sh: mach-migor: Kill off unused Migo-R machvec.
[linux-2.6/kvm.git] / net / core / skbuff.c
blob65f7757465bd2ed8b99c2a0934c8e5dc32c73b00
1 /*
2 * Routines having to do with the 'struct sk_buff' memory handlers.
4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
5 * Florian La Roche <rzsfl@rz.uni-sb.de>
7 * Fixes:
8 * Alan Cox : Fixed the worst of the load
9 * balancer bugs.
10 * Dave Platt : Interrupt stacking fix.
11 * Richard Kooijman : Timestamp fixes.
12 * Alan Cox : Changed buffer format.
13 * Alan Cox : destructor hook for AF_UNIX etc.
14 * Linus Torvalds : Better skb_clone.
15 * Alan Cox : Added skb_copy.
16 * Alan Cox : Added all the changed routines Linus
17 * only put in the headers
18 * Ray VanTassle : Fixed --skb->lock in free
19 * Alan Cox : skb_copy copy arp field
20 * Andi Kleen : slabified it.
21 * Robert Olsson : Removed skb_head_pool
23 * NOTE:
24 * The __skb_ routines should be called with interrupts
25 * disabled, or you better be *real* sure that the operation is atomic
26 * with respect to whatever list is being frobbed (e.g. via lock_sock()
27 * or via disabling bottom half handlers, etc).
29 * This program is free software; you can redistribute it and/or
30 * modify it under the terms of the GNU General Public License
31 * as published by the Free Software Foundation; either version
32 * 2 of the License, or (at your option) any later version.
36 * The functions in this file will not compile correctly with gcc 2.4.x
39 #include <linux/module.h>
40 #include <linux/types.h>
41 #include <linux/kernel.h>
42 #include <linux/mm.h>
43 #include <linux/interrupt.h>
44 #include <linux/in.h>
45 #include <linux/inet.h>
46 #include <linux/slab.h>
47 #include <linux/netdevice.h>
48 #ifdef CONFIG_NET_CLS_ACT
49 #include <net/pkt_sched.h>
50 #endif
51 #include <linux/string.h>
52 #include <linux/skbuff.h>
53 #include <linux/splice.h>
54 #include <linux/cache.h>
55 #include <linux/rtnetlink.h>
56 #include <linux/init.h>
57 #include <linux/scatterlist.h>
59 #include <net/protocol.h>
60 #include <net/dst.h>
61 #include <net/sock.h>
62 #include <net/checksum.h>
63 #include <net/xfrm.h>
65 #include <asm/uaccess.h>
66 #include <asm/system.h>
68 #include "kmap_skb.h"
70 static struct kmem_cache *skbuff_head_cache __read_mostly;
71 static struct kmem_cache *skbuff_fclone_cache __read_mostly;
73 static void sock_pipe_buf_release(struct pipe_inode_info *pipe,
74 struct pipe_buffer *buf)
76 struct sk_buff *skb = (struct sk_buff *) buf->private;
78 kfree_skb(skb);
81 static void sock_pipe_buf_get(struct pipe_inode_info *pipe,
82 struct pipe_buffer *buf)
84 struct sk_buff *skb = (struct sk_buff *) buf->private;
86 skb_get(skb);
89 static int sock_pipe_buf_steal(struct pipe_inode_info *pipe,
90 struct pipe_buffer *buf)
92 return 1;
96 /* Pipe buffer operations for a socket. */
97 static struct pipe_buf_operations sock_pipe_buf_ops = {
98 .can_merge = 0,
99 .map = generic_pipe_buf_map,
100 .unmap = generic_pipe_buf_unmap,
101 .confirm = generic_pipe_buf_confirm,
102 .release = sock_pipe_buf_release,
103 .steal = sock_pipe_buf_steal,
104 .get = sock_pipe_buf_get,
108 * Keep out-of-line to prevent kernel bloat.
109 * __builtin_return_address is not used because it is not always
110 * reliable.
114 * skb_over_panic - private function
115 * @skb: buffer
116 * @sz: size
117 * @here: address
119 * Out of line support code for skb_put(). Not user callable.
121 void skb_over_panic(struct sk_buff *skb, int sz, void *here)
123 printk(KERN_EMERG "skb_over_panic: text:%p len:%d put:%d head:%p "
124 "data:%p tail:%#lx end:%#lx dev:%s\n",
125 here, skb->len, sz, skb->head, skb->data,
126 (unsigned long)skb->tail, (unsigned long)skb->end,
127 skb->dev ? skb->dev->name : "<NULL>");
128 BUG();
132 * skb_under_panic - private function
133 * @skb: buffer
134 * @sz: size
135 * @here: address
137 * Out of line support code for skb_push(). Not user callable.
140 void skb_under_panic(struct sk_buff *skb, int sz, void *here)
142 printk(KERN_EMERG "skb_under_panic: text:%p len:%d put:%d head:%p "
143 "data:%p tail:%#lx end:%#lx dev:%s\n",
144 here, skb->len, sz, skb->head, skb->data,
145 (unsigned long)skb->tail, (unsigned long)skb->end,
146 skb->dev ? skb->dev->name : "<NULL>");
147 BUG();
150 void skb_truesize_bug(struct sk_buff *skb)
152 WARN(net_ratelimit(), KERN_ERR "SKB BUG: Invalid truesize (%u) "
153 "len=%u, sizeof(sk_buff)=%Zd\n",
154 skb->truesize, skb->len, sizeof(struct sk_buff));
156 EXPORT_SYMBOL(skb_truesize_bug);
158 /* Allocate a new skbuff. We do this ourselves so we can fill in a few
159 * 'private' fields and also do memory statistics to find all the
160 * [BEEP] leaks.
165 * __alloc_skb - allocate a network buffer
166 * @size: size to allocate
167 * @gfp_mask: allocation mask
168 * @fclone: allocate from fclone cache instead of head cache
169 * and allocate a cloned (child) skb
170 * @node: numa node to allocate memory on
172 * Allocate a new &sk_buff. The returned buffer has no headroom and a
173 * tail room of size bytes. The object has a reference count of one.
174 * The return is the buffer. On a failure the return is %NULL.
176 * Buffers may only be allocated from interrupts using a @gfp_mask of
177 * %GFP_ATOMIC.
179 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
180 int fclone, int node)
182 struct kmem_cache *cache;
183 struct skb_shared_info *shinfo;
184 struct sk_buff *skb;
185 u8 *data;
187 cache = fclone ? skbuff_fclone_cache : skbuff_head_cache;
189 /* Get the HEAD */
190 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
191 if (!skb)
192 goto out;
194 size = SKB_DATA_ALIGN(size);
195 data = kmalloc_node_track_caller(size + sizeof(struct skb_shared_info),
196 gfp_mask, node);
197 if (!data)
198 goto nodata;
201 * Only clear those fields we need to clear, not those that we will
202 * actually initialise below. Hence, don't put any more fields after
203 * the tail pointer in struct sk_buff!
205 memset(skb, 0, offsetof(struct sk_buff, tail));
206 skb->truesize = size + sizeof(struct sk_buff);
207 atomic_set(&skb->users, 1);
208 skb->head = data;
209 skb->data = data;
210 skb_reset_tail_pointer(skb);
211 skb->end = skb->tail + size;
212 /* make sure we initialize shinfo sequentially */
213 shinfo = skb_shinfo(skb);
214 atomic_set(&shinfo->dataref, 1);
215 shinfo->nr_frags = 0;
216 shinfo->gso_size = 0;
217 shinfo->gso_segs = 0;
218 shinfo->gso_type = 0;
219 shinfo->ip6_frag_id = 0;
220 shinfo->frag_list = NULL;
222 if (fclone) {
223 struct sk_buff *child = skb + 1;
224 atomic_t *fclone_ref = (atomic_t *) (child + 1);
226 skb->fclone = SKB_FCLONE_ORIG;
227 atomic_set(fclone_ref, 1);
229 child->fclone = SKB_FCLONE_UNAVAILABLE;
231 out:
232 return skb;
233 nodata:
234 kmem_cache_free(cache, skb);
235 skb = NULL;
236 goto out;
240 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
241 * @dev: network device to receive on
242 * @length: length to allocate
243 * @gfp_mask: get_free_pages mask, passed to alloc_skb
245 * Allocate a new &sk_buff and assign it a usage count of one. The
246 * buffer has unspecified headroom built in. Users should allocate
247 * the headroom they think they need without accounting for the
248 * built in space. The built in space is used for optimisations.
250 * %NULL is returned if there is no free memory.
252 struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
253 unsigned int length, gfp_t gfp_mask)
255 int node = dev->dev.parent ? dev_to_node(dev->dev.parent) : -1;
256 struct sk_buff *skb;
258 skb = __alloc_skb(length + NET_SKB_PAD, gfp_mask, 0, node);
259 if (likely(skb)) {
260 skb_reserve(skb, NET_SKB_PAD);
261 skb->dev = dev;
263 return skb;
266 struct page *__netdev_alloc_page(struct net_device *dev, gfp_t gfp_mask)
268 int node = dev->dev.parent ? dev_to_node(dev->dev.parent) : -1;
269 struct page *page;
271 page = alloc_pages_node(node, gfp_mask, 0);
272 return page;
274 EXPORT_SYMBOL(__netdev_alloc_page);
276 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
277 int size)
279 skb_fill_page_desc(skb, i, page, off, size);
280 skb->len += size;
281 skb->data_len += size;
282 skb->truesize += size;
284 EXPORT_SYMBOL(skb_add_rx_frag);
287 * dev_alloc_skb - allocate an skbuff for receiving
288 * @length: length to allocate
290 * Allocate a new &sk_buff and assign it a usage count of one. The
291 * buffer has unspecified headroom built in. Users should allocate
292 * the headroom they think they need without accounting for the
293 * built in space. The built in space is used for optimisations.
295 * %NULL is returned if there is no free memory. Although this function
296 * allocates memory it can be called from an interrupt.
298 struct sk_buff *dev_alloc_skb(unsigned int length)
301 * There is more code here than it seems:
302 * __dev_alloc_skb is an inline
304 return __dev_alloc_skb(length, GFP_ATOMIC);
306 EXPORT_SYMBOL(dev_alloc_skb);
308 static void skb_drop_list(struct sk_buff **listp)
310 struct sk_buff *list = *listp;
312 *listp = NULL;
314 do {
315 struct sk_buff *this = list;
316 list = list->next;
317 kfree_skb(this);
318 } while (list);
321 static inline void skb_drop_fraglist(struct sk_buff *skb)
323 skb_drop_list(&skb_shinfo(skb)->frag_list);
326 static void skb_clone_fraglist(struct sk_buff *skb)
328 struct sk_buff *list;
330 for (list = skb_shinfo(skb)->frag_list; list; list = list->next)
331 skb_get(list);
334 static void skb_release_data(struct sk_buff *skb)
336 if (!skb->cloned ||
337 !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
338 &skb_shinfo(skb)->dataref)) {
339 if (skb_shinfo(skb)->nr_frags) {
340 int i;
341 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
342 put_page(skb_shinfo(skb)->frags[i].page);
345 if (skb_shinfo(skb)->frag_list)
346 skb_drop_fraglist(skb);
348 kfree(skb->head);
353 * Free an skbuff by memory without cleaning the state.
355 static void kfree_skbmem(struct sk_buff *skb)
357 struct sk_buff *other;
358 atomic_t *fclone_ref;
360 switch (skb->fclone) {
361 case SKB_FCLONE_UNAVAILABLE:
362 kmem_cache_free(skbuff_head_cache, skb);
363 break;
365 case SKB_FCLONE_ORIG:
366 fclone_ref = (atomic_t *) (skb + 2);
367 if (atomic_dec_and_test(fclone_ref))
368 kmem_cache_free(skbuff_fclone_cache, skb);
369 break;
371 case SKB_FCLONE_CLONE:
372 fclone_ref = (atomic_t *) (skb + 1);
373 other = skb - 1;
375 /* The clone portion is available for
376 * fast-cloning again.
378 skb->fclone = SKB_FCLONE_UNAVAILABLE;
380 if (atomic_dec_and_test(fclone_ref))
381 kmem_cache_free(skbuff_fclone_cache, other);
382 break;
386 static void skb_release_head_state(struct sk_buff *skb)
388 dst_release(skb->dst);
389 #ifdef CONFIG_XFRM
390 secpath_put(skb->sp);
391 #endif
392 if (skb->destructor) {
393 WARN_ON(in_irq());
394 skb->destructor(skb);
396 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
397 nf_conntrack_put(skb->nfct);
398 nf_conntrack_put_reasm(skb->nfct_reasm);
399 #endif
400 #ifdef CONFIG_BRIDGE_NETFILTER
401 nf_bridge_put(skb->nf_bridge);
402 #endif
403 /* XXX: IS this still necessary? - JHS */
404 #ifdef CONFIG_NET_SCHED
405 skb->tc_index = 0;
406 #ifdef CONFIG_NET_CLS_ACT
407 skb->tc_verd = 0;
408 #endif
409 #endif
412 /* Free everything but the sk_buff shell. */
413 static void skb_release_all(struct sk_buff *skb)
415 skb_release_head_state(skb);
416 skb_release_data(skb);
420 * __kfree_skb - private function
421 * @skb: buffer
423 * Free an sk_buff. Release anything attached to the buffer.
424 * Clean the state. This is an internal helper function. Users should
425 * always call kfree_skb
428 void __kfree_skb(struct sk_buff *skb)
430 skb_release_all(skb);
431 kfree_skbmem(skb);
435 * kfree_skb - free an sk_buff
436 * @skb: buffer to free
438 * Drop a reference to the buffer and free it if the usage count has
439 * hit zero.
441 void kfree_skb(struct sk_buff *skb)
443 if (unlikely(!skb))
444 return;
445 if (likely(atomic_read(&skb->users) == 1))
446 smp_rmb();
447 else if (likely(!atomic_dec_and_test(&skb->users)))
448 return;
449 __kfree_skb(skb);
453 * skb_recycle_check - check if skb can be reused for receive
454 * @skb: buffer
455 * @skb_size: minimum receive buffer size
457 * Checks that the skb passed in is not shared or cloned, and
458 * that it is linear and its head portion at least as large as
459 * skb_size so that it can be recycled as a receive buffer.
460 * If these conditions are met, this function does any necessary
461 * reference count dropping and cleans up the skbuff as if it
462 * just came from __alloc_skb().
464 int skb_recycle_check(struct sk_buff *skb, int skb_size)
466 struct skb_shared_info *shinfo;
468 if (skb_is_nonlinear(skb) || skb->fclone != SKB_FCLONE_UNAVAILABLE)
469 return 0;
471 skb_size = SKB_DATA_ALIGN(skb_size + NET_SKB_PAD);
472 if (skb_end_pointer(skb) - skb->head < skb_size)
473 return 0;
475 if (skb_shared(skb) || skb_cloned(skb))
476 return 0;
478 skb_release_head_state(skb);
479 shinfo = skb_shinfo(skb);
480 atomic_set(&shinfo->dataref, 1);
481 shinfo->nr_frags = 0;
482 shinfo->gso_size = 0;
483 shinfo->gso_segs = 0;
484 shinfo->gso_type = 0;
485 shinfo->ip6_frag_id = 0;
486 shinfo->frag_list = NULL;
488 memset(skb, 0, offsetof(struct sk_buff, tail));
489 skb->data = skb->head + NET_SKB_PAD;
490 skb_reset_tail_pointer(skb);
492 return 1;
494 EXPORT_SYMBOL(skb_recycle_check);
496 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
498 new->tstamp = old->tstamp;
499 new->dev = old->dev;
500 new->transport_header = old->transport_header;
501 new->network_header = old->network_header;
502 new->mac_header = old->mac_header;
503 new->dst = dst_clone(old->dst);
504 #ifdef CONFIG_INET
505 new->sp = secpath_get(old->sp);
506 #endif
507 memcpy(new->cb, old->cb, sizeof(old->cb));
508 new->csum_start = old->csum_start;
509 new->csum_offset = old->csum_offset;
510 new->local_df = old->local_df;
511 new->pkt_type = old->pkt_type;
512 new->ip_summed = old->ip_summed;
513 skb_copy_queue_mapping(new, old);
514 new->priority = old->priority;
515 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
516 new->ipvs_property = old->ipvs_property;
517 #endif
518 new->protocol = old->protocol;
519 new->mark = old->mark;
520 __nf_copy(new, old);
521 #if defined(CONFIG_NETFILTER_XT_TARGET_TRACE) || \
522 defined(CONFIG_NETFILTER_XT_TARGET_TRACE_MODULE)
523 new->nf_trace = old->nf_trace;
524 #endif
525 #ifdef CONFIG_NET_SCHED
526 new->tc_index = old->tc_index;
527 #ifdef CONFIG_NET_CLS_ACT
528 new->tc_verd = old->tc_verd;
529 #endif
530 #endif
531 new->vlan_tci = old->vlan_tci;
533 skb_copy_secmark(new, old);
536 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
538 #define C(x) n->x = skb->x
540 n->next = n->prev = NULL;
541 n->sk = NULL;
542 __copy_skb_header(n, skb);
544 C(len);
545 C(data_len);
546 C(mac_len);
547 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
548 n->cloned = 1;
549 n->nohdr = 0;
550 n->destructor = NULL;
551 C(iif);
552 C(tail);
553 C(end);
554 C(head);
555 C(data);
556 C(truesize);
557 #if defined(CONFIG_MAC80211) || defined(CONFIG_MAC80211_MODULE)
558 C(do_not_encrypt);
559 #endif
560 atomic_set(&n->users, 1);
562 atomic_inc(&(skb_shinfo(skb)->dataref));
563 skb->cloned = 1;
565 return n;
566 #undef C
570 * skb_morph - morph one skb into another
571 * @dst: the skb to receive the contents
572 * @src: the skb to supply the contents
574 * This is identical to skb_clone except that the target skb is
575 * supplied by the user.
577 * The target skb is returned upon exit.
579 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
581 skb_release_all(dst);
582 return __skb_clone(dst, src);
584 EXPORT_SYMBOL_GPL(skb_morph);
587 * skb_clone - duplicate an sk_buff
588 * @skb: buffer to clone
589 * @gfp_mask: allocation priority
591 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
592 * copies share the same packet data but not structure. The new
593 * buffer has a reference count of 1. If the allocation fails the
594 * function returns %NULL otherwise the new buffer is returned.
596 * If this function is called from an interrupt gfp_mask() must be
597 * %GFP_ATOMIC.
600 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
602 struct sk_buff *n;
604 n = skb + 1;
605 if (skb->fclone == SKB_FCLONE_ORIG &&
606 n->fclone == SKB_FCLONE_UNAVAILABLE) {
607 atomic_t *fclone_ref = (atomic_t *) (n + 1);
608 n->fclone = SKB_FCLONE_CLONE;
609 atomic_inc(fclone_ref);
610 } else {
611 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
612 if (!n)
613 return NULL;
614 n->fclone = SKB_FCLONE_UNAVAILABLE;
617 return __skb_clone(n, skb);
620 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
622 #ifndef NET_SKBUFF_DATA_USES_OFFSET
624 * Shift between the two data areas in bytes
626 unsigned long offset = new->data - old->data;
627 #endif
629 __copy_skb_header(new, old);
631 #ifndef NET_SKBUFF_DATA_USES_OFFSET
632 /* {transport,network,mac}_header are relative to skb->head */
633 new->transport_header += offset;
634 new->network_header += offset;
635 new->mac_header += offset;
636 #endif
637 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
638 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
639 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
643 * skb_copy - create private copy of an sk_buff
644 * @skb: buffer to copy
645 * @gfp_mask: allocation priority
647 * Make a copy of both an &sk_buff and its data. This is used when the
648 * caller wishes to modify the data and needs a private copy of the
649 * data to alter. Returns %NULL on failure or the pointer to the buffer
650 * on success. The returned buffer has a reference count of 1.
652 * As by-product this function converts non-linear &sk_buff to linear
653 * one, so that &sk_buff becomes completely private and caller is allowed
654 * to modify all the data of returned buffer. This means that this
655 * function is not recommended for use in circumstances when only
656 * header is going to be modified. Use pskb_copy() instead.
659 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
661 int headerlen = skb->data - skb->head;
663 * Allocate the copy buffer
665 struct sk_buff *n;
666 #ifdef NET_SKBUFF_DATA_USES_OFFSET
667 n = alloc_skb(skb->end + skb->data_len, gfp_mask);
668 #else
669 n = alloc_skb(skb->end - skb->head + skb->data_len, gfp_mask);
670 #endif
671 if (!n)
672 return NULL;
674 /* Set the data pointer */
675 skb_reserve(n, headerlen);
676 /* Set the tail pointer and length */
677 skb_put(n, skb->len);
679 if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
680 BUG();
682 copy_skb_header(n, skb);
683 return n;
688 * pskb_copy - create copy of an sk_buff with private head.
689 * @skb: buffer to copy
690 * @gfp_mask: allocation priority
692 * Make a copy of both an &sk_buff and part of its data, located
693 * in header. Fragmented data remain shared. This is used when
694 * the caller wishes to modify only header of &sk_buff and needs
695 * private copy of the header to alter. Returns %NULL on failure
696 * or the pointer to the buffer on success.
697 * The returned buffer has a reference count of 1.
700 struct sk_buff *pskb_copy(struct sk_buff *skb, gfp_t gfp_mask)
703 * Allocate the copy buffer
705 struct sk_buff *n;
706 #ifdef NET_SKBUFF_DATA_USES_OFFSET
707 n = alloc_skb(skb->end, gfp_mask);
708 #else
709 n = alloc_skb(skb->end - skb->head, gfp_mask);
710 #endif
711 if (!n)
712 goto out;
714 /* Set the data pointer */
715 skb_reserve(n, skb->data - skb->head);
716 /* Set the tail pointer and length */
717 skb_put(n, skb_headlen(skb));
718 /* Copy the bytes */
719 skb_copy_from_linear_data(skb, n->data, n->len);
721 n->truesize += skb->data_len;
722 n->data_len = skb->data_len;
723 n->len = skb->len;
725 if (skb_shinfo(skb)->nr_frags) {
726 int i;
728 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
729 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
730 get_page(skb_shinfo(n)->frags[i].page);
732 skb_shinfo(n)->nr_frags = i;
735 if (skb_shinfo(skb)->frag_list) {
736 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
737 skb_clone_fraglist(n);
740 copy_skb_header(n, skb);
741 out:
742 return n;
746 * pskb_expand_head - reallocate header of &sk_buff
747 * @skb: buffer to reallocate
748 * @nhead: room to add at head
749 * @ntail: room to add at tail
750 * @gfp_mask: allocation priority
752 * Expands (or creates identical copy, if &nhead and &ntail are zero)
753 * header of skb. &sk_buff itself is not changed. &sk_buff MUST have
754 * reference count of 1. Returns zero in the case of success or error,
755 * if expansion failed. In the last case, &sk_buff is not changed.
757 * All the pointers pointing into skb header may change and must be
758 * reloaded after call to this function.
761 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
762 gfp_t gfp_mask)
764 int i;
765 u8 *data;
766 #ifdef NET_SKBUFF_DATA_USES_OFFSET
767 int size = nhead + skb->end + ntail;
768 #else
769 int size = nhead + (skb->end - skb->head) + ntail;
770 #endif
771 long off;
773 BUG_ON(nhead < 0);
775 if (skb_shared(skb))
776 BUG();
778 size = SKB_DATA_ALIGN(size);
780 data = kmalloc(size + sizeof(struct skb_shared_info), gfp_mask);
781 if (!data)
782 goto nodata;
784 /* Copy only real data... and, alas, header. This should be
785 * optimized for the cases when header is void. */
786 #ifdef NET_SKBUFF_DATA_USES_OFFSET
787 memcpy(data + nhead, skb->head, skb->tail);
788 #else
789 memcpy(data + nhead, skb->head, skb->tail - skb->head);
790 #endif
791 memcpy(data + size, skb_end_pointer(skb),
792 sizeof(struct skb_shared_info));
794 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
795 get_page(skb_shinfo(skb)->frags[i].page);
797 if (skb_shinfo(skb)->frag_list)
798 skb_clone_fraglist(skb);
800 skb_release_data(skb);
802 off = (data + nhead) - skb->head;
804 skb->head = data;
805 skb->data += off;
806 #ifdef NET_SKBUFF_DATA_USES_OFFSET
807 skb->end = size;
808 off = nhead;
809 #else
810 skb->end = skb->head + size;
811 #endif
812 /* {transport,network,mac}_header and tail are relative to skb->head */
813 skb->tail += off;
814 skb->transport_header += off;
815 skb->network_header += off;
816 skb->mac_header += off;
817 skb->csum_start += nhead;
818 skb->cloned = 0;
819 skb->hdr_len = 0;
820 skb->nohdr = 0;
821 atomic_set(&skb_shinfo(skb)->dataref, 1);
822 return 0;
824 nodata:
825 return -ENOMEM;
828 /* Make private copy of skb with writable head and some headroom */
830 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
832 struct sk_buff *skb2;
833 int delta = headroom - skb_headroom(skb);
835 if (delta <= 0)
836 skb2 = pskb_copy(skb, GFP_ATOMIC);
837 else {
838 skb2 = skb_clone(skb, GFP_ATOMIC);
839 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
840 GFP_ATOMIC)) {
841 kfree_skb(skb2);
842 skb2 = NULL;
845 return skb2;
850 * skb_copy_expand - copy and expand sk_buff
851 * @skb: buffer to copy
852 * @newheadroom: new free bytes at head
853 * @newtailroom: new free bytes at tail
854 * @gfp_mask: allocation priority
856 * Make a copy of both an &sk_buff and its data and while doing so
857 * allocate additional space.
859 * This is used when the caller wishes to modify the data and needs a
860 * private copy of the data to alter as well as more space for new fields.
861 * Returns %NULL on failure or the pointer to the buffer
862 * on success. The returned buffer has a reference count of 1.
864 * You must pass %GFP_ATOMIC as the allocation priority if this function
865 * is called from an interrupt.
867 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
868 int newheadroom, int newtailroom,
869 gfp_t gfp_mask)
872 * Allocate the copy buffer
874 struct sk_buff *n = alloc_skb(newheadroom + skb->len + newtailroom,
875 gfp_mask);
876 int oldheadroom = skb_headroom(skb);
877 int head_copy_len, head_copy_off;
878 int off;
880 if (!n)
881 return NULL;
883 skb_reserve(n, newheadroom);
885 /* Set the tail pointer and length */
886 skb_put(n, skb->len);
888 head_copy_len = oldheadroom;
889 head_copy_off = 0;
890 if (newheadroom <= head_copy_len)
891 head_copy_len = newheadroom;
892 else
893 head_copy_off = newheadroom - head_copy_len;
895 /* Copy the linear header and data. */
896 if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
897 skb->len + head_copy_len))
898 BUG();
900 copy_skb_header(n, skb);
902 off = newheadroom - oldheadroom;
903 n->csum_start += off;
904 #ifdef NET_SKBUFF_DATA_USES_OFFSET
905 n->transport_header += off;
906 n->network_header += off;
907 n->mac_header += off;
908 #endif
910 return n;
914 * skb_pad - zero pad the tail of an skb
915 * @skb: buffer to pad
916 * @pad: space to pad
918 * Ensure that a buffer is followed by a padding area that is zero
919 * filled. Used by network drivers which may DMA or transfer data
920 * beyond the buffer end onto the wire.
922 * May return error in out of memory cases. The skb is freed on error.
925 int skb_pad(struct sk_buff *skb, int pad)
927 int err;
928 int ntail;
930 /* If the skbuff is non linear tailroom is always zero.. */
931 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
932 memset(skb->data+skb->len, 0, pad);
933 return 0;
936 ntail = skb->data_len + pad - (skb->end - skb->tail);
937 if (likely(skb_cloned(skb) || ntail > 0)) {
938 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
939 if (unlikely(err))
940 goto free_skb;
943 /* FIXME: The use of this function with non-linear skb's really needs
944 * to be audited.
946 err = skb_linearize(skb);
947 if (unlikely(err))
948 goto free_skb;
950 memset(skb->data + skb->len, 0, pad);
951 return 0;
953 free_skb:
954 kfree_skb(skb);
955 return err;
959 * skb_put - add data to a buffer
960 * @skb: buffer to use
961 * @len: amount of data to add
963 * This function extends the used data area of the buffer. If this would
964 * exceed the total buffer size the kernel will panic. A pointer to the
965 * first byte of the extra data is returned.
967 unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
969 unsigned char *tmp = skb_tail_pointer(skb);
970 SKB_LINEAR_ASSERT(skb);
971 skb->tail += len;
972 skb->len += len;
973 if (unlikely(skb->tail > skb->end))
974 skb_over_panic(skb, len, __builtin_return_address(0));
975 return tmp;
977 EXPORT_SYMBOL(skb_put);
980 * skb_push - add data to the start of a buffer
981 * @skb: buffer to use
982 * @len: amount of data to add
984 * This function extends the used data area of the buffer at the buffer
985 * start. If this would exceed the total buffer headroom the kernel will
986 * panic. A pointer to the first byte of the extra data is returned.
988 unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
990 skb->data -= len;
991 skb->len += len;
992 if (unlikely(skb->data<skb->head))
993 skb_under_panic(skb, len, __builtin_return_address(0));
994 return skb->data;
996 EXPORT_SYMBOL(skb_push);
999 * skb_pull - remove data from the start of a buffer
1000 * @skb: buffer to use
1001 * @len: amount of data to remove
1003 * This function removes data from the start of a buffer, returning
1004 * the memory to the headroom. A pointer to the next data in the buffer
1005 * is returned. Once the data has been pulled future pushes will overwrite
1006 * the old data.
1008 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
1010 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
1012 EXPORT_SYMBOL(skb_pull);
1015 * skb_trim - remove end from a buffer
1016 * @skb: buffer to alter
1017 * @len: new length
1019 * Cut the length of a buffer down by removing data from the tail. If
1020 * the buffer is already under the length specified it is not modified.
1021 * The skb must be linear.
1023 void skb_trim(struct sk_buff *skb, unsigned int len)
1025 if (skb->len > len)
1026 __skb_trim(skb, len);
1028 EXPORT_SYMBOL(skb_trim);
1030 /* Trims skb to length len. It can change skb pointers.
1033 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1035 struct sk_buff **fragp;
1036 struct sk_buff *frag;
1037 int offset = skb_headlen(skb);
1038 int nfrags = skb_shinfo(skb)->nr_frags;
1039 int i;
1040 int err;
1042 if (skb_cloned(skb) &&
1043 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1044 return err;
1046 i = 0;
1047 if (offset >= len)
1048 goto drop_pages;
1050 for (; i < nfrags; i++) {
1051 int end = offset + skb_shinfo(skb)->frags[i].size;
1053 if (end < len) {
1054 offset = end;
1055 continue;
1058 skb_shinfo(skb)->frags[i++].size = len - offset;
1060 drop_pages:
1061 skb_shinfo(skb)->nr_frags = i;
1063 for (; i < nfrags; i++)
1064 put_page(skb_shinfo(skb)->frags[i].page);
1066 if (skb_shinfo(skb)->frag_list)
1067 skb_drop_fraglist(skb);
1068 goto done;
1071 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1072 fragp = &frag->next) {
1073 int end = offset + frag->len;
1075 if (skb_shared(frag)) {
1076 struct sk_buff *nfrag;
1078 nfrag = skb_clone(frag, GFP_ATOMIC);
1079 if (unlikely(!nfrag))
1080 return -ENOMEM;
1082 nfrag->next = frag->next;
1083 kfree_skb(frag);
1084 frag = nfrag;
1085 *fragp = frag;
1088 if (end < len) {
1089 offset = end;
1090 continue;
1093 if (end > len &&
1094 unlikely((err = pskb_trim(frag, len - offset))))
1095 return err;
1097 if (frag->next)
1098 skb_drop_list(&frag->next);
1099 break;
1102 done:
1103 if (len > skb_headlen(skb)) {
1104 skb->data_len -= skb->len - len;
1105 skb->len = len;
1106 } else {
1107 skb->len = len;
1108 skb->data_len = 0;
1109 skb_set_tail_pointer(skb, len);
1112 return 0;
1116 * __pskb_pull_tail - advance tail of skb header
1117 * @skb: buffer to reallocate
1118 * @delta: number of bytes to advance tail
1120 * The function makes a sense only on a fragmented &sk_buff,
1121 * it expands header moving its tail forward and copying necessary
1122 * data from fragmented part.
1124 * &sk_buff MUST have reference count of 1.
1126 * Returns %NULL (and &sk_buff does not change) if pull failed
1127 * or value of new tail of skb in the case of success.
1129 * All the pointers pointing into skb header may change and must be
1130 * reloaded after call to this function.
1133 /* Moves tail of skb head forward, copying data from fragmented part,
1134 * when it is necessary.
1135 * 1. It may fail due to malloc failure.
1136 * 2. It may change skb pointers.
1138 * It is pretty complicated. Luckily, it is called only in exceptional cases.
1140 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
1142 /* If skb has not enough free space at tail, get new one
1143 * plus 128 bytes for future expansions. If we have enough
1144 * room at tail, reallocate without expansion only if skb is cloned.
1146 int i, k, eat = (skb->tail + delta) - skb->end;
1148 if (eat > 0 || skb_cloned(skb)) {
1149 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1150 GFP_ATOMIC))
1151 return NULL;
1154 if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta))
1155 BUG();
1157 /* Optimization: no fragments, no reasons to preestimate
1158 * size of pulled pages. Superb.
1160 if (!skb_shinfo(skb)->frag_list)
1161 goto pull_pages;
1163 /* Estimate size of pulled pages. */
1164 eat = delta;
1165 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1166 if (skb_shinfo(skb)->frags[i].size >= eat)
1167 goto pull_pages;
1168 eat -= skb_shinfo(skb)->frags[i].size;
1171 /* If we need update frag list, we are in troubles.
1172 * Certainly, it possible to add an offset to skb data,
1173 * but taking into account that pulling is expected to
1174 * be very rare operation, it is worth to fight against
1175 * further bloating skb head and crucify ourselves here instead.
1176 * Pure masohism, indeed. 8)8)
1178 if (eat) {
1179 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1180 struct sk_buff *clone = NULL;
1181 struct sk_buff *insp = NULL;
1183 do {
1184 BUG_ON(!list);
1186 if (list->len <= eat) {
1187 /* Eaten as whole. */
1188 eat -= list->len;
1189 list = list->next;
1190 insp = list;
1191 } else {
1192 /* Eaten partially. */
1194 if (skb_shared(list)) {
1195 /* Sucks! We need to fork list. :-( */
1196 clone = skb_clone(list, GFP_ATOMIC);
1197 if (!clone)
1198 return NULL;
1199 insp = list->next;
1200 list = clone;
1201 } else {
1202 /* This may be pulled without
1203 * problems. */
1204 insp = list;
1206 if (!pskb_pull(list, eat)) {
1207 if (clone)
1208 kfree_skb(clone);
1209 return NULL;
1211 break;
1213 } while (eat);
1215 /* Free pulled out fragments. */
1216 while ((list = skb_shinfo(skb)->frag_list) != insp) {
1217 skb_shinfo(skb)->frag_list = list->next;
1218 kfree_skb(list);
1220 /* And insert new clone at head. */
1221 if (clone) {
1222 clone->next = list;
1223 skb_shinfo(skb)->frag_list = clone;
1226 /* Success! Now we may commit changes to skb data. */
1228 pull_pages:
1229 eat = delta;
1230 k = 0;
1231 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1232 if (skb_shinfo(skb)->frags[i].size <= eat) {
1233 put_page(skb_shinfo(skb)->frags[i].page);
1234 eat -= skb_shinfo(skb)->frags[i].size;
1235 } else {
1236 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1237 if (eat) {
1238 skb_shinfo(skb)->frags[k].page_offset += eat;
1239 skb_shinfo(skb)->frags[k].size -= eat;
1240 eat = 0;
1242 k++;
1245 skb_shinfo(skb)->nr_frags = k;
1247 skb->tail += delta;
1248 skb->data_len -= delta;
1250 return skb_tail_pointer(skb);
1253 /* Copy some data bits from skb to kernel buffer. */
1255 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
1257 int i, copy;
1258 int start = skb_headlen(skb);
1260 if (offset > (int)skb->len - len)
1261 goto fault;
1263 /* Copy header. */
1264 if ((copy = start - offset) > 0) {
1265 if (copy > len)
1266 copy = len;
1267 skb_copy_from_linear_data_offset(skb, offset, to, copy);
1268 if ((len -= copy) == 0)
1269 return 0;
1270 offset += copy;
1271 to += copy;
1274 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1275 int end;
1277 WARN_ON(start > offset + len);
1279 end = start + skb_shinfo(skb)->frags[i].size;
1280 if ((copy = end - offset) > 0) {
1281 u8 *vaddr;
1283 if (copy > len)
1284 copy = len;
1286 vaddr = kmap_skb_frag(&skb_shinfo(skb)->frags[i]);
1287 memcpy(to,
1288 vaddr + skb_shinfo(skb)->frags[i].page_offset+
1289 offset - start, copy);
1290 kunmap_skb_frag(vaddr);
1292 if ((len -= copy) == 0)
1293 return 0;
1294 offset += copy;
1295 to += copy;
1297 start = end;
1300 if (skb_shinfo(skb)->frag_list) {
1301 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1303 for (; list; list = list->next) {
1304 int end;
1306 WARN_ON(start > offset + len);
1308 end = start + list->len;
1309 if ((copy = end - offset) > 0) {
1310 if (copy > len)
1311 copy = len;
1312 if (skb_copy_bits(list, offset - start,
1313 to, copy))
1314 goto fault;
1315 if ((len -= copy) == 0)
1316 return 0;
1317 offset += copy;
1318 to += copy;
1320 start = end;
1323 if (!len)
1324 return 0;
1326 fault:
1327 return -EFAULT;
1331 * Callback from splice_to_pipe(), if we need to release some pages
1332 * at the end of the spd in case we error'ed out in filling the pipe.
1334 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
1336 struct sk_buff *skb = (struct sk_buff *) spd->partial[i].private;
1338 kfree_skb(skb);
1342 * Fill page/offset/length into spd, if it can hold more pages.
1344 static inline int spd_fill_page(struct splice_pipe_desc *spd, struct page *page,
1345 unsigned int len, unsigned int offset,
1346 struct sk_buff *skb)
1348 if (unlikely(spd->nr_pages == PIPE_BUFFERS))
1349 return 1;
1351 spd->pages[spd->nr_pages] = page;
1352 spd->partial[spd->nr_pages].len = len;
1353 spd->partial[spd->nr_pages].offset = offset;
1354 spd->partial[spd->nr_pages].private = (unsigned long) skb_get(skb);
1355 spd->nr_pages++;
1356 return 0;
1359 static inline void __segment_seek(struct page **page, unsigned int *poff,
1360 unsigned int *plen, unsigned int off)
1362 *poff += off;
1363 *page += *poff / PAGE_SIZE;
1364 *poff = *poff % PAGE_SIZE;
1365 *plen -= off;
1368 static inline int __splice_segment(struct page *page, unsigned int poff,
1369 unsigned int plen, unsigned int *off,
1370 unsigned int *len, struct sk_buff *skb,
1371 struct splice_pipe_desc *spd)
1373 if (!*len)
1374 return 1;
1376 /* skip this segment if already processed */
1377 if (*off >= plen) {
1378 *off -= plen;
1379 return 0;
1382 /* ignore any bits we already processed */
1383 if (*off) {
1384 __segment_seek(&page, &poff, &plen, *off);
1385 *off = 0;
1388 do {
1389 unsigned int flen = min(*len, plen);
1391 /* the linear region may spread across several pages */
1392 flen = min_t(unsigned int, flen, PAGE_SIZE - poff);
1394 if (spd_fill_page(spd, page, flen, poff, skb))
1395 return 1;
1397 __segment_seek(&page, &poff, &plen, flen);
1398 *len -= flen;
1400 } while (*len && plen);
1402 return 0;
1406 * Map linear and fragment data from the skb to spd. It reports failure if the
1407 * pipe is full or if we already spliced the requested length.
1409 static int __skb_splice_bits(struct sk_buff *skb, unsigned int *offset,
1410 unsigned int *len,
1411 struct splice_pipe_desc *spd)
1413 int seg;
1416 * map the linear part
1418 if (__splice_segment(virt_to_page(skb->data),
1419 (unsigned long) skb->data & (PAGE_SIZE - 1),
1420 skb_headlen(skb),
1421 offset, len, skb, spd))
1422 return 1;
1425 * then map the fragments
1427 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
1428 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
1430 if (__splice_segment(f->page, f->page_offset, f->size,
1431 offset, len, skb, spd))
1432 return 1;
1435 return 0;
1439 * Map data from the skb to a pipe. Should handle both the linear part,
1440 * the fragments, and the frag list. It does NOT handle frag lists within
1441 * the frag list, if such a thing exists. We'd probably need to recurse to
1442 * handle that cleanly.
1444 int skb_splice_bits(struct sk_buff *__skb, unsigned int offset,
1445 struct pipe_inode_info *pipe, unsigned int tlen,
1446 unsigned int flags)
1448 struct partial_page partial[PIPE_BUFFERS];
1449 struct page *pages[PIPE_BUFFERS];
1450 struct splice_pipe_desc spd = {
1451 .pages = pages,
1452 .partial = partial,
1453 .flags = flags,
1454 .ops = &sock_pipe_buf_ops,
1455 .spd_release = sock_spd_release,
1457 struct sk_buff *skb;
1460 * I'd love to avoid the clone here, but tcp_read_sock()
1461 * ignores reference counts and unconditonally kills the sk_buff
1462 * on return from the actor.
1464 skb = skb_clone(__skb, GFP_KERNEL);
1465 if (unlikely(!skb))
1466 return -ENOMEM;
1469 * __skb_splice_bits() only fails if the output has no room left,
1470 * so no point in going over the frag_list for the error case.
1472 if (__skb_splice_bits(skb, &offset, &tlen, &spd))
1473 goto done;
1474 else if (!tlen)
1475 goto done;
1478 * now see if we have a frag_list to map
1480 if (skb_shinfo(skb)->frag_list) {
1481 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1483 for (; list && tlen; list = list->next) {
1484 if (__skb_splice_bits(list, &offset, &tlen, &spd))
1485 break;
1489 done:
1491 * drop our reference to the clone, the pipe consumption will
1492 * drop the rest.
1494 kfree_skb(skb);
1496 if (spd.nr_pages) {
1497 int ret;
1498 struct sock *sk = __skb->sk;
1501 * Drop the socket lock, otherwise we have reverse
1502 * locking dependencies between sk_lock and i_mutex
1503 * here as compared to sendfile(). We enter here
1504 * with the socket lock held, and splice_to_pipe() will
1505 * grab the pipe inode lock. For sendfile() emulation,
1506 * we call into ->sendpage() with the i_mutex lock held
1507 * and networking will grab the socket lock.
1509 release_sock(sk);
1510 ret = splice_to_pipe(pipe, &spd);
1511 lock_sock(sk);
1512 return ret;
1515 return 0;
1519 * skb_store_bits - store bits from kernel buffer to skb
1520 * @skb: destination buffer
1521 * @offset: offset in destination
1522 * @from: source buffer
1523 * @len: number of bytes to copy
1525 * Copy the specified number of bytes from the source buffer to the
1526 * destination skb. This function handles all the messy bits of
1527 * traversing fragment lists and such.
1530 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
1532 int i, copy;
1533 int start = skb_headlen(skb);
1535 if (offset > (int)skb->len - len)
1536 goto fault;
1538 if ((copy = start - offset) > 0) {
1539 if (copy > len)
1540 copy = len;
1541 skb_copy_to_linear_data_offset(skb, offset, from, copy);
1542 if ((len -= copy) == 0)
1543 return 0;
1544 offset += copy;
1545 from += copy;
1548 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1549 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1550 int end;
1552 WARN_ON(start > offset + len);
1554 end = start + frag->size;
1555 if ((copy = end - offset) > 0) {
1556 u8 *vaddr;
1558 if (copy > len)
1559 copy = len;
1561 vaddr = kmap_skb_frag(frag);
1562 memcpy(vaddr + frag->page_offset + offset - start,
1563 from, copy);
1564 kunmap_skb_frag(vaddr);
1566 if ((len -= copy) == 0)
1567 return 0;
1568 offset += copy;
1569 from += copy;
1571 start = end;
1574 if (skb_shinfo(skb)->frag_list) {
1575 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1577 for (; list; list = list->next) {
1578 int end;
1580 WARN_ON(start > offset + len);
1582 end = start + list->len;
1583 if ((copy = end - offset) > 0) {
1584 if (copy > len)
1585 copy = len;
1586 if (skb_store_bits(list, offset - start,
1587 from, copy))
1588 goto fault;
1589 if ((len -= copy) == 0)
1590 return 0;
1591 offset += copy;
1592 from += copy;
1594 start = end;
1597 if (!len)
1598 return 0;
1600 fault:
1601 return -EFAULT;
1604 EXPORT_SYMBOL(skb_store_bits);
1606 /* Checksum skb data. */
1608 __wsum skb_checksum(const struct sk_buff *skb, int offset,
1609 int len, __wsum csum)
1611 int start = skb_headlen(skb);
1612 int i, copy = start - offset;
1613 int pos = 0;
1615 /* Checksum header. */
1616 if (copy > 0) {
1617 if (copy > len)
1618 copy = len;
1619 csum = csum_partial(skb->data + offset, copy, csum);
1620 if ((len -= copy) == 0)
1621 return csum;
1622 offset += copy;
1623 pos = copy;
1626 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1627 int end;
1629 WARN_ON(start > offset + len);
1631 end = start + skb_shinfo(skb)->frags[i].size;
1632 if ((copy = end - offset) > 0) {
1633 __wsum csum2;
1634 u8 *vaddr;
1635 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1637 if (copy > len)
1638 copy = len;
1639 vaddr = kmap_skb_frag(frag);
1640 csum2 = csum_partial(vaddr + frag->page_offset +
1641 offset - start, copy, 0);
1642 kunmap_skb_frag(vaddr);
1643 csum = csum_block_add(csum, csum2, pos);
1644 if (!(len -= copy))
1645 return csum;
1646 offset += copy;
1647 pos += copy;
1649 start = end;
1652 if (skb_shinfo(skb)->frag_list) {
1653 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1655 for (; list; list = list->next) {
1656 int end;
1658 WARN_ON(start > offset + len);
1660 end = start + list->len;
1661 if ((copy = end - offset) > 0) {
1662 __wsum csum2;
1663 if (copy > len)
1664 copy = len;
1665 csum2 = skb_checksum(list, offset - start,
1666 copy, 0);
1667 csum = csum_block_add(csum, csum2, pos);
1668 if ((len -= copy) == 0)
1669 return csum;
1670 offset += copy;
1671 pos += copy;
1673 start = end;
1676 BUG_ON(len);
1678 return csum;
1681 /* Both of above in one bottle. */
1683 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
1684 u8 *to, int len, __wsum csum)
1686 int start = skb_headlen(skb);
1687 int i, copy = start - offset;
1688 int pos = 0;
1690 /* Copy header. */
1691 if (copy > 0) {
1692 if (copy > len)
1693 copy = len;
1694 csum = csum_partial_copy_nocheck(skb->data + offset, to,
1695 copy, csum);
1696 if ((len -= copy) == 0)
1697 return csum;
1698 offset += copy;
1699 to += copy;
1700 pos = copy;
1703 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1704 int end;
1706 WARN_ON(start > offset + len);
1708 end = start + skb_shinfo(skb)->frags[i].size;
1709 if ((copy = end - offset) > 0) {
1710 __wsum csum2;
1711 u8 *vaddr;
1712 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1714 if (copy > len)
1715 copy = len;
1716 vaddr = kmap_skb_frag(frag);
1717 csum2 = csum_partial_copy_nocheck(vaddr +
1718 frag->page_offset +
1719 offset - start, to,
1720 copy, 0);
1721 kunmap_skb_frag(vaddr);
1722 csum = csum_block_add(csum, csum2, pos);
1723 if (!(len -= copy))
1724 return csum;
1725 offset += copy;
1726 to += copy;
1727 pos += copy;
1729 start = end;
1732 if (skb_shinfo(skb)->frag_list) {
1733 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1735 for (; list; list = list->next) {
1736 __wsum csum2;
1737 int end;
1739 WARN_ON(start > offset + len);
1741 end = start + list->len;
1742 if ((copy = end - offset) > 0) {
1743 if (copy > len)
1744 copy = len;
1745 csum2 = skb_copy_and_csum_bits(list,
1746 offset - start,
1747 to, copy, 0);
1748 csum = csum_block_add(csum, csum2, pos);
1749 if ((len -= copy) == 0)
1750 return csum;
1751 offset += copy;
1752 to += copy;
1753 pos += copy;
1755 start = end;
1758 BUG_ON(len);
1759 return csum;
1762 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
1764 __wsum csum;
1765 long csstart;
1767 if (skb->ip_summed == CHECKSUM_PARTIAL)
1768 csstart = skb->csum_start - skb_headroom(skb);
1769 else
1770 csstart = skb_headlen(skb);
1772 BUG_ON(csstart > skb_headlen(skb));
1774 skb_copy_from_linear_data(skb, to, csstart);
1776 csum = 0;
1777 if (csstart != skb->len)
1778 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
1779 skb->len - csstart, 0);
1781 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1782 long csstuff = csstart + skb->csum_offset;
1784 *((__sum16 *)(to + csstuff)) = csum_fold(csum);
1789 * skb_dequeue - remove from the head of the queue
1790 * @list: list to dequeue from
1792 * Remove the head of the list. The list lock is taken so the function
1793 * may be used safely with other locking list functions. The head item is
1794 * returned or %NULL if the list is empty.
1797 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
1799 unsigned long flags;
1800 struct sk_buff *result;
1802 spin_lock_irqsave(&list->lock, flags);
1803 result = __skb_dequeue(list);
1804 spin_unlock_irqrestore(&list->lock, flags);
1805 return result;
1809 * skb_dequeue_tail - remove from the tail of the queue
1810 * @list: list to dequeue from
1812 * Remove the tail of the list. The list lock is taken so the function
1813 * may be used safely with other locking list functions. The tail item is
1814 * returned or %NULL if the list is empty.
1816 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
1818 unsigned long flags;
1819 struct sk_buff *result;
1821 spin_lock_irqsave(&list->lock, flags);
1822 result = __skb_dequeue_tail(list);
1823 spin_unlock_irqrestore(&list->lock, flags);
1824 return result;
1828 * skb_queue_purge - empty a list
1829 * @list: list to empty
1831 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1832 * the list and one reference dropped. This function takes the list
1833 * lock and is atomic with respect to other list locking functions.
1835 void skb_queue_purge(struct sk_buff_head *list)
1837 struct sk_buff *skb;
1838 while ((skb = skb_dequeue(list)) != NULL)
1839 kfree_skb(skb);
1843 * skb_queue_head - queue a buffer at the list head
1844 * @list: list to use
1845 * @newsk: buffer to queue
1847 * Queue a buffer at the start of the list. This function takes the
1848 * list lock and can be used safely with other locking &sk_buff functions
1849 * safely.
1851 * A buffer cannot be placed on two lists at the same time.
1853 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
1855 unsigned long flags;
1857 spin_lock_irqsave(&list->lock, flags);
1858 __skb_queue_head(list, newsk);
1859 spin_unlock_irqrestore(&list->lock, flags);
1863 * skb_queue_tail - queue a buffer at the list tail
1864 * @list: list to use
1865 * @newsk: buffer to queue
1867 * Queue a buffer at the tail of the list. This function takes the
1868 * list lock and can be used safely with other locking &sk_buff functions
1869 * safely.
1871 * A buffer cannot be placed on two lists at the same time.
1873 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
1875 unsigned long flags;
1877 spin_lock_irqsave(&list->lock, flags);
1878 __skb_queue_tail(list, newsk);
1879 spin_unlock_irqrestore(&list->lock, flags);
1883 * skb_unlink - remove a buffer from a list
1884 * @skb: buffer to remove
1885 * @list: list to use
1887 * Remove a packet from a list. The list locks are taken and this
1888 * function is atomic with respect to other list locked calls
1890 * You must know what list the SKB is on.
1892 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1894 unsigned long flags;
1896 spin_lock_irqsave(&list->lock, flags);
1897 __skb_unlink(skb, list);
1898 spin_unlock_irqrestore(&list->lock, flags);
1902 * skb_append - append a buffer
1903 * @old: buffer to insert after
1904 * @newsk: buffer to insert
1905 * @list: list to use
1907 * Place a packet after a given packet in a list. The list locks are taken
1908 * and this function is atomic with respect to other list locked calls.
1909 * A buffer cannot be placed on two lists at the same time.
1911 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
1913 unsigned long flags;
1915 spin_lock_irqsave(&list->lock, flags);
1916 __skb_queue_after(list, old, newsk);
1917 spin_unlock_irqrestore(&list->lock, flags);
1922 * skb_insert - insert a buffer
1923 * @old: buffer to insert before
1924 * @newsk: buffer to insert
1925 * @list: list to use
1927 * Place a packet before a given packet in a list. The list locks are
1928 * taken and this function is atomic with respect to other list locked
1929 * calls.
1931 * A buffer cannot be placed on two lists at the same time.
1933 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
1935 unsigned long flags;
1937 spin_lock_irqsave(&list->lock, flags);
1938 __skb_insert(newsk, old->prev, old, list);
1939 spin_unlock_irqrestore(&list->lock, flags);
1942 static inline void skb_split_inside_header(struct sk_buff *skb,
1943 struct sk_buff* skb1,
1944 const u32 len, const int pos)
1946 int i;
1948 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
1949 pos - len);
1950 /* And move data appendix as is. */
1951 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1952 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
1954 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
1955 skb_shinfo(skb)->nr_frags = 0;
1956 skb1->data_len = skb->data_len;
1957 skb1->len += skb1->data_len;
1958 skb->data_len = 0;
1959 skb->len = len;
1960 skb_set_tail_pointer(skb, len);
1963 static inline void skb_split_no_header(struct sk_buff *skb,
1964 struct sk_buff* skb1,
1965 const u32 len, int pos)
1967 int i, k = 0;
1968 const int nfrags = skb_shinfo(skb)->nr_frags;
1970 skb_shinfo(skb)->nr_frags = 0;
1971 skb1->len = skb1->data_len = skb->len - len;
1972 skb->len = len;
1973 skb->data_len = len - pos;
1975 for (i = 0; i < nfrags; i++) {
1976 int size = skb_shinfo(skb)->frags[i].size;
1978 if (pos + size > len) {
1979 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
1981 if (pos < len) {
1982 /* Split frag.
1983 * We have two variants in this case:
1984 * 1. Move all the frag to the second
1985 * part, if it is possible. F.e.
1986 * this approach is mandatory for TUX,
1987 * where splitting is expensive.
1988 * 2. Split is accurately. We make this.
1990 get_page(skb_shinfo(skb)->frags[i].page);
1991 skb_shinfo(skb1)->frags[0].page_offset += len - pos;
1992 skb_shinfo(skb1)->frags[0].size -= len - pos;
1993 skb_shinfo(skb)->frags[i].size = len - pos;
1994 skb_shinfo(skb)->nr_frags++;
1996 k++;
1997 } else
1998 skb_shinfo(skb)->nr_frags++;
1999 pos += size;
2001 skb_shinfo(skb1)->nr_frags = k;
2005 * skb_split - Split fragmented skb to two parts at length len.
2006 * @skb: the buffer to split
2007 * @skb1: the buffer to receive the second part
2008 * @len: new length for skb
2010 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
2012 int pos = skb_headlen(skb);
2014 if (len < pos) /* Split line is inside header. */
2015 skb_split_inside_header(skb, skb1, len, pos);
2016 else /* Second chunk has no header, nothing to copy. */
2017 skb_split_no_header(skb, skb1, len, pos);
2021 * skb_prepare_seq_read - Prepare a sequential read of skb data
2022 * @skb: the buffer to read
2023 * @from: lower offset of data to be read
2024 * @to: upper offset of data to be read
2025 * @st: state variable
2027 * Initializes the specified state variable. Must be called before
2028 * invoking skb_seq_read() for the first time.
2030 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
2031 unsigned int to, struct skb_seq_state *st)
2033 st->lower_offset = from;
2034 st->upper_offset = to;
2035 st->root_skb = st->cur_skb = skb;
2036 st->frag_idx = st->stepped_offset = 0;
2037 st->frag_data = NULL;
2041 * skb_seq_read - Sequentially read skb data
2042 * @consumed: number of bytes consumed by the caller so far
2043 * @data: destination pointer for data to be returned
2044 * @st: state variable
2046 * Reads a block of skb data at &consumed relative to the
2047 * lower offset specified to skb_prepare_seq_read(). Assigns
2048 * the head of the data block to &data and returns the length
2049 * of the block or 0 if the end of the skb data or the upper
2050 * offset has been reached.
2052 * The caller is not required to consume all of the data
2053 * returned, i.e. &consumed is typically set to the number
2054 * of bytes already consumed and the next call to
2055 * skb_seq_read() will return the remaining part of the block.
2057 * Note 1: The size of each block of data returned can be arbitary,
2058 * this limitation is the cost for zerocopy seqeuental
2059 * reads of potentially non linear data.
2061 * Note 2: Fragment lists within fragments are not implemented
2062 * at the moment, state->root_skb could be replaced with
2063 * a stack for this purpose.
2065 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
2066 struct skb_seq_state *st)
2068 unsigned int block_limit, abs_offset = consumed + st->lower_offset;
2069 skb_frag_t *frag;
2071 if (unlikely(abs_offset >= st->upper_offset))
2072 return 0;
2074 next_skb:
2075 block_limit = skb_headlen(st->cur_skb);
2077 if (abs_offset < block_limit) {
2078 *data = st->cur_skb->data + abs_offset;
2079 return block_limit - abs_offset;
2082 if (st->frag_idx == 0 && !st->frag_data)
2083 st->stepped_offset += skb_headlen(st->cur_skb);
2085 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
2086 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
2087 block_limit = frag->size + st->stepped_offset;
2089 if (abs_offset < block_limit) {
2090 if (!st->frag_data)
2091 st->frag_data = kmap_skb_frag(frag);
2093 *data = (u8 *) st->frag_data + frag->page_offset +
2094 (abs_offset - st->stepped_offset);
2096 return block_limit - abs_offset;
2099 if (st->frag_data) {
2100 kunmap_skb_frag(st->frag_data);
2101 st->frag_data = NULL;
2104 st->frag_idx++;
2105 st->stepped_offset += frag->size;
2108 if (st->frag_data) {
2109 kunmap_skb_frag(st->frag_data);
2110 st->frag_data = NULL;
2113 if (st->cur_skb->next) {
2114 st->cur_skb = st->cur_skb->next;
2115 st->frag_idx = 0;
2116 goto next_skb;
2117 } else if (st->root_skb == st->cur_skb &&
2118 skb_shinfo(st->root_skb)->frag_list) {
2119 st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
2120 goto next_skb;
2123 return 0;
2127 * skb_abort_seq_read - Abort a sequential read of skb data
2128 * @st: state variable
2130 * Must be called if skb_seq_read() was not called until it
2131 * returned 0.
2133 void skb_abort_seq_read(struct skb_seq_state *st)
2135 if (st->frag_data)
2136 kunmap_skb_frag(st->frag_data);
2139 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
2141 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
2142 struct ts_config *conf,
2143 struct ts_state *state)
2145 return skb_seq_read(offset, text, TS_SKB_CB(state));
2148 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
2150 skb_abort_seq_read(TS_SKB_CB(state));
2154 * skb_find_text - Find a text pattern in skb data
2155 * @skb: the buffer to look in
2156 * @from: search offset
2157 * @to: search limit
2158 * @config: textsearch configuration
2159 * @state: uninitialized textsearch state variable
2161 * Finds a pattern in the skb data according to the specified
2162 * textsearch configuration. Use textsearch_next() to retrieve
2163 * subsequent occurrences of the pattern. Returns the offset
2164 * to the first occurrence or UINT_MAX if no match was found.
2166 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
2167 unsigned int to, struct ts_config *config,
2168 struct ts_state *state)
2170 unsigned int ret;
2172 config->get_next_block = skb_ts_get_next_block;
2173 config->finish = skb_ts_finish;
2175 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state));
2177 ret = textsearch_find(config, state);
2178 return (ret <= to - from ? ret : UINT_MAX);
2182 * skb_append_datato_frags: - append the user data to a skb
2183 * @sk: sock structure
2184 * @skb: skb structure to be appened with user data.
2185 * @getfrag: call back function to be used for getting the user data
2186 * @from: pointer to user message iov
2187 * @length: length of the iov message
2189 * Description: This procedure append the user data in the fragment part
2190 * of the skb if any page alloc fails user this procedure returns -ENOMEM
2192 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
2193 int (*getfrag)(void *from, char *to, int offset,
2194 int len, int odd, struct sk_buff *skb),
2195 void *from, int length)
2197 int frg_cnt = 0;
2198 skb_frag_t *frag = NULL;
2199 struct page *page = NULL;
2200 int copy, left;
2201 int offset = 0;
2202 int ret;
2204 do {
2205 /* Return error if we don't have space for new frag */
2206 frg_cnt = skb_shinfo(skb)->nr_frags;
2207 if (frg_cnt >= MAX_SKB_FRAGS)
2208 return -EFAULT;
2210 /* allocate a new page for next frag */
2211 page = alloc_pages(sk->sk_allocation, 0);
2213 /* If alloc_page fails just return failure and caller will
2214 * free previous allocated pages by doing kfree_skb()
2216 if (page == NULL)
2217 return -ENOMEM;
2219 /* initialize the next frag */
2220 sk->sk_sndmsg_page = page;
2221 sk->sk_sndmsg_off = 0;
2222 skb_fill_page_desc(skb, frg_cnt, page, 0, 0);
2223 skb->truesize += PAGE_SIZE;
2224 atomic_add(PAGE_SIZE, &sk->sk_wmem_alloc);
2226 /* get the new initialized frag */
2227 frg_cnt = skb_shinfo(skb)->nr_frags;
2228 frag = &skb_shinfo(skb)->frags[frg_cnt - 1];
2230 /* copy the user data to page */
2231 left = PAGE_SIZE - frag->page_offset;
2232 copy = (length > left)? left : length;
2234 ret = getfrag(from, (page_address(frag->page) +
2235 frag->page_offset + frag->size),
2236 offset, copy, 0, skb);
2237 if (ret < 0)
2238 return -EFAULT;
2240 /* copy was successful so update the size parameters */
2241 sk->sk_sndmsg_off += copy;
2242 frag->size += copy;
2243 skb->len += copy;
2244 skb->data_len += copy;
2245 offset += copy;
2246 length -= copy;
2248 } while (length > 0);
2250 return 0;
2254 * skb_pull_rcsum - pull skb and update receive checksum
2255 * @skb: buffer to update
2256 * @len: length of data pulled
2258 * This function performs an skb_pull on the packet and updates
2259 * the CHECKSUM_COMPLETE checksum. It should be used on
2260 * receive path processing instead of skb_pull unless you know
2261 * that the checksum difference is zero (e.g., a valid IP header)
2262 * or you are setting ip_summed to CHECKSUM_NONE.
2264 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
2266 BUG_ON(len > skb->len);
2267 skb->len -= len;
2268 BUG_ON(skb->len < skb->data_len);
2269 skb_postpull_rcsum(skb, skb->data, len);
2270 return skb->data += len;
2273 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
2276 * skb_segment - Perform protocol segmentation on skb.
2277 * @skb: buffer to segment
2278 * @features: features for the output path (see dev->features)
2280 * This function performs segmentation on the given skb. It returns
2281 * a pointer to the first in a list of new skbs for the segments.
2282 * In case of error it returns ERR_PTR(err).
2284 struct sk_buff *skb_segment(struct sk_buff *skb, int features)
2286 struct sk_buff *segs = NULL;
2287 struct sk_buff *tail = NULL;
2288 unsigned int mss = skb_shinfo(skb)->gso_size;
2289 unsigned int doffset = skb->data - skb_mac_header(skb);
2290 unsigned int offset = doffset;
2291 unsigned int headroom;
2292 unsigned int len;
2293 int sg = features & NETIF_F_SG;
2294 int nfrags = skb_shinfo(skb)->nr_frags;
2295 int err = -ENOMEM;
2296 int i = 0;
2297 int pos;
2299 __skb_push(skb, doffset);
2300 headroom = skb_headroom(skb);
2301 pos = skb_headlen(skb);
2303 do {
2304 struct sk_buff *nskb;
2305 skb_frag_t *frag;
2306 int hsize;
2307 int k;
2308 int size;
2310 len = skb->len - offset;
2311 if (len > mss)
2312 len = mss;
2314 hsize = skb_headlen(skb) - offset;
2315 if (hsize < 0)
2316 hsize = 0;
2317 if (hsize > len || !sg)
2318 hsize = len;
2320 nskb = alloc_skb(hsize + doffset + headroom, GFP_ATOMIC);
2321 if (unlikely(!nskb))
2322 goto err;
2324 if (segs)
2325 tail->next = nskb;
2326 else
2327 segs = nskb;
2328 tail = nskb;
2330 __copy_skb_header(nskb, skb);
2331 nskb->mac_len = skb->mac_len;
2333 skb_reserve(nskb, headroom);
2334 skb_reset_mac_header(nskb);
2335 skb_set_network_header(nskb, skb->mac_len);
2336 nskb->transport_header = (nskb->network_header +
2337 skb_network_header_len(skb));
2338 skb_copy_from_linear_data(skb, skb_put(nskb, doffset),
2339 doffset);
2340 if (!sg) {
2341 nskb->ip_summed = CHECKSUM_NONE;
2342 nskb->csum = skb_copy_and_csum_bits(skb, offset,
2343 skb_put(nskb, len),
2344 len, 0);
2345 continue;
2348 frag = skb_shinfo(nskb)->frags;
2349 k = 0;
2351 skb_copy_from_linear_data_offset(skb, offset,
2352 skb_put(nskb, hsize), hsize);
2354 while (pos < offset + len) {
2355 BUG_ON(i >= nfrags);
2357 *frag = skb_shinfo(skb)->frags[i];
2358 get_page(frag->page);
2359 size = frag->size;
2361 if (pos < offset) {
2362 frag->page_offset += offset - pos;
2363 frag->size -= offset - pos;
2366 k++;
2368 if (pos + size <= offset + len) {
2369 i++;
2370 pos += size;
2371 } else {
2372 frag->size -= pos + size - (offset + len);
2373 break;
2376 frag++;
2379 skb_shinfo(nskb)->nr_frags = k;
2380 nskb->data_len = len - hsize;
2381 nskb->len += nskb->data_len;
2382 nskb->truesize += nskb->data_len;
2383 } while ((offset += len) < skb->len);
2385 return segs;
2387 err:
2388 while ((skb = segs)) {
2389 segs = skb->next;
2390 kfree_skb(skb);
2392 return ERR_PTR(err);
2395 EXPORT_SYMBOL_GPL(skb_segment);
2397 void __init skb_init(void)
2399 skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
2400 sizeof(struct sk_buff),
2402 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2403 NULL);
2404 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
2405 (2*sizeof(struct sk_buff)) +
2406 sizeof(atomic_t),
2408 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2409 NULL);
2413 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
2414 * @skb: Socket buffer containing the buffers to be mapped
2415 * @sg: The scatter-gather list to map into
2416 * @offset: The offset into the buffer's contents to start mapping
2417 * @len: Length of buffer space to be mapped
2419 * Fill the specified scatter-gather list with mappings/pointers into a
2420 * region of the buffer space attached to a socket buffer.
2422 static int
2423 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
2425 int start = skb_headlen(skb);
2426 int i, copy = start - offset;
2427 int elt = 0;
2429 if (copy > 0) {
2430 if (copy > len)
2431 copy = len;
2432 sg_set_buf(sg, skb->data + offset, copy);
2433 elt++;
2434 if ((len -= copy) == 0)
2435 return elt;
2436 offset += copy;
2439 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2440 int end;
2442 WARN_ON(start > offset + len);
2444 end = start + skb_shinfo(skb)->frags[i].size;
2445 if ((copy = end - offset) > 0) {
2446 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2448 if (copy > len)
2449 copy = len;
2450 sg_set_page(&sg[elt], frag->page, copy,
2451 frag->page_offset+offset-start);
2452 elt++;
2453 if (!(len -= copy))
2454 return elt;
2455 offset += copy;
2457 start = end;
2460 if (skb_shinfo(skb)->frag_list) {
2461 struct sk_buff *list = skb_shinfo(skb)->frag_list;
2463 for (; list; list = list->next) {
2464 int end;
2466 WARN_ON(start > offset + len);
2468 end = start + list->len;
2469 if ((copy = end - offset) > 0) {
2470 if (copy > len)
2471 copy = len;
2472 elt += __skb_to_sgvec(list, sg+elt, offset - start,
2473 copy);
2474 if ((len -= copy) == 0)
2475 return elt;
2476 offset += copy;
2478 start = end;
2481 BUG_ON(len);
2482 return elt;
2485 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
2487 int nsg = __skb_to_sgvec(skb, sg, offset, len);
2489 sg_mark_end(&sg[nsg - 1]);
2491 return nsg;
2495 * skb_cow_data - Check that a socket buffer's data buffers are writable
2496 * @skb: The socket buffer to check.
2497 * @tailbits: Amount of trailing space to be added
2498 * @trailer: Returned pointer to the skb where the @tailbits space begins
2500 * Make sure that the data buffers attached to a socket buffer are
2501 * writable. If they are not, private copies are made of the data buffers
2502 * and the socket buffer is set to use these instead.
2504 * If @tailbits is given, make sure that there is space to write @tailbits
2505 * bytes of data beyond current end of socket buffer. @trailer will be
2506 * set to point to the skb in which this space begins.
2508 * The number of scatterlist elements required to completely map the
2509 * COW'd and extended socket buffer will be returned.
2511 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
2513 int copyflag;
2514 int elt;
2515 struct sk_buff *skb1, **skb_p;
2517 /* If skb is cloned or its head is paged, reallocate
2518 * head pulling out all the pages (pages are considered not writable
2519 * at the moment even if they are anonymous).
2521 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
2522 __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
2523 return -ENOMEM;
2525 /* Easy case. Most of packets will go this way. */
2526 if (!skb_shinfo(skb)->frag_list) {
2527 /* A little of trouble, not enough of space for trailer.
2528 * This should not happen, when stack is tuned to generate
2529 * good frames. OK, on miss we reallocate and reserve even more
2530 * space, 128 bytes is fair. */
2532 if (skb_tailroom(skb) < tailbits &&
2533 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
2534 return -ENOMEM;
2536 /* Voila! */
2537 *trailer = skb;
2538 return 1;
2541 /* Misery. We are in troubles, going to mincer fragments... */
2543 elt = 1;
2544 skb_p = &skb_shinfo(skb)->frag_list;
2545 copyflag = 0;
2547 while ((skb1 = *skb_p) != NULL) {
2548 int ntail = 0;
2550 /* The fragment is partially pulled by someone,
2551 * this can happen on input. Copy it and everything
2552 * after it. */
2554 if (skb_shared(skb1))
2555 copyflag = 1;
2557 /* If the skb is the last, worry about trailer. */
2559 if (skb1->next == NULL && tailbits) {
2560 if (skb_shinfo(skb1)->nr_frags ||
2561 skb_shinfo(skb1)->frag_list ||
2562 skb_tailroom(skb1) < tailbits)
2563 ntail = tailbits + 128;
2566 if (copyflag ||
2567 skb_cloned(skb1) ||
2568 ntail ||
2569 skb_shinfo(skb1)->nr_frags ||
2570 skb_shinfo(skb1)->frag_list) {
2571 struct sk_buff *skb2;
2573 /* Fuck, we are miserable poor guys... */
2574 if (ntail == 0)
2575 skb2 = skb_copy(skb1, GFP_ATOMIC);
2576 else
2577 skb2 = skb_copy_expand(skb1,
2578 skb_headroom(skb1),
2579 ntail,
2580 GFP_ATOMIC);
2581 if (unlikely(skb2 == NULL))
2582 return -ENOMEM;
2584 if (skb1->sk)
2585 skb_set_owner_w(skb2, skb1->sk);
2587 /* Looking around. Are we still alive?
2588 * OK, link new skb, drop old one */
2590 skb2->next = skb1->next;
2591 *skb_p = skb2;
2592 kfree_skb(skb1);
2593 skb1 = skb2;
2595 elt++;
2596 *trailer = skb1;
2597 skb_p = &skb1->next;
2600 return elt;
2604 * skb_partial_csum_set - set up and verify partial csum values for packet
2605 * @skb: the skb to set
2606 * @start: the number of bytes after skb->data to start checksumming.
2607 * @off: the offset from start to place the checksum.
2609 * For untrusted partially-checksummed packets, we need to make sure the values
2610 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
2612 * This function checks and sets those values and skb->ip_summed: if this
2613 * returns false you should drop the packet.
2615 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
2617 if (unlikely(start > skb->len - 2) ||
2618 unlikely((int)start + off > skb->len - 2)) {
2619 if (net_ratelimit())
2620 printk(KERN_WARNING
2621 "bad partial csum: csum=%u/%u len=%u\n",
2622 start, off, skb->len);
2623 return false;
2625 skb->ip_summed = CHECKSUM_PARTIAL;
2626 skb->csum_start = skb_headroom(skb) + start;
2627 skb->csum_offset = off;
2628 return true;
2631 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
2633 if (net_ratelimit())
2634 pr_warning("%s: received packets cannot be forwarded"
2635 " while LRO is enabled\n", skb->dev->name);
2638 EXPORT_SYMBOL(___pskb_trim);
2639 EXPORT_SYMBOL(__kfree_skb);
2640 EXPORT_SYMBOL(kfree_skb);
2641 EXPORT_SYMBOL(__pskb_pull_tail);
2642 EXPORT_SYMBOL(__alloc_skb);
2643 EXPORT_SYMBOL(__netdev_alloc_skb);
2644 EXPORT_SYMBOL(pskb_copy);
2645 EXPORT_SYMBOL(pskb_expand_head);
2646 EXPORT_SYMBOL(skb_checksum);
2647 EXPORT_SYMBOL(skb_clone);
2648 EXPORT_SYMBOL(skb_copy);
2649 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2650 EXPORT_SYMBOL(skb_copy_and_csum_dev);
2651 EXPORT_SYMBOL(skb_copy_bits);
2652 EXPORT_SYMBOL(skb_copy_expand);
2653 EXPORT_SYMBOL(skb_over_panic);
2654 EXPORT_SYMBOL(skb_pad);
2655 EXPORT_SYMBOL(skb_realloc_headroom);
2656 EXPORT_SYMBOL(skb_under_panic);
2657 EXPORT_SYMBOL(skb_dequeue);
2658 EXPORT_SYMBOL(skb_dequeue_tail);
2659 EXPORT_SYMBOL(skb_insert);
2660 EXPORT_SYMBOL(skb_queue_purge);
2661 EXPORT_SYMBOL(skb_queue_head);
2662 EXPORT_SYMBOL(skb_queue_tail);
2663 EXPORT_SYMBOL(skb_unlink);
2664 EXPORT_SYMBOL(skb_append);
2665 EXPORT_SYMBOL(skb_split);
2666 EXPORT_SYMBOL(skb_prepare_seq_read);
2667 EXPORT_SYMBOL(skb_seq_read);
2668 EXPORT_SYMBOL(skb_abort_seq_read);
2669 EXPORT_SYMBOL(skb_find_text);
2670 EXPORT_SYMBOL(skb_append_datato_frags);
2671 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
2673 EXPORT_SYMBOL_GPL(skb_to_sgvec);
2674 EXPORT_SYMBOL_GPL(skb_cow_data);
2675 EXPORT_SYMBOL_GPL(skb_partial_csum_set);