
2991 if (s
.to_fill
&& !test_bit(STRIPE_BIOFILL_RUN
, &sh
->state
)) {
2992 set_bit(STRIPE_OP_BIOFILL
, &s
.ops_request
);
2993 set_bit(STRIPE_BIOFILL_RUN
, &sh
->state
);
2996 pr_debug("locked=%d uptodate=%d to_read=%d"
2997 " to_write=%d failed=%d failed_num=%d\n",
2998 s
.locked
, s
.uptodate
, s
.to_read
, s
.to_write
,
2999 s
.failed
, s
.failed_num
);
3000 /* check if the array has lost two devices and, if so, some requests might
3003 if (s
.failed
> 1 && s
.to_read
+s
.to_write
+s
.written
)
3004 handle_failed_stripe(conf
, sh
, &s
, disks
, &return_bi
);
3005 if (s
.failed
> 1 && s
.syncing
) {
3006 md_done_sync(conf
->mddev
, STRIPE_SECTORS
,0);
3007 clear_bit(STRIPE_SYNCING
, &sh
->state
);
3011 /* might be able to return some write requests if the parity block
3012 * is safe, or on a failed drive
3014 dev
= &sh
->dev
[sh
->pd_idx
];
3016 ((test_bit(R5_Insync
, &dev
->flags
) &&
3017 !test_bit(R5_LOCKED
, &dev
->flags
) &&
3018 test_bit(R5_UPTODATE
, &dev
->flags
)) ||
3019 (s
.failed
== 1 && s
.failed_num
== sh
->pd_idx
)))
3020 handle_stripe_clean_event(conf
, sh
, disks
, &return_bi
);
3022 /* Now we might consider reading some blocks, either to check/generate
3023 * parity, or to satisfy requests
3024 * or to load a block that is being partially written.
3026 if (s
.to_read
|| s
.non_overwrite
||
3027 (s
.syncing
&& (s
.uptodate
+ s
.compute
< disks
)) || s
.expanding
)
3028 handle_stripe_fill5(sh
, &s
, disks
);
3030 /* Now we check to see if any write operations have recently
3034 if (sh
->reconstruct_state
== reconstruct_state_prexor_drain_result
)
3036 if (sh
->reconstruct_state
== reconstruct_state_drain_result
||
3037 sh
->reconstruct_state
== reconstruct_state_prexor_drain_result
) {
3038 sh
->reconstruct_state
= reconstruct_state_idle
;
3040 /* All the 'written' buffers and the parity block are ready to
3041 * be written back to disk
3043 BUG_ON(!test_bit(R5_UPTODATE
, &sh
->dev
[sh
->pd_idx
].flags
));
3044 for (i
= disks
; i
--; ) {
3046 if (test_bit(R5_LOCKED
, &dev
->flags
) &&
3047 (i
== sh
->pd_idx
|| dev
->written
)) {
3048 pr_debug("Writing block %d\n", i
);
3049 set_bit(R5_Wantwrite
, &dev
->flags
);
3052 if (!test_bit(R5_Insync
, &dev
->flags
) ||
3053 (i
== sh
->pd_idx
&& s
.failed
== 0))
3054 set_bit(STRIPE_INSYNC
, &sh
->state
);
3057 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
)) {
3058 atomic_dec(&conf
->preread_active_stripes
);
3059 if (atomic_read(&conf
->preread_active_stripes
) <
3061 md_wakeup_thread(conf
->mddev
->thread
);
3065 /* Now to consider new write requests and what else, if anything
3066 * should be read. We do not handle new writes when:
3067 * 1/ A 'write' operation (copy+xor) is already in flight.
3068 * 2/ A 'check' operation is in flight, as it may clobber the parity
3071 if (s
.to_write
&& !sh
->reconstruct_state
&& !sh
->check_state
)
3072 handle_stripe_dirtying5(conf
, sh
, &s
, disks
);
3074 /* maybe we need to check and possibly fix the parity for this stripe
3075 * Any reads will already have been scheduled, so we just see if enough
3076 * data is available. The parity check is held off while parity
3077 * dependent operations are in flight.
3079 if (sh
->check_state
||
3080 (s
.syncing
&& s
.locked
== 0 &&
3081 !test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
) &&
3082 !test_bit(STRIPE_INSYNC
, &sh
->state
)))
3083 handle_parity_checks5(conf
, sh
, &s
, disks
);
3085 if (s
.syncing
&& s
.locked
== 0 && test_bit(STRIPE_INSYNC
, &sh
->state
)) {
3086 md_done_sync(conf
->mddev
, STRIPE_SECTORS
,1);
3087 clear_bit(STRIPE_SYNCING
, &sh
->state
);
3090 /* If the failed drive is just a ReadError, then we might need to progress
3091 * the repair/check process
3093 if (s
.failed
== 1 && !conf
->mddev
->ro
&&
3094 test_bit(R5_ReadError
, &sh
->dev
[s
.failed_num
].flags
)
3095 && !test_bit(R5_LOCKED
, &sh
->dev
[s
.failed_num
].flags
)
3096 && test_bit(R5_UPTODATE
, &sh
->dev
[s
.failed_num
].flags
)
3098 dev
= &sh
->dev
[s
.failed_num
];
3099 if (!test_bit(R5_ReWrite
, &dev
->flags
)) {
3100 set_bit(R5_Wantwrite
, &dev
->flags
);
3101 set_bit(R5_ReWrite
, &dev
->flags
);
3102 set_bit(R5_LOCKED
, &dev
->flags
);
3105 /* let's read it back */
3106 set_bit(R5_Wantread
, &dev
->flags
);
3107 set_bit(R5_LOCKED
, &dev
->flags
);
3112 /* Finish reconstruct operations initiated by the expansion process */
3113 if (sh
->reconstruct_state
== reconstruct_state_result
) {
3114 struct stripe_head
*sh2
3115 = get_active_stripe(conf
, sh
->sector
, 1, 1, 1);
3116 if (sh2
&& test_bit(STRIPE_EXPAND_SOURCE
, &sh2
->state
)) {
3117 /* sh cannot be written until sh2 has been read.
3118 * so arrange for sh to be delayed a little
3120 set_bit(STRIPE_DELAYED
, &sh
->state
);
3121 set_bit(STRIPE_HANDLE
, &sh
->state
);
3122 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE
,
3124 atomic_inc(&conf
->preread_active_stripes
);
3125 release_stripe(sh2
);
3129 release_stripe(sh2
);
3131 sh
->reconstruct_state
= reconstruct_state_idle
;
3132 clear_bit(STRIPE_EXPANDING
, &sh
->state
);
3133 for (i
= conf
->raid_disks
; i
--; ) {
3134 set_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
);
3135 set_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
3140 if (s
.expanded
&& test_bit(STRIPE_EXPANDING
, &sh
->state
) &&
3141 !sh
->reconstruct_state
) {
3142 /* Need to write out all blocks after computing parity */
3143 sh
->disks
= conf
->raid_disks
;
3144 stripe_set_idx(sh
->sector
, conf
, 0, sh
);
3145 schedule_reconstruction(sh
, &s
, 1, 1);
3146 } else if (s
.expanded
&& !sh
->reconstruct_state
&& s
.locked
== 0) {
3147 clear_bit(STRIPE_EXPAND_READY
, &sh
->state
);
3148 atomic_dec(&conf
->reshape_stripes
);
3149 wake_up(&conf
->wait_for_overlap
);
3150 md_done_sync(conf
->mddev
, STRIPE_SECTORS
, 1);
3153 if (s
.expanding
&& s
.locked
== 0 &&
3154 !test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
))
3155 handle_stripe_expansion(conf
, sh
, NULL
);
3158 spin_unlock(&sh
->lock
);
3160 /* wait for this device to become unblocked */
3161 if (unlikely(blocked_rdev
))
3162 md_wait_for_blocked_rdev(blocked_rdev
, conf
->mddev
);
3165 raid_run_ops(sh
, s
.ops_request
);
3169 return_io(return_bi
);
3171 return blocked_rdev
== NULL
;
3174 static bool handle_stripe6(struct stripe_head
*sh
)
3176 raid5_conf_t
*conf
= sh
->raid_conf
;
3177 int disks
= sh
->disks
;
3178 struct bio
*return_bi
= NULL
;
3179 int i
, pd_idx
= sh
->pd_idx
, qd_idx
= sh
->qd_idx
;
3180 struct stripe_head_state s
;
3181 struct r6_state r6s
;
3182 struct r5dev
*dev
, *pdev
, *qdev
;
3183 mdk_rdev_t
*blocked_rdev
= NULL
;
3185 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3186 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3187 (unsigned long long)sh
->sector
, sh
->state
,
3188 atomic_read(&sh
->count
), pd_idx
, qd_idx
,
3189 sh
->check_state
, sh
->reconstruct_state
);
3190 memset(&s
, 0, sizeof(s
));
3192 spin_lock(&sh
->lock
);
3193 clear_bit(STRIPE_HANDLE
, &sh
->state
);
3194 clear_bit(STRIPE_DELAYED
, &sh
->state
);
3196 s
.syncing
= test_bit(STRIPE_SYNCING
, &sh
->state
);
3197 s
.expanding
= test_bit(STRIPE_EXPAND_SOURCE
, &sh
->state
);
3198 s
.expanded
= test_bit(STRIPE_EXPAND_READY
, &sh
->state
);
3199 /* Now to look around and see what can be done */
3202 for (i
=disks
; i
--; ) {
3205 clear_bit(R5_Insync
, &dev
->flags
);
3207 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3208 i
, dev
->flags
, dev
->toread
, dev
->towrite
, dev
->written
);
3209 /* maybe we can reply to a read
3211 * new wantfill requests are only permitted while
3212 * ops_complete_biofill is guaranteed to be inactive
3214 if (test_bit(R5_UPTODATE
, &dev
->flags
) && dev
->toread
&&
3215 !test_bit(STRIPE_BIOFILL_RUN
, &sh
->state
))
3216 set_bit(R5_Wantfill
, &dev
->flags
);
3218 /* now count some things */
3219 if (test_bit(R5_LOCKED
, &dev
->flags
)) s
.locked
++;
3220 if (test_bit(R5_UPTODATE
, &dev
->flags
)) s
.uptodate
++;
3221 if (test_bit(R5_Wantcompute
, &dev
->flags
)) {
3223 BUG_ON(s
.compute
> 2);
3226 if (test_bit(R5_Wantfill
, &dev
->flags
)) {
3228 } else if (dev
->toread
)
3232 if (!test_bit(R5_OVERWRITE
, &dev
->flags
))
3237 rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
3238 if (blocked_rdev
== NULL
&&
3239 rdev
&& unlikely(test_bit(Blocked
, &rdev
->flags
))) {
3240 blocked_rdev
= rdev
;
3241 atomic_inc(&rdev
->nr_pending
);
3243 if (!rdev
|| !test_bit(In_sync
, &rdev
->flags
)) {
3244 /* The ReadError flag will just be confusing now */
3245 clear_bit(R5_ReadError
, &dev
->flags
);
3246 clear_bit(R5_ReWrite
, &dev
->flags
);
3248 if (!rdev
|| !test_bit(In_sync
, &rdev
->flags
)
3249 || test_bit(R5_ReadError
, &dev
->flags
)) {
3251 r6s
.failed_num
[s
.failed
] = i
;
3254 set_bit(R5_Insync
, &dev
->flags
);
3258 if (unlikely(blocked_rdev
)) {
3259 if (s
.syncing
|| s
.expanding
|| s
.expanded
||
3260 s
.to_write
|| s
.written
) {
3261 set_bit(STRIPE_HANDLE
, &sh
->state
);
3264 /* There is nothing for the blocked_rdev to block */
3265 rdev_dec_pending(blocked_rdev
, conf
->mddev
);
3266 blocked_rdev
= NULL
;
3269 if (s
.to_fill
&& !test_bit(STRIPE_BIOFILL_RUN
, &sh
->state
)) {
3270 set_bit(STRIPE_OP_BIOFILL
, &s
.ops_request
);
3271 set_bit(STRIPE_BIOFILL_RUN
, &sh
->state
);
3274 pr_debug("locked=%d uptodate=%d to_read=%d"
3275 " to_write=%d failed=%d failed_num=%d,%d\n",
3276 s
.locked
, s
.uptodate
, s
.to_read
, s
.to_write
, s
.failed
,
3277 r6s
.failed_num
[0], r6s
.failed_num
[1]);
3278 /* check if the array has lost >2 devices and, if so, some requests
3279 * might need to be failed
3281 if (s
.failed
> 2 && s
.to_read
+s
.to_write
+s
.written
)
3282 handle_failed_stripe(conf
, sh
, &s
, disks
, &return_bi
);
3283 if (s
.failed
> 2 && s
.syncing
) {
3284 md_done_sync(conf
->mddev
, STRIPE_SECTORS
,0);
3285 clear_bit(STRIPE_SYNCING
, &sh
->state
);
3290 * might be able to return some write requests if the parity blocks
3291 * are safe, or on a failed drive
3293 pdev
= &sh
->dev
[pd_idx
];
3294 r6s
.p_failed
= (s
.failed
>= 1 && r6s
.failed_num
[0] == pd_idx
)
3295 || (s
.failed
>= 2 && r6s
.failed_num
[1] == pd_idx
);
3296 qdev
= &sh
->dev
[qd_idx
];
3297 r6s
.q_failed
= (s
.failed
>= 1 && r6s
.failed_num
[0] == qd_idx
)
3298 || (s
.failed
>= 2 && r6s
.failed_num
[1] == qd_idx
);
3301 ( r6s
.p_failed
|| ((test_bit(R5_Insync
, &pdev
->flags
)
3302 && !test_bit(R5_LOCKED
, &pdev
->flags
)
3303 && test_bit(R5_UPTODATE
, &pdev
->flags
)))) &&
3304 ( r6s
.q_failed
|| ((test_bit(R5_Insync
, &qdev
->flags
)
3305 && !test_bit(R5_LOCKED
, &qdev
->flags
)
3306 && test_bit(R5_UPTODATE
, &qdev
->flags
)))))
3307 handle_stripe_clean_event(conf
, sh
, disks
, &return_bi
);
3309 /* Now we might consider reading some blocks, either to check/generate
3310 * parity, or to satisfy requests
3311 * or to load a block that is being partially written.
3313 if (s
.to_read
|| s
.non_overwrite
|| (s
.to_write
&& s
.failed
) ||
3314 (s
.syncing
&& (s
.uptodate
+ s
.compute
< disks
)) || s
.expanding
)
3315 handle_stripe_fill6(sh
, &s
, &r6s
, disks
);
3317 /* Now we check to see if any write operations have recently
3320 if (sh
->reconstruct_state
== reconstruct_state_drain_result
) {
3321 int qd_idx
= sh
->qd_idx
;
3323 sh
->reconstruct_state
= reconstruct_state_idle
;
3324 /* All the 'written' buffers and the parity blocks are ready to
3325 * be written back to disk
3327 BUG_ON(!test_bit(R5_UPTODATE
, &sh
->dev
[sh
->pd_idx
].flags
));
3328 BUG_ON(!test_bit(R5_UPTODATE
, &sh
->dev
[qd_idx
].flags
));
3329 for (i
= disks
; i
--; ) {
3331 if (test_bit(R5_LOCKED
, &dev
->flags
) &&
3332 (i
== sh
->pd_idx
|| i
== qd_idx
||
3334 pr_debug("Writing block %d\n", i
);
3335 BUG_ON(!test_bit(R5_UPTODATE
, &dev
->flags
));
3336 set_bit(R5_Wantwrite
, &dev
->flags
);
3337 if (!test_bit(R5_Insync
, &dev
->flags
) ||
3338 ((i
== sh
->pd_idx
|| i
== qd_idx
) &&
3340 set_bit(STRIPE_INSYNC
, &sh
->state
);
3343 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
)) {
3344 atomic_dec(&conf
->preread_active_stripes
);
3345 if (atomic_read(&conf
->preread_active_stripes
) <
3347 md_wakeup_thread(conf
->mddev
->thread
);
3351 /* Now to consider new write requests and what else, if anything
3352 * should be read. We do not handle new writes when:
3353 * 1/ A 'write' operation (copy+gen_syndrome) is already in flight.
3354 * 2/ A 'check' operation is in flight, as it may clobber the parity
3357 if (s
.to_write
&& !sh
->reconstruct_state
&& !sh
->check_state
)
3358 handle_stripe_dirtying6(conf
, sh
, &s
, &r6s
, disks
);
3360 /* maybe we need to check and possibly fix the parity for this stripe
3361 * Any reads will already have been scheduled, so we just see if enough
3362 * data is available. The parity check is held off while parity
3363 * dependent operations are in flight.
3365 if (sh
->check_state
||
3366 (s
.syncing
&& s
.locked
== 0 &&
3367 !test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
) &&
3368 !test_bit(STRIPE_INSYNC
, &sh
->state
)))
3369 handle_parity_checks6(conf
, sh
, &s
, &r6s
, disks
);
3371 if (s
.syncing
&& s
.locked
== 0 && test_bit(STRIPE_INSYNC
, &sh
->state
)) {
3372 md_done_sync(conf
->mddev
, STRIPE_SECTORS
,1);
3373 clear_bit(STRIPE_SYNCING
, &sh
->state
);
3376 /* If the failed drives are just a ReadError, then we might need
3377 * to progress the repair/check process
3379 if (s
.failed
<= 2 && !conf
->mddev
->ro
)
3380 for (i
= 0; i
< s
.failed
; i
++) {
3381 dev
= &sh
->dev
[r6s
.failed_num
[i
]];
3382 if (test_bit(R5_ReadError
, &dev
->flags
)
3383 && !test_bit(R5_LOCKED
, &dev
->flags
)
3384 && test_bit(R5_UPTODATE
, &dev
->flags
)
3386 if (!test_bit(R5_ReWrite
, &dev
->flags
)) {
3387 set_bit(R5_Wantwrite
, &dev
->flags
);
3388 set_bit(R5_ReWrite
, &dev
->flags
);
3389 set_bit(R5_LOCKED
, &dev
->flags
);
3392 /* let's read it back */
3393 set_bit(R5_Wantread
, &dev
->flags
);
3394 set_bit(R5_LOCKED
, &dev
->flags
);
3400 /* Finish reconstruct operations initiated by the expansion process */
3401 if (sh
->reconstruct_state
== reconstruct_state_result
) {
3402 sh
->reconstruct_state
= reconstruct_state_idle
;
3403 clear_bit(STRIPE_EXPANDING
, &sh
->state
);
3404 for (i
= conf
->raid_disks
; i
--; ) {
3405 set_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
);
3406 set_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
3411 if (s
.expanded
&& test_bit(STRIPE_EXPANDING
, &sh
->state
) &&
3412 !sh
->reconstruct_state
) {
3413 struct stripe_head
*sh2
3414 = get_active_stripe(conf
, sh
->sector
, 1, 1, 1);
3415 if (sh2
&& test_bit(STRIPE_EXPAND_SOURCE
, &sh2
->state
)) {
3416 /* sh cannot be written until sh2 has been read.
3417 * so arrange for sh to be delayed a little
3419 set_bit(STRIPE_DELAYED
, &sh
->state
);
3420 set_bit(STRIPE_HANDLE
, &sh
->state
);
3421 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE
,
3423 atomic_inc(&conf
->preread_active_stripes
);
3424 release_stripe(sh2
);
3428 release_stripe(sh2
);
3430 /* Need to write out all blocks after computing P&Q */
3431 sh
->disks
= conf
->raid_disks
;
3432 stripe_set_idx(sh
->sector
, conf
, 0, sh
);
3433 schedule_reconstruction(sh
, &s
, 1, 1);
3434 } else if (s
.expanded
&& !sh
->reconstruct_state
&& s
.locked
== 0) {
3435 clear_bit(STRIPE_EXPAND_READY
, &sh
->state
);
3436 atomic_dec(&conf
->reshape_stripes
);
3437 wake_up(&conf
->wait_for_overlap
);
3438 md_done_sync(conf
->mddev
, STRIPE_SECTORS
, 1);
3441 if (s
.expanding
&& s
.locked
== 0 &&
3442 !test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
))
3443 handle_stripe_expansion(conf
, sh
, &r6s
);
3446 spin_unlock(&sh
->lock
);
3448 /* wait for this device to become unblocked */
3449 if (unlikely(blocked_rdev
))
3450 md_wait_for_blocked_rdev(blocked_rdev
, conf
->mddev
);
3453 raid_run_ops(sh
, s
.ops_request
);
3457 return_io(return_bi
);
3459 return blocked_rdev
== NULL
;
3462 /* returns true if the stripe was handled */
3463 static bool handle_stripe(struct stripe_head
*sh
)
3465 if (sh
->raid_conf
->level
== 6)
3466 return handle_stripe6(sh
);
3468 return handle_stripe5(sh
);
3471 static void raid5_activate_delayed(raid5_conf_t
*conf
)
3473 if (atomic_read(&conf
->preread_active_stripes
) < IO_THRESHOLD
) {
3474 while (!list_empty(&conf
->delayed_list
)) {
3475 struct list_head
*l
= conf
->delayed_list
.next
;
3476 struct stripe_head
*sh
;
3477 sh
= list_entry(l
, struct stripe_head
, lru
);
3479 clear_bit(STRIPE_DELAYED
, &sh
->state
);
3480 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
3481 atomic_inc(&conf
->preread_active_stripes
);
3482 list_add_tail(&sh
->lru
, &conf
->hold_list
);
3485 blk_plug_device(conf
->mddev
->queue
);
3488 static void activate_bit_delay(raid5_conf_t
*conf
)
3490 /* device_lock is held */
3491 struct list_head head
;
3492 list_add(&head
, &conf
->bitmap_list
);
3493 list_del_init(&conf
->bitmap_list
);
3494 while (!list_empty(&head
)) {
3495 struct stripe_head
*sh
= list_entry(head
.next
, struct stripe_head
, lru
);
3496 list_del_init(&sh
->lru
);
3497 atomic_inc(&sh
->count
);
3498 __release_stripe(conf
, sh
);
3502 static void unplug_slaves(mddev_t
*mddev
)
3504 raid5_conf_t
*conf
= mddev
->private;
3508 for (i
= 0; i
< conf
->raid_disks
; i
++) {
3509 mdk_rdev_t
*rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
3510 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
) && atomic_read(&rdev
->nr_pending
)) {
3511 struct request_queue
*r_queue
= bdev_get_queue(rdev
->bdev
);
3513 atomic_inc(&rdev
->nr_pending
);
3516 blk_unplug(r_queue
);
3518 rdev_dec_pending(rdev
, mddev
);
3525 static void raid5_unplug_device(struct request_queue
*q
)
3527 mddev_t
*mddev
= q
->queuedata
;
3528 raid5_conf_t
*conf
= mddev
->private;
3529 unsigned long flags
;
3531 spin_lock_irqsave(&conf
->device_lock
, flags
);
3533 if (blk_remove_plug(q
)) {
3535 raid5_activate_delayed(conf
);
3537 md_wakeup_thread(mddev
->thread
);
3539 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
3541 unplug_slaves(mddev
);
3544 static int raid5_congested(void *data
, int bits
)
3546 mddev_t
*mddev
= data
;
3547 raid5_conf_t
*conf
= mddev
->private;
3549 /* No difference between reads and writes. Just check
3550 * how busy the stripe_cache is
3553 if (mddev_congested(mddev
, bits
))
3555 if (conf
->inactive_blocked
)
3559 if (list_empty_careful(&conf
->inactive_list
))
3565 /* We want read requests to align with chunks where possible,
3566 * but write requests don't need to.
3568 static int raid5_mergeable_bvec(struct request_queue
*q
,
3569 struct bvec_merge_data
*bvm
,
3570 struct bio_vec
*biovec
)
3572 mddev_t
*mddev
= q
->queuedata
;
3573 sector_t sector
= bvm
->bi_sector
+ get_start_sect(bvm
->bi_bdev
);
3575 unsigned int chunk_sectors
= mddev
->chunk_sectors
;
3576 unsigned int bio_sectors
= bvm
->bi_size
>> 9;
3578 if ((bvm
->bi_rw
& 1) == WRITE
)
3579 return biovec
->bv_len
; /* always allow writes to be mergeable */
3581 if (mddev
->new_chunk_sectors
< mddev
->chunk_sectors
)
3582 chunk_sectors
= mddev
->new_chunk_sectors
;
3583 max
= (chunk_sectors
- ((sector
& (chunk_sectors
- 1)) + bio_sectors
)) << 9;
3584 if (max
< 0) max
= 0;
3585 if (max
<= biovec
->bv_len
&& bio_sectors
== 0)
3586 return biovec
->bv_len
;
3592 static int in_chunk_boundary(mddev_t
*mddev
, struct bio
*bio
)
3594 sector_t sector
= bio
->bi_sector
+ get_start_sect(bio
->bi_bdev
);
3595 unsigned int chunk_sectors
= mddev
->chunk_sectors
;
3596 unsigned int bio_sectors
= bio
->bi_size
>> 9;
3598 if (mddev
->new_chunk_sectors
< mddev
->chunk_sectors
)
3599 chunk_sectors
= mddev
->new_chunk_sectors
;
3600 return chunk_sectors
>=
3601 ((sector
& (chunk_sectors
- 1)) + bio_sectors
);
3605 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
3606 * later sampled by raid5d.
3608 static void add_bio_to_retry(struct bio
*bi
,raid5_conf_t
*conf
)
3610 unsigned long flags
;
3612 spin_lock_irqsave(&conf
->device_lock
, flags
);
3614 bi
->bi_next
= conf
->retry_read_aligned_list
;
3615 conf
->retry_read_aligned_list
= bi
;
3617 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
3618 md_wakeup_thread(conf
->mddev
->thread
);
3622 static struct bio
*remove_bio_from_retry(raid5_conf_t
*conf
)
3626 bi
= conf
->retry_read_aligned
;
3628 conf
->retry_read_aligned
= NULL
;
3631 bi
= conf
->retry_read_aligned_list
;
3633 conf
->retry_read_aligned_list
= bi
->bi_next
;
3636 * this sets the active strip count to 1 and the processed
3637 * strip count to zero (upper 8 bits)
3639 bi
->bi_phys_segments
= 1; /* biased count of active stripes */
3647 * The "raid5_align_endio" should check if the read succeeded and if it
3648 * did, call bio_endio on the original bio (having bio_put the new bio
3650 * If the read failed..
3652 static void raid5_align_endio(struct bio
*bi
, int error
)
3654 struct bio
* raid_bi
= bi
->bi_private
;
3657 int uptodate
= test_bit(BIO_UPTODATE
, &bi
->bi_flags
);
3662 mddev
= raid_bi
->bi_bdev
->bd_disk
->queue
->queuedata
;
3663 conf
= mddev
->private;
3664 rdev
= (void*)raid_bi
->bi_next
;
3665 raid_bi
->bi_next
= NULL
;
3667 rdev_dec_pending(rdev
, conf
->mddev
);
3669 if (!error
&& uptodate
) {
3670 bio_endio(raid_bi
, 0);
3671 if (atomic_dec_and_test(&conf
->active_aligned_reads
))
3672 wake_up(&conf
->wait_for_stripe
);
3677 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3679 add_bio_to_retry(raid_bi
, conf
);
3682 static int bio_fits_rdev(struct bio
*bi
)
3684 struct request_queue
*q
= bdev_get_queue(bi
->bi_bdev
);
3686 if ((bi
->bi_size
>>9) > queue_max_sectors(q
))
3688 blk_recount_segments(q
, bi
);
3689 if (bi
->bi_phys_segments
> queue_max_phys_segments(q
))
3692 if (q
->merge_bvec_fn
)
3693 /* it's too hard to apply the merge_bvec_fn at this stage,
3702 static int chunk_aligned_read(struct request_queue
*q
, struct bio
* raid_bio
)
3704 mddev_t
*mddev
= q
->queuedata
;
3705 raid5_conf_t
*conf
= mddev
->private;
3706 unsigned int dd_idx
;
3707 struct bio
* align_bi
;
3710 if (!in_chunk_boundary(mddev
, raid_bio
)) {
3711 pr_debug("chunk_aligned_read : non aligned\n");
3715 * use bio_clone to make a copy of the bio
3717 align_bi
= bio_clone(raid_bio
, GFP_NOIO
);
3721 * set bi_end_io to a new function, and set bi_private to the
3724 align_bi
->bi_end_io
= raid5_align_endio
;
3725 align_bi
->bi_private
= raid_bio
;
3729 align_bi
->bi_sector
= raid5_compute_sector(conf
, raid_bio
->bi_sector
,
3734 rdev
= rcu_dereference(conf
->disks
[dd_idx
].rdev
);
3735 if (rdev
&& test_bit(In_sync
, &rdev
->flags
)) {
3736 atomic_inc(&rdev
->nr_pending
);
3738 raid_bio
->bi_next
= (void*)rdev
;
3739 align_bi
->bi_bdev
= rdev
->bdev
;
3740 align_bi
->bi_flags
&= ~(1 << BIO_SEG_VALID
);
3741 align_bi
->bi_sector
+= rdev
->data_offset
;
3743 if (!bio_fits_rdev(align_bi
)) {
3744 /* too big in some way */
3746 rdev_dec_pending(rdev
, mddev
);
3750 spin_lock_irq(&conf
->device_lock
);
3751 wait_event_lock_irq(conf
->wait_for_stripe
,
3753 conf
->device_lock
, /* nothing */);
3754 atomic_inc(&conf
->active_aligned_reads
);
3755 spin_unlock_irq(&conf
->device_lock
);
3757 generic_make_request(align_bi
);
3766 /* __get_priority_stripe - get the next stripe to process
3768 * Full stripe writes are allowed to pass preread active stripes up until
3769 * the bypass_threshold is exceeded. In general the bypass_count
3770 * increments when the handle_list is handled before the hold_list; however, it
3771 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3772 * stripe with in flight i/o. The bypass_count will be reset when the
3773 * head of the hold_list has changed, i.e. the head was promoted to the
3776 static struct stripe_head
*__get_priority_stripe(raid5_conf_t
*conf
)
3778 struct stripe_head
*sh
;
3780 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3782 list_empty(&conf
->handle_list
) ? "empty" : "busy",
3783 list_empty(&conf
->hold_list
) ? "empty" : "busy",
3784 atomic_read(&conf
->pending_full_writes
), conf
->bypass_count
);
3786 if (!list_empty(&conf
->handle_list
)) {
3787 sh
= list_entry(conf
->handle_list
.next
, typeof(*sh
), lru
);
3789 if (list_empty(&conf
->hold_list
))
3790 conf
->bypass_count
= 0;
3791 else if (!test_bit(STRIPE_IO_STARTED
, &sh
->state
)) {
3792 if (conf
->hold_list
.next
== conf
->last_hold
)
3793 conf
->bypass_count
++;
3795 conf
->last_hold
= conf
->hold_list
.next
;
3796 conf
->bypass_count
-= conf
->bypass_threshold
;
3797 if (conf
->bypass_count
< 0)
3798 conf
->bypass_count
= 0;
3801 } else if (!list_empty(&conf
->hold_list
) &&
3802 ((conf
->bypass_threshold
&&
3803 conf
->bypass_count
> conf
->bypass_threshold
) ||
3804 atomic_read(&conf
->pending_full_writes
) == 0)) {
3805 sh
= list_entry(conf
->hold_list
.next
,
3807 conf
->bypass_count
-= conf
->bypass_threshold
;
3808 if (conf
->bypass_count
< 0)
3809 conf
->bypass_count
= 0;
3813 list_del_init(&sh
->lru
);
3814 atomic_inc(&sh
->count
);
3815 BUG_ON(atomic_read(&sh
->count
) != 1);
3819 static int make_request(struct request_queue
*q
, struct bio
* bi
)
3821 mddev_t
*mddev
= q
->queuedata
;
3822 raid5_conf_t
*conf
= mddev
->private;
3824 sector_t new_sector
;
3825 sector_t logical_sector
, last_sector
;
3826 struct stripe_head
*sh
;
3827 const int rw
= bio_data_dir(bi
);
3830 if (unlikely(bio_rw_flagged(bi
, BIO_RW_BARRIER
))) {
3831 bio_endio(bi
, -EOPNOTSUPP
);
3835 md_write_start(mddev
, bi
);
3837 cpu
= part_stat_lock();
3838 part_stat_inc(cpu
, &mddev
->gendisk
->part0
, ios
[rw
]);
3839 part_stat_add(cpu
, &mddev
->gendisk
->part0
, sectors
[rw
],
3844 mddev
->reshape_position
== MaxSector
&&
3845 chunk_aligned_read(q
,bi
))
3848 logical_sector
= bi
->bi_sector
& ~((sector_t
)STRIPE_SECTORS
-1);
3849 last_sector
= bi
->bi_sector
+ (bi
->bi_size
>>9);
3851 bi
->bi_phys_segments
= 1; /* over-loaded to count active stripes */
3853 for (;logical_sector
< last_sector
; logical_sector
+= STRIPE_SECTORS
) {
3855 int disks
, data_disks
;
3860 disks
= conf
->raid_disks
;
3861 prepare_to_wait(&conf
->wait_for_overlap
, &w
, TASK_UNINTERRUPTIBLE
);
3862 if (unlikely(conf
->reshape_progress
!= MaxSector
)) {
3863 /* spinlock is needed as reshape_progress may be
3864 * 64bit on a 32bit platform, and so it might be
3865 * possible to see a half-updated value
3866 * Ofcourse reshape_progress could change after
3867 * the lock is dropped, so once we get a reference
3868 * to the stripe that we think it is, we will have
3871 spin_lock_irq(&conf
->device_lock
);
3872 if (mddev
->delta_disks
< 0
3873 ? logical_sector
< conf
->reshape_progress
3874 : logical_sector
>= conf
->reshape_progress
) {
3875 disks
= conf
->previous_raid_disks
;
3878 if (mddev
->delta_disks
< 0
3879 ? logical_sector
< conf
->reshape_safe
3880 : logical_sector
>= conf
->reshape_safe
) {
3881 spin_unlock_irq(&conf
->device_lock
);
3886 spin_unlock_irq(&conf
->device_lock
);
3888 data_disks
= disks
- conf
->max_degraded
;
3890 new_sector
= raid5_compute_sector(conf
, logical_sector
,
3893 pr_debug("raid5: make_request, sector %llu logical %llu\n",
3894 (unsigned long long)new_sector
,
3895 (unsigned long long)logical_sector
);
3897 sh
= get_active_stripe(conf
, new_sector
, previous
,
3898 (bi
->bi_rw
&RWA_MASK
), 0);
3900 if (unlikely(previous
)) {
3901 /* expansion might have moved on while waiting for a
3902 * stripe, so we must do the range check again.
3903 * Expansion could still move past after this
3904 * test, but as we are holding a reference to
3905 * 'sh', we know that if that happens,
3906 * STRIPE_EXPANDING will get set and the expansion
3907 * won't proceed until we finish with the stripe.
3910 spin_lock_irq(&conf
->device_lock
);
3911 if (mddev
->delta_disks
< 0
3912 ? logical_sector
>= conf
->reshape_progress
3913 : logical_sector
< conf
->reshape_progress
)
3914 /* mismatch, need to try again */
3916 spin_unlock_irq(&conf
->device_lock
);
3924 if (bio_data_dir(bi
) == WRITE
&&
3925 logical_sector
>= mddev
->suspend_lo
&&
3926 logical_sector
< mddev
->suspend_hi
) {
3928 /* As the suspend_* range is controlled by
3929 * userspace, we want an interruptible
3932 flush_signals(current
);
3933 prepare_to_wait(&conf
->wait_for_overlap
,
3934 &w
, TASK_INTERRUPTIBLE
);
3935 if (logical_sector
>= mddev
->suspend_lo
&&
3936 logical_sector
< mddev
->suspend_hi
)
3941 if (test_bit(STRIPE_EXPANDING
, &sh
->state
) ||
3942 !add_stripe_bio(sh
, bi
, dd_idx
, (bi
->bi_rw
&RW_MASK
))) {
3943 /* Stripe is busy expanding or
3944 * add failed due to overlap. Flush everything
3947 raid5_unplug_device(mddev
->queue
);
3952 finish_wait(&conf
->wait_for_overlap
, &w
);
3953 set_bit(STRIPE_HANDLE
, &sh
->state
);
3954 clear_bit(STRIPE_DELAYED
, &sh
->state
);
3957 /* cannot get stripe for read-ahead, just give-up */
3958 clear_bit(BIO_UPTODATE
, &bi
->bi_flags
);
3959 finish_wait(&conf
->wait_for_overlap
, &w
);
3964 spin_lock_irq(&conf
->device_lock
);
3965 remaining
= raid5_dec_bi_phys_segments(bi
);
3966 spin_unlock_irq(&conf
->device_lock
);
3967 if (remaining
== 0) {
3970 md_write_end(mddev
);
3977 static sector_t
raid5_size(mddev_t
*mddev
, sector_t sectors
, int raid_disks
);
3979 static sector_t
reshape_request(mddev_t
*mddev
, sector_t sector_nr
, int *skipped
)
3981 /* reshaping is quite different to recovery/resync so it is
3982 * handled quite separately ... here.
3984 * On each call to sync_request, we gather one chunk worth of
3985 * destination stripes and flag them as expanding.
3986 * Then we find all the source stripes and request reads.
3987 * As the reads complete, handle_stripe will copy the data
3988 * into the destination stripe and release that stripe.
3990 raid5_conf_t
*conf
= (raid5_conf_t
*) mddev
->private;
3991 struct stripe_head
*sh
;
3992 sector_t first_sector
, last_sector
;
3993 int raid_disks
= conf
->previous_raid_disks
;
3994 int data_disks
= raid_disks
- conf
->max_degraded
;
3995 int new_data_disks
= conf
->raid_disks
- conf
->max_degraded
;
3998 sector_t writepos
, readpos
, safepos
;
3999 sector_t stripe_addr
;
4000 int reshape_sectors
;
4001 struct list_head stripes
;
4003 if (sector_nr
== 0) {
4004 /* If restarting in the middle, skip the initial sectors */
4005 if (mddev
->delta_disks
< 0 &&
4006 conf
->reshape_progress
< raid5_size(mddev
, 0, 0)) {
4007 sector_nr
= raid5_size(mddev
, 0, 0)
4008 - conf
->reshape_progress
;
4009 } else if (mddev
->delta_disks
>= 0 &&
4010 conf
->reshape_progress
> 0)
4011 sector_nr
= conf
->reshape_progress
;
4012 sector_div(sector_nr
, new_data_disks
);
4019 /* We need to process a full chunk at a time.
4020 * If old and new chunk sizes differ, we need to process the
4023 if (mddev
->new_chunk_sectors
> mddev
->chunk_sectors
)
4024 reshape_sectors
= mddev
->new_chunk_sectors
;
4026 reshape_sectors
= mddev
->chunk_sectors
;
4028 /* we update the metadata when there is more than 3Meg
4029 * in the block range (that is rather arbitrary, should
4030 * probably be time based) or when the data about to be
4031 * copied would over-write the source of the data at
4032 * the front of the range.
4033 * i.e. one new_stripe along from reshape_progress new_maps
4034 * to after where reshape_safe old_maps to
4036 writepos
= conf
->reshape_progress
;
4037 sector_div(writepos
, new_data_disks
);
4038 readpos
= conf
->reshape_progress
;
4039 sector_div(readpos
, data_disks
);
4040 safepos
= conf
->reshape_safe
;
4041 sector_div(safepos
, data_disks
);
4042 if (mddev
->delta_disks
< 0) {
4043 writepos
-= min_t(sector_t
, reshape_sectors
, writepos
);
4044 readpos
+= reshape_sectors
;
4045 safepos
+= reshape_sectors
;
4047 writepos
+= reshape_sectors
;
4048 readpos
-= min_t(sector_t
, reshape_sectors
, readpos
);
4049 safepos
-= min_t(sector_t
, reshape_sectors
, safepos
);
4052 /* 'writepos' is the most advanced device address we might write.
4053 * 'readpos' is the least advanced device address we might read.
4054 * 'safepos' is the least address recorded in the metadata as having
4056 * If 'readpos' is behind 'writepos', then there is no way that we can
4057 * ensure safety in the face of a crash - that must be done by userspace
4058 * making a backup of the data. So in that case there is no particular
4059 * rush to update metadata.
4060 * Otherwise if 'safepos' is behind 'writepos', then we really need to
4061 * update the metadata to advance 'safepos' to match 'readpos' so that
4062 * we can be safe in the event of a crash.
4063 * So we insist on updating metadata if safepos is behind writepos and
4064 * readpos is beyond writepos.
4065 * In any case, update the metadata every 10 seconds.
4066 * Maybe that number should be configurable, but I'm not sure it is
4067 * worth it.... maybe it could be a multiple of safemode_delay???
4069 if ((mddev
->delta_disks
< 0
4070 ? (safepos
> writepos
&& readpos
< writepos
)
4071 : (safepos
< writepos
&& readpos
> writepos
)) ||
4072 time_after(jiffies
, conf
->reshape_checkpoint
+ 10*HZ
)) {
4073 /* Cannot proceed until we've updated the superblock... */
4074 wait_event(conf
->wait_for_overlap
,
4075 atomic_read(&conf
->reshape_stripes
)==0);
4076 mddev
->reshape_position
= conf
->reshape_progress
;
4077 mddev
->curr_resync_completed
= mddev
->curr_resync
;
4078 conf
->reshape_checkpoint
= jiffies
;
4079 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
4080 md_wakeup_thread(mddev
->thread
);
4081 wait_event(mddev
->sb_wait
, mddev
->flags
== 0 ||
4082 kthread_should_stop());
4083 spin_lock_irq(&conf
->device_lock
);
4084 conf
->reshape_safe
= mddev
->reshape_position
;
4085 spin_unlock_irq(&conf
->device_lock
);
4086 wake_up(&conf
->wait_for_overlap
);
4087 sysfs_notify(&mddev
->kobj
, NULL
, "sync_completed");
4090 if (mddev
->delta_disks
< 0) {
4091 BUG_ON(conf
->reshape_progress
== 0);
4092 stripe_addr
= writepos
;
4093 BUG_ON((mddev
->dev_sectors
&
4094 ~((sector_t
)reshape_sectors
- 1))
4095 - reshape_sectors
- stripe_addr
4098 BUG_ON(writepos
!= sector_nr
+ reshape_sectors
);
4099 stripe_addr
= sector_nr
;
4101 INIT_LIST_HEAD(&stripes
);
4102 for (i
= 0; i
< reshape_sectors
; i
+= STRIPE_SECTORS
) {
4104 int skipped_disk
= 0;
4105 sh
= get_active_stripe(conf
, stripe_addr
+i
, 0, 0, 1);
4106 set_bit(STRIPE_EXPANDING
, &sh
->state
);
4107 atomic_inc(&conf
->reshape_stripes
);
4108 /* If any of this stripe is beyond the end of the old
4109 * array, then we need to zero those blocks
4111 for (j
=sh
->disks
; j
--;) {
4113 if (j
== sh
->pd_idx
)
4115 if (conf
->level
== 6 &&
4118 s
= compute_blocknr(sh
, j
, 0);
4119 if (s
< raid5_size(mddev
, 0, 0)) {
4123 memset(page_address(sh
->dev
[j
].page
), 0, STRIPE_SIZE
);
4124 set_bit(R5_Expanded
, &sh
->dev
[j
].flags
);
4125 set_bit(R5_UPTODATE
, &sh
->dev
[j
].flags
);
4127 if (!skipped_disk
) {
4128 set_bit(STRIPE_EXPAND_READY
, &sh
->state
);
4129 set_bit(STRIPE_HANDLE
, &sh
->state
);
4131 list_add(&sh
->lru
, &stripes
);
4133 spin_lock_irq(&conf
->device_lock
);
4134 if (mddev
->delta_disks
< 0)
4135 conf
->reshape_progress
-= reshape_sectors
* new_data_disks
;
4137 conf
->reshape_progress
+= reshape_sectors
* new_data_disks
;
4138 spin_unlock_irq(&conf
->device_lock
);
4139 /* Ok, those stripe are ready. We can start scheduling
4140 * reads on the source stripes.
4141 * The source stripes are determined by mapping the first and last
4142 * block on the destination stripes.
4145 raid5_compute_sector(conf
, stripe_addr
*(new_data_disks
),
4148 raid5_compute_sector(conf
, ((stripe_addr
+reshape_sectors
)
4149 * new_data_disks
- 1),
4151 if (last_sector
>= mddev
->dev_sectors
)
4152 last_sector
= mddev
->dev_sectors
- 1;
4153 while (first_sector
<= last_sector
) {
4154 sh
= get_active_stripe(conf
, first_sector
, 1, 0, 1);
4155 set_bit(STRIPE_EXPAND_SOURCE
, &sh
->state
);
4156 set_bit(STRIPE_HANDLE
, &sh
->state
);
4158 first_sector
+= STRIPE_SECTORS
;
4160 /* Now that the sources are clearly marked, we can release
4161 * the destination stripes
4163 while (!list_empty(&stripes
)) {
4164 sh
= list_entry(stripes
.next
, struct stripe_head
, lru
);
4165 list_del_init(&sh
->lru
);
4168 /* If this takes us to the resync_max point where we have to pause,
4169 * then we need to write out the superblock.
4171 sector_nr
+= reshape_sectors
;
4172 if ((sector_nr
- mddev
->curr_resync_completed
) * 2
4173 >= mddev
->resync_max
- mddev
->curr_resync_completed
) {
4174 /* Cannot proceed until we've updated the superblock... */
4175 wait_event(conf
->wait_for_overlap
,
4176 atomic_read(&conf
->reshape_stripes
) == 0);
4177 mddev
->reshape_position
= conf
->reshape_progress
;
4178 mddev
->curr_resync_completed
= mddev
->curr_resync
+ reshape_sectors
;
4179 conf
->reshape_checkpoint
= jiffies
;
4180 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
4181 md_wakeup_thread(mddev
->thread
);
4182 wait_event(mddev
->sb_wait
,
4183 !test_bit(MD_CHANGE_DEVS
, &mddev
->flags
)
4184 || kthread_should_stop());
4185 spin_lock_irq(&conf
->device_lock
);
4186 conf
->reshape_safe
= mddev
->reshape_position
;
4187 spin_unlock_irq(&conf
->device_lock
);
4188 wake_up(&conf
->wait_for_overlap
);
4189 sysfs_notify(&mddev
->kobj
, NULL
, "sync_completed");
4191 return reshape_sectors
;
4194 /* FIXME go_faster isn't used */
4195 static inline sector_t
sync_request(mddev_t
*mddev
, sector_t sector_nr
, int *skipped
, int go_faster
)
4197 raid5_conf_t
*conf
= (raid5_conf_t
*) mddev
->private;
4198 struct stripe_head
*sh
;
4199 sector_t max_sector
= mddev
->dev_sectors
;
4201 int still_degraded
= 0;
4204 if (sector_nr
>= max_sector
) {
4205 /* just being told to finish up .. nothing much to do */
4206 unplug_slaves(mddev
);
4208 if (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
)) {
4213 if (mddev
->curr_resync
< max_sector
) /* aborted */
4214 bitmap_end_sync(mddev
->bitmap
, mddev
->curr_resync
,
4216 else /* completed sync */
4218 bitmap_close_sync(mddev
->bitmap
);
4223 /* Allow raid5_quiesce to complete */
4224 wait_event(conf
->wait_for_overlap
, conf
->quiesce
!= 2);
4226 if (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
))
4227 return reshape_request(mddev
, sector_nr
, skipped
);
4229 /* No need to check resync_max as we never do more than one
4230 * stripe, and as resync_max will always be on a chunk boundary,
4231 * if the check in md_do_sync didn't fire, there is no chance
4232 * of overstepping resync_max here
4235 /* if there is too many failed drives and we are trying
4236 * to resync, then assert that we are finished, because there is
4237 * nothing we can do.
4239 if (mddev
->degraded
>= conf
->max_degraded
&&
4240 test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
)) {
4241 sector_t rv
= mddev
->dev_sectors
- sector_nr
;
4245 if (!bitmap_start_sync(mddev
->bitmap
, sector_nr
, &sync_blocks
, 1) &&
4246 !test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
) &&
4247 !conf
->fullsync
&& sync_blocks
>= STRIPE_SECTORS
) {
4248 /* we can skip this block, and probably more */
4249 sync_blocks
/= STRIPE_SECTORS
;
4251 return sync_blocks
* STRIPE_SECTORS
; /* keep things rounded to whole stripes */
4255 bitmap_cond_end_sync(mddev
->bitmap
, sector_nr
);
4257 sh
= get_active_stripe(conf
, sector_nr
, 0, 1, 0);
4259 sh
= get_active_stripe(conf
, sector_nr
, 0, 0, 0);
4260 /* make sure we don't swamp the stripe cache if someone else
4261 * is trying to get access
4263 schedule_timeout_uninterruptible(1);
4265 /* Need to check if array will still be degraded after recovery/resync
4266 * We don't need to check the 'failed' flag as when that gets set,
4269 for (i
= 0; i
< conf
->raid_disks
; i
++)
4270 if (conf
->disks
[i
].rdev
== NULL
)
4273 bitmap_start_sync(mddev
->bitmap
, sector_nr
, &sync_blocks
, still_degraded
);
4275 spin_lock(&sh
->lock
);
4276 set_bit(STRIPE_SYNCING
, &sh
->state
);
4277 clear_bit(STRIPE_INSYNC
, &sh
->state
);
4278 spin_unlock(&sh
->lock
);
4280 /* wait for any blocked device to be handled */
4281 while (unlikely(!handle_stripe(sh
)))
4285 return STRIPE_SECTORS
;
4288 static int retry_aligned_read(raid5_conf_t
*conf
, struct bio
*raid_bio
)
4290 /* We may not be able to submit a whole bio at once as there
4291 * may not be enough stripe_heads available.
4292 * We cannot pre-allocate enough stripe_heads as we may need
4293 * more than exist in the cache (if we allow ever large chunks).
4294 * So we do one stripe head at a time and record in
4295 * ->bi_hw_segments how many have been done.
4297 * We *know* that this entire raid_bio is in one chunk, so
4298 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4300 struct stripe_head
*sh
;
4302 sector_t sector
, logical_sector
, last_sector
;
4307 logical_sector
= raid_bio
->bi_sector
& ~((sector_t
)STRIPE_SECTORS
-1);
4308 sector
= raid5_compute_sector(conf
, logical_sector
,
4310 last_sector
= raid_bio
->bi_sector
+ (raid_bio
->bi_size
>>9);
4312 for (; logical_sector
< last_sector
;
4313 logical_sector
+= STRIPE_SECTORS
,
4314 sector
+= STRIPE_SECTORS
,
4317 if (scnt
< raid5_bi_hw_segments(raid_bio
))
4318 /* already done this stripe */
4321 sh
= get_active_stripe(conf
, sector
, 0, 1, 0);
4324 /* failed to get a stripe - must wait */
4325 raid5_set_bi_hw_segments(raid_bio
, scnt
);
4326 conf
->retry_read_aligned
= raid_bio
;
4330 set_bit(R5_ReadError
, &sh
->dev
[dd_idx
].flags
);
4331 if (!add_stripe_bio(sh
, raid_bio
, dd_idx
, 0)) {
4333 raid5_set_bi_hw_segments(raid_bio
, scnt
);
4334 conf
->retry_read_aligned
= raid_bio
;
4342 spin_lock_irq(&conf
->device_lock
);
4343 remaining
= raid5_dec_bi_phys_segments(raid_bio
);
4344 spin_unlock_irq(&conf
->device_lock
);
4346 bio_endio(raid_bio
, 0);
4347 if (atomic_dec_and_test(&conf
->active_aligned_reads
))
4348 wake_up(&conf
->wait_for_stripe
);
4352 #ifdef CONFIG_MULTICORE_RAID456
4353 static void __process_stripe(void *param
, async_cookie_t cookie
)
4355 struct stripe_head
*sh
= param
;
4361 static void process_stripe(struct stripe_head
*sh
, struct list_head
*domain
)
4363 async_schedule_domain(__process_stripe
, sh
, domain
);
4366 static void synchronize_stripe_processing(struct list_head
*domain
)
4368 async_synchronize_full_domain(domain
);
4371 static void process_stripe(struct stripe_head
*sh
, struct list_head
*domain
)
4378 static void synchronize_stripe_processing(struct list_head
*domain
)
4385 * This is our raid5 kernel thread.
4387 * We scan the hash table for stripes which can be handled now.
4388 * During the scan, completed stripes are saved for us by the interrupt
4389 * handler, so that they will not have to wait for our next wakeup.
4391 static void raid5d(mddev_t
*mddev
)
4393 struct stripe_head
*sh
;
4394 raid5_conf_t
*conf
= mddev
->private;
4396 LIST_HEAD(raid_domain
);
4398 pr_debug("+++ raid5d active\n");
4400 md_check_recovery(mddev
);
4403 spin_lock_irq(&conf
->device_lock
);
4407 if (conf
->seq_flush
!= conf
->seq_write
) {
4408 int seq
= conf
->seq_flush
;
4409 spin_unlock_irq(&conf
->device_lock
);
4410 bitmap_unplug(mddev
->bitmap
);
4411 spin_lock_irq(&conf
->device_lock
);
4412 conf
->seq_write
= seq
;
4413 activate_bit_delay(conf
);
4416 while ((bio
= remove_bio_from_retry(conf
))) {
4418 spin_unlock_irq(&conf
->device_lock
);
4419 ok
= retry_aligned_read(conf
, bio
);
4420 spin_lock_irq(&conf
->device_lock
);
4426 sh
= __get_priority_stripe(conf
);
4430 spin_unlock_irq(&conf
->device_lock
);
4433 process_stripe(sh
, &raid_domain
);
4435 spin_lock_irq(&conf
->device_lock
);
4437 pr_debug("%d stripes handled\n", handled
);
4439 spin_unlock_irq(&conf
->device_lock
);
4441 synchronize_stripe_processing(&raid_domain
);
4442 async_tx_issue_pending_all();
4443 unplug_slaves(mddev
);
4445 pr_debug("--- raid5d inactive\n");
4449 raid5_show_stripe_cache_size(mddev_t
*mddev
, char *page
)
4451 raid5_conf_t
*conf
= mddev
->private;
4453 return sprintf(page
, "%d\n", conf
->max_nr_stripes
);
4459 raid5_store_stripe_cache_size(mddev_t
*mddev
, const char *page
, size_t len
)
4461 raid5_conf_t
*conf
= mddev
->private;
4465 if (len
>= PAGE_SIZE
)
4470 if (strict_strtoul(page
, 10, &new))
4472 if (new <= 16 || new > 32768)
4474 while (new < conf
->max_nr_stripes
) {
4475 if (drop_one_stripe(conf
))
4476 conf
->max_nr_stripes
--;
4480 err
= md_allow_write(mddev
);
4483 while (new > conf
->max_nr_stripes
) {
4484 if (grow_one_stripe(conf
))
4485 conf
->max_nr_stripes
++;
4491 static struct md_sysfs_entry
4492 raid5_stripecache_size
= __ATTR(stripe_cache_size
, S_IRUGO
| S_IWUSR
,
4493 raid5_show_stripe_cache_size
,
4494 raid5_store_stripe_cache_size
);
4497 raid5_show_preread_threshold(mddev_t
*mddev
, char *page
)
4499 raid5_conf_t
*conf
= mddev
->private;
4501 return sprintf(page
, "%d\n", conf
->bypass_threshold
);
4507 raid5_store_preread_threshold(mddev_t
*mddev
, const char *page
, size_t len
)
4509 raid5_conf_t
*conf
= mddev
->private;
4511 if (len
>= PAGE_SIZE
)
4516 if (strict_strtoul(page
, 10, &new))
4518 if (new > conf
->max_nr_stripes
)
4520 conf
->bypass_threshold
= new;
4524 static struct md_sysfs_entry
4525 raid5_preread_bypass_threshold
= __ATTR(preread_bypass_threshold
,
4527 raid5_show_preread_threshold
,
4528 raid5_store_preread_threshold
);
4531 stripe_cache_active_show(mddev_t
*mddev
, char *page
)
4533 raid5_conf_t
*conf
= mddev
->private;
4535 return sprintf(page
, "%d\n", atomic_read(&conf
->active_stripes
));
4540 static struct md_sysfs_entry
4541 raid5_stripecache_active
= __ATTR_RO(stripe_cache_active
);
4543 static struct attribute
*raid5_attrs
[] = {
4544 &raid5_stripecache_size
.attr
,
4545 &raid5_stripecache_active
.attr
,
4546 &raid5_preread_bypass_threshold
.attr
,
4549 static struct attribute_group raid5_attrs_group
= {
4551 .attrs
= raid5_attrs
,
4555 raid5_size(mddev_t
*mddev
, sector_t sectors
, int raid_disks
)
4557 raid5_conf_t
*conf
= mddev
->private;
4560 sectors
= mddev
->dev_sectors
;
4562 /* size is defined by the smallest of previous and new size */
4563 if (conf
->raid_disks
< conf
->previous_raid_disks
)
4564 raid_disks
= conf
->raid_disks
;
4566 raid_disks
= conf
->previous_raid_disks
;
4569 sectors
&= ~((sector_t
)mddev
->chunk_sectors
- 1);
4570 sectors
&= ~((sector_t
)mddev
->new_chunk_sectors
- 1);
4571 return sectors
* (raid_disks
- conf
->max_degraded
);
4574 static void raid5_free_percpu(raid5_conf_t
*conf
)
4576 struct raid5_percpu
*percpu
;
4583 for_each_possible_cpu(cpu
) {
4584 percpu
= per_cpu_ptr(conf
->percpu
, cpu
);
4585 safe_put_page(percpu
->spare_page
);
4586 kfree(percpu
->scribble
);
4588 #ifdef CONFIG_HOTPLUG_CPU
4589 unregister_cpu_notifier(&conf
->cpu_notify
);
4593 free_percpu(conf
->percpu
);
4596 static void free_conf(raid5_conf_t
*conf
)
4598 shrink_stripes(conf
);
4599 raid5_free_percpu(conf
);
4601 kfree(conf
->stripe_hashtbl
);
4605 #ifdef CONFIG_HOTPLUG_CPU
4606 static int raid456_cpu_notify(struct notifier_block
*nfb
, unsigned long action
,
4609 raid5_conf_t
*conf
= container_of(nfb
, raid5_conf_t
, cpu_notify
);
4610 long cpu
= (long)hcpu
;
4611 struct raid5_percpu
*percpu
= per_cpu_ptr(conf
->percpu
, cpu
);
4614 case CPU_UP_PREPARE
:
4615 case CPU_UP_PREPARE_FROZEN
:
4616 if (conf
->level
== 6 && !percpu
->spare_page
)
4617 percpu
->spare_page
= alloc_page(GFP_KERNEL
);
4618 if (!percpu
->scribble
)
4619 percpu
->scribble
= kmalloc(conf
->scribble_len
, GFP_KERNEL
);
4621 if (!percpu
->scribble
||
4622 (conf
->level
== 6 && !percpu
->spare_page
)) {
4623 safe_put_page(percpu
->spare_page
);
4624 kfree(percpu
->scribble
);
4625 pr_err("%s: failed memory allocation for cpu%ld\n",
4631 case CPU_DEAD_FROZEN
:
4632 safe_put_page(percpu
->spare_page
);
4633 kfree(percpu
->scribble
);
4634 percpu
->spare_page
= NULL
;
4635 percpu
->scribble
= NULL
;
4644 static int raid5_alloc_percpu(raid5_conf_t
*conf
)
4647 struct page
*spare_page
;
4648 struct raid5_percpu
*allcpus
;
4652 allcpus
= alloc_percpu(struct raid5_percpu
);
4655 conf
->percpu
= allcpus
;
4659 for_each_present_cpu(cpu
) {
4660 if (conf
->level
== 6) {
4661 spare_page
= alloc_page(GFP_KERNEL
);
4666 per_cpu_ptr(conf
->percpu
, cpu
)->spare_page
= spare_page
;
4668 scribble
= kmalloc(scribble_len(conf
->raid_disks
), GFP_KERNEL
);
4673 per_cpu_ptr(conf
->percpu
, cpu
)->scribble
= scribble
;
4675 #ifdef CONFIG_HOTPLUG_CPU
4676 conf
->cpu_notify
.notifier_call
= raid456_cpu_notify
;
4677 conf
->cpu_notify
.priority
= 0;
4679 err
= register_cpu_notifier(&conf
->cpu_notify
);
4686 static raid5_conf_t
*setup_conf(mddev_t
*mddev
)
4689 int raid_disk
, memory
;
4691 struct disk_info
*disk
;
4693 if (mddev
->new_level
!= 5
4694 && mddev
->new_level
!= 4
4695 && mddev
->new_level
!= 6) {
4696 printk(KERN_ERR
"raid5: %s: raid level not set to 4/5/6 (%d)\n",
4697 mdname(mddev
), mddev
->new_level
);
4698 return ERR_PTR(-EIO
);
4700 if ((mddev
->new_level
== 5
4701 && !algorithm_valid_raid5(mddev
->new_layout
)) ||
4702 (mddev
->new_level
== 6
4703 && !algorithm_valid_raid6(mddev
->new_layout
))) {
4704 printk(KERN_ERR
"raid5: %s: layout %d not supported\n",
4705 mdname(mddev
), mddev
->new_layout
);
4706 return ERR_PTR(-EIO
);
4708 if (mddev
->new_level
== 6 && mddev
->raid_disks
< 4) {
4709 printk(KERN_ERR
"raid6: not enough configured devices for %s (%d, minimum 4)\n",
4710 mdname(mddev
), mddev
->raid_disks
);
4711 return ERR_PTR(-EINVAL
);
4714 if (!mddev
->new_chunk_sectors
||
4715 (mddev
->new_chunk_sectors
<< 9) % PAGE_SIZE
||
4716 !is_power_of_2(mddev
->new_chunk_sectors
)) {
4717 printk(KERN_ERR
"raid5: invalid chunk size %d for %s\n",
4718 mddev
->new_chunk_sectors
<< 9, mdname(mddev
));
4719 return ERR_PTR(-EINVAL
);
4722 conf
= kzalloc(sizeof(raid5_conf_t
), GFP_KERNEL
);
4726 conf
->raid_disks
= mddev
->raid_disks
;
4727 conf
->scribble_len
= scribble_len(conf
->raid_disks
);
4728 if (mddev
->reshape_position
== MaxSector
)
4729 conf
->previous_raid_disks
= mddev
->raid_disks
;
4731 conf
->previous_raid_disks
= mddev
->raid_disks
- mddev
->delta_disks
;
4733 conf
->disks
= kzalloc(conf
->raid_disks
* sizeof(struct disk_info
),
4738 conf
->mddev
= mddev
;
4740 if ((conf
->stripe_hashtbl
= kzalloc(PAGE_SIZE
, GFP_KERNEL
)) == NULL
)
4743 conf
->level
= mddev
->new_level
;
4744 if (raid5_alloc_percpu(conf
) != 0)
4747 spin_lock_init(&conf
->device_lock
);
4748 init_waitqueue_head(&conf
->wait_for_stripe
);
4749 init_waitqueue_head(&conf
->wait_for_overlap
);
4750 INIT_LIST_HEAD(&conf
->handle_list
);
4751 INIT_LIST_HEAD(&conf
->hold_list
);
4752 INIT_LIST_HEAD(&conf
->delayed_list
);
4753 INIT_LIST_HEAD(&conf
->bitmap_list
);
4754 INIT_LIST_HEAD(&conf
->inactive_list
);
4755 atomic_set(&conf
->active_stripes
, 0);
4756 atomic_set(&conf
->preread_active_stripes
, 0);
4757 atomic_set(&conf
->active_aligned_reads
, 0);
4758 conf
->bypass_threshold
= BYPASS_THRESHOLD
;
4760 pr_debug("raid5: run(%s) called.\n", mdname(mddev
));
4762 list_for_each_entry(rdev
, &mddev
->disks
, same_set
) {
4763 raid_disk
= rdev
->raid_disk
;
4764 if (raid_disk
>= conf
->raid_disks
4767 disk
= conf
->disks
+ raid_disk
;
4771 if (test_bit(In_sync
, &rdev
->flags
)) {
4772 char b
[BDEVNAME_SIZE
];
4773 printk(KERN_INFO
"raid5: device %s operational as raid"
4774 " disk %d\n", bdevname(rdev
->bdev
,b
),
4777 /* Cannot rely on bitmap to complete recovery */
4781 conf
->chunk_sectors
= mddev
->new_chunk_sectors
;
4782 conf
->level
= mddev
->new_level
;
4783 if (conf
->level
== 6)
4784 conf
->max_degraded
= 2;
4786 conf
->max_degraded
= 1;
4787 conf
->algorithm
= mddev
->new_layout
;
4788 conf
->max_nr_stripes
= NR_STRIPES
;
4789 conf
->reshape_progress
= mddev
->reshape_position
;
4790 if (conf
->reshape_progress
!= MaxSector
) {
4791 conf
->prev_chunk_sectors
= mddev
->chunk_sectors
;
4792 conf
->prev_algo
= mddev
->layout
;
4795 memory
= conf
->max_nr_stripes
* (sizeof(struct stripe_head
) +
4796 conf
->raid_disks
* ((sizeof(struct bio
) + PAGE_SIZE
))) / 1024;
4797 if (grow_stripes(conf
, conf
->max_nr_stripes
)) {
4799 "raid5: couldn't allocate %dkB for buffers\n", memory
);
4802 printk(KERN_INFO
"raid5: allocated %dkB for %s\n",
4803 memory
, mdname(mddev
));
4805 conf
->thread
= md_register_thread(raid5d
, mddev
, NULL
);
4806 if (!conf
->thread
) {
4808 "raid5: couldn't allocate thread for %s\n",
4818 return ERR_PTR(-EIO
);
4820 return ERR_PTR(-ENOMEM
);
4823 static int run(mddev_t
*mddev
)
4826 int working_disks
= 0, chunk_size
;
4829 if (mddev
->recovery_cp
!= MaxSector
)
4830 printk(KERN_NOTICE
"raid5: %s is not clean"
4831 " -- starting background reconstruction\n",
4833 if (mddev
->reshape_position
!= MaxSector
) {
4834 /* Check that we can continue the reshape.
4835 * Currently only disks can change, it must
4836 * increase, and we must be past the point where
4837 * a stripe over-writes itself
4839 sector_t here_new
, here_old
;
4841 int max_degraded
= (mddev
->level
== 6 ? 2 : 1);
4843 if (mddev
->new_level
!= mddev
->level
) {
4844 printk(KERN_ERR
"raid5: %s: unsupported reshape "
4845 "required - aborting.\n",
4849 old_disks
= mddev
->raid_disks
- mddev
->delta_disks
;
4850 /* reshape_position must be on a new-stripe boundary, and one
4851 * further up in new geometry must map after here in old
4854 here_new
= mddev
->reshape_position
;
4855 if (sector_div(here_new
, mddev
->new_chunk_sectors
*
4856 (mddev
->raid_disks
- max_degraded
))) {
4857 printk(KERN_ERR
"raid5: reshape_position not "
4858 "on a stripe boundary\n");
4861 /* here_new is the stripe we will write to */
4862 here_old
= mddev
->reshape_position
;
4863 sector_div(here_old
, mddev
->chunk_sectors
*
4864 (old_disks
-max_degraded
));
4865 /* here_old is the first stripe that we might need to read
4867 if (mddev
->delta_disks
== 0) {
4868 /* We cannot be sure it is safe to start an in-place
4869 * reshape. It is only safe if user-space if monitoring
4870 * and taking constant backups.
4871 * mdadm always starts a situation like this in
4872 * readonly mode so it can take control before
4873 * allowing any writes. So just check for that.
4875 if ((here_new
* mddev
->new_chunk_sectors
!=
4876 here_old
* mddev
->chunk_sectors
) ||
4878 printk(KERN_ERR
"raid5: in-place reshape must be started"
4879 " in read-only mode - aborting\n");
4882 } else if (mddev
->delta_disks
< 0
4883 ? (here_new
* mddev
->new_chunk_sectors
<=
4884 here_old
* mddev
->chunk_sectors
)
4885 : (here_new
* mddev
->new_chunk_sectors
>=
4886 here_old
* mddev
->chunk_sectors
)) {
4887 /* Reading from the same stripe as writing to - bad */
4888 printk(KERN_ERR
"raid5: reshape_position too early for "
4889 "auto-recovery - aborting.\n");
4892 printk(KERN_INFO
"raid5: reshape will continue\n");
4893 /* OK, we should be able to continue; */
4895 BUG_ON(mddev
->level
!= mddev
->new_level
);
4896 BUG_ON(mddev
->layout
!= mddev
->new_layout
);
4897 BUG_ON(mddev
->chunk_sectors
!= mddev
->new_chunk_sectors
);
4898 BUG_ON(mddev
->delta_disks
!= 0);
4901 if (mddev
->private == NULL
)
4902 conf
= setup_conf(mddev
);
4904 conf
= mddev
->private;
4907 return PTR_ERR(conf
);
4909 mddev
->thread
= conf
->thread
;
4910 conf
->thread
= NULL
;
4911 mddev
->private = conf
;
4914 * 0 for a fully functional array, 1 or 2 for a degraded array.
4916 list_for_each_entry(rdev
, &mddev
->disks
, same_set
)
4917 if (rdev
->raid_disk
>= 0 &&
4918 test_bit(In_sync
, &rdev
->flags
))
4921 mddev
->degraded
= conf
->raid_disks
- working_disks
;
4923 if (mddev
->degraded
> conf
->max_degraded
) {
4924 printk(KERN_ERR
"raid5: not enough operational devices for %s"
4925 " (%d/%d failed)\n",
4926 mdname(mddev
), mddev
->degraded
, conf
->raid_disks
);
4930 /* device size must be a multiple of chunk size */
4931 mddev
->dev_sectors
&= ~(mddev
->chunk_sectors
- 1);
4932 mddev
->resync_max_sectors
= mddev
->dev_sectors
;
4934 if (mddev
->degraded
> 0 &&
4935 mddev
->recovery_cp
!= MaxSector
) {
4936 if (mddev
->ok_start_degraded
)
4938 "raid5: starting dirty degraded array: %s"
4939 "- data corruption possible.\n",
4943 "raid5: cannot start dirty degraded array for %s\n",
4949 if (mddev
->degraded
== 0)
4950 printk("raid5: raid level %d set %s active with %d out of %d"
4951 " devices, algorithm %d\n", conf
->level
, mdname(mddev
),
4952 mddev
->raid_disks
-mddev
->degraded
, mddev
->raid_disks
,
4955 printk(KERN_ALERT
"raid5: raid level %d set %s active with %d"
4956 " out of %d devices, algorithm %d\n", conf
->level
,
4957 mdname(mddev
), mddev
->raid_disks
- mddev
->degraded
,
4958 mddev
->raid_disks
, mddev
->new_layout
);
4960 print_raid5_conf(conf
);
4962 if (conf
->reshape_progress
!= MaxSector
) {
4963 printk("...ok start reshape thread\n");
4964 conf
->reshape_safe
= conf
->reshape_progress
;
4965 atomic_set(&conf
->reshape_stripes
, 0);
4966 clear_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
);
4967 clear_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
);
4968 set_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
);
4969 set_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
);
4970 mddev
->sync_thread
= md_register_thread(md_do_sync
, mddev
,
4974 /* read-ahead size must cover two whole stripes, which is
4975 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4978 int data_disks
= conf
->previous_raid_disks
- conf
->max_degraded
;
4979 int stripe
= data_disks
*
4980 ((mddev
->chunk_sectors
<< 9) / PAGE_SIZE
);
4981 if (mddev
->queue
->backing_dev_info
.ra_pages
< 2 * stripe
)
4982 mddev
->queue
->backing_dev_info
.ra_pages
= 2 * stripe
;
4985 /* Ok, everything is just fine now */
4986 if (sysfs_create_group(&mddev
->kobj
, &raid5_attrs_group
))
4988 "raid5: failed to create sysfs attributes for %s\n",
4991 mddev
->queue
->queue_lock
= &conf
->device_lock
;
4993 mddev
->queue
->unplug_fn
= raid5_unplug_device
;
4994 mddev
->queue
->backing_dev_info
.congested_data
= mddev
;
4995 mddev
->queue
->backing_dev_info
.congested_fn
= raid5_congested
;
4997 md_set_array_sectors(mddev
, raid5_size(mddev
, 0, 0));
4999 blk_queue_merge_bvec(mddev
->queue
, raid5_mergeable_bvec
);
5000 chunk_size
= mddev
->chunk_sectors
<< 9;
5001 blk_queue_io_min(mddev
->queue
, chunk_size
);
5002 blk_queue_io_opt(mddev
->queue
, chunk_size
*
5003 (conf
->raid_disks
- conf
->max_degraded
));
5005 list_for_each_entry(rdev
, &mddev
->disks
, same_set
)
5006 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
5007 rdev
->data_offset
<< 9);
5011 md_unregister_thread(mddev
->thread
);
5012 mddev
->thread
= NULL
;
5014 print_raid5_conf(conf
);
5017 mddev
->private = NULL
;
5018 printk(KERN_ALERT
"raid5: failed to run raid set %s\n", mdname(mddev
));
5024 static int stop(mddev_t
*mddev
)
5026 raid5_conf_t
*conf
= (raid5_conf_t
*) mddev
->private;
5028 md_unregister_thread(mddev
->thread
);
5029 mddev
->thread
= NULL
;
5030 mddev
->queue
->backing_dev_info
.congested_fn
= NULL
;
5031 blk_sync_queue(mddev
->queue
); /* the unplug fn references 'conf'*/
5032 sysfs_remove_group(&mddev
->kobj
, &raid5_attrs_group
);
5034 mddev
->private = NULL
;
5039 static void print_sh(struct seq_file
*seq
, struct stripe_head
*sh
)
5043 seq_printf(seq
, "sh %llu, pd_idx %d, state %ld.\n",
5044 (unsigned long long)sh
->sector
, sh
->pd_idx
, sh
->state
);
5045 seq_printf(seq
, "sh %llu, count %d.\n",
5046 (unsigned long long)sh
->sector
, atomic_read(&sh
->count
));
5047 seq_printf(seq
, "sh %llu, ", (unsigned long long)sh
->sector
);
5048 for (i
= 0; i
< sh
->disks
; i
++) {
5049 seq_printf(seq
, "(cache%d: %p %ld) ",
5050 i
, sh
->dev
[i
].page
, sh
->dev
[i
].flags
);
5052 seq_printf(seq
, "\n");
5055 static void printall(struct seq_file
*seq
, raid5_conf_t
*conf
)
5057 struct stripe_head
*sh
;
5058 struct hlist_node
*hn
;
5061 spin_lock_irq(&conf
->device_lock
);
5062 for (i
= 0; i
< NR_HASH
; i
++) {
5063 hlist_for_each_entry(sh
, hn
, &conf
->stripe_hashtbl
[i
], hash
) {
5064 if (sh
->raid_conf
!= conf
)
5069 spin_unlock_irq(&conf
->device_lock
);
5073 static void status(struct seq_file
*seq
, mddev_t
*mddev
)
5075 raid5_conf_t
*conf
= (raid5_conf_t
*) mddev
->private;
5078 seq_printf(seq
, " level %d, %dk chunk, algorithm %d", mddev
->level
,
5079 mddev
->chunk_sectors
/ 2, mddev
->layout
);
5080 seq_printf (seq
, " [%d/%d] [", conf
->raid_disks
, conf
->raid_disks
- mddev
->degraded
);
5081 for (i
= 0; i
< conf
->raid_disks
; i
++)
5082 seq_printf (seq
, "%s",
5083 conf
->disks
[i
].rdev
&&
5084 test_bit(In_sync
, &conf
->disks
[i
].rdev
->flags
) ? "U" : "_");
5085 seq_printf (seq
, "]");
5087 seq_printf (seq
, "\n");
5088 printall(seq
, conf
);
5092 static void print_raid5_conf (raid5_conf_t
*conf
)
5095 struct disk_info
*tmp
;
5097 printk("RAID5 conf printout:\n");
5099 printk("(conf==NULL)\n");
5102 printk(" --- rd:%d wd:%d\n", conf
->raid_disks
,
5103 conf
->raid_disks
- conf
->mddev
->degraded
);
5105 for (i
= 0; i
< conf
->raid_disks
; i
++) {
5106 char b
[BDEVNAME_SIZE
];
5107 tmp
= conf
->disks
+ i
;
5109 printk(" disk %d, o:%d, dev:%s\n",
5110 i
, !test_bit(Faulty
, &tmp
->rdev
->flags
),
5111 bdevname(tmp
->rdev
->bdev
,b
));
5115 static int raid5_spare_active(mddev_t
*mddev
)
5118 raid5_conf_t
*conf
= mddev
->private;
5119 struct disk_info
*tmp
;
5121 for (i
= 0; i
< conf
->raid_disks
; i
++) {
5122 tmp
= conf
->disks
+ i
;
5124 && !test_bit(Faulty
, &tmp
->rdev
->flags
)
5125 && !test_and_set_bit(In_sync
, &tmp
->rdev
->flags
)) {
5126 unsigned long flags
;
5127 spin_lock_irqsave(&conf
->device_lock
, flags
);
5129 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
5132 print_raid5_conf(conf
);
5136 static int raid5_remove_disk(mddev_t
*mddev
, int number
)
5138 raid5_conf_t
*conf
= mddev
->private;
5141 struct disk_info
*p
= conf
->disks
+ number
;
5143 print_raid5_conf(conf
);
5146 if (number
>= conf
->raid_disks
&&
5147 conf
->reshape_progress
== MaxSector
)
5148 clear_bit(In_sync
, &rdev
->flags
);
5150 if (test_bit(In_sync
, &rdev
->flags
) ||
5151 atomic_read(&rdev
->nr_pending
)) {
5155 /* Only remove non-faulty devices if recovery
5158 if (!test_bit(Faulty
, &rdev
->flags
) &&
5159 mddev
->degraded
<= conf
->max_degraded
&&
5160 number
< conf
->raid_disks
) {
5166 if (atomic_read(&rdev
->nr_pending
)) {
5167 /* lost the race, try later */
5174 print_raid5_conf(conf
);
5178 static int raid5_add_disk(mddev_t
*mddev
, mdk_rdev_t
*rdev
)
5180 raid5_conf_t
*conf
= mddev
->private;
5183 struct disk_info
*p
;
5185 int last
= conf
->raid_disks
- 1;
5187 if (mddev
->degraded
> conf
->max_degraded
)
5188 /* no point adding a device */
5191 if (rdev
->raid_disk
>= 0)
5192 first
= last
= rdev
->raid_disk
;
5195 * find the disk ... but prefer rdev->saved_raid_disk
5198 if (rdev
->saved_raid_disk
>= 0 &&
5199 rdev
->saved_raid_disk
>= first
&&
5200 conf
->disks
[rdev
->saved_raid_disk
].rdev
== NULL
)
5201 disk
= rdev
->saved_raid_disk
;
5204 for ( ; disk
<= last
; disk
++)
5205 if ((p
=conf
->disks
+ disk
)->rdev
== NULL
) {
5206 clear_bit(In_sync
, &rdev
->flags
);
5207 rdev
->raid_disk
= disk
;
5209 if (rdev
->saved_raid_disk
!= disk
)
5211 rcu_assign_pointer(p
->rdev
, rdev
);
5214 print_raid5_conf(conf
);
5218 static int raid5_resize(mddev_t
*mddev
, sector_t sectors
)
5220 /* no resync is happening, and there is enough space
5221 * on all devices, so we can resize.
5222 * We need to make sure resync covers any new space.
5223 * If the array is shrinking we should possibly wait until
5224 * any io in the removed space completes, but it hardly seems
5227 sectors
&= ~((sector_t
)mddev
->chunk_sectors
- 1);
5228 md_set_array_sectors(mddev
, raid5_size(mddev
, sectors
,
5229 mddev
->raid_disks
));
5230 if (mddev
->array_sectors
>
5231 raid5_size(mddev
, sectors
, mddev
->raid_disks
))
5233 set_capacity(mddev
->gendisk
, mddev
->array_sectors
);
5235 revalidate_disk(mddev
->gendisk
);
5236 if (sectors
> mddev
->dev_sectors
&& mddev
->recovery_cp
== MaxSector
) {
5237 mddev
->recovery_cp
= mddev
->dev_sectors
;
5238 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
5240 mddev
->dev_sectors
= sectors
;
5241 mddev
->resync_max_sectors
= sectors
;
5245 static int check_stripe_cache(mddev_t
*mddev
)
5247 /* Can only proceed if there are plenty of stripe_heads.
5248 * We need a minimum of one full stripe,, and for sensible progress
5249 * it is best to have about 4 times that.
5250 * If we require 4 times, then the default 256 4K stripe_heads will
5251 * allow for chunk sizes up to 256K, which is probably OK.
5252 * If the chunk size is greater, user-space should request more
5253 * stripe_heads first.
5255 raid5_conf_t
*conf
= mddev
->private;
5256 if (((mddev
->chunk_sectors
<< 9) / STRIPE_SIZE
) * 4
5257 > conf
->max_nr_stripes
||
5258 ((mddev
->new_chunk_sectors
<< 9) / STRIPE_SIZE
) * 4
5259 > conf
->max_nr_stripes
) {
5260 printk(KERN_WARNING
"raid5: reshape: not enough stripes. Needed %lu\n",
5261 ((max(mddev
->chunk_sectors
, mddev
->new_chunk_sectors
) << 9)
5268 static int check_reshape(mddev_t
*mddev
)
5270 raid5_conf_t
*conf
= mddev
->private;
5272 if (mddev
->delta_disks
== 0 &&
5273 mddev
->new_layout
== mddev
->layout
&&
5274 mddev
->new_chunk_sectors
== mddev
->chunk_sectors
)
5275 return 0; /* nothing to do */
5277 /* Cannot grow a bitmap yet */
5279 if (mddev
->degraded
> conf
->max_degraded
)
5281 if (mddev
->delta_disks
< 0) {
5282 /* We might be able to shrink, but the devices must
5283 * be made bigger first.
5284 * For raid6, 4 is the minimum size.
5285 * Otherwise 2 is the minimum
5288 if (mddev
->level
== 6)
5290 if (mddev
->raid_disks
+ mddev
->delta_disks
< min
)
5294 if (!check_stripe_cache(mddev
))
5297 return resize_stripes(conf
, conf
->raid_disks
+ mddev
->delta_disks
);
5300 static int raid5_start_reshape(mddev_t
*mddev
)
5302 raid5_conf_t
*conf
= mddev
->private;
5305 int added_devices
= 0;
5306 unsigned long flags
;
5308 if (test_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
))
5311 if (!check_stripe_cache(mddev
))
5314 list_for_each_entry(rdev
, &mddev
->disks
, same_set
)
5315 if (rdev
->raid_disk
< 0 &&
5316 !test_bit(Faulty
, &rdev
->flags
))
5319 if (spares
- mddev
->degraded
< mddev
->delta_disks
- conf
->max_degraded
)
5320 /* Not enough devices even to make a degraded array
5325 /* Refuse to reduce size of the array. Any reductions in
5326 * array size must be through explicit setting of array_size
5329 if (raid5_size(mddev
, 0, conf
->raid_disks
+ mddev
->delta_disks
)
5330 < mddev
->array_sectors
) {
5331 printk(KERN_ERR
"md: %s: array size must be reduced "
5332 "before number of disks\n", mdname(mddev
));
5336 atomic_set(&conf
->reshape_stripes
, 0);
5337 spin_lock_irq(&conf
->device_lock
);
5338 conf
->previous_raid_disks
= conf
->raid_disks
;
5339 conf
->raid_disks
+= mddev
->delta_disks
;
5340 conf
->prev_chunk_sectors
= conf
->chunk_sectors
;
5341 conf
->chunk_sectors
= mddev
->new_chunk_sectors
;
5342 conf
->prev_algo
= conf
->algorithm
;
5343 conf
->algorithm
= mddev
->new_layout
;
5344 if (mddev
->delta_disks
< 0)
5345 conf
->reshape_progress
= raid5_size(mddev
, 0, 0);
5347 conf
->reshape_progress
= 0;
5348 conf
->reshape_safe
= conf
->reshape_progress
;
5350 spin_unlock_irq(&conf
->device_lock
);
5352 /* Add some new drives, as many as will fit.
5353 * We know there are enough to make the newly sized array work.
5355 list_for_each_entry(rdev
, &mddev
->disks
, same_set
)
5356 if (rdev
->raid_disk
< 0 &&
5357 !test_bit(Faulty
, &rdev
->flags
)) {
5358 if (raid5_add_disk(mddev
, rdev
) == 0) {
5360 set_bit(In_sync
, &rdev
->flags
);
5362 rdev
->recovery_offset
= 0;
5363 sprintf(nm
, "rd%d", rdev
->raid_disk
);
5364 if (sysfs_create_link(&mddev
->kobj
,
5367 "raid5: failed to create "
5368 " link %s for %s\n",
5374 if (mddev
->delta_disks
> 0) {
5375 spin_lock_irqsave(&conf
->device_lock
, flags
);
5376 mddev
->degraded
= (conf
->raid_disks
- conf
->previous_raid_disks
)
5378 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
5380 mddev
->raid_disks
= conf
->raid_disks
;
5381 mddev
->reshape_position
= conf
->reshape_progress
;
5382 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
5384 clear_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
);
5385 clear_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
);
5386 set_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
);
5387 set_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
);
5388 mddev
->sync_thread
= md_register_thread(md_do_sync
, mddev
,
5390 if (!mddev
->sync_thread
) {
5391 mddev
->recovery
= 0;
5392 spin_lock_irq(&conf
->device_lock
);
5393 mddev
->raid_disks
= conf
->raid_disks
= conf
->previous_raid_disks
;
5394 conf
->reshape_progress
= MaxSector
;
5395 spin_unlock_irq(&conf
->device_lock
);
5398 conf
->reshape_checkpoint
= jiffies
;
5399 md_wakeup_thread(mddev
->sync_thread
);
5400 md_new_event(mddev
);
5404 /* This is called from the reshape thread and should make any
5405 * changes needed in 'conf'
5407 static void end_reshape(raid5_conf_t
*conf
)
5410 if (!test_bit(MD_RECOVERY_INTR
, &conf
->mddev
->recovery
)) {
5412 spin_lock_irq(&conf
->device_lock
);
5413 conf
->previous_raid_disks
= conf
->raid_disks
;
5414 conf
->reshape_progress
= MaxSector
;
5415 spin_unlock_irq(&conf
->device_lock
);
5416 wake_up(&conf
->wait_for_overlap
);
5418 /* read-ahead size must cover two whole stripes, which is
5419 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
5422 int data_disks
= conf
->raid_disks
- conf
->max_degraded
;
5423 int stripe
= data_disks
* ((conf
->chunk_sectors
<< 9)
5425 if (conf
->mddev
->queue
->backing_dev_info
.ra_pages
< 2 * stripe
)
5426 conf
->mddev
->queue
->backing_dev_info
.ra_pages
= 2 * stripe
;
5431 /* This is called from the raid5d thread with mddev_lock held.
5432 * It makes config changes to the device.
5434 static void raid5_finish_reshape(mddev_t
*mddev
)
5436 raid5_conf_t
*conf
= mddev
->private;
5438 if (!test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
)) {
5440 if (mddev
->delta_disks
> 0) {
5441 md_set_array_sectors(mddev
, raid5_size(mddev
, 0, 0));
5442 set_capacity(mddev
->gendisk
, mddev
->array_sectors
);
5444 revalidate_disk(mddev
->gendisk
);
5447 mddev
->degraded
= conf
->raid_disks
;
5448 for (d
= 0; d
< conf
->raid_disks
; d
++)
5449 if (conf
->disks
[d
].rdev
&&
5451 &conf
->disks
[d
].rdev
->flags
))
5453 for (d
= conf
->raid_disks
;
5454 d
< conf
->raid_disks
- mddev
->delta_disks
;
5456 mdk_rdev_t
*rdev
= conf
->disks
[d
].rdev
;
5457 if (rdev
&& raid5_remove_disk(mddev
, d
) == 0) {
5459 sprintf(nm
, "rd%d", rdev
->raid_disk
);
5460 sysfs_remove_link(&mddev
->kobj
, nm
);
5461 rdev
->raid_disk
= -1;
5465 mddev
->layout
= conf
->algorithm
;
5466 mddev
->chunk_sectors
= conf
->chunk_sectors
;
5467 mddev
->reshape_position
= MaxSector
;
5468 mddev
->delta_disks
= 0;
5472 static void raid5_quiesce(mddev_t
*mddev
, int state
)
5474 raid5_conf_t
*conf
= mddev
->private;
5477 case 2: /* resume for a suspend */
5478 wake_up(&conf
->wait_for_overlap
);
5481 case 1: /* stop all writes */
5482 spin_lock_irq(&conf
->device_lock
);
5483 /* '2' tells resync/reshape to pause so that all
5484 * active stripes can drain
5487 wait_event_lock_irq(conf
->wait_for_stripe
,
5488 atomic_read(&conf
->active_stripes
) == 0 &&
5489 atomic_read(&conf
->active_aligned_reads
) == 0,
5490 conf
->device_lock
, /* nothing */);
5492 spin_unlock_irq(&conf
->device_lock
);
5493 /* allow reshape to continue */
5494 wake_up(&conf
->wait_for_overlap
);
5497 case 0: /* re-enable writes */
5498 spin_lock_irq(&conf
->device_lock
);
5500 wake_up(&conf
->wait_for_stripe
);
5501 wake_up(&conf
->wait_for_overlap
);
5502 spin_unlock_irq(&conf
->device_lock
);
5508 static void *raid5_takeover_raid1(mddev_t
*mddev
)
5512 if (mddev
->raid_disks
!= 2 ||
5513 mddev
->degraded
> 1)
5514 return ERR_PTR(-EINVAL
);
5516 /* Should check if there are write-behind devices? */
5518 chunksect
= 64*2; /* 64K by default */
5520 /* The array must be an exact multiple of chunksize */
5521 while (chunksect
&& (mddev
->array_sectors
& (chunksect
-1)))
5524 if ((chunksect
<<9) < STRIPE_SIZE
)
5525 /* array size does not allow a suitable chunk size */
5526 return ERR_PTR(-EINVAL
);
5528 mddev
->new_level
= 5;
5529 mddev
->new_layout
= ALGORITHM_LEFT_SYMMETRIC
;
5530 mddev
->new_chunk_sectors
= chunksect
;
5532 return setup_conf(mddev
);
5535 static void *raid5_takeover_raid6(mddev_t
*mddev
)
5539 switch (mddev
->layout
) {
5540 case ALGORITHM_LEFT_ASYMMETRIC_6
:
5541 new_layout
= ALGORITHM_LEFT_ASYMMETRIC
;
5543 case ALGORITHM_RIGHT_ASYMMETRIC_6
:
5544 new_layout
= ALGORITHM_RIGHT_ASYMMETRIC
;
5546 case ALGORITHM_LEFT_SYMMETRIC_6
:
5547 new_layout
= ALGORITHM_LEFT_SYMMETRIC
;
5549 case ALGORITHM_RIGHT_SYMMETRIC_6
:
5550 new_layout
= ALGORITHM_RIGHT_SYMMETRIC
;
5552 case ALGORITHM_PARITY_0_6
:
5553 new_layout
= ALGORITHM_PARITY_0
;
5555 case ALGORITHM_PARITY_N
:
5556 new_layout
= ALGORITHM_PARITY_N
;
5559 return ERR_PTR(-EINVAL
);
5561 mddev
->new_level
= 5;
5562 mddev
->new_layout
= new_layout
;
5563 mddev
->delta_disks
= -1;
5564 mddev
->raid_disks
-= 1;
5565 return setup_conf(mddev
);
5569 static int raid5_check_reshape(mddev_t
*mddev
)
5571 /* For a 2-drive array, the layout and chunk size can be changed
5572 * immediately as not restriping is needed.
5573 * For larger arrays we record the new value - after validation
5574 * to be used by a reshape pass.
5576 raid5_conf_t
*conf
= mddev
->private;
5577 int new_chunk
= mddev
->new_chunk_sectors
;
5579 if (mddev
->new_layout
>= 0 && !algorithm_valid_raid5(mddev
->new_layout
))
5581 if (new_chunk
> 0) {
5582 if (!is_power_of_2(new_chunk
))
5584 if (new_chunk
< (PAGE_SIZE
>>9))
5586 if (mddev
->array_sectors
& (new_chunk
-1))
5587 /* not factor of array size */
5591 /* They look valid */
5593 if (mddev
->raid_disks
== 2) {
5594 /* can make the change immediately */
5595 if (mddev
->new_layout
>= 0) {
5596 conf
->algorithm
= mddev
->new_layout
;
5597 mddev
->layout
= mddev
->new_layout
;
5599 if (new_chunk
> 0) {
5600 conf
->chunk_sectors
= new_chunk
;
5601 mddev
->chunk_sectors
= new_chunk
;
5603 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
5604 md_wakeup_thread(mddev
->thread
);
5606 return check_reshape(mddev
);
5609 static int raid6_check_reshape(mddev_t
*mddev
)
5611 int new_chunk
= mddev
->new_chunk_sectors
;
5613 if (mddev
->new_layout
>= 0 && !algorithm_valid_raid6(mddev
->new_layout
))
5615 if (new_chunk
> 0) {
5616 if (!is_power_of_2(new_chunk
))
5618 if (new_chunk
< (PAGE_SIZE
>> 9))
5620 if (mddev
->array_sectors
& (new_chunk
-1))
5621 /* not factor of array size */
5625 /* They look valid */
5626 return check_reshape(mddev
);
5629 static void *raid5_takeover(mddev_t
*mddev
)
5631 /* raid5 can take over:
5632 * raid0 - if all devices are the same - make it a raid4 layout
5633 * raid1 - if there are two drives. We need to know the chunk size
5634 * raid4 - trivial - just use a raid4 layout.
5635 * raid6 - Providing it is a *_6 layout
5638 if (mddev
->level
== 1)
5639 return raid5_takeover_raid1(mddev
);
5640 if (mddev
->level
== 4) {
5641 mddev
->new_layout
= ALGORITHM_PARITY_N
;
5642 mddev
->new_level
= 5;
5643 return setup_conf(mddev
);
5645 if (mddev
->level
== 6)
5646 return raid5_takeover_raid6(mddev
);
5648 return ERR_PTR(-EINVAL
);
5652 static struct mdk_personality raid5_personality
;
5654 static void *raid6_takeover(mddev_t
*mddev
)
5656 /* Currently can only take over a raid5. We map the
5657 * personality to an equivalent raid6 personality
5658 * with the Q block at the end.
5662 if (mddev
->pers
!= &raid5_personality
)
5663 return ERR_PTR(-EINVAL
);
5664 if (mddev
->degraded
> 1)
5665 return ERR_PTR(-EINVAL
);
5666 if (mddev
->raid_disks
> 253)
5667 return ERR_PTR(-EINVAL
);
5668 if (mddev
->raid_disks
< 3)
5669 return ERR_PTR(-EINVAL
);
5671 switch (mddev
->layout
) {
5672 case ALGORITHM_LEFT_ASYMMETRIC
:
5673 new_layout
= ALGORITHM_LEFT_ASYMMETRIC_6
;
5675 case ALGORITHM_RIGHT_ASYMMETRIC
:
5676 new_layout
= ALGORITHM_RIGHT_ASYMMETRIC_6
;
5678 case ALGORITHM_LEFT_SYMMETRIC
:
5679 new_layout
= ALGORITHM_LEFT_SYMMETRIC_6
;
5681 case ALGORITHM_RIGHT_SYMMETRIC
:
5682 new_layout
= ALGORITHM_RIGHT_SYMMETRIC_6
;
5684 case ALGORITHM_PARITY_0
:
5685 new_layout
= ALGORITHM_PARITY_0_6
;
5687 case ALGORITHM_PARITY_N
:
5688 new_layout
= ALGORITHM_PARITY_N
;
5691 return ERR_PTR(-EINVAL
);
5693 mddev
->new_level
= 6;
5694 mddev
->new_layout
= new_layout
;
5695 mddev
->delta_disks
= 1;
5696 mddev
->raid_disks
+= 1;
5697 return setup_conf(mddev
);
5701 static struct mdk_personality raid6_personality
=
5705 .owner
= THIS_MODULE
,
5706 .make_request
= make_request
,
5710 .error_handler
= error
,
5711 .hot_add_disk
= raid5_add_disk
,
5712 .hot_remove_disk
= raid5_remove_disk
,
5713 .spare_active
= raid5_spare_active
,
5714 .sync_request
= sync_request
,
5715 .resize
= raid5_resize
,
5717 .check_reshape
= raid6_check_reshape
,
5718 .start_reshape
= raid5_start_reshape
,
5719 .finish_reshape
= raid5_finish_reshape
,
5720 .quiesce
= raid5_quiesce
,
5721 .takeover
= raid6_takeover
,
5723 static struct mdk_personality raid5_personality
=
5727 .owner
= THIS_MODULE
,
5728 .make_request
= make_request
,
5732 .error_handler
= error
,
5733 .hot_add_disk
= raid5_add_disk
,
5734 .hot_remove_disk
= raid5_remove_disk
,
5735 .spare_active
= raid5_spare_active
,
5736 .sync_request
= sync_request
,
5737 .resize
= raid5_resize
,
5739 .check_reshape
= raid5_check_reshape
,
5740 .start_reshape
= raid5_start_reshape
,
5741 .finish_reshape
= raid5_finish_reshape
,
5742 .quiesce
= raid5_quiesce
,
5743 .takeover
= raid5_takeover
,
5746 static struct mdk_personality raid4_personality
=
5750 .owner
= THIS_MODULE
,
5751 .make_request
= make_request
,
5755 .error_handler
= error
,
5756 .hot_add_disk
= raid5_add_disk
,
5757 .hot_remove_disk
= raid5_remove_disk
,
5758 .spare_active
= raid5_spare_active
,
5759 .sync_request
= sync_request
,
5760 .resize
= raid5_resize
,
5762 .check_reshape
= raid5_check_reshape
,
5763 .start_reshape
= raid5_start_reshape
,
5764 .finish_reshape
= raid5_finish_reshape
,
5765 .quiesce
= raid5_quiesce
,
5768 static int __init
raid5_init(void)
5770 register_md_personality(&raid6_personality
);
5771 register_md_personality(&raid5_personality
);
5772 register_md_personality(&raid4_personality
);
5776 static void raid5_exit(void)
5778 unregister_md_personality(&raid6_personality
);
5779 unregister_md_personality(&raid5_personality
);
5780 unregister_md_personality(&raid4_personality
);
5783 module_init(raid5_init
);
5784 module_exit(raid5_exit
);
5785 MODULE_LICENSE("GPL");
5786 MODULE_ALIAS("md-personality-4"); /* RAID5 */
5787 MODULE_ALIAS("md-raid5");
5788 MODULE_ALIAS("md-raid4");
5789 MODULE_ALIAS("md-level-5");
5790 MODULE_ALIAS("md-level-4");
5791 MODULE_ALIAS("md-personality-8"); /* RAID6 */
5792 MODULE_ALIAS("md-raid6");
5793 MODULE_ALIAS("md-level-6");
5795 /* This used to be two separate modules, they were: */
5796 MODULE_ALIAS("raid5");
5797 MODULE_ALIAS("raid6");