2 * linux/kernel/posix_timers.c
5 * 2002-10-15 Posix Clocks & timers
6 * by George Anzinger george@mvista.com
8 * Copyright (C) 2002 2003 by MontaVista Software.
10 * 2004-06-01 Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug.
11 * Copyright (C) 2004 Boris Hu
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or (at
16 * your option) any later version.
18 * This program is distributed in the hope that it will be useful, but
19 * WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21 * General Public License for more details.
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
27 * MontaVista Software | 1237 East Arques Avenue | Sunnyvale | CA 94085 | USA
30 /* These are all the functions necessary to implement
31 * POSIX clocks & timers
34 #include <linux/smp_lock.h>
35 #include <linux/interrupt.h>
36 #include <linux/slab.h>
37 #include <linux/time.h>
39 #include <asm/uaccess.h>
40 #include <asm/semaphore.h>
41 #include <linux/list.h>
42 #include <linux/init.h>
43 #include <linux/compiler.h>
44 #include <linux/idr.h>
45 #include <linux/posix-timers.h>
46 #include <linux/syscalls.h>
47 #include <linux/wait.h>
48 #include <linux/workqueue.h>
49 #include <linux/module.h>
51 #ifndef div_long_long_rem
52 #include <asm/div64.h>
54 #define div_long_long_rem(dividend,divisor,remainder) ({ \
55 u64 result = dividend; \
56 *remainder = do_div(result,divisor); \
60 #define CLOCK_REALTIME_RES TICK_NSEC /* In nano seconds. */
62 static inline u64
mpy_l_X_l_ll(unsigned long mpy1
,unsigned long mpy2
)
64 return (u64
)mpy1
* mpy2
;
67 * Management arrays for POSIX timers. Timers are kept in slab memory
68 * Timer ids are allocated by an external routine that keeps track of the
69 * id and the timer. The external interface is:
71 * void *idr_find(struct idr *idp, int id); to find timer_id <id>
72 * int idr_get_new(struct idr *idp, void *ptr); to get a new id and
74 * void idr_remove(struct idr *idp, int id); to release <id>
75 * void idr_init(struct idr *idp); to initialize <idp>
77 * The idr_get_new *may* call slab for more memory so it must not be
78 * called under a spin lock. Likewise idr_remore may release memory
79 * (but it may be ok to do this under a lock...).
80 * idr_find is just a memory look up and is quite fast. A -1 return
81 * indicates that the requested id does not exist.
85 * Lets keep our timers in a slab cache :-)
87 static kmem_cache_t
*posix_timers_cache
;
88 static struct idr posix_timers_id
;
89 static DEFINE_SPINLOCK(idr_lock
);
92 * Just because the timer is not in the timer list does NOT mean it is
93 * inactive. It could be in the "fire" routine getting a new expire time.
95 #define TIMER_INACTIVE 1
98 # define timer_active(tmr) \
99 ((tmr)->it.real.timer.entry.prev != (void *)TIMER_INACTIVE)
100 # define set_timer_inactive(tmr) \
102 (tmr)->it.real.timer.entry.prev = (void *)TIMER_INACTIVE; \
105 # define timer_active(tmr) BARFY // error to use outside of SMP
106 # define set_timer_inactive(tmr) do { } while (0)
109 * we assume that the new SIGEV_THREAD_ID shares no bits with the other
110 * SIGEV values. Here we put out an error if this assumption fails.
112 #if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \
113 ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD))
114 #error "SIGEV_THREAD_ID must not share bit with other SIGEV values!"
119 * The timer ID is turned into a timer address by idr_find().
120 * Verifying a valid ID consists of:
122 * a) checking that idr_find() returns other than -1.
123 * b) checking that the timer id matches the one in the timer itself.
124 * c) that the timer owner is in the callers thread group.
128 * CLOCKs: The POSIX standard calls for a couple of clocks and allows us
129 * to implement others. This structure defines the various
130 * clocks and allows the possibility of adding others. We
131 * provide an interface to add clocks to the table and expect
132 * the "arch" code to add at least one clock that is high
133 * resolution. Here we define the standard CLOCK_REALTIME as a
134 * 1/HZ resolution clock.
136 * RESOLUTION: Clock resolution is used to round up timer and interval
137 * times, NOT to report clock times, which are reported with as
138 * much resolution as the system can muster. In some cases this
139 * resolution may depend on the underlying clock hardware and
140 * may not be quantifiable until run time, and only then is the
141 * necessary code is written. The standard says we should say
142 * something about this issue in the documentation...
144 * FUNCTIONS: The CLOCKs structure defines possible functions to handle
145 * various clock functions. For clocks that use the standard
146 * system timer code these entries should be NULL. This will
147 * allow dispatch without the overhead of indirect function
148 * calls. CLOCKS that depend on other sources (e.g. WWV or GPS)
149 * must supply functions here, even if the function just returns
150 * ENOSYS. The standard POSIX timer management code assumes the
151 * following: 1.) The k_itimer struct (sched.h) is used for the
152 * timer. 2.) The list, it_lock, it_clock, it_id and it_process
153 * fields are not modified by timer code.
155 * At this time all functions EXCEPT clock_nanosleep can be
156 * redirected by the CLOCKS structure. Clock_nanosleep is in
157 * there, but the code ignores it.
159 * Permissions: It is assumed that the clock_settime() function defined
160 * for each clock will take care of permission checks. Some
161 * clocks may be set able by any user (i.e. local process
162 * clocks) others not. Currently the only set able clock we
163 * have is CLOCK_REALTIME and its high res counter part, both of
164 * which we beg off on and pass to do_sys_settimeofday().
167 static struct k_clock posix_clocks
[MAX_CLOCKS
];
169 * We only have one real clock that can be set so we need only one abs list,
170 * even if we should want to have several clocks with differing resolutions.
172 static struct k_clock_abs abs_list
= {.list
= LIST_HEAD_INIT(abs_list
.list
),
173 .lock
= SPIN_LOCK_UNLOCKED
};
175 static void posix_timer_fn(unsigned long);
176 static u64
do_posix_clock_monotonic_gettime_parts(
177 struct timespec
*tp
, struct timespec
*mo
);
178 int do_posix_clock_monotonic_gettime(struct timespec
*tp
);
179 static int do_posix_clock_monotonic_get(clockid_t
, struct timespec
*tp
);
181 static struct k_itimer
*lock_timer(timer_t timer_id
, unsigned long *flags
);
183 static inline void unlock_timer(struct k_itimer
*timr
, unsigned long flags
)
185 spin_unlock_irqrestore(&timr
->it_lock
, flags
);
189 * Call the k_clock hook function if non-null, or the default function.
191 #define CLOCK_DISPATCH(clock, call, arglist) \
192 ((clock) < 0 ? posix_cpu_##call arglist : \
193 (posix_clocks[clock].call != NULL \
194 ? (*posix_clocks[clock].call) arglist : common_##call arglist))
197 * Default clock hook functions when the struct k_clock passed
198 * to register_posix_clock leaves a function pointer null.
200 * The function common_CALL is the default implementation for
201 * the function pointer CALL in struct k_clock.
204 static inline int common_clock_getres(clockid_t which_clock
,
208 tp
->tv_nsec
= posix_clocks
[which_clock
].res
;
212 static inline int common_clock_get(clockid_t which_clock
, struct timespec
*tp
)
218 static inline int common_clock_set(clockid_t which_clock
, struct timespec
*tp
)
220 return do_sys_settimeofday(tp
, NULL
);
223 static inline int common_timer_create(struct k_itimer
*new_timer
)
225 INIT_LIST_HEAD(&new_timer
->it
.real
.abs_timer_entry
);
226 init_timer(&new_timer
->it
.real
.timer
);
227 new_timer
->it
.real
.timer
.data
= (unsigned long) new_timer
;
228 new_timer
->it
.real
.timer
.function
= posix_timer_fn
;
229 set_timer_inactive(new_timer
);
234 * These ones are defined below.
236 static int common_nsleep(clockid_t
, int flags
, struct timespec
*t
);
237 static void common_timer_get(struct k_itimer
*, struct itimerspec
*);
238 static int common_timer_set(struct k_itimer
*, int,
239 struct itimerspec
*, struct itimerspec
*);
240 static int common_timer_del(struct k_itimer
*timer
);
243 * Return nonzero iff we know a priori this clockid_t value is bogus.
245 static inline int invalid_clockid(clockid_t which_clock
)
247 if (which_clock
< 0) /* CPU clock, posix_cpu_* will check it */
249 if ((unsigned) which_clock
>= MAX_CLOCKS
)
251 if (posix_clocks
[which_clock
].clock_getres
!= NULL
)
253 #ifndef CLOCK_DISPATCH_DIRECT
254 if (posix_clocks
[which_clock
].res
!= 0)
262 * Initialize everything, well, just everything in Posix clocks/timers ;)
264 static __init
int init_posix_timers(void)
266 struct k_clock clock_realtime
= {.res
= CLOCK_REALTIME_RES
,
267 .abs_struct
= &abs_list
269 struct k_clock clock_monotonic
= {.res
= CLOCK_REALTIME_RES
,
271 .clock_get
= do_posix_clock_monotonic_get
,
272 .clock_set
= do_posix_clock_nosettime
275 register_posix_clock(CLOCK_REALTIME
, &clock_realtime
);
276 register_posix_clock(CLOCK_MONOTONIC
, &clock_monotonic
);
278 posix_timers_cache
= kmem_cache_create("posix_timers_cache",
279 sizeof (struct k_itimer
), 0, 0, NULL
, NULL
);
280 idr_init(&posix_timers_id
);
284 __initcall(init_posix_timers
);
286 static void tstojiffie(struct timespec
*tp
, int res
, u64
*jiff
)
288 long sec
= tp
->tv_sec
;
289 long nsec
= tp
->tv_nsec
+ res
- 1;
291 if (nsec
> NSEC_PER_SEC
) {
293 nsec
-= NSEC_PER_SEC
;
297 * The scaling constants are defined in <linux/time.h>
298 * The difference between there and here is that we do the
299 * res rounding and compute a 64-bit result (well so does that
300 * but it then throws away the high bits).
302 *jiff
= (mpy_l_X_l_ll(sec
, SEC_CONVERSION
) +
303 (mpy_l_X_l_ll(nsec
, NSEC_CONVERSION
) >>
304 (NSEC_JIFFIE_SC
- SEC_JIFFIE_SC
))) >> SEC_JIFFIE_SC
;
308 * This function adjusts the timer as needed as a result of the clock
309 * being set. It should only be called for absolute timers, and then
310 * under the abs_list lock. It computes the time difference and sets
311 * the new jiffies value in the timer. It also updates the timers
312 * reference wall_to_monotonic value. It is complicated by the fact
313 * that tstojiffies() only handles positive times and it needs to work
314 * with both positive and negative times. Also, for negative offsets,
315 * we need to defeat the res round up.
317 * Return is true if there is a new time, else false.
319 static long add_clockset_delta(struct k_itimer
*timr
,
320 struct timespec
*new_wall_to
)
322 struct timespec delta
;
326 set_normalized_timespec(&delta
,
327 new_wall_to
->tv_sec
-
328 timr
->it
.real
.wall_to_prev
.tv_sec
,
329 new_wall_to
->tv_nsec
-
330 timr
->it
.real
.wall_to_prev
.tv_nsec
);
331 if (likely(!(delta
.tv_sec
| delta
.tv_nsec
)))
333 if (delta
.tv_sec
< 0) {
334 set_normalized_timespec(&delta
,
337 posix_clocks
[timr
->it_clock
].res
);
340 tstojiffie(&delta
, posix_clocks
[timr
->it_clock
].res
, &exp
);
341 timr
->it
.real
.wall_to_prev
= *new_wall_to
;
342 timr
->it
.real
.timer
.expires
+= (sign
? -exp
: exp
);
346 static void remove_from_abslist(struct k_itimer
*timr
)
348 if (!list_empty(&timr
->it
.real
.abs_timer_entry
)) {
349 spin_lock(&abs_list
.lock
);
350 list_del_init(&timr
->it
.real
.abs_timer_entry
);
351 spin_unlock(&abs_list
.lock
);
355 static void schedule_next_timer(struct k_itimer
*timr
)
357 struct timespec new_wall_to
;
358 struct now_struct now
;
362 * Set up the timer for the next interval (if there is one).
363 * Note: this code uses the abs_timer_lock to protect
364 * it.real.wall_to_prev and must hold it until exp is set, not exactly
367 * This function is used for CLOCK_REALTIME* and
368 * CLOCK_MONOTONIC* timers. If we ever want to handle other
369 * CLOCKs, the calling code (do_schedule_next_timer) would need
370 * to pull the "clock" info from the timer and dispatch the
371 * "other" CLOCKs "next timer" code (which, I suppose should
372 * also be added to the k_clock structure).
374 if (!timr
->it
.real
.incr
)
378 seq
= read_seqbegin(&xtime_lock
);
379 new_wall_to
= wall_to_monotonic
;
381 } while (read_seqretry(&xtime_lock
, seq
));
383 if (!list_empty(&timr
->it
.real
.abs_timer_entry
)) {
384 spin_lock(&abs_list
.lock
);
385 add_clockset_delta(timr
, &new_wall_to
);
387 posix_bump_timer(timr
, now
);
389 spin_unlock(&abs_list
.lock
);
391 posix_bump_timer(timr
, now
);
393 timr
->it_overrun_last
= timr
->it_overrun
;
394 timr
->it_overrun
= -1;
395 ++timr
->it_requeue_pending
;
396 add_timer(&timr
->it
.real
.timer
);
400 * This function is exported for use by the signal deliver code. It is
401 * called just prior to the info block being released and passes that
402 * block to us. It's function is to update the overrun entry AND to
403 * restart the timer. It should only be called if the timer is to be
404 * restarted (i.e. we have flagged this in the sys_private entry of the
407 * To protect aginst the timer going away while the interrupt is queued,
408 * we require that the it_requeue_pending flag be set.
410 void do_schedule_next_timer(struct siginfo
*info
)
412 struct k_itimer
*timr
;
415 timr
= lock_timer(info
->si_tid
, &flags
);
417 if (!timr
|| timr
->it_requeue_pending
!= info
->si_sys_private
)
420 if (timr
->it_clock
< 0) /* CPU clock */
421 posix_cpu_timer_schedule(timr
);
423 schedule_next_timer(timr
);
424 info
->si_overrun
= timr
->it_overrun_last
;
427 unlock_timer(timr
, flags
);
430 int posix_timer_event(struct k_itimer
*timr
,int si_private
)
432 memset(&timr
->sigq
->info
, 0, sizeof(siginfo_t
));
433 timr
->sigq
->info
.si_sys_private
= si_private
;
435 * Send signal to the process that owns this timer.
437 * This code assumes that all the possible abs_lists share the
438 * same lock (there is only one list at this time). If this is
439 * not the case, the CLOCK info would need to be used to find
440 * the proper abs list lock.
443 timr
->sigq
->info
.si_signo
= timr
->it_sigev_signo
;
444 timr
->sigq
->info
.si_errno
= 0;
445 timr
->sigq
->info
.si_code
= SI_TIMER
;
446 timr
->sigq
->info
.si_tid
= timr
->it_id
;
447 timr
->sigq
->info
.si_value
= timr
->it_sigev_value
;
448 if (timr
->it_sigev_notify
& SIGEV_THREAD_ID
) {
449 if (unlikely(timr
->it_process
->flags
& PF_EXITING
)) {
450 timr
->it_sigev_notify
= SIGEV_SIGNAL
;
451 put_task_struct(timr
->it_process
);
452 timr
->it_process
= timr
->it_process
->group_leader
;
455 return send_sigqueue(timr
->it_sigev_signo
, timr
->sigq
,
460 return send_group_sigqueue(timr
->it_sigev_signo
, timr
->sigq
,
464 EXPORT_SYMBOL_GPL(posix_timer_event
);
467 * This function gets called when a POSIX.1b interval timer expires. It
468 * is used as a callback from the kernel internal timer. The
469 * run_timer_list code ALWAYS calls with interrupts on.
471 * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers.
473 static void posix_timer_fn(unsigned long __data
)
475 struct k_itimer
*timr
= (struct k_itimer
*) __data
;
478 struct timespec delta
, new_wall_to
;
482 spin_lock_irqsave(&timr
->it_lock
, flags
);
483 set_timer_inactive(timr
);
484 if (!list_empty(&timr
->it
.real
.abs_timer_entry
)) {
485 spin_lock(&abs_list
.lock
);
487 seq
= read_seqbegin(&xtime_lock
);
488 new_wall_to
= wall_to_monotonic
;
489 } while (read_seqretry(&xtime_lock
, seq
));
490 set_normalized_timespec(&delta
,
492 timr
->it
.real
.wall_to_prev
.tv_sec
,
493 new_wall_to
.tv_nsec
-
494 timr
->it
.real
.wall_to_prev
.tv_nsec
);
495 if (likely((delta
.tv_sec
| delta
.tv_nsec
) == 0)) {
496 /* do nothing, timer is on time */
497 } else if (delta
.tv_sec
< 0) {
498 /* do nothing, timer is already late */
500 /* timer is early due to a clock set */
502 posix_clocks
[timr
->it_clock
].res
,
504 timr
->it
.real
.wall_to_prev
= new_wall_to
;
505 timr
->it
.real
.timer
.expires
+= exp
;
506 add_timer(&timr
->it
.real
.timer
);
509 spin_unlock(&abs_list
.lock
);
515 if (timr
->it
.real
.incr
)
516 si_private
= ++timr
->it_requeue_pending
;
518 remove_from_abslist(timr
);
521 if (posix_timer_event(timr
, si_private
))
523 * signal was not sent because of sig_ignor
524 * we will not get a call back to restart it AND
525 * it should be restarted.
527 schedule_next_timer(timr
);
529 unlock_timer(timr
, flags
); /* hold thru abs lock to keep irq off */
533 static inline struct task_struct
* good_sigevent(sigevent_t
* event
)
535 struct task_struct
*rtn
= current
->group_leader
;
537 if ((event
->sigev_notify
& SIGEV_THREAD_ID
) &&
538 (!(rtn
= find_task_by_pid(event
->sigev_notify_thread_id
)) ||
539 rtn
->tgid
!= current
->tgid
||
540 (event
->sigev_notify
& ~SIGEV_THREAD_ID
) != SIGEV_SIGNAL
))
543 if (((event
->sigev_notify
& ~SIGEV_THREAD_ID
) != SIGEV_NONE
) &&
544 ((event
->sigev_signo
<= 0) || (event
->sigev_signo
> SIGRTMAX
)))
550 void register_posix_clock(clockid_t clock_id
, struct k_clock
*new_clock
)
552 if ((unsigned) clock_id
>= MAX_CLOCKS
) {
553 printk("POSIX clock register failed for clock_id %d\n",
558 posix_clocks
[clock_id
] = *new_clock
;
560 EXPORT_SYMBOL_GPL(register_posix_clock
);
562 static struct k_itimer
* alloc_posix_timer(void)
564 struct k_itimer
*tmr
;
565 tmr
= kmem_cache_alloc(posix_timers_cache
, GFP_KERNEL
);
568 memset(tmr
, 0, sizeof (struct k_itimer
));
569 if (unlikely(!(tmr
->sigq
= sigqueue_alloc()))) {
570 kmem_cache_free(posix_timers_cache
, tmr
);
577 #define IT_ID_NOT_SET 0
578 static void release_posix_timer(struct k_itimer
*tmr
, int it_id_set
)
582 spin_lock_irqsave(&idr_lock
, flags
);
583 idr_remove(&posix_timers_id
, tmr
->it_id
);
584 spin_unlock_irqrestore(&idr_lock
, flags
);
586 sigqueue_free(tmr
->sigq
);
587 if (unlikely(tmr
->it_process
) &&
588 tmr
->it_sigev_notify
== (SIGEV_SIGNAL
|SIGEV_THREAD_ID
))
589 put_task_struct(tmr
->it_process
);
590 kmem_cache_free(posix_timers_cache
, tmr
);
593 /* Create a POSIX.1b interval timer. */
596 sys_timer_create(clockid_t which_clock
,
597 struct sigevent __user
*timer_event_spec
,
598 timer_t __user
* created_timer_id
)
601 struct k_itimer
*new_timer
= NULL
;
603 struct task_struct
*process
= NULL
;
606 int it_id_set
= IT_ID_NOT_SET
;
608 if (invalid_clockid(which_clock
))
611 new_timer
= alloc_posix_timer();
612 if (unlikely(!new_timer
))
615 spin_lock_init(&new_timer
->it_lock
);
617 if (unlikely(!idr_pre_get(&posix_timers_id
, GFP_KERNEL
))) {
621 spin_lock_irq(&idr_lock
);
622 error
= idr_get_new(&posix_timers_id
,
625 spin_unlock_irq(&idr_lock
);
626 if (error
== -EAGAIN
)
630 * Wierd looking, but we return EAGAIN if the IDR is
631 * full (proper POSIX return value for this)
637 it_id_set
= IT_ID_SET
;
638 new_timer
->it_id
= (timer_t
) new_timer_id
;
639 new_timer
->it_clock
= which_clock
;
640 new_timer
->it_overrun
= -1;
641 error
= CLOCK_DISPATCH(which_clock
, timer_create
, (new_timer
));
646 * return the timer_id now. The next step is hard to
647 * back out if there is an error.
649 if (copy_to_user(created_timer_id
,
650 &new_timer_id
, sizeof (new_timer_id
))) {
654 if (timer_event_spec
) {
655 if (copy_from_user(&event
, timer_event_spec
, sizeof (event
))) {
659 new_timer
->it_sigev_notify
= event
.sigev_notify
;
660 new_timer
->it_sigev_signo
= event
.sigev_signo
;
661 new_timer
->it_sigev_value
= event
.sigev_value
;
663 read_lock(&tasklist_lock
);
664 if ((process
= good_sigevent(&event
))) {
666 * We may be setting up this process for another
667 * thread. It may be exiting. To catch this
668 * case the we check the PF_EXITING flag. If
669 * the flag is not set, the siglock will catch
670 * him before it is too late (in exit_itimers).
672 * The exec case is a bit more invloved but easy
673 * to code. If the process is in our thread
674 * group (and it must be or we would not allow
675 * it here) and is doing an exec, it will cause
676 * us to be killed. In this case it will wait
677 * for us to die which means we can finish this
678 * linkage with our last gasp. I.e. no code :)
680 spin_lock_irqsave(&process
->sighand
->siglock
, flags
);
681 if (!(process
->flags
& PF_EXITING
)) {
682 new_timer
->it_process
= process
;
683 list_add(&new_timer
->list
,
684 &process
->signal
->posix_timers
);
685 spin_unlock_irqrestore(&process
->sighand
->siglock
, flags
);
686 if (new_timer
->it_sigev_notify
== (SIGEV_SIGNAL
|SIGEV_THREAD_ID
))
687 get_task_struct(process
);
689 spin_unlock_irqrestore(&process
->sighand
->siglock
, flags
);
693 read_unlock(&tasklist_lock
);
699 new_timer
->it_sigev_notify
= SIGEV_SIGNAL
;
700 new_timer
->it_sigev_signo
= SIGALRM
;
701 new_timer
->it_sigev_value
.sival_int
= new_timer
->it_id
;
702 process
= current
->group_leader
;
703 spin_lock_irqsave(&process
->sighand
->siglock
, flags
);
704 new_timer
->it_process
= process
;
705 list_add(&new_timer
->list
, &process
->signal
->posix_timers
);
706 spin_unlock_irqrestore(&process
->sighand
->siglock
, flags
);
710 * In the case of the timer belonging to another task, after
711 * the task is unlocked, the timer is owned by the other task
712 * and may cease to exist at any time. Don't use or modify
713 * new_timer after the unlock call.
718 release_posix_timer(new_timer
, it_id_set
);
726 * This function checks the elements of a timespec structure.
729 * ts : Pointer to the timespec structure to check
732 * If a NULL pointer was passed in, or the tv_nsec field was less than 0
733 * or greater than NSEC_PER_SEC, or the tv_sec field was less than 0,
734 * this function returns 0. Otherwise it returns 1.
736 static int good_timespec(const struct timespec
*ts
)
738 if ((!ts
) || (ts
->tv_sec
< 0) ||
739 ((unsigned) ts
->tv_nsec
>= NSEC_PER_SEC
))
745 * Locking issues: We need to protect the result of the id look up until
746 * we get the timer locked down so it is not deleted under us. The
747 * removal is done under the idr spinlock so we use that here to bridge
748 * the find to the timer lock. To avoid a dead lock, the timer id MUST
749 * be release with out holding the timer lock.
751 static struct k_itimer
* lock_timer(timer_t timer_id
, unsigned long *flags
)
753 struct k_itimer
*timr
;
755 * Watch out here. We do a irqsave on the idr_lock and pass the
756 * flags part over to the timer lock. Must not let interrupts in
757 * while we are moving the lock.
760 spin_lock_irqsave(&idr_lock
, *flags
);
761 timr
= (struct k_itimer
*) idr_find(&posix_timers_id
, (int) timer_id
);
763 spin_lock(&timr
->it_lock
);
764 spin_unlock(&idr_lock
);
766 if ((timr
->it_id
!= timer_id
) || !(timr
->it_process
) ||
767 timr
->it_process
->tgid
!= current
->tgid
) {
768 unlock_timer(timr
, *flags
);
772 spin_unlock_irqrestore(&idr_lock
, *flags
);
778 * Get the time remaining on a POSIX.1b interval timer. This function
779 * is ALWAYS called with spin_lock_irq on the timer, thus it must not
782 * We have a couple of messes to clean up here. First there is the case
783 * of a timer that has a requeue pending. These timers should appear to
784 * be in the timer list with an expiry as if we were to requeue them
787 * The second issue is the SIGEV_NONE timer which may be active but is
788 * not really ever put in the timer list (to save system resources).
789 * This timer may be expired, and if so, we will do it here. Otherwise
790 * it is the same as a requeue pending timer WRT to what we should
794 common_timer_get(struct k_itimer
*timr
, struct itimerspec
*cur_setting
)
796 unsigned long expires
;
797 struct now_struct now
;
800 expires
= timr
->it
.real
.timer
.expires
;
801 while ((volatile long) (timr
->it
.real
.timer
.expires
) != expires
);
806 ((timr
->it_sigev_notify
& ~SIGEV_THREAD_ID
) == SIGEV_NONE
) &&
807 !timr
->it
.real
.incr
&&
808 posix_time_before(&timr
->it
.real
.timer
, &now
))
809 timr
->it
.real
.timer
.expires
= expires
= 0;
811 if (timr
->it_requeue_pending
& REQUEUE_PENDING
||
812 (timr
->it_sigev_notify
& ~SIGEV_THREAD_ID
) == SIGEV_NONE
) {
813 posix_bump_timer(timr
, now
);
814 expires
= timr
->it
.real
.timer
.expires
;
817 if (!timer_pending(&timr
->it
.real
.timer
))
820 expires
-= now
.jiffies
;
822 jiffies_to_timespec(expires
, &cur_setting
->it_value
);
823 jiffies_to_timespec(timr
->it
.real
.incr
, &cur_setting
->it_interval
);
825 if (cur_setting
->it_value
.tv_sec
< 0) {
826 cur_setting
->it_value
.tv_nsec
= 1;
827 cur_setting
->it_value
.tv_sec
= 0;
831 /* Get the time remaining on a POSIX.1b interval timer. */
833 sys_timer_gettime(timer_t timer_id
, struct itimerspec __user
*setting
)
835 struct k_itimer
*timr
;
836 struct itimerspec cur_setting
;
839 timr
= lock_timer(timer_id
, &flags
);
843 CLOCK_DISPATCH(timr
->it_clock
, timer_get
, (timr
, &cur_setting
));
845 unlock_timer(timr
, flags
);
847 if (copy_to_user(setting
, &cur_setting
, sizeof (cur_setting
)))
853 * Get the number of overruns of a POSIX.1b interval timer. This is to
854 * be the overrun of the timer last delivered. At the same time we are
855 * accumulating overruns on the next timer. The overrun is frozen when
856 * the signal is delivered, either at the notify time (if the info block
857 * is not queued) or at the actual delivery time (as we are informed by
858 * the call back to do_schedule_next_timer(). So all we need to do is
859 * to pick up the frozen overrun.
863 sys_timer_getoverrun(timer_t timer_id
)
865 struct k_itimer
*timr
;
869 timr
= lock_timer(timer_id
, &flags
);
873 overrun
= timr
->it_overrun_last
;
874 unlock_timer(timr
, flags
);
879 * Adjust for absolute time
881 * If absolute time is given and it is not CLOCK_MONOTONIC, we need to
882 * adjust for the offset between the timer clock (CLOCK_MONOTONIC) and
883 * what ever clock he is using.
885 * If it is relative time, we need to add the current (CLOCK_MONOTONIC)
886 * time to it to get the proper time for the timer.
888 static int adjust_abs_time(struct k_clock
*clock
, struct timespec
*tp
,
889 int abs
, u64
*exp
, struct timespec
*wall_to
)
892 struct timespec oc
= *tp
;
898 * The mask pick up the 4 basic clocks
900 if (!((clock
- &posix_clocks
[0]) & ~CLOCKS_MASK
)) {
901 jiffies_64_f
= do_posix_clock_monotonic_gettime_parts(
904 * If we are doing a MONOTONIC clock
906 if((clock
- &posix_clocks
[0]) & CLOCKS_MONO
){
907 now
.tv_sec
+= wall_to
->tv_sec
;
908 now
.tv_nsec
+= wall_to
->tv_nsec
;
912 * Not one of the basic clocks
914 clock
->clock_get(clock
- posix_clocks
, &now
);
915 jiffies_64_f
= get_jiffies_64();
918 * Take away now to get delta
920 oc
.tv_sec
-= now
.tv_sec
;
921 oc
.tv_nsec
-= now
.tv_nsec
;
925 while ((oc
.tv_nsec
- NSEC_PER_SEC
) >= 0) {
926 oc
.tv_nsec
-= NSEC_PER_SEC
;
929 while ((oc
.tv_nsec
) < 0) {
930 oc
.tv_nsec
+= NSEC_PER_SEC
;
934 jiffies_64_f
= get_jiffies_64();
937 * Check if the requested time is prior to now (if so set now)
940 oc
.tv_sec
= oc
.tv_nsec
= 0;
942 if (oc
.tv_sec
| oc
.tv_nsec
)
943 set_normalized_timespec(&oc
, oc
.tv_sec
,
944 oc
.tv_nsec
+ clock
->res
);
945 tstojiffie(&oc
, clock
->res
, exp
);
948 * Check if the requested time is more than the timer code
949 * can handle (if so we error out but return the value too).
951 if (*exp
> ((u64
)MAX_JIFFY_OFFSET
))
953 * This is a considered response, not exactly in
954 * line with the standard (in fact it is silent on
955 * possible overflows). We assume such a large
956 * value is ALMOST always a programming error and
957 * try not to compound it by setting a really dumb
962 * return the actual jiffies expire time, full 64 bits
964 *exp
+= jiffies_64_f
;
968 /* Set a POSIX.1b interval timer. */
969 /* timr->it_lock is taken. */
971 common_timer_set(struct k_itimer
*timr
, int flags
,
972 struct itimerspec
*new_setting
, struct itimerspec
*old_setting
)
974 struct k_clock
*clock
= &posix_clocks
[timr
->it_clock
];
978 common_timer_get(timr
, old_setting
);
980 /* disable the timer */
981 timr
->it
.real
.incr
= 0;
983 * careful here. If smp we could be in the "fire" routine which will
984 * be spinning as we hold the lock. But this is ONLY an SMP issue.
987 if (timer_active(timr
) && !del_timer(&timr
->it
.real
.timer
))
989 * It can only be active if on an other cpu. Since
990 * we have cleared the interval stuff above, it should
991 * clear once we release the spin lock. Of course once
992 * we do that anything could happen, including the
993 * complete melt down of the timer. So return with
994 * a "retry" exit status.
998 set_timer_inactive(timr
);
1000 del_timer(&timr
->it
.real
.timer
);
1002 remove_from_abslist(timr
);
1004 timr
->it_requeue_pending
= (timr
->it_requeue_pending
+ 2) &
1006 timr
->it_overrun_last
= 0;
1007 timr
->it_overrun
= -1;
1009 *switch off the timer when it_value is zero
1011 if (!new_setting
->it_value
.tv_sec
&& !new_setting
->it_value
.tv_nsec
) {
1012 timr
->it
.real
.timer
.expires
= 0;
1016 if (adjust_abs_time(clock
,
1017 &new_setting
->it_value
, flags
& TIMER_ABSTIME
,
1018 &expire_64
, &(timr
->it
.real
.wall_to_prev
))) {
1021 timr
->it
.real
.timer
.expires
= (unsigned long)expire_64
;
1022 tstojiffie(&new_setting
->it_interval
, clock
->res
, &expire_64
);
1023 timr
->it
.real
.incr
= (unsigned long)expire_64
;
1026 * We do not even queue SIGEV_NONE timers! But we do put them
1027 * in the abs list so we can do that right.
1029 if (((timr
->it_sigev_notify
& ~SIGEV_THREAD_ID
) != SIGEV_NONE
))
1030 add_timer(&timr
->it
.real
.timer
);
1032 if (flags
& TIMER_ABSTIME
&& clock
->abs_struct
) {
1033 spin_lock(&clock
->abs_struct
->lock
);
1034 list_add_tail(&(timr
->it
.real
.abs_timer_entry
),
1035 &(clock
->abs_struct
->list
));
1036 spin_unlock(&clock
->abs_struct
->lock
);
1041 /* Set a POSIX.1b interval timer */
1043 sys_timer_settime(timer_t timer_id
, int flags
,
1044 const struct itimerspec __user
*new_setting
,
1045 struct itimerspec __user
*old_setting
)
1047 struct k_itimer
*timr
;
1048 struct itimerspec new_spec
, old_spec
;
1051 struct itimerspec
*rtn
= old_setting
? &old_spec
: NULL
;
1056 if (copy_from_user(&new_spec
, new_setting
, sizeof (new_spec
)))
1059 if ((!good_timespec(&new_spec
.it_interval
)) ||
1060 (!good_timespec(&new_spec
.it_value
)))
1063 timr
= lock_timer(timer_id
, &flag
);
1067 error
= CLOCK_DISPATCH(timr
->it_clock
, timer_set
,
1068 (timr
, flags
, &new_spec
, rtn
));
1070 unlock_timer(timr
, flag
);
1071 if (error
== TIMER_RETRY
) {
1072 rtn
= NULL
; // We already got the old time...
1076 if (old_setting
&& !error
&& copy_to_user(old_setting
,
1077 &old_spec
, sizeof (old_spec
)))
1083 static inline int common_timer_del(struct k_itimer
*timer
)
1085 timer
->it
.real
.incr
= 0;
1087 if (timer_active(timer
) && !del_timer(&timer
->it
.real
.timer
))
1089 * It can only be active if on an other cpu. Since
1090 * we have cleared the interval stuff above, it should
1091 * clear once we release the spin lock. Of course once
1092 * we do that anything could happen, including the
1093 * complete melt down of the timer. So return with
1094 * a "retry" exit status.
1098 del_timer(&timer
->it
.real
.timer
);
1100 remove_from_abslist(timer
);
1105 static inline int timer_delete_hook(struct k_itimer
*timer
)
1107 return CLOCK_DISPATCH(timer
->it_clock
, timer_del
, (timer
));
1110 /* Delete a POSIX.1b interval timer. */
1112 sys_timer_delete(timer_t timer_id
)
1114 struct k_itimer
*timer
;
1121 timer
= lock_timer(timer_id
, &flags
);
1126 error
= timer_delete_hook(timer
);
1128 if (error
== TIMER_RETRY
) {
1129 unlock_timer(timer
, flags
);
1133 timer_delete_hook(timer
);
1135 spin_lock(¤t
->sighand
->siglock
);
1136 list_del(&timer
->list
);
1137 spin_unlock(¤t
->sighand
->siglock
);
1139 * This keeps any tasks waiting on the spin lock from thinking
1140 * they got something (see the lock code above).
1142 if (timer
->it_process
) {
1143 if (timer
->it_sigev_notify
== (SIGEV_SIGNAL
|SIGEV_THREAD_ID
))
1144 put_task_struct(timer
->it_process
);
1145 timer
->it_process
= NULL
;
1147 unlock_timer(timer
, flags
);
1148 release_posix_timer(timer
, IT_ID_SET
);
1152 * return timer owned by the process, used by exit_itimers
1154 static inline void itimer_delete(struct k_itimer
*timer
)
1156 unsigned long flags
;
1162 spin_lock_irqsave(&timer
->it_lock
, flags
);
1165 error
= timer_delete_hook(timer
);
1167 if (error
== TIMER_RETRY
) {
1168 unlock_timer(timer
, flags
);
1172 timer_delete_hook(timer
);
1174 list_del(&timer
->list
);
1176 * This keeps any tasks waiting on the spin lock from thinking
1177 * they got something (see the lock code above).
1179 if (timer
->it_process
) {
1180 if (timer
->it_sigev_notify
== (SIGEV_SIGNAL
|SIGEV_THREAD_ID
))
1181 put_task_struct(timer
->it_process
);
1182 timer
->it_process
= NULL
;
1184 unlock_timer(timer
, flags
);
1185 release_posix_timer(timer
, IT_ID_SET
);
1189 * This is called by __exit_signal, only when there are no more
1190 * references to the shared signal_struct.
1192 void exit_itimers(struct signal_struct
*sig
)
1194 struct k_itimer
*tmr
;
1196 while (!list_empty(&sig
->posix_timers
)) {
1197 tmr
= list_entry(sig
->posix_timers
.next
, struct k_itimer
, list
);
1203 * And now for the "clock" calls
1205 * These functions are called both from timer functions (with the timer
1206 * spin_lock_irq() held and from clock calls with no locking. They must
1207 * use the save flags versions of locks.
1211 * We do ticks here to avoid the irq lock ( they take sooo long).
1212 * The seqlock is great here. Since we a reader, we don't really care
1213 * if we are interrupted since we don't take lock that will stall us or
1214 * any other cpu. Voila, no irq lock is needed.
1218 static u64
do_posix_clock_monotonic_gettime_parts(
1219 struct timespec
*tp
, struct timespec
*mo
)
1225 seq
= read_seqbegin(&xtime_lock
);
1227 *mo
= wall_to_monotonic
;
1230 } while(read_seqretry(&xtime_lock
, seq
));
1235 static int do_posix_clock_monotonic_get(clockid_t clock
, struct timespec
*tp
)
1237 struct timespec wall_to_mono
;
1239 do_posix_clock_monotonic_gettime_parts(tp
, &wall_to_mono
);
1241 tp
->tv_sec
+= wall_to_mono
.tv_sec
;
1242 tp
->tv_nsec
+= wall_to_mono
.tv_nsec
;
1244 if ((tp
->tv_nsec
- NSEC_PER_SEC
) > 0) {
1245 tp
->tv_nsec
-= NSEC_PER_SEC
;
1251 int do_posix_clock_monotonic_gettime(struct timespec
*tp
)
1253 return do_posix_clock_monotonic_get(CLOCK_MONOTONIC
, tp
);
1256 int do_posix_clock_nosettime(clockid_t clockid
, struct timespec
*tp
)
1260 EXPORT_SYMBOL_GPL(do_posix_clock_nosettime
);
1262 int do_posix_clock_notimer_create(struct k_itimer
*timer
)
1266 EXPORT_SYMBOL_GPL(do_posix_clock_notimer_create
);
1268 int do_posix_clock_nonanosleep(clockid_t clock
, int flags
, struct timespec
*t
)
1271 return -EOPNOTSUPP
; /* aka ENOTSUP in userland for POSIX */
1272 #else /* parisc does define it separately. */
1276 EXPORT_SYMBOL_GPL(do_posix_clock_nonanosleep
);
1279 sys_clock_settime(clockid_t which_clock
, const struct timespec __user
*tp
)
1281 struct timespec new_tp
;
1283 if (invalid_clockid(which_clock
))
1285 if (copy_from_user(&new_tp
, tp
, sizeof (*tp
)))
1288 return CLOCK_DISPATCH(which_clock
, clock_set
, (which_clock
, &new_tp
));
1292 sys_clock_gettime(clockid_t which_clock
, struct timespec __user
*tp
)
1294 struct timespec kernel_tp
;
1297 if (invalid_clockid(which_clock
))
1299 error
= CLOCK_DISPATCH(which_clock
, clock_get
,
1300 (which_clock
, &kernel_tp
));
1301 if (!error
&& copy_to_user(tp
, &kernel_tp
, sizeof (kernel_tp
)))
1309 sys_clock_getres(clockid_t which_clock
, struct timespec __user
*tp
)
1311 struct timespec rtn_tp
;
1314 if (invalid_clockid(which_clock
))
1317 error
= CLOCK_DISPATCH(which_clock
, clock_getres
,
1318 (which_clock
, &rtn_tp
));
1320 if (!error
&& tp
&& copy_to_user(tp
, &rtn_tp
, sizeof (rtn_tp
))) {
1327 static void nanosleep_wake_up(unsigned long __data
)
1329 struct task_struct
*p
= (struct task_struct
*) __data
;
1335 * The standard says that an absolute nanosleep call MUST wake up at
1336 * the requested time in spite of clock settings. Here is what we do:
1337 * For each nanosleep call that needs it (only absolute and not on
1338 * CLOCK_MONOTONIC* (as it can not be set)) we thread a little structure
1339 * into the "nanosleep_abs_list". All we need is the task_struct pointer.
1340 * When ever the clock is set we just wake up all those tasks. The rest
1341 * is done by the while loop in clock_nanosleep().
1343 * On locking, clock_was_set() is called from update_wall_clock which
1344 * holds (or has held for it) a write_lock_irq( xtime_lock) and is
1345 * called from the timer bh code. Thus we need the irq save locks.
1347 * Also, on the call from update_wall_clock, that is done as part of a
1348 * softirq thing. We don't want to delay the system that much (possibly
1349 * long list of timers to fix), so we defer that work to keventd.
1352 static DECLARE_WAIT_QUEUE_HEAD(nanosleep_abs_wqueue
);
1353 static DECLARE_WORK(clock_was_set_work
, (void(*)(void*))clock_was_set
, NULL
);
1355 static DECLARE_MUTEX(clock_was_set_lock
);
1357 void clock_was_set(void)
1359 struct k_itimer
*timr
;
1360 struct timespec new_wall_to
;
1361 LIST_HEAD(cws_list
);
1365 if (unlikely(in_interrupt())) {
1366 schedule_work(&clock_was_set_work
);
1369 wake_up_all(&nanosleep_abs_wqueue
);
1372 * Check if there exist TIMER_ABSTIME timers to correct.
1374 * Notes on locking: This code is run in task context with irq
1375 * on. We CAN be interrupted! All other usage of the abs list
1376 * lock is under the timer lock which holds the irq lock as
1377 * well. We REALLY don't want to scan the whole list with the
1378 * interrupt system off, AND we would like a sequence lock on
1379 * this code as well. Since we assume that the clock will not
1380 * be set often, it seems ok to take and release the irq lock
1381 * for each timer. In fact add_timer will do this, so this is
1382 * not an issue. So we know when we are done, we will move the
1383 * whole list to a new location. Then as we process each entry,
1384 * we will move it to the actual list again. This way, when our
1385 * copy is empty, we are done. We are not all that concerned
1386 * about preemption so we will use a semaphore lock to protect
1387 * aginst reentry. This way we will not stall another
1388 * processor. It is possible that this may delay some timers
1389 * that should have expired, given the new clock, but even this
1390 * will be minimal as we will always update to the current time,
1391 * even if it was set by a task that is waiting for entry to
1392 * this code. Timers that expire too early will be caught by
1393 * the expire code and restarted.
1395 * Absolute timers that repeat are left in the abs list while
1396 * waiting for the task to pick up the signal. This means we
1397 * may find timers that are not in the "add_timer" list, but are
1398 * in the abs list. We do the same thing for these, save
1399 * putting them back in the "add_timer" list. (Note, these are
1400 * left in the abs list mainly to indicate that they are
1401 * ABSOLUTE timers, a fact that is used by the re-arm code, and
1402 * for which we have no other flag.)
1406 down(&clock_was_set_lock
);
1407 spin_lock_irq(&abs_list
.lock
);
1408 list_splice_init(&abs_list
.list
, &cws_list
);
1409 spin_unlock_irq(&abs_list
.lock
);
1412 seq
= read_seqbegin(&xtime_lock
);
1413 new_wall_to
= wall_to_monotonic
;
1414 } while (read_seqretry(&xtime_lock
, seq
));
1416 spin_lock_irq(&abs_list
.lock
);
1417 if (list_empty(&cws_list
)) {
1418 spin_unlock_irq(&abs_list
.lock
);
1421 timr
= list_entry(cws_list
.next
, struct k_itimer
,
1422 it
.real
.abs_timer_entry
);
1424 list_del_init(&timr
->it
.real
.abs_timer_entry
);
1425 if (add_clockset_delta(timr
, &new_wall_to
) &&
1426 del_timer(&timr
->it
.real
.timer
)) /* timer run yet? */
1427 add_timer(&timr
->it
.real
.timer
);
1428 list_add(&timr
->it
.real
.abs_timer_entry
, &abs_list
.list
);
1429 spin_unlock_irq(&abs_list
.lock
);
1432 up(&clock_was_set_lock
);
1435 long clock_nanosleep_restart(struct restart_block
*restart_block
);
1438 sys_clock_nanosleep(clockid_t which_clock
, int flags
,
1439 const struct timespec __user
*rqtp
,
1440 struct timespec __user
*rmtp
)
1443 struct restart_block
*restart_block
=
1444 &(current_thread_info()->restart_block
);
1447 if (invalid_clockid(which_clock
))
1450 if (copy_from_user(&t
, rqtp
, sizeof (struct timespec
)))
1453 if ((unsigned) t
.tv_nsec
>= NSEC_PER_SEC
|| t
.tv_sec
< 0)
1457 * Do this here as nsleep function does not have the real address.
1459 restart_block
->arg1
= (unsigned long)rmtp
;
1461 ret
= CLOCK_DISPATCH(which_clock
, nsleep
, (which_clock
, flags
, &t
));
1463 if ((ret
== -ERESTART_RESTARTBLOCK
) && rmtp
&&
1464 copy_to_user(rmtp
, &t
, sizeof (t
)))
1470 static int common_nsleep(clockid_t which_clock
,
1471 int flags
, struct timespec
*tsave
)
1473 struct timespec t
, dum
;
1474 struct timer_list new_timer
;
1475 DECLARE_WAITQUEUE(abs_wqueue
, current
);
1476 u64 rq_time
= (u64
)0;
1479 struct restart_block
*restart_block
=
1480 ¤t_thread_info()->restart_block
;
1482 abs_wqueue
.flags
= 0;
1483 init_timer(&new_timer
);
1484 new_timer
.expires
= 0;
1485 new_timer
.data
= (unsigned long) current
;
1486 new_timer
.function
= nanosleep_wake_up
;
1487 abs
= flags
& TIMER_ABSTIME
;
1489 if (restart_block
->fn
== clock_nanosleep_restart
) {
1491 * Interrupted by a non-delivered signal, pick up remaining
1492 * time and continue. Remaining time is in arg2 & 3.
1494 restart_block
->fn
= do_no_restart_syscall
;
1496 rq_time
= restart_block
->arg3
;
1497 rq_time
= (rq_time
<< 32) + restart_block
->arg2
;
1500 left
= rq_time
- get_jiffies_64();
1502 return 0; /* Already passed */
1505 if (abs
&& (posix_clocks
[which_clock
].clock_get
!=
1506 posix_clocks
[CLOCK_MONOTONIC
].clock_get
))
1507 add_wait_queue(&nanosleep_abs_wqueue
, &abs_wqueue
);
1511 if (abs
|| !rq_time
) {
1512 adjust_abs_time(&posix_clocks
[which_clock
], &t
, abs
,
1516 left
= rq_time
- get_jiffies_64();
1517 if (left
>= (s64
)MAX_JIFFY_OFFSET
)
1518 left
= (s64
)MAX_JIFFY_OFFSET
;
1522 new_timer
.expires
= jiffies
+ left
;
1523 __set_current_state(TASK_INTERRUPTIBLE
);
1524 add_timer(&new_timer
);
1528 del_timer_sync(&new_timer
);
1529 left
= rq_time
- get_jiffies_64();
1530 } while (left
> (s64
)0 && !test_thread_flag(TIF_SIGPENDING
));
1532 if (abs_wqueue
.task_list
.next
)
1533 finish_wait(&nanosleep_abs_wqueue
, &abs_wqueue
);
1535 if (left
> (s64
)0) {
1538 * Always restart abs calls from scratch to pick up any
1539 * clock shifting that happened while we are away.
1542 return -ERESTARTNOHAND
;
1545 tsave
->tv_sec
= div_long_long_rem(left
,
1549 * Restart works by saving the time remaing in
1550 * arg2 & 3 (it is 64-bits of jiffies). The other
1551 * info we need is the clock_id (saved in arg0).
1552 * The sys_call interface needs the users
1553 * timespec return address which _it_ saves in arg1.
1554 * Since we have cast the nanosleep call to a clock_nanosleep
1555 * both can be restarted with the same code.
1557 restart_block
->fn
= clock_nanosleep_restart
;
1558 restart_block
->arg0
= which_clock
;
1562 restart_block
->arg2
= rq_time
& 0xffffffffLL
;
1563 restart_block
->arg3
= rq_time
>> 32;
1565 return -ERESTART_RESTARTBLOCK
;
1571 * This will restart clock_nanosleep.
1574 clock_nanosleep_restart(struct restart_block
*restart_block
)
1577 int ret
= common_nsleep(restart_block
->arg0
, 0, &t
);
1579 if ((ret
== -ERESTART_RESTARTBLOCK
) && restart_block
->arg1
&&
1580 copy_to_user((struct timespec __user
*)(restart_block
->arg1
), &t
,