4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h> /* for try_to_release_page(),
27 buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/pagevec.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/notifier.h>
36 #include <linux/rwsem.h>
37 #include <linux/delay.h>
38 #include <linux/kthread.h>
39 #include <linux/freezer.h>
40 #include <linux/memcontrol.h>
41 #include <linux/delayacct.h>
42 #include <linux/sysctl.h>
44 #include <asm/tlbflush.h>
45 #include <asm/div64.h>
47 #include <linux/swapops.h>
52 /* Incremented by the number of inactive pages that were scanned */
53 unsigned long nr_scanned
;
55 /* Number of pages freed so far during a call to shrink_zones() */
56 unsigned long nr_reclaimed
;
58 /* How many pages shrink_list() should reclaim */
59 unsigned long nr_to_reclaim
;
61 unsigned long hibernation_mode
;
63 /* This context's GFP mask */
68 /* Can mapped pages be reclaimed? */
71 /* Can pages be swapped as part of reclaim? */
79 * Intend to reclaim enough contenious memory rather than to reclaim
80 * enough amount memory. I.e, it's the mode for high order allocation.
82 bool lumpy_reclaim_mode
;
84 /* Which cgroup do we reclaim from */
85 struct mem_cgroup
*mem_cgroup
;
88 * Nodemask of nodes allowed by the caller. If NULL, all nodes
94 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
96 #ifdef ARCH_HAS_PREFETCH
97 #define prefetch_prev_lru_page(_page, _base, _field) \
99 if ((_page)->lru.prev != _base) { \
102 prev = lru_to_page(&(_page->lru)); \
103 prefetch(&prev->_field); \
107 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
110 #ifdef ARCH_HAS_PREFETCHW
111 #define prefetchw_prev_lru_page(_page, _base, _field) \
113 if ((_page)->lru.prev != _base) { \
116 prev = lru_to_page(&(_page->lru)); \
117 prefetchw(&prev->_field); \
121 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
125 * From 0 .. 100. Higher means more swappy.
127 int vm_swappiness
= 60;
128 long vm_total_pages
; /* The total number of pages which the VM controls */
130 static LIST_HEAD(shrinker_list
);
131 static DECLARE_RWSEM(shrinker_rwsem
);
133 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
134 #define scanning_global_lru(sc) (!(sc)->mem_cgroup)
136 #define scanning_global_lru(sc) (1)
139 static struct zone_reclaim_stat
*get_reclaim_stat(struct zone
*zone
,
140 struct scan_control
*sc
)
142 if (!scanning_global_lru(sc
))
143 return mem_cgroup_get_reclaim_stat(sc
->mem_cgroup
, zone
);
145 return &zone
->reclaim_stat
;
148 static unsigned long zone_nr_lru_pages(struct zone
*zone
,
149 struct scan_control
*sc
, enum lru_list lru
)
151 if (!scanning_global_lru(sc
))
152 return mem_cgroup_zone_nr_pages(sc
->mem_cgroup
, zone
, lru
);
154 return zone_page_state(zone
, NR_LRU_BASE
+ lru
);
159 * Add a shrinker callback to be called from the vm
161 void register_shrinker(struct shrinker
*shrinker
)
164 down_write(&shrinker_rwsem
);
165 list_add_tail(&shrinker
->list
, &shrinker_list
);
166 up_write(&shrinker_rwsem
);
168 EXPORT_SYMBOL(register_shrinker
);
173 void unregister_shrinker(struct shrinker
*shrinker
)
175 down_write(&shrinker_rwsem
);
176 list_del(&shrinker
->list
);
177 up_write(&shrinker_rwsem
);
179 EXPORT_SYMBOL(unregister_shrinker
);
181 #define SHRINK_BATCH 128
183 * Call the shrink functions to age shrinkable caches
185 * Here we assume it costs one seek to replace a lru page and that it also
186 * takes a seek to recreate a cache object. With this in mind we age equal
187 * percentages of the lru and ageable caches. This should balance the seeks
188 * generated by these structures.
190 * If the vm encountered mapped pages on the LRU it increase the pressure on
191 * slab to avoid swapping.
193 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
195 * `lru_pages' represents the number of on-LRU pages in all the zones which
196 * are eligible for the caller's allocation attempt. It is used for balancing
197 * slab reclaim versus page reclaim.
199 * Returns the number of slab objects which we shrunk.
201 unsigned long shrink_slab(unsigned long scanned
, gfp_t gfp_mask
,
202 unsigned long lru_pages
)
204 struct shrinker
*shrinker
;
205 unsigned long ret
= 0;
208 scanned
= SWAP_CLUSTER_MAX
;
210 if (!down_read_trylock(&shrinker_rwsem
))
211 return 1; /* Assume we'll be able to shrink next time */
213 list_for_each_entry(shrinker
, &shrinker_list
, list
) {
214 unsigned long long delta
;
215 unsigned long total_scan
;
216 unsigned long max_pass
= (*shrinker
->shrink
)(0, gfp_mask
);
218 delta
= (4 * scanned
) / shrinker
->seeks
;
220 do_div(delta
, lru_pages
+ 1);
221 shrinker
->nr
+= delta
;
222 if (shrinker
->nr
< 0) {
223 printk(KERN_ERR
"shrink_slab: %pF negative objects to "
225 shrinker
->shrink
, shrinker
->nr
);
226 shrinker
->nr
= max_pass
;
230 * Avoid risking looping forever due to too large nr value:
231 * never try to free more than twice the estimate number of
234 if (shrinker
->nr
> max_pass
* 2)
235 shrinker
->nr
= max_pass
* 2;
237 total_scan
= shrinker
->nr
;
240 while (total_scan
>= SHRINK_BATCH
) {
241 long this_scan
= SHRINK_BATCH
;
245 nr_before
= (*shrinker
->shrink
)(0, gfp_mask
);
246 shrink_ret
= (*shrinker
->shrink
)(this_scan
, gfp_mask
);
247 if (shrink_ret
== -1)
249 if (shrink_ret
< nr_before
)
250 ret
+= nr_before
- shrink_ret
;
251 count_vm_events(SLABS_SCANNED
, this_scan
);
252 total_scan
-= this_scan
;
257 shrinker
->nr
+= total_scan
;
259 up_read(&shrinker_rwsem
);
263 static inline int is_page_cache_freeable(struct page
*page
)
266 * A freeable page cache page is referenced only by the caller
267 * that isolated the page, the page cache radix tree and
268 * optional buffer heads at page->private.
270 return page_count(page
) - page_has_private(page
) == 2;
273 static int may_write_to_queue(struct backing_dev_info
*bdi
)
275 if (current
->flags
& PF_SWAPWRITE
)
277 if (!bdi_write_congested(bdi
))
279 if (bdi
== current
->backing_dev_info
)
285 * We detected a synchronous write error writing a page out. Probably
286 * -ENOSPC. We need to propagate that into the address_space for a subsequent
287 * fsync(), msync() or close().
289 * The tricky part is that after writepage we cannot touch the mapping: nothing
290 * prevents it from being freed up. But we have a ref on the page and once
291 * that page is locked, the mapping is pinned.
293 * We're allowed to run sleeping lock_page() here because we know the caller has
296 static void handle_write_error(struct address_space
*mapping
,
297 struct page
*page
, int error
)
300 if (page_mapping(page
) == mapping
)
301 mapping_set_error(mapping
, error
);
305 /* Request for sync pageout. */
311 /* possible outcome of pageout() */
313 /* failed to write page out, page is locked */
315 /* move page to the active list, page is locked */
317 /* page has been sent to the disk successfully, page is unlocked */
319 /* page is clean and locked */
324 * pageout is called by shrink_page_list() for each dirty page.
325 * Calls ->writepage().
327 static pageout_t
pageout(struct page
*page
, struct address_space
*mapping
,
328 enum pageout_io sync_writeback
)
331 * If the page is dirty, only perform writeback if that write
332 * will be non-blocking. To prevent this allocation from being
333 * stalled by pagecache activity. But note that there may be
334 * stalls if we need to run get_block(). We could test
335 * PagePrivate for that.
337 * If this process is currently in __generic_file_aio_write() against
338 * this page's queue, we can perform writeback even if that
341 * If the page is swapcache, write it back even if that would
342 * block, for some throttling. This happens by accident, because
343 * swap_backing_dev_info is bust: it doesn't reflect the
344 * congestion state of the swapdevs. Easy to fix, if needed.
346 if (!is_page_cache_freeable(page
))
350 * Some data journaling orphaned pages can have
351 * page->mapping == NULL while being dirty with clean buffers.
353 if (page_has_private(page
)) {
354 if (try_to_free_buffers(page
)) {
355 ClearPageDirty(page
);
356 printk("%s: orphaned page\n", __func__
);
362 if (mapping
->a_ops
->writepage
== NULL
)
363 return PAGE_ACTIVATE
;
364 if (!may_write_to_queue(mapping
->backing_dev_info
))
367 if (clear_page_dirty_for_io(page
)) {
369 struct writeback_control wbc
= {
370 .sync_mode
= WB_SYNC_NONE
,
371 .nr_to_write
= SWAP_CLUSTER_MAX
,
373 .range_end
= LLONG_MAX
,
378 SetPageReclaim(page
);
379 res
= mapping
->a_ops
->writepage(page
, &wbc
);
381 handle_write_error(mapping
, page
, res
);
382 if (res
== AOP_WRITEPAGE_ACTIVATE
) {
383 ClearPageReclaim(page
);
384 return PAGE_ACTIVATE
;
388 * Wait on writeback if requested to. This happens when
389 * direct reclaiming a large contiguous area and the
390 * first attempt to free a range of pages fails.
392 if (PageWriteback(page
) && sync_writeback
== PAGEOUT_IO_SYNC
)
393 wait_on_page_writeback(page
);
395 if (!PageWriteback(page
)) {
396 /* synchronous write or broken a_ops? */
397 ClearPageReclaim(page
);
399 inc_zone_page_state(page
, NR_VMSCAN_WRITE
);
407 * Same as remove_mapping, but if the page is removed from the mapping, it
408 * gets returned with a refcount of 0.
410 static int __remove_mapping(struct address_space
*mapping
, struct page
*page
)
412 BUG_ON(!PageLocked(page
));
413 BUG_ON(mapping
!= page_mapping(page
));
415 spin_lock_irq(&mapping
->tree_lock
);
417 * The non racy check for a busy page.
419 * Must be careful with the order of the tests. When someone has
420 * a ref to the page, it may be possible that they dirty it then
421 * drop the reference. So if PageDirty is tested before page_count
422 * here, then the following race may occur:
424 * get_user_pages(&page);
425 * [user mapping goes away]
427 * !PageDirty(page) [good]
428 * SetPageDirty(page);
430 * !page_count(page) [good, discard it]
432 * [oops, our write_to data is lost]
434 * Reversing the order of the tests ensures such a situation cannot
435 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
436 * load is not satisfied before that of page->_count.
438 * Note that if SetPageDirty is always performed via set_page_dirty,
439 * and thus under tree_lock, then this ordering is not required.
441 if (!page_freeze_refs(page
, 2))
443 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
444 if (unlikely(PageDirty(page
))) {
445 page_unfreeze_refs(page
, 2);
449 if (PageSwapCache(page
)) {
450 swp_entry_t swap
= { .val
= page_private(page
) };
451 __delete_from_swap_cache(page
);
452 spin_unlock_irq(&mapping
->tree_lock
);
453 swapcache_free(swap
, page
);
455 __remove_from_page_cache(page
);
456 spin_unlock_irq(&mapping
->tree_lock
);
457 mem_cgroup_uncharge_cache_page(page
);
463 spin_unlock_irq(&mapping
->tree_lock
);
468 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
469 * someone else has a ref on the page, abort and return 0. If it was
470 * successfully detached, return 1. Assumes the caller has a single ref on
473 int remove_mapping(struct address_space
*mapping
, struct page
*page
)
475 if (__remove_mapping(mapping
, page
)) {
477 * Unfreezing the refcount with 1 rather than 2 effectively
478 * drops the pagecache ref for us without requiring another
481 page_unfreeze_refs(page
, 1);
488 * putback_lru_page - put previously isolated page onto appropriate LRU list
489 * @page: page to be put back to appropriate lru list
491 * Add previously isolated @page to appropriate LRU list.
492 * Page may still be unevictable for other reasons.
494 * lru_lock must not be held, interrupts must be enabled.
496 void putback_lru_page(struct page
*page
)
499 int active
= !!TestClearPageActive(page
);
500 int was_unevictable
= PageUnevictable(page
);
502 VM_BUG_ON(PageLRU(page
));
505 ClearPageUnevictable(page
);
507 if (page_evictable(page
, NULL
)) {
509 * For evictable pages, we can use the cache.
510 * In event of a race, worst case is we end up with an
511 * unevictable page on [in]active list.
512 * We know how to handle that.
514 lru
= active
+ page_lru_base_type(page
);
515 lru_cache_add_lru(page
, lru
);
518 * Put unevictable pages directly on zone's unevictable
521 lru
= LRU_UNEVICTABLE
;
522 add_page_to_unevictable_list(page
);
524 * When racing with an mlock clearing (page is
525 * unlocked), make sure that if the other thread does
526 * not observe our setting of PG_lru and fails
527 * isolation, we see PG_mlocked cleared below and move
528 * the page back to the evictable list.
530 * The other side is TestClearPageMlocked().
536 * page's status can change while we move it among lru. If an evictable
537 * page is on unevictable list, it never be freed. To avoid that,
538 * check after we added it to the list, again.
540 if (lru
== LRU_UNEVICTABLE
&& page_evictable(page
, NULL
)) {
541 if (!isolate_lru_page(page
)) {
545 /* This means someone else dropped this page from LRU
546 * So, it will be freed or putback to LRU again. There is
547 * nothing to do here.
551 if (was_unevictable
&& lru
!= LRU_UNEVICTABLE
)
552 count_vm_event(UNEVICTABLE_PGRESCUED
);
553 else if (!was_unevictable
&& lru
== LRU_UNEVICTABLE
)
554 count_vm_event(UNEVICTABLE_PGCULLED
);
556 put_page(page
); /* drop ref from isolate */
559 enum page_references
{
561 PAGEREF_RECLAIM_CLEAN
,
566 static enum page_references
page_check_references(struct page
*page
,
567 struct scan_control
*sc
)
569 int referenced_ptes
, referenced_page
;
570 unsigned long vm_flags
;
572 referenced_ptes
= page_referenced(page
, 1, sc
->mem_cgroup
, &vm_flags
);
573 referenced_page
= TestClearPageReferenced(page
);
575 /* Lumpy reclaim - ignore references */
576 if (sc
->lumpy_reclaim_mode
)
577 return PAGEREF_RECLAIM
;
580 * Mlock lost the isolation race with us. Let try_to_unmap()
581 * move the page to the unevictable list.
583 if (vm_flags
& VM_LOCKED
)
584 return PAGEREF_RECLAIM
;
586 if (referenced_ptes
) {
588 return PAGEREF_ACTIVATE
;
590 * All mapped pages start out with page table
591 * references from the instantiating fault, so we need
592 * to look twice if a mapped file page is used more
595 * Mark it and spare it for another trip around the
596 * inactive list. Another page table reference will
597 * lead to its activation.
599 * Note: the mark is set for activated pages as well
600 * so that recently deactivated but used pages are
603 SetPageReferenced(page
);
606 return PAGEREF_ACTIVATE
;
611 /* Reclaim if clean, defer dirty pages to writeback */
613 return PAGEREF_RECLAIM_CLEAN
;
615 return PAGEREF_RECLAIM
;
619 * shrink_page_list() returns the number of reclaimed pages
621 static unsigned long shrink_page_list(struct list_head
*page_list
,
622 struct scan_control
*sc
,
623 enum pageout_io sync_writeback
)
625 LIST_HEAD(ret_pages
);
626 struct pagevec freed_pvec
;
628 unsigned long nr_reclaimed
= 0;
632 pagevec_init(&freed_pvec
, 1);
633 while (!list_empty(page_list
)) {
634 enum page_references references
;
635 struct address_space
*mapping
;
641 page
= lru_to_page(page_list
);
642 list_del(&page
->lru
);
644 if (!trylock_page(page
))
647 VM_BUG_ON(PageActive(page
));
651 if (unlikely(!page_evictable(page
, NULL
)))
654 if (!sc
->may_unmap
&& page_mapped(page
))
657 /* Double the slab pressure for mapped and swapcache pages */
658 if (page_mapped(page
) || PageSwapCache(page
))
661 may_enter_fs
= (sc
->gfp_mask
& __GFP_FS
) ||
662 (PageSwapCache(page
) && (sc
->gfp_mask
& __GFP_IO
));
664 if (PageWriteback(page
)) {
666 * Synchronous reclaim is performed in two passes,
667 * first an asynchronous pass over the list to
668 * start parallel writeback, and a second synchronous
669 * pass to wait for the IO to complete. Wait here
670 * for any page for which writeback has already
673 if (sync_writeback
== PAGEOUT_IO_SYNC
&& may_enter_fs
)
674 wait_on_page_writeback(page
);
679 references
= page_check_references(page
, sc
);
680 switch (references
) {
681 case PAGEREF_ACTIVATE
:
682 goto activate_locked
;
685 case PAGEREF_RECLAIM
:
686 case PAGEREF_RECLAIM_CLEAN
:
687 ; /* try to reclaim the page below */
691 * Anonymous process memory has backing store?
692 * Try to allocate it some swap space here.
694 if (PageAnon(page
) && !PageSwapCache(page
)) {
695 if (!(sc
->gfp_mask
& __GFP_IO
))
697 if (!add_to_swap(page
))
698 goto activate_locked
;
702 mapping
= page_mapping(page
);
705 * The page is mapped into the page tables of one or more
706 * processes. Try to unmap it here.
708 if (page_mapped(page
) && mapping
) {
709 switch (try_to_unmap(page
, TTU_UNMAP
)) {
711 goto activate_locked
;
717 ; /* try to free the page below */
721 if (PageDirty(page
)) {
722 if (references
== PAGEREF_RECLAIM_CLEAN
)
726 if (!sc
->may_writepage
)
729 /* Page is dirty, try to write it out here */
730 switch (pageout(page
, mapping
, sync_writeback
)) {
734 goto activate_locked
;
736 if (PageWriteback(page
) || PageDirty(page
))
739 * A synchronous write - probably a ramdisk. Go
740 * ahead and try to reclaim the page.
742 if (!trylock_page(page
))
744 if (PageDirty(page
) || PageWriteback(page
))
746 mapping
= page_mapping(page
);
748 ; /* try to free the page below */
753 * If the page has buffers, try to free the buffer mappings
754 * associated with this page. If we succeed we try to free
757 * We do this even if the page is PageDirty().
758 * try_to_release_page() does not perform I/O, but it is
759 * possible for a page to have PageDirty set, but it is actually
760 * clean (all its buffers are clean). This happens if the
761 * buffers were written out directly, with submit_bh(). ext3
762 * will do this, as well as the blockdev mapping.
763 * try_to_release_page() will discover that cleanness and will
764 * drop the buffers and mark the page clean - it can be freed.
766 * Rarely, pages can have buffers and no ->mapping. These are
767 * the pages which were not successfully invalidated in
768 * truncate_complete_page(). We try to drop those buffers here
769 * and if that worked, and the page is no longer mapped into
770 * process address space (page_count == 1) it can be freed.
771 * Otherwise, leave the page on the LRU so it is swappable.
773 if (page_has_private(page
)) {
774 if (!try_to_release_page(page
, sc
->gfp_mask
))
775 goto activate_locked
;
776 if (!mapping
&& page_count(page
) == 1) {
778 if (put_page_testzero(page
))
782 * rare race with speculative reference.
783 * the speculative reference will free
784 * this page shortly, so we may
785 * increment nr_reclaimed here (and
786 * leave it off the LRU).
794 if (!mapping
|| !__remove_mapping(mapping
, page
))
798 * At this point, we have no other references and there is
799 * no way to pick any more up (removed from LRU, removed
800 * from pagecache). Can use non-atomic bitops now (and
801 * we obviously don't have to worry about waking up a process
802 * waiting on the page lock, because there are no references.
804 __clear_page_locked(page
);
807 if (!pagevec_add(&freed_pvec
, page
)) {
808 __pagevec_free(&freed_pvec
);
809 pagevec_reinit(&freed_pvec
);
814 if (PageSwapCache(page
))
815 try_to_free_swap(page
);
817 putback_lru_page(page
);
821 /* Not a candidate for swapping, so reclaim swap space. */
822 if (PageSwapCache(page
) && vm_swap_full())
823 try_to_free_swap(page
);
824 VM_BUG_ON(PageActive(page
));
830 list_add(&page
->lru
, &ret_pages
);
831 VM_BUG_ON(PageLRU(page
) || PageUnevictable(page
));
833 list_splice(&ret_pages
, page_list
);
834 if (pagevec_count(&freed_pvec
))
835 __pagevec_free(&freed_pvec
);
836 count_vm_events(PGACTIVATE
, pgactivate
);
841 * Attempt to remove the specified page from its LRU. Only take this page
842 * if it is of the appropriate PageActive status. Pages which are being
843 * freed elsewhere are also ignored.
845 * page: page to consider
846 * mode: one of the LRU isolation modes defined above
848 * returns 0 on success, -ve errno on failure.
850 int __isolate_lru_page(struct page
*page
, int mode
, int file
)
854 /* Only take pages on the LRU. */
859 * When checking the active state, we need to be sure we are
860 * dealing with comparible boolean values. Take the logical not
863 if (mode
!= ISOLATE_BOTH
&& (!PageActive(page
) != !mode
))
866 if (mode
!= ISOLATE_BOTH
&& page_is_file_cache(page
) != file
)
870 * When this function is being called for lumpy reclaim, we
871 * initially look into all LRU pages, active, inactive and
872 * unevictable; only give shrink_page_list evictable pages.
874 if (PageUnevictable(page
))
879 if (likely(get_page_unless_zero(page
))) {
881 * Be careful not to clear PageLRU until after we're
882 * sure the page is not being freed elsewhere -- the
883 * page release code relies on it.
893 * zone->lru_lock is heavily contended. Some of the functions that
894 * shrink the lists perform better by taking out a batch of pages
895 * and working on them outside the LRU lock.
897 * For pagecache intensive workloads, this function is the hottest
898 * spot in the kernel (apart from copy_*_user functions).
900 * Appropriate locks must be held before calling this function.
902 * @nr_to_scan: The number of pages to look through on the list.
903 * @src: The LRU list to pull pages off.
904 * @dst: The temp list to put pages on to.
905 * @scanned: The number of pages that were scanned.
906 * @order: The caller's attempted allocation order
907 * @mode: One of the LRU isolation modes
908 * @file: True [1] if isolating file [!anon] pages
910 * returns how many pages were moved onto *@dst.
912 static unsigned long isolate_lru_pages(unsigned long nr_to_scan
,
913 struct list_head
*src
, struct list_head
*dst
,
914 unsigned long *scanned
, int order
, int mode
, int file
)
916 unsigned long nr_taken
= 0;
919 for (scan
= 0; scan
< nr_to_scan
&& !list_empty(src
); scan
++) {
922 unsigned long end_pfn
;
923 unsigned long page_pfn
;
926 page
= lru_to_page(src
);
927 prefetchw_prev_lru_page(page
, src
, flags
);
929 VM_BUG_ON(!PageLRU(page
));
931 switch (__isolate_lru_page(page
, mode
, file
)) {
933 list_move(&page
->lru
, dst
);
934 mem_cgroup_del_lru(page
);
939 /* else it is being freed elsewhere */
940 list_move(&page
->lru
, src
);
941 mem_cgroup_rotate_lru_list(page
, page_lru(page
));
952 * Attempt to take all pages in the order aligned region
953 * surrounding the tag page. Only take those pages of
954 * the same active state as that tag page. We may safely
955 * round the target page pfn down to the requested order
956 * as the mem_map is guarenteed valid out to MAX_ORDER,
957 * where that page is in a different zone we will detect
958 * it from its zone id and abort this block scan.
960 zone_id
= page_zone_id(page
);
961 page_pfn
= page_to_pfn(page
);
962 pfn
= page_pfn
& ~((1 << order
) - 1);
963 end_pfn
= pfn
+ (1 << order
);
964 for (; pfn
< end_pfn
; pfn
++) {
965 struct page
*cursor_page
;
967 /* The target page is in the block, ignore it. */
968 if (unlikely(pfn
== page_pfn
))
971 /* Avoid holes within the zone. */
972 if (unlikely(!pfn_valid_within(pfn
)))
975 cursor_page
= pfn_to_page(pfn
);
977 /* Check that we have not crossed a zone boundary. */
978 if (unlikely(page_zone_id(cursor_page
) != zone_id
))
982 * If we don't have enough swap space, reclaiming of
983 * anon page which don't already have a swap slot is
986 if (nr_swap_pages
<= 0 && PageAnon(cursor_page
) &&
987 !PageSwapCache(cursor_page
))
990 if (__isolate_lru_page(cursor_page
, mode
, file
) == 0) {
991 list_move(&cursor_page
->lru
, dst
);
992 mem_cgroup_del_lru(cursor_page
);
1003 static unsigned long isolate_pages_global(unsigned long nr
,
1004 struct list_head
*dst
,
1005 unsigned long *scanned
, int order
,
1006 int mode
, struct zone
*z
,
1007 int active
, int file
)
1014 return isolate_lru_pages(nr
, &z
->lru
[lru
].list
, dst
, scanned
, order
,
1019 * clear_active_flags() is a helper for shrink_active_list(), clearing
1020 * any active bits from the pages in the list.
1022 static unsigned long clear_active_flags(struct list_head
*page_list
,
1023 unsigned int *count
)
1029 list_for_each_entry(page
, page_list
, lru
) {
1030 lru
= page_lru_base_type(page
);
1031 if (PageActive(page
)) {
1033 ClearPageActive(page
);
1043 * isolate_lru_page - tries to isolate a page from its LRU list
1044 * @page: page to isolate from its LRU list
1046 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1047 * vmstat statistic corresponding to whatever LRU list the page was on.
1049 * Returns 0 if the page was removed from an LRU list.
1050 * Returns -EBUSY if the page was not on an LRU list.
1052 * The returned page will have PageLRU() cleared. If it was found on
1053 * the active list, it will have PageActive set. If it was found on
1054 * the unevictable list, it will have the PageUnevictable bit set. That flag
1055 * may need to be cleared by the caller before letting the page go.
1057 * The vmstat statistic corresponding to the list on which the page was
1058 * found will be decremented.
1061 * (1) Must be called with an elevated refcount on the page. This is a
1062 * fundamentnal difference from isolate_lru_pages (which is called
1063 * without a stable reference).
1064 * (2) the lru_lock must not be held.
1065 * (3) interrupts must be enabled.
1067 int isolate_lru_page(struct page
*page
)
1071 if (PageLRU(page
)) {
1072 struct zone
*zone
= page_zone(page
);
1074 spin_lock_irq(&zone
->lru_lock
);
1075 if (PageLRU(page
) && get_page_unless_zero(page
)) {
1076 int lru
= page_lru(page
);
1080 del_page_from_lru_list(zone
, page
, lru
);
1082 spin_unlock_irq(&zone
->lru_lock
);
1088 * Are there way too many processes in the direct reclaim path already?
1090 static int too_many_isolated(struct zone
*zone
, int file
,
1091 struct scan_control
*sc
)
1093 unsigned long inactive
, isolated
;
1095 if (current_is_kswapd())
1098 if (!scanning_global_lru(sc
))
1102 inactive
= zone_page_state(zone
, NR_INACTIVE_FILE
);
1103 isolated
= zone_page_state(zone
, NR_ISOLATED_FILE
);
1105 inactive
= zone_page_state(zone
, NR_INACTIVE_ANON
);
1106 isolated
= zone_page_state(zone
, NR_ISOLATED_ANON
);
1109 return isolated
> inactive
;
1113 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1114 * of reclaimed pages
1116 static unsigned long shrink_inactive_list(unsigned long max_scan
,
1117 struct zone
*zone
, struct scan_control
*sc
,
1118 int priority
, int file
)
1120 LIST_HEAD(page_list
);
1121 struct pagevec pvec
;
1122 unsigned long nr_scanned
= 0;
1123 unsigned long nr_reclaimed
= 0;
1124 struct zone_reclaim_stat
*reclaim_stat
= get_reclaim_stat(zone
, sc
);
1126 while (unlikely(too_many_isolated(zone
, file
, sc
))) {
1127 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
1129 /* We are about to die and free our memory. Return now. */
1130 if (fatal_signal_pending(current
))
1131 return SWAP_CLUSTER_MAX
;
1135 pagevec_init(&pvec
, 1);
1138 spin_lock_irq(&zone
->lru_lock
);
1141 unsigned long nr_taken
;
1142 unsigned long nr_scan
;
1143 unsigned long nr_freed
;
1144 unsigned long nr_active
;
1145 unsigned int count
[NR_LRU_LISTS
] = { 0, };
1146 int mode
= sc
->lumpy_reclaim_mode
? ISOLATE_BOTH
: ISOLATE_INACTIVE
;
1147 unsigned long nr_anon
;
1148 unsigned long nr_file
;
1150 if (scanning_global_lru(sc
)) {
1151 nr_taken
= isolate_pages_global(SWAP_CLUSTER_MAX
,
1152 &page_list
, &nr_scan
,
1155 zone
->pages_scanned
+= nr_scan
;
1156 if (current_is_kswapd())
1157 __count_zone_vm_events(PGSCAN_KSWAPD
, zone
,
1160 __count_zone_vm_events(PGSCAN_DIRECT
, zone
,
1163 nr_taken
= mem_cgroup_isolate_pages(SWAP_CLUSTER_MAX
,
1164 &page_list
, &nr_scan
,
1166 zone
, sc
->mem_cgroup
,
1169 * mem_cgroup_isolate_pages() keeps track of
1170 * scanned pages on its own.
1177 nr_active
= clear_active_flags(&page_list
, count
);
1178 __count_vm_events(PGDEACTIVATE
, nr_active
);
1180 __mod_zone_page_state(zone
, NR_ACTIVE_FILE
,
1181 -count
[LRU_ACTIVE_FILE
]);
1182 __mod_zone_page_state(zone
, NR_INACTIVE_FILE
,
1183 -count
[LRU_INACTIVE_FILE
]);
1184 __mod_zone_page_state(zone
, NR_ACTIVE_ANON
,
1185 -count
[LRU_ACTIVE_ANON
]);
1186 __mod_zone_page_state(zone
, NR_INACTIVE_ANON
,
1187 -count
[LRU_INACTIVE_ANON
]);
1189 nr_anon
= count
[LRU_ACTIVE_ANON
] + count
[LRU_INACTIVE_ANON
];
1190 nr_file
= count
[LRU_ACTIVE_FILE
] + count
[LRU_INACTIVE_FILE
];
1191 __mod_zone_page_state(zone
, NR_ISOLATED_ANON
, nr_anon
);
1192 __mod_zone_page_state(zone
, NR_ISOLATED_FILE
, nr_file
);
1194 reclaim_stat
->recent_scanned
[0] += nr_anon
;
1195 reclaim_stat
->recent_scanned
[1] += nr_file
;
1197 spin_unlock_irq(&zone
->lru_lock
);
1199 nr_scanned
+= nr_scan
;
1200 nr_freed
= shrink_page_list(&page_list
, sc
, PAGEOUT_IO_ASYNC
);
1203 * If we are direct reclaiming for contiguous pages and we do
1204 * not reclaim everything in the list, try again and wait
1205 * for IO to complete. This will stall high-order allocations
1206 * but that should be acceptable to the caller
1208 if (nr_freed
< nr_taken
&& !current_is_kswapd() &&
1209 sc
->lumpy_reclaim_mode
) {
1210 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
1213 * The attempt at page out may have made some
1214 * of the pages active, mark them inactive again.
1216 nr_active
= clear_active_flags(&page_list
, count
);
1217 count_vm_events(PGDEACTIVATE
, nr_active
);
1219 nr_freed
+= shrink_page_list(&page_list
, sc
,
1223 nr_reclaimed
+= nr_freed
;
1225 local_irq_disable();
1226 if (current_is_kswapd())
1227 __count_vm_events(KSWAPD_STEAL
, nr_freed
);
1228 __count_zone_vm_events(PGSTEAL
, zone
, nr_freed
);
1230 spin_lock(&zone
->lru_lock
);
1232 * Put back any unfreeable pages.
1234 while (!list_empty(&page_list
)) {
1236 page
= lru_to_page(&page_list
);
1237 VM_BUG_ON(PageLRU(page
));
1238 list_del(&page
->lru
);
1239 if (unlikely(!page_evictable(page
, NULL
))) {
1240 spin_unlock_irq(&zone
->lru_lock
);
1241 putback_lru_page(page
);
1242 spin_lock_irq(&zone
->lru_lock
);
1246 lru
= page_lru(page
);
1247 add_page_to_lru_list(zone
, page
, lru
);
1248 if (is_active_lru(lru
)) {
1249 int file
= is_file_lru(lru
);
1250 reclaim_stat
->recent_rotated
[file
]++;
1252 if (!pagevec_add(&pvec
, page
)) {
1253 spin_unlock_irq(&zone
->lru_lock
);
1254 __pagevec_release(&pvec
);
1255 spin_lock_irq(&zone
->lru_lock
);
1258 __mod_zone_page_state(zone
, NR_ISOLATED_ANON
, -nr_anon
);
1259 __mod_zone_page_state(zone
, NR_ISOLATED_FILE
, -nr_file
);
1261 } while (nr_scanned
< max_scan
);
1264 spin_unlock_irq(&zone
->lru_lock
);
1265 pagevec_release(&pvec
);
1266 return nr_reclaimed
;
1270 * We are about to scan this zone at a certain priority level. If that priority
1271 * level is smaller (ie: more urgent) than the previous priority, then note
1272 * that priority level within the zone. This is done so that when the next
1273 * process comes in to scan this zone, it will immediately start out at this
1274 * priority level rather than having to build up its own scanning priority.
1275 * Here, this priority affects only the reclaim-mapped threshold.
1277 static inline void note_zone_scanning_priority(struct zone
*zone
, int priority
)
1279 if (priority
< zone
->prev_priority
)
1280 zone
->prev_priority
= priority
;
1284 * This moves pages from the active list to the inactive list.
1286 * We move them the other way if the page is referenced by one or more
1287 * processes, from rmap.
1289 * If the pages are mostly unmapped, the processing is fast and it is
1290 * appropriate to hold zone->lru_lock across the whole operation. But if
1291 * the pages are mapped, the processing is slow (page_referenced()) so we
1292 * should drop zone->lru_lock around each page. It's impossible to balance
1293 * this, so instead we remove the pages from the LRU while processing them.
1294 * It is safe to rely on PG_active against the non-LRU pages in here because
1295 * nobody will play with that bit on a non-LRU page.
1297 * The downside is that we have to touch page->_count against each page.
1298 * But we had to alter page->flags anyway.
1301 static void move_active_pages_to_lru(struct zone
*zone
,
1302 struct list_head
*list
,
1305 unsigned long pgmoved
= 0;
1306 struct pagevec pvec
;
1309 pagevec_init(&pvec
, 1);
1311 while (!list_empty(list
)) {
1312 page
= lru_to_page(list
);
1314 VM_BUG_ON(PageLRU(page
));
1317 list_move(&page
->lru
, &zone
->lru
[lru
].list
);
1318 mem_cgroup_add_lru_list(page
, lru
);
1321 if (!pagevec_add(&pvec
, page
) || list_empty(list
)) {
1322 spin_unlock_irq(&zone
->lru_lock
);
1323 if (buffer_heads_over_limit
)
1324 pagevec_strip(&pvec
);
1325 __pagevec_release(&pvec
);
1326 spin_lock_irq(&zone
->lru_lock
);
1329 __mod_zone_page_state(zone
, NR_LRU_BASE
+ lru
, pgmoved
);
1330 if (!is_active_lru(lru
))
1331 __count_vm_events(PGDEACTIVATE
, pgmoved
);
1334 static void shrink_active_list(unsigned long nr_pages
, struct zone
*zone
,
1335 struct scan_control
*sc
, int priority
, int file
)
1337 unsigned long nr_taken
;
1338 unsigned long pgscanned
;
1339 unsigned long vm_flags
;
1340 LIST_HEAD(l_hold
); /* The pages which were snipped off */
1341 LIST_HEAD(l_active
);
1342 LIST_HEAD(l_inactive
);
1344 struct zone_reclaim_stat
*reclaim_stat
= get_reclaim_stat(zone
, sc
);
1345 unsigned long nr_rotated
= 0;
1348 spin_lock_irq(&zone
->lru_lock
);
1349 if (scanning_global_lru(sc
)) {
1350 nr_taken
= isolate_pages_global(nr_pages
, &l_hold
,
1351 &pgscanned
, sc
->order
,
1352 ISOLATE_ACTIVE
, zone
,
1354 zone
->pages_scanned
+= pgscanned
;
1356 nr_taken
= mem_cgroup_isolate_pages(nr_pages
, &l_hold
,
1357 &pgscanned
, sc
->order
,
1358 ISOLATE_ACTIVE
, zone
,
1359 sc
->mem_cgroup
, 1, file
);
1361 * mem_cgroup_isolate_pages() keeps track of
1362 * scanned pages on its own.
1366 reclaim_stat
->recent_scanned
[file
] += nr_taken
;
1368 __count_zone_vm_events(PGREFILL
, zone
, pgscanned
);
1370 __mod_zone_page_state(zone
, NR_ACTIVE_FILE
, -nr_taken
);
1372 __mod_zone_page_state(zone
, NR_ACTIVE_ANON
, -nr_taken
);
1373 __mod_zone_page_state(zone
, NR_ISOLATED_ANON
+ file
, nr_taken
);
1374 spin_unlock_irq(&zone
->lru_lock
);
1376 while (!list_empty(&l_hold
)) {
1378 page
= lru_to_page(&l_hold
);
1379 list_del(&page
->lru
);
1381 if (unlikely(!page_evictable(page
, NULL
))) {
1382 putback_lru_page(page
);
1386 if (page_referenced(page
, 0, sc
->mem_cgroup
, &vm_flags
)) {
1389 * Identify referenced, file-backed active pages and
1390 * give them one more trip around the active list. So
1391 * that executable code get better chances to stay in
1392 * memory under moderate memory pressure. Anon pages
1393 * are not likely to be evicted by use-once streaming
1394 * IO, plus JVM can create lots of anon VM_EXEC pages,
1395 * so we ignore them here.
1397 if ((vm_flags
& VM_EXEC
) && page_is_file_cache(page
)) {
1398 list_add(&page
->lru
, &l_active
);
1403 ClearPageActive(page
); /* we are de-activating */
1404 list_add(&page
->lru
, &l_inactive
);
1408 * Move pages back to the lru list.
1410 spin_lock_irq(&zone
->lru_lock
);
1412 * Count referenced pages from currently used mappings as rotated,
1413 * even though only some of them are actually re-activated. This
1414 * helps balance scan pressure between file and anonymous pages in
1417 reclaim_stat
->recent_rotated
[file
] += nr_rotated
;
1419 move_active_pages_to_lru(zone
, &l_active
,
1420 LRU_ACTIVE
+ file
* LRU_FILE
);
1421 move_active_pages_to_lru(zone
, &l_inactive
,
1422 LRU_BASE
+ file
* LRU_FILE
);
1423 __mod_zone_page_state(zone
, NR_ISOLATED_ANON
+ file
, -nr_taken
);
1424 spin_unlock_irq(&zone
->lru_lock
);
1427 static int inactive_anon_is_low_global(struct zone
*zone
)
1429 unsigned long active
, inactive
;
1431 active
= zone_page_state(zone
, NR_ACTIVE_ANON
);
1432 inactive
= zone_page_state(zone
, NR_INACTIVE_ANON
);
1434 if (inactive
* zone
->inactive_ratio
< active
)
1441 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1442 * @zone: zone to check
1443 * @sc: scan control of this context
1445 * Returns true if the zone does not have enough inactive anon pages,
1446 * meaning some active anon pages need to be deactivated.
1448 static int inactive_anon_is_low(struct zone
*zone
, struct scan_control
*sc
)
1452 if (scanning_global_lru(sc
))
1453 low
= inactive_anon_is_low_global(zone
);
1455 low
= mem_cgroup_inactive_anon_is_low(sc
->mem_cgroup
);
1459 static int inactive_file_is_low_global(struct zone
*zone
)
1461 unsigned long active
, inactive
;
1463 active
= zone_page_state(zone
, NR_ACTIVE_FILE
);
1464 inactive
= zone_page_state(zone
, NR_INACTIVE_FILE
);
1466 return (active
> inactive
);
1470 * inactive_file_is_low - check if file pages need to be deactivated
1471 * @zone: zone to check
1472 * @sc: scan control of this context
1474 * When the system is doing streaming IO, memory pressure here
1475 * ensures that active file pages get deactivated, until more
1476 * than half of the file pages are on the inactive list.
1478 * Once we get to that situation, protect the system's working
1479 * set from being evicted by disabling active file page aging.
1481 * This uses a different ratio than the anonymous pages, because
1482 * the page cache uses a use-once replacement algorithm.
1484 static int inactive_file_is_low(struct zone
*zone
, struct scan_control
*sc
)
1488 if (scanning_global_lru(sc
))
1489 low
= inactive_file_is_low_global(zone
);
1491 low
= mem_cgroup_inactive_file_is_low(sc
->mem_cgroup
);
1495 static int inactive_list_is_low(struct zone
*zone
, struct scan_control
*sc
,
1499 return inactive_file_is_low(zone
, sc
);
1501 return inactive_anon_is_low(zone
, sc
);
1504 static unsigned long shrink_list(enum lru_list lru
, unsigned long nr_to_scan
,
1505 struct zone
*zone
, struct scan_control
*sc
, int priority
)
1507 int file
= is_file_lru(lru
);
1509 if (is_active_lru(lru
)) {
1510 if (inactive_list_is_low(zone
, sc
, file
))
1511 shrink_active_list(nr_to_scan
, zone
, sc
, priority
, file
);
1515 return shrink_inactive_list(nr_to_scan
, zone
, sc
, priority
, file
);
1519 * Smallish @nr_to_scan's are deposited in @nr_saved_scan,
1520 * until we collected @swap_cluster_max pages to scan.
1522 static unsigned long nr_scan_try_batch(unsigned long nr_to_scan
,
1523 unsigned long *nr_saved_scan
)
1527 *nr_saved_scan
+= nr_to_scan
;
1528 nr
= *nr_saved_scan
;
1530 if (nr
>= SWAP_CLUSTER_MAX
)
1539 * Determine how aggressively the anon and file LRU lists should be
1540 * scanned. The relative value of each set of LRU lists is determined
1541 * by looking at the fraction of the pages scanned we did rotate back
1542 * onto the active list instead of evict.
1544 * nr[0] = anon pages to scan; nr[1] = file pages to scan
1546 static void get_scan_count(struct zone
*zone
, struct scan_control
*sc
,
1547 unsigned long *nr
, int priority
)
1549 unsigned long anon
, file
, free
;
1550 unsigned long anon_prio
, file_prio
;
1551 unsigned long ap
, fp
;
1552 struct zone_reclaim_stat
*reclaim_stat
= get_reclaim_stat(zone
, sc
);
1553 u64 fraction
[2], denominator
;
1557 /* If we have no swap space, do not bother scanning anon pages. */
1558 if (!sc
->may_swap
|| (nr_swap_pages
<= 0)) {
1566 anon
= zone_nr_lru_pages(zone
, sc
, LRU_ACTIVE_ANON
) +
1567 zone_nr_lru_pages(zone
, sc
, LRU_INACTIVE_ANON
);
1568 file
= zone_nr_lru_pages(zone
, sc
, LRU_ACTIVE_FILE
) +
1569 zone_nr_lru_pages(zone
, sc
, LRU_INACTIVE_FILE
);
1571 if (scanning_global_lru(sc
)) {
1572 free
= zone_page_state(zone
, NR_FREE_PAGES
);
1573 /* If we have very few page cache pages,
1574 force-scan anon pages. */
1575 if (unlikely(file
+ free
<= high_wmark_pages(zone
))) {
1584 * OK, so we have swap space and a fair amount of page cache
1585 * pages. We use the recently rotated / recently scanned
1586 * ratios to determine how valuable each cache is.
1588 * Because workloads change over time (and to avoid overflow)
1589 * we keep these statistics as a floating average, which ends
1590 * up weighing recent references more than old ones.
1592 * anon in [0], file in [1]
1594 if (unlikely(reclaim_stat
->recent_scanned
[0] > anon
/ 4)) {
1595 spin_lock_irq(&zone
->lru_lock
);
1596 reclaim_stat
->recent_scanned
[0] /= 2;
1597 reclaim_stat
->recent_rotated
[0] /= 2;
1598 spin_unlock_irq(&zone
->lru_lock
);
1601 if (unlikely(reclaim_stat
->recent_scanned
[1] > file
/ 4)) {
1602 spin_lock_irq(&zone
->lru_lock
);
1603 reclaim_stat
->recent_scanned
[1] /= 2;
1604 reclaim_stat
->recent_rotated
[1] /= 2;
1605 spin_unlock_irq(&zone
->lru_lock
);
1609 * With swappiness at 100, anonymous and file have the same priority.
1610 * This scanning priority is essentially the inverse of IO cost.
1612 anon_prio
= sc
->swappiness
;
1613 file_prio
= 200 - sc
->swappiness
;
1616 * The amount of pressure on anon vs file pages is inversely
1617 * proportional to the fraction of recently scanned pages on
1618 * each list that were recently referenced and in active use.
1620 ap
= (anon_prio
+ 1) * (reclaim_stat
->recent_scanned
[0] + 1);
1621 ap
/= reclaim_stat
->recent_rotated
[0] + 1;
1623 fp
= (file_prio
+ 1) * (reclaim_stat
->recent_scanned
[1] + 1);
1624 fp
/= reclaim_stat
->recent_rotated
[1] + 1;
1628 denominator
= ap
+ fp
+ 1;
1630 for_each_evictable_lru(l
) {
1631 int file
= is_file_lru(l
);
1634 scan
= zone_nr_lru_pages(zone
, sc
, l
);
1635 if (priority
|| noswap
) {
1637 scan
= div64_u64(scan
* fraction
[file
], denominator
);
1639 nr
[l
] = nr_scan_try_batch(scan
,
1640 &reclaim_stat
->nr_saved_scan
[l
]);
1644 static void set_lumpy_reclaim_mode(int priority
, struct scan_control
*sc
)
1647 * If we need a large contiguous chunk of memory, or have
1648 * trouble getting a small set of contiguous pages, we
1649 * will reclaim both active and inactive pages.
1651 if (sc
->order
> PAGE_ALLOC_COSTLY_ORDER
)
1652 sc
->lumpy_reclaim_mode
= 1;
1653 else if (sc
->order
&& priority
< DEF_PRIORITY
- 2)
1654 sc
->lumpy_reclaim_mode
= 1;
1656 sc
->lumpy_reclaim_mode
= 0;
1660 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1662 static void shrink_zone(int priority
, struct zone
*zone
,
1663 struct scan_control
*sc
)
1665 unsigned long nr
[NR_LRU_LISTS
];
1666 unsigned long nr_to_scan
;
1668 unsigned long nr_reclaimed
= sc
->nr_reclaimed
;
1669 unsigned long nr_to_reclaim
= sc
->nr_to_reclaim
;
1671 get_scan_count(zone
, sc
, nr
, priority
);
1673 set_lumpy_reclaim_mode(priority
, sc
);
1675 while (nr
[LRU_INACTIVE_ANON
] || nr
[LRU_ACTIVE_FILE
] ||
1676 nr
[LRU_INACTIVE_FILE
]) {
1677 for_each_evictable_lru(l
) {
1679 nr_to_scan
= min_t(unsigned long,
1680 nr
[l
], SWAP_CLUSTER_MAX
);
1681 nr
[l
] -= nr_to_scan
;
1683 nr_reclaimed
+= shrink_list(l
, nr_to_scan
,
1684 zone
, sc
, priority
);
1688 * On large memory systems, scan >> priority can become
1689 * really large. This is fine for the starting priority;
1690 * we want to put equal scanning pressure on each zone.
1691 * However, if the VM has a harder time of freeing pages,
1692 * with multiple processes reclaiming pages, the total
1693 * freeing target can get unreasonably large.
1695 if (nr_reclaimed
>= nr_to_reclaim
&& priority
< DEF_PRIORITY
)
1699 sc
->nr_reclaimed
= nr_reclaimed
;
1702 * Even if we did not try to evict anon pages at all, we want to
1703 * rebalance the anon lru active/inactive ratio.
1705 if (inactive_anon_is_low(zone
, sc
) && nr_swap_pages
> 0)
1706 shrink_active_list(SWAP_CLUSTER_MAX
, zone
, sc
, priority
, 0);
1708 throttle_vm_writeout(sc
->gfp_mask
);
1712 * This is the direct reclaim path, for page-allocating processes. We only
1713 * try to reclaim pages from zones which will satisfy the caller's allocation
1716 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
1718 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1720 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
1721 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
1722 * zone defense algorithm.
1724 * If a zone is deemed to be full of pinned pages then just give it a light
1725 * scan then give up on it.
1727 static bool shrink_zones(int priority
, struct zonelist
*zonelist
,
1728 struct scan_control
*sc
)
1730 enum zone_type high_zoneidx
= gfp_zone(sc
->gfp_mask
);
1733 bool all_unreclaimable
= true;
1735 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
, high_zoneidx
,
1737 if (!populated_zone(zone
))
1740 * Take care memory controller reclaiming has small influence
1743 if (scanning_global_lru(sc
)) {
1744 if (!cpuset_zone_allowed_hardwall(zone
, GFP_KERNEL
))
1746 note_zone_scanning_priority(zone
, priority
);
1748 if (zone
->all_unreclaimable
&& priority
!= DEF_PRIORITY
)
1749 continue; /* Let kswapd poll it */
1752 * Ignore cpuset limitation here. We just want to reduce
1753 * # of used pages by us regardless of memory shortage.
1755 mem_cgroup_note_reclaim_priority(sc
->mem_cgroup
,
1759 shrink_zone(priority
, zone
, sc
);
1760 all_unreclaimable
= false;
1762 return all_unreclaimable
;
1766 * This is the main entry point to direct page reclaim.
1768 * If a full scan of the inactive list fails to free enough memory then we
1769 * are "out of memory" and something needs to be killed.
1771 * If the caller is !__GFP_FS then the probability of a failure is reasonably
1772 * high - the zone may be full of dirty or under-writeback pages, which this
1773 * caller can't do much about. We kick the writeback threads and take explicit
1774 * naps in the hope that some of these pages can be written. But if the
1775 * allocating task holds filesystem locks which prevent writeout this might not
1776 * work, and the allocation attempt will fail.
1778 * returns: 0, if no pages reclaimed
1779 * else, the number of pages reclaimed
1781 static unsigned long do_try_to_free_pages(struct zonelist
*zonelist
,
1782 struct scan_control
*sc
)
1785 bool all_unreclaimable
;
1786 unsigned long total_scanned
= 0;
1787 struct reclaim_state
*reclaim_state
= current
->reclaim_state
;
1788 unsigned long lru_pages
= 0;
1791 enum zone_type high_zoneidx
= gfp_zone(sc
->gfp_mask
);
1792 unsigned long writeback_threshold
;
1795 delayacct_freepages_start();
1797 if (scanning_global_lru(sc
))
1798 count_vm_event(ALLOCSTALL
);
1800 * mem_cgroup will not do shrink_slab.
1802 if (scanning_global_lru(sc
)) {
1803 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
) {
1805 if (!cpuset_zone_allowed_hardwall(zone
, GFP_KERNEL
))
1808 lru_pages
+= zone_reclaimable_pages(zone
);
1812 for (priority
= DEF_PRIORITY
; priority
>= 0; priority
--) {
1815 disable_swap_token();
1816 all_unreclaimable
= shrink_zones(priority
, zonelist
, sc
);
1818 * Don't shrink slabs when reclaiming memory from
1819 * over limit cgroups
1821 if (scanning_global_lru(sc
)) {
1822 shrink_slab(sc
->nr_scanned
, sc
->gfp_mask
, lru_pages
);
1823 if (reclaim_state
) {
1824 sc
->nr_reclaimed
+= reclaim_state
->reclaimed_slab
;
1825 reclaim_state
->reclaimed_slab
= 0;
1828 total_scanned
+= sc
->nr_scanned
;
1829 if (sc
->nr_reclaimed
>= sc
->nr_to_reclaim
)
1833 * Try to write back as many pages as we just scanned. This
1834 * tends to cause slow streaming writers to write data to the
1835 * disk smoothly, at the dirtying rate, which is nice. But
1836 * that's undesirable in laptop mode, where we *want* lumpy
1837 * writeout. So in laptop mode, write out the whole world.
1839 writeback_threshold
= sc
->nr_to_reclaim
+ sc
->nr_to_reclaim
/ 2;
1840 if (total_scanned
> writeback_threshold
) {
1841 wakeup_flusher_threads(laptop_mode
? 0 : total_scanned
);
1842 sc
->may_writepage
= 1;
1845 /* Take a nap, wait for some writeback to complete */
1846 if (!sc
->hibernation_mode
&& sc
->nr_scanned
&&
1847 priority
< DEF_PRIORITY
- 2)
1848 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
1853 * Now that we've scanned all the zones at this priority level, note
1854 * that level within the zone so that the next thread which performs
1855 * scanning of this zone will immediately start out at this priority
1856 * level. This affects only the decision whether or not to bring
1857 * mapped pages onto the inactive list.
1862 if (scanning_global_lru(sc
)) {
1863 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
) {
1865 if (!cpuset_zone_allowed_hardwall(zone
, GFP_KERNEL
))
1868 zone
->prev_priority
= priority
;
1871 mem_cgroup_record_reclaim_priority(sc
->mem_cgroup
, priority
);
1873 delayacct_freepages_end();
1876 if (sc
->nr_reclaimed
)
1877 return sc
->nr_reclaimed
;
1879 /* top priority shrink_zones still had more to do? don't OOM, then */
1880 if (scanning_global_lru(sc
) && !all_unreclaimable
)
1886 unsigned long try_to_free_pages(struct zonelist
*zonelist
, int order
,
1887 gfp_t gfp_mask
, nodemask_t
*nodemask
)
1889 struct scan_control sc
= {
1890 .gfp_mask
= gfp_mask
,
1891 .may_writepage
= !laptop_mode
,
1892 .nr_to_reclaim
= SWAP_CLUSTER_MAX
,
1895 .swappiness
= vm_swappiness
,
1898 .nodemask
= nodemask
,
1901 return do_try_to_free_pages(zonelist
, &sc
);
1904 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1906 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup
*mem
,
1907 gfp_t gfp_mask
, bool noswap
,
1908 unsigned int swappiness
,
1909 struct zone
*zone
, int nid
)
1911 struct scan_control sc
= {
1912 .may_writepage
= !laptop_mode
,
1914 .may_swap
= !noswap
,
1915 .swappiness
= swappiness
,
1919 nodemask_t nm
= nodemask_of_node(nid
);
1921 sc
.gfp_mask
= (gfp_mask
& GFP_RECLAIM_MASK
) |
1922 (GFP_HIGHUSER_MOVABLE
& ~GFP_RECLAIM_MASK
);
1924 sc
.nr_reclaimed
= 0;
1927 * NOTE: Although we can get the priority field, using it
1928 * here is not a good idea, since it limits the pages we can scan.
1929 * if we don't reclaim here, the shrink_zone from balance_pgdat
1930 * will pick up pages from other mem cgroup's as well. We hack
1931 * the priority and make it zero.
1933 shrink_zone(0, zone
, &sc
);
1934 return sc
.nr_reclaimed
;
1937 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup
*mem_cont
,
1940 unsigned int swappiness
)
1942 struct zonelist
*zonelist
;
1943 struct scan_control sc
= {
1944 .may_writepage
= !laptop_mode
,
1946 .may_swap
= !noswap
,
1947 .nr_to_reclaim
= SWAP_CLUSTER_MAX
,
1948 .swappiness
= swappiness
,
1950 .mem_cgroup
= mem_cont
,
1951 .nodemask
= NULL
, /* we don't care the placement */
1954 sc
.gfp_mask
= (gfp_mask
& GFP_RECLAIM_MASK
) |
1955 (GFP_HIGHUSER_MOVABLE
& ~GFP_RECLAIM_MASK
);
1956 zonelist
= NODE_DATA(numa_node_id())->node_zonelists
;
1957 return do_try_to_free_pages(zonelist
, &sc
);
1961 /* is kswapd sleeping prematurely? */
1962 static int sleeping_prematurely(pg_data_t
*pgdat
, int order
, long remaining
)
1966 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
1970 /* If after HZ/10, a zone is below the high mark, it's premature */
1971 for (i
= 0; i
< pgdat
->nr_zones
; i
++) {
1972 struct zone
*zone
= pgdat
->node_zones
+ i
;
1974 if (!populated_zone(zone
))
1977 if (zone
->all_unreclaimable
)
1980 if (!zone_watermark_ok(zone
, order
, high_wmark_pages(zone
),
1989 * For kswapd, balance_pgdat() will work across all this node's zones until
1990 * they are all at high_wmark_pages(zone).
1992 * Returns the number of pages which were actually freed.
1994 * There is special handling here for zones which are full of pinned pages.
1995 * This can happen if the pages are all mlocked, or if they are all used by
1996 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
1997 * What we do is to detect the case where all pages in the zone have been
1998 * scanned twice and there has been zero successful reclaim. Mark the zone as
1999 * dead and from now on, only perform a short scan. Basically we're polling
2000 * the zone for when the problem goes away.
2002 * kswapd scans the zones in the highmem->normal->dma direction. It skips
2003 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2004 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2005 * lower zones regardless of the number of free pages in the lower zones. This
2006 * interoperates with the page allocator fallback scheme to ensure that aging
2007 * of pages is balanced across the zones.
2009 static unsigned long balance_pgdat(pg_data_t
*pgdat
, int order
)
2014 unsigned long total_scanned
;
2015 struct reclaim_state
*reclaim_state
= current
->reclaim_state
;
2016 struct scan_control sc
= {
2017 .gfp_mask
= GFP_KERNEL
,
2021 * kswapd doesn't want to be bailed out while reclaim. because
2022 * we want to put equal scanning pressure on each zone.
2024 .nr_to_reclaim
= ULONG_MAX
,
2025 .swappiness
= vm_swappiness
,
2030 * temp_priority is used to remember the scanning priority at which
2031 * this zone was successfully refilled to
2032 * free_pages == high_wmark_pages(zone).
2034 int temp_priority
[MAX_NR_ZONES
];
2038 sc
.nr_reclaimed
= 0;
2039 sc
.may_writepage
= !laptop_mode
;
2040 count_vm_event(PAGEOUTRUN
);
2042 for (i
= 0; i
< pgdat
->nr_zones
; i
++)
2043 temp_priority
[i
] = DEF_PRIORITY
;
2045 for (priority
= DEF_PRIORITY
; priority
>= 0; priority
--) {
2046 int end_zone
= 0; /* Inclusive. 0 = ZONE_DMA */
2047 unsigned long lru_pages
= 0;
2048 int has_under_min_watermark_zone
= 0;
2050 /* The swap token gets in the way of swapout... */
2052 disable_swap_token();
2057 * Scan in the highmem->dma direction for the highest
2058 * zone which needs scanning
2060 for (i
= pgdat
->nr_zones
- 1; i
>= 0; i
--) {
2061 struct zone
*zone
= pgdat
->node_zones
+ i
;
2063 if (!populated_zone(zone
))
2066 if (zone
->all_unreclaimable
&& priority
!= DEF_PRIORITY
)
2070 * Do some background aging of the anon list, to give
2071 * pages a chance to be referenced before reclaiming.
2073 if (inactive_anon_is_low(zone
, &sc
))
2074 shrink_active_list(SWAP_CLUSTER_MAX
, zone
,
2077 if (!zone_watermark_ok(zone
, order
,
2078 high_wmark_pages(zone
), 0, 0)) {
2086 for (i
= 0; i
<= end_zone
; i
++) {
2087 struct zone
*zone
= pgdat
->node_zones
+ i
;
2089 lru_pages
+= zone_reclaimable_pages(zone
);
2093 * Now scan the zone in the dma->highmem direction, stopping
2094 * at the last zone which needs scanning.
2096 * We do this because the page allocator works in the opposite
2097 * direction. This prevents the page allocator from allocating
2098 * pages behind kswapd's direction of progress, which would
2099 * cause too much scanning of the lower zones.
2101 for (i
= 0; i
<= end_zone
; i
++) {
2102 struct zone
*zone
= pgdat
->node_zones
+ i
;
2106 if (!populated_zone(zone
))
2109 if (zone
->all_unreclaimable
&& priority
!= DEF_PRIORITY
)
2112 temp_priority
[i
] = priority
;
2114 note_zone_scanning_priority(zone
, priority
);
2116 nid
= pgdat
->node_id
;
2117 zid
= zone_idx(zone
);
2119 * Call soft limit reclaim before calling shrink_zone.
2120 * For now we ignore the return value
2122 mem_cgroup_soft_limit_reclaim(zone
, order
, sc
.gfp_mask
,
2125 * We put equal pressure on every zone, unless one
2126 * zone has way too many pages free already.
2128 if (!zone_watermark_ok(zone
, order
,
2129 8*high_wmark_pages(zone
), end_zone
, 0))
2130 shrink_zone(priority
, zone
, &sc
);
2131 reclaim_state
->reclaimed_slab
= 0;
2132 nr_slab
= shrink_slab(sc
.nr_scanned
, GFP_KERNEL
,
2134 sc
.nr_reclaimed
+= reclaim_state
->reclaimed_slab
;
2135 total_scanned
+= sc
.nr_scanned
;
2136 if (zone
->all_unreclaimable
)
2139 zone
->pages_scanned
>= (zone_reclaimable_pages(zone
) * 6))
2140 zone
->all_unreclaimable
= 1;
2142 * If we've done a decent amount of scanning and
2143 * the reclaim ratio is low, start doing writepage
2144 * even in laptop mode
2146 if (total_scanned
> SWAP_CLUSTER_MAX
* 2 &&
2147 total_scanned
> sc
.nr_reclaimed
+ sc
.nr_reclaimed
/ 2)
2148 sc
.may_writepage
= 1;
2150 if (!zone_watermark_ok(zone
, order
,
2151 high_wmark_pages(zone
), end_zone
, 0)) {
2154 * We are still under min water mark. This
2155 * means that we have a GFP_ATOMIC allocation
2156 * failure risk. Hurry up!
2158 if (!zone_watermark_ok(zone
, order
,
2159 min_wmark_pages(zone
), end_zone
, 0))
2160 has_under_min_watermark_zone
= 1;
2165 break; /* kswapd: all done */
2167 * OK, kswapd is getting into trouble. Take a nap, then take
2168 * another pass across the zones.
2170 if (total_scanned
&& (priority
< DEF_PRIORITY
- 2)) {
2171 if (has_under_min_watermark_zone
)
2172 count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT
);
2174 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
2178 * We do this so kswapd doesn't build up large priorities for
2179 * example when it is freeing in parallel with allocators. It
2180 * matches the direct reclaim path behaviour in terms of impact
2181 * on zone->*_priority.
2183 if (sc
.nr_reclaimed
>= SWAP_CLUSTER_MAX
)
2188 * Note within each zone the priority level at which this zone was
2189 * brought into a happy state. So that the next thread which scans this
2190 * zone will start out at that priority level.
2192 for (i
= 0; i
< pgdat
->nr_zones
; i
++) {
2193 struct zone
*zone
= pgdat
->node_zones
+ i
;
2195 zone
->prev_priority
= temp_priority
[i
];
2197 if (!all_zones_ok
) {
2203 * Fragmentation may mean that the system cannot be
2204 * rebalanced for high-order allocations in all zones.
2205 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2206 * it means the zones have been fully scanned and are still
2207 * not balanced. For high-order allocations, there is
2208 * little point trying all over again as kswapd may
2211 * Instead, recheck all watermarks at order-0 as they
2212 * are the most important. If watermarks are ok, kswapd will go
2213 * back to sleep. High-order users can still perform direct
2214 * reclaim if they wish.
2216 if (sc
.nr_reclaimed
< SWAP_CLUSTER_MAX
)
2217 order
= sc
.order
= 0;
2222 return sc
.nr_reclaimed
;
2226 * The background pageout daemon, started as a kernel thread
2227 * from the init process.
2229 * This basically trickles out pages so that we have _some_
2230 * free memory available even if there is no other activity
2231 * that frees anything up. This is needed for things like routing
2232 * etc, where we otherwise might have all activity going on in
2233 * asynchronous contexts that cannot page things out.
2235 * If there are applications that are active memory-allocators
2236 * (most normal use), this basically shouldn't matter.
2238 static int kswapd(void *p
)
2240 unsigned long order
;
2241 pg_data_t
*pgdat
= (pg_data_t
*)p
;
2242 struct task_struct
*tsk
= current
;
2244 struct reclaim_state reclaim_state
= {
2245 .reclaimed_slab
= 0,
2247 const struct cpumask
*cpumask
= cpumask_of_node(pgdat
->node_id
);
2249 lockdep_set_current_reclaim_state(GFP_KERNEL
);
2251 if (!cpumask_empty(cpumask
))
2252 set_cpus_allowed_ptr(tsk
, cpumask
);
2253 current
->reclaim_state
= &reclaim_state
;
2256 * Tell the memory management that we're a "memory allocator",
2257 * and that if we need more memory we should get access to it
2258 * regardless (see "__alloc_pages()"). "kswapd" should
2259 * never get caught in the normal page freeing logic.
2261 * (Kswapd normally doesn't need memory anyway, but sometimes
2262 * you need a small amount of memory in order to be able to
2263 * page out something else, and this flag essentially protects
2264 * us from recursively trying to free more memory as we're
2265 * trying to free the first piece of memory in the first place).
2267 tsk
->flags
|= PF_MEMALLOC
| PF_SWAPWRITE
| PF_KSWAPD
;
2272 unsigned long new_order
;
2275 prepare_to_wait(&pgdat
->kswapd_wait
, &wait
, TASK_INTERRUPTIBLE
);
2276 new_order
= pgdat
->kswapd_max_order
;
2277 pgdat
->kswapd_max_order
= 0;
2278 if (order
< new_order
) {
2280 * Don't sleep if someone wants a larger 'order'
2285 if (!freezing(current
) && !kthread_should_stop()) {
2288 /* Try to sleep for a short interval */
2289 if (!sleeping_prematurely(pgdat
, order
, remaining
)) {
2290 remaining
= schedule_timeout(HZ
/10);
2291 finish_wait(&pgdat
->kswapd_wait
, &wait
);
2292 prepare_to_wait(&pgdat
->kswapd_wait
, &wait
, TASK_INTERRUPTIBLE
);
2296 * After a short sleep, check if it was a
2297 * premature sleep. If not, then go fully
2298 * to sleep until explicitly woken up
2300 if (!sleeping_prematurely(pgdat
, order
, remaining
))
2304 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY
);
2306 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY
);
2310 order
= pgdat
->kswapd_max_order
;
2312 finish_wait(&pgdat
->kswapd_wait
, &wait
);
2314 ret
= try_to_freeze();
2315 if (kthread_should_stop())
2319 * We can speed up thawing tasks if we don't call balance_pgdat
2320 * after returning from the refrigerator
2323 balance_pgdat(pgdat
, order
);
2329 * A zone is low on free memory, so wake its kswapd task to service it.
2331 void wakeup_kswapd(struct zone
*zone
, int order
)
2335 if (!populated_zone(zone
))
2338 pgdat
= zone
->zone_pgdat
;
2339 if (zone_watermark_ok(zone
, order
, low_wmark_pages(zone
), 0, 0))
2341 if (pgdat
->kswapd_max_order
< order
)
2342 pgdat
->kswapd_max_order
= order
;
2343 if (!cpuset_zone_allowed_hardwall(zone
, GFP_KERNEL
))
2345 if (!waitqueue_active(&pgdat
->kswapd_wait
))
2347 wake_up_interruptible(&pgdat
->kswapd_wait
);
2351 * The reclaimable count would be mostly accurate.
2352 * The less reclaimable pages may be
2353 * - mlocked pages, which will be moved to unevictable list when encountered
2354 * - mapped pages, which may require several travels to be reclaimed
2355 * - dirty pages, which is not "instantly" reclaimable
2357 unsigned long global_reclaimable_pages(void)
2361 nr
= global_page_state(NR_ACTIVE_FILE
) +
2362 global_page_state(NR_INACTIVE_FILE
);
2364 if (nr_swap_pages
> 0)
2365 nr
+= global_page_state(NR_ACTIVE_ANON
) +
2366 global_page_state(NR_INACTIVE_ANON
);
2371 unsigned long zone_reclaimable_pages(struct zone
*zone
)
2375 nr
= zone_page_state(zone
, NR_ACTIVE_FILE
) +
2376 zone_page_state(zone
, NR_INACTIVE_FILE
);
2378 if (nr_swap_pages
> 0)
2379 nr
+= zone_page_state(zone
, NR_ACTIVE_ANON
) +
2380 zone_page_state(zone
, NR_INACTIVE_ANON
);
2385 #ifdef CONFIG_HIBERNATION
2387 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
2390 * Rather than trying to age LRUs the aim is to preserve the overall
2391 * LRU order by reclaiming preferentially
2392 * inactive > active > active referenced > active mapped
2394 unsigned long shrink_all_memory(unsigned long nr_to_reclaim
)
2396 struct reclaim_state reclaim_state
;
2397 struct scan_control sc
= {
2398 .gfp_mask
= GFP_HIGHUSER_MOVABLE
,
2402 .nr_to_reclaim
= nr_to_reclaim
,
2403 .hibernation_mode
= 1,
2404 .swappiness
= vm_swappiness
,
2407 struct zonelist
* zonelist
= node_zonelist(numa_node_id(), sc
.gfp_mask
);
2408 struct task_struct
*p
= current
;
2409 unsigned long nr_reclaimed
;
2411 p
->flags
|= PF_MEMALLOC
;
2412 lockdep_set_current_reclaim_state(sc
.gfp_mask
);
2413 reclaim_state
.reclaimed_slab
= 0;
2414 p
->reclaim_state
= &reclaim_state
;
2416 nr_reclaimed
= do_try_to_free_pages(zonelist
, &sc
);
2418 p
->reclaim_state
= NULL
;
2419 lockdep_clear_current_reclaim_state();
2420 p
->flags
&= ~PF_MEMALLOC
;
2422 return nr_reclaimed
;
2424 #endif /* CONFIG_HIBERNATION */
2426 /* It's optimal to keep kswapds on the same CPUs as their memory, but
2427 not required for correctness. So if the last cpu in a node goes
2428 away, we get changed to run anywhere: as the first one comes back,
2429 restore their cpu bindings. */
2430 static int __devinit
cpu_callback(struct notifier_block
*nfb
,
2431 unsigned long action
, void *hcpu
)
2435 if (action
== CPU_ONLINE
|| action
== CPU_ONLINE_FROZEN
) {
2436 for_each_node_state(nid
, N_HIGH_MEMORY
) {
2437 pg_data_t
*pgdat
= NODE_DATA(nid
);
2438 const struct cpumask
*mask
;
2440 mask
= cpumask_of_node(pgdat
->node_id
);
2442 if (cpumask_any_and(cpu_online_mask
, mask
) < nr_cpu_ids
)
2443 /* One of our CPUs online: restore mask */
2444 set_cpus_allowed_ptr(pgdat
->kswapd
, mask
);
2451 * This kswapd start function will be called by init and node-hot-add.
2452 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2454 int kswapd_run(int nid
)
2456 pg_data_t
*pgdat
= NODE_DATA(nid
);
2462 pgdat
->kswapd
= kthread_run(kswapd
, pgdat
, "kswapd%d", nid
);
2463 if (IS_ERR(pgdat
->kswapd
)) {
2464 /* failure at boot is fatal */
2465 BUG_ON(system_state
== SYSTEM_BOOTING
);
2466 printk("Failed to start kswapd on node %d\n",nid
);
2473 * Called by memory hotplug when all memory in a node is offlined.
2475 void kswapd_stop(int nid
)
2477 struct task_struct
*kswapd
= NODE_DATA(nid
)->kswapd
;
2480 kthread_stop(kswapd
);
2483 static int __init
kswapd_init(void)
2488 for_each_node_state(nid
, N_HIGH_MEMORY
)
2490 hotcpu_notifier(cpu_callback
, 0);
2494 module_init(kswapd_init
)
2500 * If non-zero call zone_reclaim when the number of free pages falls below
2503 int zone_reclaim_mode __read_mostly
;
2505 #define RECLAIM_OFF 0
2506 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
2507 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
2508 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
2511 * Priority for ZONE_RECLAIM. This determines the fraction of pages
2512 * of a node considered for each zone_reclaim. 4 scans 1/16th of
2515 #define ZONE_RECLAIM_PRIORITY 4
2518 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
2521 int sysctl_min_unmapped_ratio
= 1;
2524 * If the number of slab pages in a zone grows beyond this percentage then
2525 * slab reclaim needs to occur.
2527 int sysctl_min_slab_ratio
= 5;
2529 static inline unsigned long zone_unmapped_file_pages(struct zone
*zone
)
2531 unsigned long file_mapped
= zone_page_state(zone
, NR_FILE_MAPPED
);
2532 unsigned long file_lru
= zone_page_state(zone
, NR_INACTIVE_FILE
) +
2533 zone_page_state(zone
, NR_ACTIVE_FILE
);
2536 * It's possible for there to be more file mapped pages than
2537 * accounted for by the pages on the file LRU lists because
2538 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
2540 return (file_lru
> file_mapped
) ? (file_lru
- file_mapped
) : 0;
2543 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
2544 static long zone_pagecache_reclaimable(struct zone
*zone
)
2546 long nr_pagecache_reclaimable
;
2550 * If RECLAIM_SWAP is set, then all file pages are considered
2551 * potentially reclaimable. Otherwise, we have to worry about
2552 * pages like swapcache and zone_unmapped_file_pages() provides
2555 if (zone_reclaim_mode
& RECLAIM_SWAP
)
2556 nr_pagecache_reclaimable
= zone_page_state(zone
, NR_FILE_PAGES
);
2558 nr_pagecache_reclaimable
= zone_unmapped_file_pages(zone
);
2560 /* If we can't clean pages, remove dirty pages from consideration */
2561 if (!(zone_reclaim_mode
& RECLAIM_WRITE
))
2562 delta
+= zone_page_state(zone
, NR_FILE_DIRTY
);
2564 /* Watch for any possible underflows due to delta */
2565 if (unlikely(delta
> nr_pagecache_reclaimable
))
2566 delta
= nr_pagecache_reclaimable
;
2568 return nr_pagecache_reclaimable
- delta
;
2572 * Try to free up some pages from this zone through reclaim.
2574 static int __zone_reclaim(struct zone
*zone
, gfp_t gfp_mask
, unsigned int order
)
2576 /* Minimum pages needed in order to stay on node */
2577 const unsigned long nr_pages
= 1 << order
;
2578 struct task_struct
*p
= current
;
2579 struct reclaim_state reclaim_state
;
2581 struct scan_control sc
= {
2582 .may_writepage
= !!(zone_reclaim_mode
& RECLAIM_WRITE
),
2583 .may_unmap
= !!(zone_reclaim_mode
& RECLAIM_SWAP
),
2585 .nr_to_reclaim
= max_t(unsigned long, nr_pages
,
2587 .gfp_mask
= gfp_mask
,
2588 .swappiness
= vm_swappiness
,
2591 unsigned long slab_reclaimable
;
2593 disable_swap_token();
2596 * We need to be able to allocate from the reserves for RECLAIM_SWAP
2597 * and we also need to be able to write out pages for RECLAIM_WRITE
2600 p
->flags
|= PF_MEMALLOC
| PF_SWAPWRITE
;
2601 lockdep_set_current_reclaim_state(gfp_mask
);
2602 reclaim_state
.reclaimed_slab
= 0;
2603 p
->reclaim_state
= &reclaim_state
;
2605 if (zone_pagecache_reclaimable(zone
) > zone
->min_unmapped_pages
) {
2607 * Free memory by calling shrink zone with increasing
2608 * priorities until we have enough memory freed.
2610 priority
= ZONE_RECLAIM_PRIORITY
;
2612 note_zone_scanning_priority(zone
, priority
);
2613 shrink_zone(priority
, zone
, &sc
);
2615 } while (priority
>= 0 && sc
.nr_reclaimed
< nr_pages
);
2618 slab_reclaimable
= zone_page_state(zone
, NR_SLAB_RECLAIMABLE
);
2619 if (slab_reclaimable
> zone
->min_slab_pages
) {
2621 * shrink_slab() does not currently allow us to determine how
2622 * many pages were freed in this zone. So we take the current
2623 * number of slab pages and shake the slab until it is reduced
2624 * by the same nr_pages that we used for reclaiming unmapped
2627 * Note that shrink_slab will free memory on all zones and may
2630 while (shrink_slab(sc
.nr_scanned
, gfp_mask
, order
) &&
2631 zone_page_state(zone
, NR_SLAB_RECLAIMABLE
) >
2632 slab_reclaimable
- nr_pages
)
2636 * Update nr_reclaimed by the number of slab pages we
2637 * reclaimed from this zone.
2639 sc
.nr_reclaimed
+= slab_reclaimable
-
2640 zone_page_state(zone
, NR_SLAB_RECLAIMABLE
);
2643 p
->reclaim_state
= NULL
;
2644 current
->flags
&= ~(PF_MEMALLOC
| PF_SWAPWRITE
);
2645 lockdep_clear_current_reclaim_state();
2646 return sc
.nr_reclaimed
>= nr_pages
;
2649 int zone_reclaim(struct zone
*zone
, gfp_t gfp_mask
, unsigned int order
)
2655 * Zone reclaim reclaims unmapped file backed pages and
2656 * slab pages if we are over the defined limits.
2658 * A small portion of unmapped file backed pages is needed for
2659 * file I/O otherwise pages read by file I/O will be immediately
2660 * thrown out if the zone is overallocated. So we do not reclaim
2661 * if less than a specified percentage of the zone is used by
2662 * unmapped file backed pages.
2664 if (zone_pagecache_reclaimable(zone
) <= zone
->min_unmapped_pages
&&
2665 zone_page_state(zone
, NR_SLAB_RECLAIMABLE
) <= zone
->min_slab_pages
)
2666 return ZONE_RECLAIM_FULL
;
2668 if (zone
->all_unreclaimable
)
2669 return ZONE_RECLAIM_FULL
;
2672 * Do not scan if the allocation should not be delayed.
2674 if (!(gfp_mask
& __GFP_WAIT
) || (current
->flags
& PF_MEMALLOC
))
2675 return ZONE_RECLAIM_NOSCAN
;
2678 * Only run zone reclaim on the local zone or on zones that do not
2679 * have associated processors. This will favor the local processor
2680 * over remote processors and spread off node memory allocations
2681 * as wide as possible.
2683 node_id
= zone_to_nid(zone
);
2684 if (node_state(node_id
, N_CPU
) && node_id
!= numa_node_id())
2685 return ZONE_RECLAIM_NOSCAN
;
2687 if (zone_test_and_set_flag(zone
, ZONE_RECLAIM_LOCKED
))
2688 return ZONE_RECLAIM_NOSCAN
;
2690 ret
= __zone_reclaim(zone
, gfp_mask
, order
);
2691 zone_clear_flag(zone
, ZONE_RECLAIM_LOCKED
);
2694 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED
);
2701 * page_evictable - test whether a page is evictable
2702 * @page: the page to test
2703 * @vma: the VMA in which the page is or will be mapped, may be NULL
2705 * Test whether page is evictable--i.e., should be placed on active/inactive
2706 * lists vs unevictable list. The vma argument is !NULL when called from the
2707 * fault path to determine how to instantate a new page.
2709 * Reasons page might not be evictable:
2710 * (1) page's mapping marked unevictable
2711 * (2) page is part of an mlocked VMA
2714 int page_evictable(struct page
*page
, struct vm_area_struct
*vma
)
2717 if (mapping_unevictable(page_mapping(page
)))
2720 if (PageMlocked(page
) || (vma
&& is_mlocked_vma(vma
, page
)))
2727 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
2728 * @page: page to check evictability and move to appropriate lru list
2729 * @zone: zone page is in
2731 * Checks a page for evictability and moves the page to the appropriate
2734 * Restrictions: zone->lru_lock must be held, page must be on LRU and must
2735 * have PageUnevictable set.
2737 static void check_move_unevictable_page(struct page
*page
, struct zone
*zone
)
2739 VM_BUG_ON(PageActive(page
));
2742 ClearPageUnevictable(page
);
2743 if (page_evictable(page
, NULL
)) {
2744 enum lru_list l
= page_lru_base_type(page
);
2746 __dec_zone_state(zone
, NR_UNEVICTABLE
);
2747 list_move(&page
->lru
, &zone
->lru
[l
].list
);
2748 mem_cgroup_move_lists(page
, LRU_UNEVICTABLE
, l
);
2749 __inc_zone_state(zone
, NR_INACTIVE_ANON
+ l
);
2750 __count_vm_event(UNEVICTABLE_PGRESCUED
);
2753 * rotate unevictable list
2755 SetPageUnevictable(page
);
2756 list_move(&page
->lru
, &zone
->lru
[LRU_UNEVICTABLE
].list
);
2757 mem_cgroup_rotate_lru_list(page
, LRU_UNEVICTABLE
);
2758 if (page_evictable(page
, NULL
))
2764 * scan_mapping_unevictable_pages - scan an address space for evictable pages
2765 * @mapping: struct address_space to scan for evictable pages
2767 * Scan all pages in mapping. Check unevictable pages for
2768 * evictability and move them to the appropriate zone lru list.
2770 void scan_mapping_unevictable_pages(struct address_space
*mapping
)
2773 pgoff_t end
= (i_size_read(mapping
->host
) + PAGE_CACHE_SIZE
- 1) >>
2776 struct pagevec pvec
;
2778 if (mapping
->nrpages
== 0)
2781 pagevec_init(&pvec
, 0);
2782 while (next
< end
&&
2783 pagevec_lookup(&pvec
, mapping
, next
, PAGEVEC_SIZE
)) {
2789 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
2790 struct page
*page
= pvec
.pages
[i
];
2791 pgoff_t page_index
= page
->index
;
2792 struct zone
*pagezone
= page_zone(page
);
2795 if (page_index
> next
)
2799 if (pagezone
!= zone
) {
2801 spin_unlock_irq(&zone
->lru_lock
);
2803 spin_lock_irq(&zone
->lru_lock
);
2806 if (PageLRU(page
) && PageUnevictable(page
))
2807 check_move_unevictable_page(page
, zone
);
2810 spin_unlock_irq(&zone
->lru_lock
);
2811 pagevec_release(&pvec
);
2813 count_vm_events(UNEVICTABLE_PGSCANNED
, pg_scanned
);
2819 * scan_zone_unevictable_pages - check unevictable list for evictable pages
2820 * @zone - zone of which to scan the unevictable list
2822 * Scan @zone's unevictable LRU lists to check for pages that have become
2823 * evictable. Move those that have to @zone's inactive list where they
2824 * become candidates for reclaim, unless shrink_inactive_zone() decides
2825 * to reactivate them. Pages that are still unevictable are rotated
2826 * back onto @zone's unevictable list.
2828 #define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
2829 static void scan_zone_unevictable_pages(struct zone
*zone
)
2831 struct list_head
*l_unevictable
= &zone
->lru
[LRU_UNEVICTABLE
].list
;
2833 unsigned long nr_to_scan
= zone_page_state(zone
, NR_UNEVICTABLE
);
2835 while (nr_to_scan
> 0) {
2836 unsigned long batch_size
= min(nr_to_scan
,
2837 SCAN_UNEVICTABLE_BATCH_SIZE
);
2839 spin_lock_irq(&zone
->lru_lock
);
2840 for (scan
= 0; scan
< batch_size
; scan
++) {
2841 struct page
*page
= lru_to_page(l_unevictable
);
2843 if (!trylock_page(page
))
2846 prefetchw_prev_lru_page(page
, l_unevictable
, flags
);
2848 if (likely(PageLRU(page
) && PageUnevictable(page
)))
2849 check_move_unevictable_page(page
, zone
);
2853 spin_unlock_irq(&zone
->lru_lock
);
2855 nr_to_scan
-= batch_size
;
2861 * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
2863 * A really big hammer: scan all zones' unevictable LRU lists to check for
2864 * pages that have become evictable. Move those back to the zones'
2865 * inactive list where they become candidates for reclaim.
2866 * This occurs when, e.g., we have unswappable pages on the unevictable lists,
2867 * and we add swap to the system. As such, it runs in the context of a task
2868 * that has possibly/probably made some previously unevictable pages
2871 static void scan_all_zones_unevictable_pages(void)
2875 for_each_zone(zone
) {
2876 scan_zone_unevictable_pages(zone
);
2881 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
2882 * all nodes' unevictable lists for evictable pages
2884 unsigned long scan_unevictable_pages
;
2886 int scan_unevictable_handler(struct ctl_table
*table
, int write
,
2887 void __user
*buffer
,
2888 size_t *length
, loff_t
*ppos
)
2890 proc_doulongvec_minmax(table
, write
, buffer
, length
, ppos
);
2892 if (write
&& *(unsigned long *)table
->data
)
2893 scan_all_zones_unevictable_pages();
2895 scan_unevictable_pages
= 0;
2900 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
2901 * a specified node's per zone unevictable lists for evictable pages.
2904 static ssize_t
read_scan_unevictable_node(struct sys_device
*dev
,
2905 struct sysdev_attribute
*attr
,
2908 return sprintf(buf
, "0\n"); /* always zero; should fit... */
2911 static ssize_t
write_scan_unevictable_node(struct sys_device
*dev
,
2912 struct sysdev_attribute
*attr
,
2913 const char *buf
, size_t count
)
2915 struct zone
*node_zones
= NODE_DATA(dev
->id
)->node_zones
;
2918 unsigned long req
= strict_strtoul(buf
, 10, &res
);
2921 return 1; /* zero is no-op */
2923 for (zone
= node_zones
; zone
- node_zones
< MAX_NR_ZONES
; ++zone
) {
2924 if (!populated_zone(zone
))
2926 scan_zone_unevictable_pages(zone
);
2932 static SYSDEV_ATTR(scan_unevictable_pages
, S_IRUGO
| S_IWUSR
,
2933 read_scan_unevictable_node
,
2934 write_scan_unevictable_node
);
2936 int scan_unevictable_register_node(struct node
*node
)
2938 return sysdev_create_file(&node
->sysdev
, &attr_scan_unevictable_pages
);
2941 void scan_unevictable_unregister_node(struct node
*node
)
2943 sysdev_remove_file(&node
->sysdev
, &attr_scan_unevictable_pages
);