libata: improve ata_down_xfermask_limit()
[linux-2.6/kvm.git] / drivers / ata / libata-core.c
blob249d487c091e2d843f818e5659cddc09476896c3
1 /*
2 * libata-core.c - helper library for ATA
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
35 #include <linux/kernel.h>
36 #include <linux/module.h>
37 #include <linux/pci.h>
38 #include <linux/init.h>
39 #include <linux/list.h>
40 #include <linux/mm.h>
41 #include <linux/highmem.h>
42 #include <linux/spinlock.h>
43 #include <linux/blkdev.h>
44 #include <linux/delay.h>
45 #include <linux/timer.h>
46 #include <linux/interrupt.h>
47 #include <linux/completion.h>
48 #include <linux/suspend.h>
49 #include <linux/workqueue.h>
50 #include <linux/jiffies.h>
51 #include <linux/scatterlist.h>
52 #include <scsi/scsi.h>
53 #include <scsi/scsi_cmnd.h>
54 #include <scsi/scsi_host.h>
55 #include <linux/libata.h>
56 #include <asm/io.h>
57 #include <asm/semaphore.h>
58 #include <asm/byteorder.h>
60 #include "libata.h"
62 #define DRV_VERSION "2.10" /* must be exactly four chars */
65 /* debounce timing parameters in msecs { interval, duration, timeout } */
66 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
67 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
68 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
70 static unsigned int ata_dev_init_params(struct ata_device *dev,
71 u16 heads, u16 sectors);
72 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
73 static void ata_dev_xfermask(struct ata_device *dev);
75 static unsigned int ata_unique_id = 1;
76 static struct workqueue_struct *ata_wq;
78 struct workqueue_struct *ata_aux_wq;
80 int atapi_enabled = 1;
81 module_param(atapi_enabled, int, 0444);
82 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
84 int atapi_dmadir = 0;
85 module_param(atapi_dmadir, int, 0444);
86 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
88 int libata_fua = 0;
89 module_param_named(fua, libata_fua, int, 0444);
90 MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
92 static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
93 module_param(ata_probe_timeout, int, 0444);
94 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
96 int noacpi;
97 module_param(noacpi, int, 0444);
98 MODULE_PARM_DESC(noacpi, "Disables the use of ACPI in suspend/resume when set");
100 MODULE_AUTHOR("Jeff Garzik");
101 MODULE_DESCRIPTION("Library module for ATA devices");
102 MODULE_LICENSE("GPL");
103 MODULE_VERSION(DRV_VERSION);
107 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
108 * @tf: Taskfile to convert
109 * @fis: Buffer into which data will output
110 * @pmp: Port multiplier port
112 * Converts a standard ATA taskfile to a Serial ATA
113 * FIS structure (Register - Host to Device).
115 * LOCKING:
116 * Inherited from caller.
119 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
121 fis[0] = 0x27; /* Register - Host to Device FIS */
122 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
123 bit 7 indicates Command FIS */
124 fis[2] = tf->command;
125 fis[3] = tf->feature;
127 fis[4] = tf->lbal;
128 fis[5] = tf->lbam;
129 fis[6] = tf->lbah;
130 fis[7] = tf->device;
132 fis[8] = tf->hob_lbal;
133 fis[9] = tf->hob_lbam;
134 fis[10] = tf->hob_lbah;
135 fis[11] = tf->hob_feature;
137 fis[12] = tf->nsect;
138 fis[13] = tf->hob_nsect;
139 fis[14] = 0;
140 fis[15] = tf->ctl;
142 fis[16] = 0;
143 fis[17] = 0;
144 fis[18] = 0;
145 fis[19] = 0;
149 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
150 * @fis: Buffer from which data will be input
151 * @tf: Taskfile to output
153 * Converts a serial ATA FIS structure to a standard ATA taskfile.
155 * LOCKING:
156 * Inherited from caller.
159 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
161 tf->command = fis[2]; /* status */
162 tf->feature = fis[3]; /* error */
164 tf->lbal = fis[4];
165 tf->lbam = fis[5];
166 tf->lbah = fis[6];
167 tf->device = fis[7];
169 tf->hob_lbal = fis[8];
170 tf->hob_lbam = fis[9];
171 tf->hob_lbah = fis[10];
173 tf->nsect = fis[12];
174 tf->hob_nsect = fis[13];
177 static const u8 ata_rw_cmds[] = {
178 /* pio multi */
179 ATA_CMD_READ_MULTI,
180 ATA_CMD_WRITE_MULTI,
181 ATA_CMD_READ_MULTI_EXT,
182 ATA_CMD_WRITE_MULTI_EXT,
186 ATA_CMD_WRITE_MULTI_FUA_EXT,
187 /* pio */
188 ATA_CMD_PIO_READ,
189 ATA_CMD_PIO_WRITE,
190 ATA_CMD_PIO_READ_EXT,
191 ATA_CMD_PIO_WRITE_EXT,
196 /* dma */
197 ATA_CMD_READ,
198 ATA_CMD_WRITE,
199 ATA_CMD_READ_EXT,
200 ATA_CMD_WRITE_EXT,
204 ATA_CMD_WRITE_FUA_EXT
208 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
209 * @tf: command to examine and configure
210 * @dev: device tf belongs to
212 * Examine the device configuration and tf->flags to calculate
213 * the proper read/write commands and protocol to use.
215 * LOCKING:
216 * caller.
218 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
220 u8 cmd;
222 int index, fua, lba48, write;
224 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
225 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
226 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
228 if (dev->flags & ATA_DFLAG_PIO) {
229 tf->protocol = ATA_PROT_PIO;
230 index = dev->multi_count ? 0 : 8;
231 } else if (lba48 && (dev->ap->flags & ATA_FLAG_PIO_LBA48)) {
232 /* Unable to use DMA due to host limitation */
233 tf->protocol = ATA_PROT_PIO;
234 index = dev->multi_count ? 0 : 8;
235 } else {
236 tf->protocol = ATA_PROT_DMA;
237 index = 16;
240 cmd = ata_rw_cmds[index + fua + lba48 + write];
241 if (cmd) {
242 tf->command = cmd;
243 return 0;
245 return -1;
249 * ata_tf_read_block - Read block address from ATA taskfile
250 * @tf: ATA taskfile of interest
251 * @dev: ATA device @tf belongs to
253 * LOCKING:
254 * None.
256 * Read block address from @tf. This function can handle all
257 * three address formats - LBA, LBA48 and CHS. tf->protocol and
258 * flags select the address format to use.
260 * RETURNS:
261 * Block address read from @tf.
263 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
265 u64 block = 0;
267 if (tf->flags & ATA_TFLAG_LBA) {
268 if (tf->flags & ATA_TFLAG_LBA48) {
269 block |= (u64)tf->hob_lbah << 40;
270 block |= (u64)tf->hob_lbam << 32;
271 block |= tf->hob_lbal << 24;
272 } else
273 block |= (tf->device & 0xf) << 24;
275 block |= tf->lbah << 16;
276 block |= tf->lbam << 8;
277 block |= tf->lbal;
278 } else {
279 u32 cyl, head, sect;
281 cyl = tf->lbam | (tf->lbah << 8);
282 head = tf->device & 0xf;
283 sect = tf->lbal;
285 block = (cyl * dev->heads + head) * dev->sectors + sect;
288 return block;
292 * ata_build_rw_tf - Build ATA taskfile for given read/write request
293 * @tf: Target ATA taskfile
294 * @dev: ATA device @tf belongs to
295 * @block: Block address
296 * @n_block: Number of blocks
297 * @tf_flags: RW/FUA etc...
298 * @tag: tag
300 * LOCKING:
301 * None.
303 * Build ATA taskfile @tf for read/write request described by
304 * @block, @n_block, @tf_flags and @tag on @dev.
306 * RETURNS:
308 * 0 on success, -ERANGE if the request is too large for @dev,
309 * -EINVAL if the request is invalid.
311 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
312 u64 block, u32 n_block, unsigned int tf_flags,
313 unsigned int tag)
315 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
316 tf->flags |= tf_flags;
318 if ((dev->flags & (ATA_DFLAG_PIO | ATA_DFLAG_NCQ_OFF |
319 ATA_DFLAG_NCQ)) == ATA_DFLAG_NCQ &&
320 likely(tag != ATA_TAG_INTERNAL)) {
321 /* yay, NCQ */
322 if (!lba_48_ok(block, n_block))
323 return -ERANGE;
325 tf->protocol = ATA_PROT_NCQ;
326 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
328 if (tf->flags & ATA_TFLAG_WRITE)
329 tf->command = ATA_CMD_FPDMA_WRITE;
330 else
331 tf->command = ATA_CMD_FPDMA_READ;
333 tf->nsect = tag << 3;
334 tf->hob_feature = (n_block >> 8) & 0xff;
335 tf->feature = n_block & 0xff;
337 tf->hob_lbah = (block >> 40) & 0xff;
338 tf->hob_lbam = (block >> 32) & 0xff;
339 tf->hob_lbal = (block >> 24) & 0xff;
340 tf->lbah = (block >> 16) & 0xff;
341 tf->lbam = (block >> 8) & 0xff;
342 tf->lbal = block & 0xff;
344 tf->device = 1 << 6;
345 if (tf->flags & ATA_TFLAG_FUA)
346 tf->device |= 1 << 7;
347 } else if (dev->flags & ATA_DFLAG_LBA) {
348 tf->flags |= ATA_TFLAG_LBA;
350 if (lba_28_ok(block, n_block)) {
351 /* use LBA28 */
352 tf->device |= (block >> 24) & 0xf;
353 } else if (lba_48_ok(block, n_block)) {
354 if (!(dev->flags & ATA_DFLAG_LBA48))
355 return -ERANGE;
357 /* use LBA48 */
358 tf->flags |= ATA_TFLAG_LBA48;
360 tf->hob_nsect = (n_block >> 8) & 0xff;
362 tf->hob_lbah = (block >> 40) & 0xff;
363 tf->hob_lbam = (block >> 32) & 0xff;
364 tf->hob_lbal = (block >> 24) & 0xff;
365 } else
366 /* request too large even for LBA48 */
367 return -ERANGE;
369 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
370 return -EINVAL;
372 tf->nsect = n_block & 0xff;
374 tf->lbah = (block >> 16) & 0xff;
375 tf->lbam = (block >> 8) & 0xff;
376 tf->lbal = block & 0xff;
378 tf->device |= ATA_LBA;
379 } else {
380 /* CHS */
381 u32 sect, head, cyl, track;
383 /* The request -may- be too large for CHS addressing. */
384 if (!lba_28_ok(block, n_block))
385 return -ERANGE;
387 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
388 return -EINVAL;
390 /* Convert LBA to CHS */
391 track = (u32)block / dev->sectors;
392 cyl = track / dev->heads;
393 head = track % dev->heads;
394 sect = (u32)block % dev->sectors + 1;
396 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
397 (u32)block, track, cyl, head, sect);
399 /* Check whether the converted CHS can fit.
400 Cylinder: 0-65535
401 Head: 0-15
402 Sector: 1-255*/
403 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
404 return -ERANGE;
406 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
407 tf->lbal = sect;
408 tf->lbam = cyl;
409 tf->lbah = cyl >> 8;
410 tf->device |= head;
413 return 0;
417 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
418 * @pio_mask: pio_mask
419 * @mwdma_mask: mwdma_mask
420 * @udma_mask: udma_mask
422 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
423 * unsigned int xfer_mask.
425 * LOCKING:
426 * None.
428 * RETURNS:
429 * Packed xfer_mask.
431 static unsigned int ata_pack_xfermask(unsigned int pio_mask,
432 unsigned int mwdma_mask,
433 unsigned int udma_mask)
435 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
436 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
437 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
441 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
442 * @xfer_mask: xfer_mask to unpack
443 * @pio_mask: resulting pio_mask
444 * @mwdma_mask: resulting mwdma_mask
445 * @udma_mask: resulting udma_mask
447 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
448 * Any NULL distination masks will be ignored.
450 static void ata_unpack_xfermask(unsigned int xfer_mask,
451 unsigned int *pio_mask,
452 unsigned int *mwdma_mask,
453 unsigned int *udma_mask)
455 if (pio_mask)
456 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
457 if (mwdma_mask)
458 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
459 if (udma_mask)
460 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
463 static const struct ata_xfer_ent {
464 int shift, bits;
465 u8 base;
466 } ata_xfer_tbl[] = {
467 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
468 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
469 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
470 { -1, },
474 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
475 * @xfer_mask: xfer_mask of interest
477 * Return matching XFER_* value for @xfer_mask. Only the highest
478 * bit of @xfer_mask is considered.
480 * LOCKING:
481 * None.
483 * RETURNS:
484 * Matching XFER_* value, 0 if no match found.
486 static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
488 int highbit = fls(xfer_mask) - 1;
489 const struct ata_xfer_ent *ent;
491 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
492 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
493 return ent->base + highbit - ent->shift;
494 return 0;
498 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
499 * @xfer_mode: XFER_* of interest
501 * Return matching xfer_mask for @xfer_mode.
503 * LOCKING:
504 * None.
506 * RETURNS:
507 * Matching xfer_mask, 0 if no match found.
509 static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
511 const struct ata_xfer_ent *ent;
513 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
514 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
515 return 1 << (ent->shift + xfer_mode - ent->base);
516 return 0;
520 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
521 * @xfer_mode: XFER_* of interest
523 * Return matching xfer_shift for @xfer_mode.
525 * LOCKING:
526 * None.
528 * RETURNS:
529 * Matching xfer_shift, -1 if no match found.
531 static int ata_xfer_mode2shift(unsigned int xfer_mode)
533 const struct ata_xfer_ent *ent;
535 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
536 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
537 return ent->shift;
538 return -1;
542 * ata_mode_string - convert xfer_mask to string
543 * @xfer_mask: mask of bits supported; only highest bit counts.
545 * Determine string which represents the highest speed
546 * (highest bit in @modemask).
548 * LOCKING:
549 * None.
551 * RETURNS:
552 * Constant C string representing highest speed listed in
553 * @mode_mask, or the constant C string "<n/a>".
555 static const char *ata_mode_string(unsigned int xfer_mask)
557 static const char * const xfer_mode_str[] = {
558 "PIO0",
559 "PIO1",
560 "PIO2",
561 "PIO3",
562 "PIO4",
563 "PIO5",
564 "PIO6",
565 "MWDMA0",
566 "MWDMA1",
567 "MWDMA2",
568 "MWDMA3",
569 "MWDMA4",
570 "UDMA/16",
571 "UDMA/25",
572 "UDMA/33",
573 "UDMA/44",
574 "UDMA/66",
575 "UDMA/100",
576 "UDMA/133",
577 "UDMA7",
579 int highbit;
581 highbit = fls(xfer_mask) - 1;
582 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
583 return xfer_mode_str[highbit];
584 return "<n/a>";
587 static const char *sata_spd_string(unsigned int spd)
589 static const char * const spd_str[] = {
590 "1.5 Gbps",
591 "3.0 Gbps",
594 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
595 return "<unknown>";
596 return spd_str[spd - 1];
599 void ata_dev_disable(struct ata_device *dev)
601 if (ata_dev_enabled(dev) && ata_msg_drv(dev->ap)) {
602 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
603 dev->class++;
608 * ata_devchk - PATA device presence detection
609 * @ap: ATA channel to examine
610 * @device: Device to examine (starting at zero)
612 * This technique was originally described in
613 * Hale Landis's ATADRVR (www.ata-atapi.com), and
614 * later found its way into the ATA/ATAPI spec.
616 * Write a pattern to the ATA shadow registers,
617 * and if a device is present, it will respond by
618 * correctly storing and echoing back the
619 * ATA shadow register contents.
621 * LOCKING:
622 * caller.
625 static unsigned int ata_devchk(struct ata_port *ap, unsigned int device)
627 struct ata_ioports *ioaddr = &ap->ioaddr;
628 u8 nsect, lbal;
630 ap->ops->dev_select(ap, device);
632 iowrite8(0x55, ioaddr->nsect_addr);
633 iowrite8(0xaa, ioaddr->lbal_addr);
635 iowrite8(0xaa, ioaddr->nsect_addr);
636 iowrite8(0x55, ioaddr->lbal_addr);
638 iowrite8(0x55, ioaddr->nsect_addr);
639 iowrite8(0xaa, ioaddr->lbal_addr);
641 nsect = ioread8(ioaddr->nsect_addr);
642 lbal = ioread8(ioaddr->lbal_addr);
644 if ((nsect == 0x55) && (lbal == 0xaa))
645 return 1; /* we found a device */
647 return 0; /* nothing found */
651 * ata_dev_classify - determine device type based on ATA-spec signature
652 * @tf: ATA taskfile register set for device to be identified
654 * Determine from taskfile register contents whether a device is
655 * ATA or ATAPI, as per "Signature and persistence" section
656 * of ATA/PI spec (volume 1, sect 5.14).
658 * LOCKING:
659 * None.
661 * RETURNS:
662 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
663 * the event of failure.
666 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
668 /* Apple's open source Darwin code hints that some devices only
669 * put a proper signature into the LBA mid/high registers,
670 * So, we only check those. It's sufficient for uniqueness.
673 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
674 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
675 DPRINTK("found ATA device by sig\n");
676 return ATA_DEV_ATA;
679 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
680 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
681 DPRINTK("found ATAPI device by sig\n");
682 return ATA_DEV_ATAPI;
685 DPRINTK("unknown device\n");
686 return ATA_DEV_UNKNOWN;
690 * ata_dev_try_classify - Parse returned ATA device signature
691 * @ap: ATA channel to examine
692 * @device: Device to examine (starting at zero)
693 * @r_err: Value of error register on completion
695 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
696 * an ATA/ATAPI-defined set of values is placed in the ATA
697 * shadow registers, indicating the results of device detection
698 * and diagnostics.
700 * Select the ATA device, and read the values from the ATA shadow
701 * registers. Then parse according to the Error register value,
702 * and the spec-defined values examined by ata_dev_classify().
704 * LOCKING:
705 * caller.
707 * RETURNS:
708 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
711 unsigned int
712 ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
714 struct ata_taskfile tf;
715 unsigned int class;
716 u8 err;
718 ap->ops->dev_select(ap, device);
720 memset(&tf, 0, sizeof(tf));
722 ap->ops->tf_read(ap, &tf);
723 err = tf.feature;
724 if (r_err)
725 *r_err = err;
727 /* see if device passed diags: if master then continue and warn later */
728 if (err == 0 && device == 0)
729 /* diagnostic fail : do nothing _YET_ */
730 ap->device[device].horkage |= ATA_HORKAGE_DIAGNOSTIC;
731 else if (err == 1)
732 /* do nothing */ ;
733 else if ((device == 0) && (err == 0x81))
734 /* do nothing */ ;
735 else
736 return ATA_DEV_NONE;
738 /* determine if device is ATA or ATAPI */
739 class = ata_dev_classify(&tf);
741 if (class == ATA_DEV_UNKNOWN)
742 return ATA_DEV_NONE;
743 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
744 return ATA_DEV_NONE;
745 return class;
749 * ata_id_string - Convert IDENTIFY DEVICE page into string
750 * @id: IDENTIFY DEVICE results we will examine
751 * @s: string into which data is output
752 * @ofs: offset into identify device page
753 * @len: length of string to return. must be an even number.
755 * The strings in the IDENTIFY DEVICE page are broken up into
756 * 16-bit chunks. Run through the string, and output each
757 * 8-bit chunk linearly, regardless of platform.
759 * LOCKING:
760 * caller.
763 void ata_id_string(const u16 *id, unsigned char *s,
764 unsigned int ofs, unsigned int len)
766 unsigned int c;
768 while (len > 0) {
769 c = id[ofs] >> 8;
770 *s = c;
771 s++;
773 c = id[ofs] & 0xff;
774 *s = c;
775 s++;
777 ofs++;
778 len -= 2;
783 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
784 * @id: IDENTIFY DEVICE results we will examine
785 * @s: string into which data is output
786 * @ofs: offset into identify device page
787 * @len: length of string to return. must be an odd number.
789 * This function is identical to ata_id_string except that it
790 * trims trailing spaces and terminates the resulting string with
791 * null. @len must be actual maximum length (even number) + 1.
793 * LOCKING:
794 * caller.
796 void ata_id_c_string(const u16 *id, unsigned char *s,
797 unsigned int ofs, unsigned int len)
799 unsigned char *p;
801 WARN_ON(!(len & 1));
803 ata_id_string(id, s, ofs, len - 1);
805 p = s + strnlen(s, len - 1);
806 while (p > s && p[-1] == ' ')
807 p--;
808 *p = '\0';
811 static u64 ata_id_n_sectors(const u16 *id)
813 if (ata_id_has_lba(id)) {
814 if (ata_id_has_lba48(id))
815 return ata_id_u64(id, 100);
816 else
817 return ata_id_u32(id, 60);
818 } else {
819 if (ata_id_current_chs_valid(id))
820 return ata_id_u32(id, 57);
821 else
822 return id[1] * id[3] * id[6];
827 * ata_noop_dev_select - Select device 0/1 on ATA bus
828 * @ap: ATA channel to manipulate
829 * @device: ATA device (numbered from zero) to select
831 * This function performs no actual function.
833 * May be used as the dev_select() entry in ata_port_operations.
835 * LOCKING:
836 * caller.
838 void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
844 * ata_std_dev_select - Select device 0/1 on ATA bus
845 * @ap: ATA channel to manipulate
846 * @device: ATA device (numbered from zero) to select
848 * Use the method defined in the ATA specification to
849 * make either device 0, or device 1, active on the
850 * ATA channel. Works with both PIO and MMIO.
852 * May be used as the dev_select() entry in ata_port_operations.
854 * LOCKING:
855 * caller.
858 void ata_std_dev_select (struct ata_port *ap, unsigned int device)
860 u8 tmp;
862 if (device == 0)
863 tmp = ATA_DEVICE_OBS;
864 else
865 tmp = ATA_DEVICE_OBS | ATA_DEV1;
867 iowrite8(tmp, ap->ioaddr.device_addr);
868 ata_pause(ap); /* needed; also flushes, for mmio */
872 * ata_dev_select - Select device 0/1 on ATA bus
873 * @ap: ATA channel to manipulate
874 * @device: ATA device (numbered from zero) to select
875 * @wait: non-zero to wait for Status register BSY bit to clear
876 * @can_sleep: non-zero if context allows sleeping
878 * Use the method defined in the ATA specification to
879 * make either device 0, or device 1, active on the
880 * ATA channel.
882 * This is a high-level version of ata_std_dev_select(),
883 * which additionally provides the services of inserting
884 * the proper pauses and status polling, where needed.
886 * LOCKING:
887 * caller.
890 void ata_dev_select(struct ata_port *ap, unsigned int device,
891 unsigned int wait, unsigned int can_sleep)
893 if (ata_msg_probe(ap))
894 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, ata%u: "
895 "device %u, wait %u\n", ap->id, device, wait);
897 if (wait)
898 ata_wait_idle(ap);
900 ap->ops->dev_select(ap, device);
902 if (wait) {
903 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
904 msleep(150);
905 ata_wait_idle(ap);
910 * ata_dump_id - IDENTIFY DEVICE info debugging output
911 * @id: IDENTIFY DEVICE page to dump
913 * Dump selected 16-bit words from the given IDENTIFY DEVICE
914 * page.
916 * LOCKING:
917 * caller.
920 static inline void ata_dump_id(const u16 *id)
922 DPRINTK("49==0x%04x "
923 "53==0x%04x "
924 "63==0x%04x "
925 "64==0x%04x "
926 "75==0x%04x \n",
927 id[49],
928 id[53],
929 id[63],
930 id[64],
931 id[75]);
932 DPRINTK("80==0x%04x "
933 "81==0x%04x "
934 "82==0x%04x "
935 "83==0x%04x "
936 "84==0x%04x \n",
937 id[80],
938 id[81],
939 id[82],
940 id[83],
941 id[84]);
942 DPRINTK("88==0x%04x "
943 "93==0x%04x\n",
944 id[88],
945 id[93]);
949 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
950 * @id: IDENTIFY data to compute xfer mask from
952 * Compute the xfermask for this device. This is not as trivial
953 * as it seems if we must consider early devices correctly.
955 * FIXME: pre IDE drive timing (do we care ?).
957 * LOCKING:
958 * None.
960 * RETURNS:
961 * Computed xfermask
963 static unsigned int ata_id_xfermask(const u16 *id)
965 unsigned int pio_mask, mwdma_mask, udma_mask;
967 /* Usual case. Word 53 indicates word 64 is valid */
968 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
969 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
970 pio_mask <<= 3;
971 pio_mask |= 0x7;
972 } else {
973 /* If word 64 isn't valid then Word 51 high byte holds
974 * the PIO timing number for the maximum. Turn it into
975 * a mask.
977 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
978 if (mode < 5) /* Valid PIO range */
979 pio_mask = (2 << mode) - 1;
980 else
981 pio_mask = 1;
983 /* But wait.. there's more. Design your standards by
984 * committee and you too can get a free iordy field to
985 * process. However its the speeds not the modes that
986 * are supported... Note drivers using the timing API
987 * will get this right anyway
991 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
993 if (ata_id_is_cfa(id)) {
995 * Process compact flash extended modes
997 int pio = id[163] & 0x7;
998 int dma = (id[163] >> 3) & 7;
1000 if (pio)
1001 pio_mask |= (1 << 5);
1002 if (pio > 1)
1003 pio_mask |= (1 << 6);
1004 if (dma)
1005 mwdma_mask |= (1 << 3);
1006 if (dma > 1)
1007 mwdma_mask |= (1 << 4);
1010 udma_mask = 0;
1011 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1012 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1014 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1018 * ata_port_queue_task - Queue port_task
1019 * @ap: The ata_port to queue port_task for
1020 * @fn: workqueue function to be scheduled
1021 * @data: data for @fn to use
1022 * @delay: delay time for workqueue function
1024 * Schedule @fn(@data) for execution after @delay jiffies using
1025 * port_task. There is one port_task per port and it's the
1026 * user(low level driver)'s responsibility to make sure that only
1027 * one task is active at any given time.
1029 * libata core layer takes care of synchronization between
1030 * port_task and EH. ata_port_queue_task() may be ignored for EH
1031 * synchronization.
1033 * LOCKING:
1034 * Inherited from caller.
1036 void ata_port_queue_task(struct ata_port *ap, work_func_t fn, void *data,
1037 unsigned long delay)
1039 int rc;
1041 if (ap->pflags & ATA_PFLAG_FLUSH_PORT_TASK)
1042 return;
1044 PREPARE_DELAYED_WORK(&ap->port_task, fn);
1045 ap->port_task_data = data;
1047 rc = queue_delayed_work(ata_wq, &ap->port_task, delay);
1049 /* rc == 0 means that another user is using port task */
1050 WARN_ON(rc == 0);
1054 * ata_port_flush_task - Flush port_task
1055 * @ap: The ata_port to flush port_task for
1057 * After this function completes, port_task is guranteed not to
1058 * be running or scheduled.
1060 * LOCKING:
1061 * Kernel thread context (may sleep)
1063 void ata_port_flush_task(struct ata_port *ap)
1065 unsigned long flags;
1067 DPRINTK("ENTER\n");
1069 spin_lock_irqsave(ap->lock, flags);
1070 ap->pflags |= ATA_PFLAG_FLUSH_PORT_TASK;
1071 spin_unlock_irqrestore(ap->lock, flags);
1073 DPRINTK("flush #1\n");
1074 flush_workqueue(ata_wq);
1077 * At this point, if a task is running, it's guaranteed to see
1078 * the FLUSH flag; thus, it will never queue pio tasks again.
1079 * Cancel and flush.
1081 if (!cancel_delayed_work(&ap->port_task)) {
1082 if (ata_msg_ctl(ap))
1083 ata_port_printk(ap, KERN_DEBUG, "%s: flush #2\n",
1084 __FUNCTION__);
1085 flush_workqueue(ata_wq);
1088 spin_lock_irqsave(ap->lock, flags);
1089 ap->pflags &= ~ATA_PFLAG_FLUSH_PORT_TASK;
1090 spin_unlock_irqrestore(ap->lock, flags);
1092 if (ata_msg_ctl(ap))
1093 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
1096 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1098 struct completion *waiting = qc->private_data;
1100 complete(waiting);
1104 * ata_exec_internal_sg - execute libata internal command
1105 * @dev: Device to which the command is sent
1106 * @tf: Taskfile registers for the command and the result
1107 * @cdb: CDB for packet command
1108 * @dma_dir: Data tranfer direction of the command
1109 * @sg: sg list for the data buffer of the command
1110 * @n_elem: Number of sg entries
1112 * Executes libata internal command with timeout. @tf contains
1113 * command on entry and result on return. Timeout and error
1114 * conditions are reported via return value. No recovery action
1115 * is taken after a command times out. It's caller's duty to
1116 * clean up after timeout.
1118 * LOCKING:
1119 * None. Should be called with kernel context, might sleep.
1121 * RETURNS:
1122 * Zero on success, AC_ERR_* mask on failure
1124 unsigned ata_exec_internal_sg(struct ata_device *dev,
1125 struct ata_taskfile *tf, const u8 *cdb,
1126 int dma_dir, struct scatterlist *sg,
1127 unsigned int n_elem)
1129 struct ata_port *ap = dev->ap;
1130 u8 command = tf->command;
1131 struct ata_queued_cmd *qc;
1132 unsigned int tag, preempted_tag;
1133 u32 preempted_sactive, preempted_qc_active;
1134 DECLARE_COMPLETION_ONSTACK(wait);
1135 unsigned long flags;
1136 unsigned int err_mask;
1137 int rc;
1139 spin_lock_irqsave(ap->lock, flags);
1141 /* no internal command while frozen */
1142 if (ap->pflags & ATA_PFLAG_FROZEN) {
1143 spin_unlock_irqrestore(ap->lock, flags);
1144 return AC_ERR_SYSTEM;
1147 /* initialize internal qc */
1149 /* XXX: Tag 0 is used for drivers with legacy EH as some
1150 * drivers choke if any other tag is given. This breaks
1151 * ata_tag_internal() test for those drivers. Don't use new
1152 * EH stuff without converting to it.
1154 if (ap->ops->error_handler)
1155 tag = ATA_TAG_INTERNAL;
1156 else
1157 tag = 0;
1159 if (test_and_set_bit(tag, &ap->qc_allocated))
1160 BUG();
1161 qc = __ata_qc_from_tag(ap, tag);
1163 qc->tag = tag;
1164 qc->scsicmd = NULL;
1165 qc->ap = ap;
1166 qc->dev = dev;
1167 ata_qc_reinit(qc);
1169 preempted_tag = ap->active_tag;
1170 preempted_sactive = ap->sactive;
1171 preempted_qc_active = ap->qc_active;
1172 ap->active_tag = ATA_TAG_POISON;
1173 ap->sactive = 0;
1174 ap->qc_active = 0;
1176 /* prepare & issue qc */
1177 qc->tf = *tf;
1178 if (cdb)
1179 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1180 qc->flags |= ATA_QCFLAG_RESULT_TF;
1181 qc->dma_dir = dma_dir;
1182 if (dma_dir != DMA_NONE) {
1183 unsigned int i, buflen = 0;
1185 for (i = 0; i < n_elem; i++)
1186 buflen += sg[i].length;
1188 ata_sg_init(qc, sg, n_elem);
1189 qc->nbytes = buflen;
1192 qc->private_data = &wait;
1193 qc->complete_fn = ata_qc_complete_internal;
1195 ata_qc_issue(qc);
1197 spin_unlock_irqrestore(ap->lock, flags);
1199 rc = wait_for_completion_timeout(&wait, ata_probe_timeout);
1201 ata_port_flush_task(ap);
1203 if (!rc) {
1204 spin_lock_irqsave(ap->lock, flags);
1206 /* We're racing with irq here. If we lose, the
1207 * following test prevents us from completing the qc
1208 * twice. If we win, the port is frozen and will be
1209 * cleaned up by ->post_internal_cmd().
1211 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1212 qc->err_mask |= AC_ERR_TIMEOUT;
1214 if (ap->ops->error_handler)
1215 ata_port_freeze(ap);
1216 else
1217 ata_qc_complete(qc);
1219 if (ata_msg_warn(ap))
1220 ata_dev_printk(dev, KERN_WARNING,
1221 "qc timeout (cmd 0x%x)\n", command);
1224 spin_unlock_irqrestore(ap->lock, flags);
1227 /* do post_internal_cmd */
1228 if (ap->ops->post_internal_cmd)
1229 ap->ops->post_internal_cmd(qc);
1231 if ((qc->flags & ATA_QCFLAG_FAILED) && !qc->err_mask) {
1232 if (ata_msg_warn(ap))
1233 ata_dev_printk(dev, KERN_WARNING,
1234 "zero err_mask for failed "
1235 "internal command, assuming AC_ERR_OTHER\n");
1236 qc->err_mask |= AC_ERR_OTHER;
1239 /* finish up */
1240 spin_lock_irqsave(ap->lock, flags);
1242 *tf = qc->result_tf;
1243 err_mask = qc->err_mask;
1245 ata_qc_free(qc);
1246 ap->active_tag = preempted_tag;
1247 ap->sactive = preempted_sactive;
1248 ap->qc_active = preempted_qc_active;
1250 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1251 * Until those drivers are fixed, we detect the condition
1252 * here, fail the command with AC_ERR_SYSTEM and reenable the
1253 * port.
1255 * Note that this doesn't change any behavior as internal
1256 * command failure results in disabling the device in the
1257 * higher layer for LLDDs without new reset/EH callbacks.
1259 * Kill the following code as soon as those drivers are fixed.
1261 if (ap->flags & ATA_FLAG_DISABLED) {
1262 err_mask |= AC_ERR_SYSTEM;
1263 ata_port_probe(ap);
1266 spin_unlock_irqrestore(ap->lock, flags);
1268 return err_mask;
1272 * ata_exec_internal - execute libata internal command
1273 * @dev: Device to which the command is sent
1274 * @tf: Taskfile registers for the command and the result
1275 * @cdb: CDB for packet command
1276 * @dma_dir: Data tranfer direction of the command
1277 * @buf: Data buffer of the command
1278 * @buflen: Length of data buffer
1280 * Wrapper around ata_exec_internal_sg() which takes simple
1281 * buffer instead of sg list.
1283 * LOCKING:
1284 * None. Should be called with kernel context, might sleep.
1286 * RETURNS:
1287 * Zero on success, AC_ERR_* mask on failure
1289 unsigned ata_exec_internal(struct ata_device *dev,
1290 struct ata_taskfile *tf, const u8 *cdb,
1291 int dma_dir, void *buf, unsigned int buflen)
1293 struct scatterlist *psg = NULL, sg;
1294 unsigned int n_elem = 0;
1296 if (dma_dir != DMA_NONE) {
1297 WARN_ON(!buf);
1298 sg_init_one(&sg, buf, buflen);
1299 psg = &sg;
1300 n_elem++;
1303 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem);
1307 * ata_do_simple_cmd - execute simple internal command
1308 * @dev: Device to which the command is sent
1309 * @cmd: Opcode to execute
1311 * Execute a 'simple' command, that only consists of the opcode
1312 * 'cmd' itself, without filling any other registers
1314 * LOCKING:
1315 * Kernel thread context (may sleep).
1317 * RETURNS:
1318 * Zero on success, AC_ERR_* mask on failure
1320 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1322 struct ata_taskfile tf;
1324 ata_tf_init(dev, &tf);
1326 tf.command = cmd;
1327 tf.flags |= ATA_TFLAG_DEVICE;
1328 tf.protocol = ATA_PROT_NODATA;
1330 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1334 * ata_pio_need_iordy - check if iordy needed
1335 * @adev: ATA device
1337 * Check if the current speed of the device requires IORDY. Used
1338 * by various controllers for chip configuration.
1341 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1343 int pio;
1344 int speed = adev->pio_mode - XFER_PIO_0;
1346 if (speed < 2)
1347 return 0;
1348 if (speed > 2)
1349 return 1;
1351 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1353 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1354 pio = adev->id[ATA_ID_EIDE_PIO];
1355 /* Is the speed faster than the drive allows non IORDY ? */
1356 if (pio) {
1357 /* This is cycle times not frequency - watch the logic! */
1358 if (pio > 240) /* PIO2 is 240nS per cycle */
1359 return 1;
1360 return 0;
1363 return 0;
1367 * ata_dev_read_id - Read ID data from the specified device
1368 * @dev: target device
1369 * @p_class: pointer to class of the target device (may be changed)
1370 * @flags: ATA_READID_* flags
1371 * @id: buffer to read IDENTIFY data into
1373 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1374 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1375 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1376 * for pre-ATA4 drives.
1378 * LOCKING:
1379 * Kernel thread context (may sleep)
1381 * RETURNS:
1382 * 0 on success, -errno otherwise.
1384 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1385 unsigned int flags, u16 *id)
1387 struct ata_port *ap = dev->ap;
1388 unsigned int class = *p_class;
1389 struct ata_taskfile tf;
1390 unsigned int err_mask = 0;
1391 const char *reason;
1392 int rc;
1394 if (ata_msg_ctl(ap))
1395 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER, host %u, dev %u\n",
1396 __FUNCTION__, ap->id, dev->devno);
1398 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1400 retry:
1401 ata_tf_init(dev, &tf);
1403 switch (class) {
1404 case ATA_DEV_ATA:
1405 tf.command = ATA_CMD_ID_ATA;
1406 break;
1407 case ATA_DEV_ATAPI:
1408 tf.command = ATA_CMD_ID_ATAPI;
1409 break;
1410 default:
1411 rc = -ENODEV;
1412 reason = "unsupported class";
1413 goto err_out;
1416 tf.protocol = ATA_PROT_PIO;
1418 /* Some devices choke if TF registers contain garbage. Make
1419 * sure those are properly initialized.
1421 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1423 /* Device presence detection is unreliable on some
1424 * controllers. Always poll IDENTIFY if available.
1426 tf.flags |= ATA_TFLAG_POLLING;
1428 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
1429 id, sizeof(id[0]) * ATA_ID_WORDS);
1430 if (err_mask) {
1431 if (err_mask & AC_ERR_NODEV_HINT) {
1432 DPRINTK("ata%u.%d: NODEV after polling detection\n",
1433 ap->id, dev->devno);
1434 return -ENOENT;
1437 rc = -EIO;
1438 reason = "I/O error";
1439 goto err_out;
1442 swap_buf_le16(id, ATA_ID_WORDS);
1444 /* sanity check */
1445 rc = -EINVAL;
1446 reason = "device reports illegal type";
1448 if (class == ATA_DEV_ATA) {
1449 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1450 goto err_out;
1451 } else {
1452 if (ata_id_is_ata(id))
1453 goto err_out;
1456 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
1458 * The exact sequence expected by certain pre-ATA4 drives is:
1459 * SRST RESET
1460 * IDENTIFY
1461 * INITIALIZE DEVICE PARAMETERS
1462 * anything else..
1463 * Some drives were very specific about that exact sequence.
1465 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1466 err_mask = ata_dev_init_params(dev, id[3], id[6]);
1467 if (err_mask) {
1468 rc = -EIO;
1469 reason = "INIT_DEV_PARAMS failed";
1470 goto err_out;
1473 /* current CHS translation info (id[53-58]) might be
1474 * changed. reread the identify device info.
1476 flags &= ~ATA_READID_POSTRESET;
1477 goto retry;
1481 *p_class = class;
1483 return 0;
1485 err_out:
1486 if (ata_msg_warn(ap))
1487 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
1488 "(%s, err_mask=0x%x)\n", reason, err_mask);
1489 return rc;
1492 static inline u8 ata_dev_knobble(struct ata_device *dev)
1494 return ((dev->ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
1497 static void ata_dev_config_ncq(struct ata_device *dev,
1498 char *desc, size_t desc_sz)
1500 struct ata_port *ap = dev->ap;
1501 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
1503 if (!ata_id_has_ncq(dev->id)) {
1504 desc[0] = '\0';
1505 return;
1507 if (ata_device_blacklisted(dev) & ATA_HORKAGE_NONCQ) {
1508 snprintf(desc, desc_sz, "NCQ (not used)");
1509 return;
1511 if (ap->flags & ATA_FLAG_NCQ) {
1512 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
1513 dev->flags |= ATA_DFLAG_NCQ;
1516 if (hdepth >= ddepth)
1517 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
1518 else
1519 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
1522 static void ata_set_port_max_cmd_len(struct ata_port *ap)
1524 int i;
1526 if (ap->scsi_host) {
1527 unsigned int len = 0;
1529 for (i = 0; i < ATA_MAX_DEVICES; i++)
1530 len = max(len, ap->device[i].cdb_len);
1532 ap->scsi_host->max_cmd_len = len;
1537 * ata_dev_configure - Configure the specified ATA/ATAPI device
1538 * @dev: Target device to configure
1540 * Configure @dev according to @dev->id. Generic and low-level
1541 * driver specific fixups are also applied.
1543 * LOCKING:
1544 * Kernel thread context (may sleep)
1546 * RETURNS:
1547 * 0 on success, -errno otherwise
1549 int ata_dev_configure(struct ata_device *dev)
1551 struct ata_port *ap = dev->ap;
1552 int print_info = ap->eh_context.i.flags & ATA_EHI_PRINTINFO;
1553 const u16 *id = dev->id;
1554 unsigned int xfer_mask;
1555 char revbuf[7]; /* XYZ-99\0 */
1556 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
1557 char modelbuf[ATA_ID_PROD_LEN+1];
1558 int rc;
1560 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
1561 ata_dev_printk(dev, KERN_INFO,
1562 "%s: ENTER/EXIT (host %u, dev %u) -- nodev\n",
1563 __FUNCTION__, ap->id, dev->devno);
1564 return 0;
1567 if (ata_msg_probe(ap))
1568 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER, host %u, dev %u\n",
1569 __FUNCTION__, ap->id, dev->devno);
1571 /* set _SDD */
1572 rc = ata_acpi_push_id(ap, dev->devno);
1573 if (rc) {
1574 ata_dev_printk(dev, KERN_WARNING, "failed to set _SDD(%d)\n",
1575 rc);
1578 /* retrieve and execute the ATA task file of _GTF */
1579 ata_acpi_exec_tfs(ap);
1581 /* print device capabilities */
1582 if (ata_msg_probe(ap))
1583 ata_dev_printk(dev, KERN_DEBUG,
1584 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
1585 "85:%04x 86:%04x 87:%04x 88:%04x\n",
1586 __FUNCTION__,
1587 id[49], id[82], id[83], id[84],
1588 id[85], id[86], id[87], id[88]);
1590 /* initialize to-be-configured parameters */
1591 dev->flags &= ~ATA_DFLAG_CFG_MASK;
1592 dev->max_sectors = 0;
1593 dev->cdb_len = 0;
1594 dev->n_sectors = 0;
1595 dev->cylinders = 0;
1596 dev->heads = 0;
1597 dev->sectors = 0;
1600 * common ATA, ATAPI feature tests
1603 /* find max transfer mode; for printk only */
1604 xfer_mask = ata_id_xfermask(id);
1606 if (ata_msg_probe(ap))
1607 ata_dump_id(id);
1609 /* ATA-specific feature tests */
1610 if (dev->class == ATA_DEV_ATA) {
1611 if (ata_id_is_cfa(id)) {
1612 if (id[162] & 1) /* CPRM may make this media unusable */
1613 ata_dev_printk(dev, KERN_WARNING, "ata%u: device %u supports DRM functions and may not be fully accessable.\n",
1614 ap->id, dev->devno);
1615 snprintf(revbuf, 7, "CFA");
1617 else
1618 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
1620 dev->n_sectors = ata_id_n_sectors(id);
1622 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
1623 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
1624 sizeof(fwrevbuf));
1626 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
1627 sizeof(modelbuf));
1629 if (dev->id[59] & 0x100)
1630 dev->multi_count = dev->id[59] & 0xff;
1632 if (ata_id_has_lba(id)) {
1633 const char *lba_desc;
1634 char ncq_desc[20];
1636 lba_desc = "LBA";
1637 dev->flags |= ATA_DFLAG_LBA;
1638 if (ata_id_has_lba48(id)) {
1639 dev->flags |= ATA_DFLAG_LBA48;
1640 lba_desc = "LBA48";
1642 if (dev->n_sectors >= (1UL << 28) &&
1643 ata_id_has_flush_ext(id))
1644 dev->flags |= ATA_DFLAG_FLUSH_EXT;
1647 /* config NCQ */
1648 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
1650 /* print device info to dmesg */
1651 if (ata_msg_drv(ap) && print_info) {
1652 ata_dev_printk(dev, KERN_INFO,
1653 "%s: %s, %s, max %s\n",
1654 revbuf, modelbuf, fwrevbuf,
1655 ata_mode_string(xfer_mask));
1656 ata_dev_printk(dev, KERN_INFO,
1657 "%Lu sectors, multi %u: %s %s\n",
1658 (unsigned long long)dev->n_sectors,
1659 dev->multi_count, lba_desc, ncq_desc);
1661 } else {
1662 /* CHS */
1664 /* Default translation */
1665 dev->cylinders = id[1];
1666 dev->heads = id[3];
1667 dev->sectors = id[6];
1669 if (ata_id_current_chs_valid(id)) {
1670 /* Current CHS translation is valid. */
1671 dev->cylinders = id[54];
1672 dev->heads = id[55];
1673 dev->sectors = id[56];
1676 /* print device info to dmesg */
1677 if (ata_msg_drv(ap) && print_info) {
1678 ata_dev_printk(dev, KERN_INFO,
1679 "%s: %s, %s, max %s\n",
1680 revbuf, modelbuf, fwrevbuf,
1681 ata_mode_string(xfer_mask));
1682 ata_dev_printk(dev, KERN_INFO,
1683 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
1684 (unsigned long long)dev->n_sectors,
1685 dev->multi_count, dev->cylinders,
1686 dev->heads, dev->sectors);
1690 dev->cdb_len = 16;
1693 /* ATAPI-specific feature tests */
1694 else if (dev->class == ATA_DEV_ATAPI) {
1695 char *cdb_intr_string = "";
1697 rc = atapi_cdb_len(id);
1698 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
1699 if (ata_msg_warn(ap))
1700 ata_dev_printk(dev, KERN_WARNING,
1701 "unsupported CDB len\n");
1702 rc = -EINVAL;
1703 goto err_out_nosup;
1705 dev->cdb_len = (unsigned int) rc;
1707 if (ata_id_cdb_intr(dev->id)) {
1708 dev->flags |= ATA_DFLAG_CDB_INTR;
1709 cdb_intr_string = ", CDB intr";
1712 /* print device info to dmesg */
1713 if (ata_msg_drv(ap) && print_info)
1714 ata_dev_printk(dev, KERN_INFO, "ATAPI, max %s%s\n",
1715 ata_mode_string(xfer_mask),
1716 cdb_intr_string);
1719 /* determine max_sectors */
1720 dev->max_sectors = ATA_MAX_SECTORS;
1721 if (dev->flags & ATA_DFLAG_LBA48)
1722 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
1724 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
1725 /* Let the user know. We don't want to disallow opens for
1726 rescue purposes, or in case the vendor is just a blithering
1727 idiot */
1728 if (print_info) {
1729 ata_dev_printk(dev, KERN_WARNING,
1730 "Drive reports diagnostics failure. This may indicate a drive\n");
1731 ata_dev_printk(dev, KERN_WARNING,
1732 "fault or invalid emulation. Contact drive vendor for information.\n");
1736 ata_set_port_max_cmd_len(ap);
1738 /* limit bridge transfers to udma5, 200 sectors */
1739 if (ata_dev_knobble(dev)) {
1740 if (ata_msg_drv(ap) && print_info)
1741 ata_dev_printk(dev, KERN_INFO,
1742 "applying bridge limits\n");
1743 dev->udma_mask &= ATA_UDMA5;
1744 dev->max_sectors = ATA_MAX_SECTORS;
1747 if (ap->ops->dev_config)
1748 ap->ops->dev_config(ap, dev);
1750 if (ata_msg_probe(ap))
1751 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
1752 __FUNCTION__, ata_chk_status(ap));
1753 return 0;
1755 err_out_nosup:
1756 if (ata_msg_probe(ap))
1757 ata_dev_printk(dev, KERN_DEBUG,
1758 "%s: EXIT, err\n", __FUNCTION__);
1759 return rc;
1763 * ata_bus_probe - Reset and probe ATA bus
1764 * @ap: Bus to probe
1766 * Master ATA bus probing function. Initiates a hardware-dependent
1767 * bus reset, then attempts to identify any devices found on
1768 * the bus.
1770 * LOCKING:
1771 * PCI/etc. bus probe sem.
1773 * RETURNS:
1774 * Zero on success, negative errno otherwise.
1777 int ata_bus_probe(struct ata_port *ap)
1779 unsigned int classes[ATA_MAX_DEVICES];
1780 int tries[ATA_MAX_DEVICES];
1781 int i, rc, down_xfermask;
1782 struct ata_device *dev;
1783 int dnxfer_sel;
1785 ata_port_probe(ap);
1787 for (i = 0; i < ATA_MAX_DEVICES; i++)
1788 tries[i] = ATA_PROBE_MAX_TRIES;
1790 retry:
1791 down_xfermask = 0;
1793 /* reset and determine device classes */
1794 ap->ops->phy_reset(ap);
1796 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1797 dev = &ap->device[i];
1799 if (!(ap->flags & ATA_FLAG_DISABLED) &&
1800 dev->class != ATA_DEV_UNKNOWN)
1801 classes[dev->devno] = dev->class;
1802 else
1803 classes[dev->devno] = ATA_DEV_NONE;
1805 dev->class = ATA_DEV_UNKNOWN;
1808 ata_port_probe(ap);
1810 /* after the reset the device state is PIO 0 and the controller
1811 state is undefined. Record the mode */
1813 for (i = 0; i < ATA_MAX_DEVICES; i++)
1814 ap->device[i].pio_mode = XFER_PIO_0;
1816 /* read IDENTIFY page and configure devices */
1817 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1818 dev = &ap->device[i];
1820 if (tries[i])
1821 dev->class = classes[i];
1823 if (!ata_dev_enabled(dev))
1824 continue;
1826 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
1827 dev->id);
1828 if (rc)
1829 goto fail;
1831 ap->eh_context.i.flags |= ATA_EHI_PRINTINFO;
1832 rc = ata_dev_configure(dev);
1833 ap->eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
1834 if (rc)
1835 goto fail;
1838 /* configure transfer mode */
1839 rc = ata_set_mode(ap, &dev);
1840 if (rc) {
1841 down_xfermask = 1;
1842 goto fail;
1845 for (i = 0; i < ATA_MAX_DEVICES; i++)
1846 if (ata_dev_enabled(&ap->device[i]))
1847 return 0;
1849 /* no device present, disable port */
1850 ata_port_disable(ap);
1851 ap->ops->port_disable(ap);
1852 return -ENODEV;
1854 fail:
1855 switch (rc) {
1856 case -EINVAL:
1857 case -ENODEV:
1858 tries[dev->devno] = 0;
1859 break;
1860 case -EIO:
1861 sata_down_spd_limit(ap);
1862 /* fall through */
1863 default:
1864 tries[dev->devno]--;
1865 dnxfer_sel = ATA_DNXFER_ANY;
1866 if (tries[dev->devno] == 1)
1867 dnxfer_sel = ATA_DNXFER_FORCE_PIO0;
1868 if (down_xfermask && ata_down_xfermask_limit(dev, dnxfer_sel))
1869 tries[dev->devno] = 0;
1872 if (!tries[dev->devno]) {
1873 ata_down_xfermask_limit(dev, ATA_DNXFER_FORCE_PIO0);
1874 ata_dev_disable(dev);
1877 goto retry;
1881 * ata_port_probe - Mark port as enabled
1882 * @ap: Port for which we indicate enablement
1884 * Modify @ap data structure such that the system
1885 * thinks that the entire port is enabled.
1887 * LOCKING: host lock, or some other form of
1888 * serialization.
1891 void ata_port_probe(struct ata_port *ap)
1893 ap->flags &= ~ATA_FLAG_DISABLED;
1897 * sata_print_link_status - Print SATA link status
1898 * @ap: SATA port to printk link status about
1900 * This function prints link speed and status of a SATA link.
1902 * LOCKING:
1903 * None.
1905 static void sata_print_link_status(struct ata_port *ap)
1907 u32 sstatus, scontrol, tmp;
1909 if (sata_scr_read(ap, SCR_STATUS, &sstatus))
1910 return;
1911 sata_scr_read(ap, SCR_CONTROL, &scontrol);
1913 if (ata_port_online(ap)) {
1914 tmp = (sstatus >> 4) & 0xf;
1915 ata_port_printk(ap, KERN_INFO,
1916 "SATA link up %s (SStatus %X SControl %X)\n",
1917 sata_spd_string(tmp), sstatus, scontrol);
1918 } else {
1919 ata_port_printk(ap, KERN_INFO,
1920 "SATA link down (SStatus %X SControl %X)\n",
1921 sstatus, scontrol);
1926 * __sata_phy_reset - Wake/reset a low-level SATA PHY
1927 * @ap: SATA port associated with target SATA PHY.
1929 * This function issues commands to standard SATA Sxxx
1930 * PHY registers, to wake up the phy (and device), and
1931 * clear any reset condition.
1933 * LOCKING:
1934 * PCI/etc. bus probe sem.
1937 void __sata_phy_reset(struct ata_port *ap)
1939 u32 sstatus;
1940 unsigned long timeout = jiffies + (HZ * 5);
1942 if (ap->flags & ATA_FLAG_SATA_RESET) {
1943 /* issue phy wake/reset */
1944 sata_scr_write_flush(ap, SCR_CONTROL, 0x301);
1945 /* Couldn't find anything in SATA I/II specs, but
1946 * AHCI-1.1 10.4.2 says at least 1 ms. */
1947 mdelay(1);
1949 /* phy wake/clear reset */
1950 sata_scr_write_flush(ap, SCR_CONTROL, 0x300);
1952 /* wait for phy to become ready, if necessary */
1953 do {
1954 msleep(200);
1955 sata_scr_read(ap, SCR_STATUS, &sstatus);
1956 if ((sstatus & 0xf) != 1)
1957 break;
1958 } while (time_before(jiffies, timeout));
1960 /* print link status */
1961 sata_print_link_status(ap);
1963 /* TODO: phy layer with polling, timeouts, etc. */
1964 if (!ata_port_offline(ap))
1965 ata_port_probe(ap);
1966 else
1967 ata_port_disable(ap);
1969 if (ap->flags & ATA_FLAG_DISABLED)
1970 return;
1972 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
1973 ata_port_disable(ap);
1974 return;
1977 ap->cbl = ATA_CBL_SATA;
1981 * sata_phy_reset - Reset SATA bus.
1982 * @ap: SATA port associated with target SATA PHY.
1984 * This function resets the SATA bus, and then probes
1985 * the bus for devices.
1987 * LOCKING:
1988 * PCI/etc. bus probe sem.
1991 void sata_phy_reset(struct ata_port *ap)
1993 __sata_phy_reset(ap);
1994 if (ap->flags & ATA_FLAG_DISABLED)
1995 return;
1996 ata_bus_reset(ap);
2000 * ata_dev_pair - return other device on cable
2001 * @adev: device
2003 * Obtain the other device on the same cable, or if none is
2004 * present NULL is returned
2007 struct ata_device *ata_dev_pair(struct ata_device *adev)
2009 struct ata_port *ap = adev->ap;
2010 struct ata_device *pair = &ap->device[1 - adev->devno];
2011 if (!ata_dev_enabled(pair))
2012 return NULL;
2013 return pair;
2017 * ata_port_disable - Disable port.
2018 * @ap: Port to be disabled.
2020 * Modify @ap data structure such that the system
2021 * thinks that the entire port is disabled, and should
2022 * never attempt to probe or communicate with devices
2023 * on this port.
2025 * LOCKING: host lock, or some other form of
2026 * serialization.
2029 void ata_port_disable(struct ata_port *ap)
2031 ap->device[0].class = ATA_DEV_NONE;
2032 ap->device[1].class = ATA_DEV_NONE;
2033 ap->flags |= ATA_FLAG_DISABLED;
2037 * sata_down_spd_limit - adjust SATA spd limit downward
2038 * @ap: Port to adjust SATA spd limit for
2040 * Adjust SATA spd limit of @ap downward. Note that this
2041 * function only adjusts the limit. The change must be applied
2042 * using sata_set_spd().
2044 * LOCKING:
2045 * Inherited from caller.
2047 * RETURNS:
2048 * 0 on success, negative errno on failure
2050 int sata_down_spd_limit(struct ata_port *ap)
2052 u32 sstatus, spd, mask;
2053 int rc, highbit;
2055 rc = sata_scr_read(ap, SCR_STATUS, &sstatus);
2056 if (rc)
2057 return rc;
2059 mask = ap->sata_spd_limit;
2060 if (mask <= 1)
2061 return -EINVAL;
2062 highbit = fls(mask) - 1;
2063 mask &= ~(1 << highbit);
2065 spd = (sstatus >> 4) & 0xf;
2066 if (spd <= 1)
2067 return -EINVAL;
2068 spd--;
2069 mask &= (1 << spd) - 1;
2070 if (!mask)
2071 return -EINVAL;
2073 ap->sata_spd_limit = mask;
2075 ata_port_printk(ap, KERN_WARNING, "limiting SATA link speed to %s\n",
2076 sata_spd_string(fls(mask)));
2078 return 0;
2081 static int __sata_set_spd_needed(struct ata_port *ap, u32 *scontrol)
2083 u32 spd, limit;
2085 if (ap->sata_spd_limit == UINT_MAX)
2086 limit = 0;
2087 else
2088 limit = fls(ap->sata_spd_limit);
2090 spd = (*scontrol >> 4) & 0xf;
2091 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
2093 return spd != limit;
2097 * sata_set_spd_needed - is SATA spd configuration needed
2098 * @ap: Port in question
2100 * Test whether the spd limit in SControl matches
2101 * @ap->sata_spd_limit. This function is used to determine
2102 * whether hardreset is necessary to apply SATA spd
2103 * configuration.
2105 * LOCKING:
2106 * Inherited from caller.
2108 * RETURNS:
2109 * 1 if SATA spd configuration is needed, 0 otherwise.
2111 int sata_set_spd_needed(struct ata_port *ap)
2113 u32 scontrol;
2115 if (sata_scr_read(ap, SCR_CONTROL, &scontrol))
2116 return 0;
2118 return __sata_set_spd_needed(ap, &scontrol);
2122 * sata_set_spd - set SATA spd according to spd limit
2123 * @ap: Port to set SATA spd for
2125 * Set SATA spd of @ap according to sata_spd_limit.
2127 * LOCKING:
2128 * Inherited from caller.
2130 * RETURNS:
2131 * 0 if spd doesn't need to be changed, 1 if spd has been
2132 * changed. Negative errno if SCR registers are inaccessible.
2134 int sata_set_spd(struct ata_port *ap)
2136 u32 scontrol;
2137 int rc;
2139 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2140 return rc;
2142 if (!__sata_set_spd_needed(ap, &scontrol))
2143 return 0;
2145 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2146 return rc;
2148 return 1;
2152 * This mode timing computation functionality is ported over from
2153 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2156 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2157 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2158 * for UDMA6, which is currently supported only by Maxtor drives.
2160 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2163 static const struct ata_timing ata_timing[] = {
2165 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
2166 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
2167 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
2168 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
2170 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 80, 0 },
2171 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 100, 0 },
2172 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
2173 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
2174 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
2176 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2178 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
2179 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
2180 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2182 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
2183 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
2184 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
2186 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 80, 0 },
2187 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 100, 0 },
2188 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
2189 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
2191 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
2192 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
2193 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
2195 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
2197 { 0xFF }
2200 #define ENOUGH(v,unit) (((v)-1)/(unit)+1)
2201 #define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
2203 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2205 q->setup = EZ(t->setup * 1000, T);
2206 q->act8b = EZ(t->act8b * 1000, T);
2207 q->rec8b = EZ(t->rec8b * 1000, T);
2208 q->cyc8b = EZ(t->cyc8b * 1000, T);
2209 q->active = EZ(t->active * 1000, T);
2210 q->recover = EZ(t->recover * 1000, T);
2211 q->cycle = EZ(t->cycle * 1000, T);
2212 q->udma = EZ(t->udma * 1000, UT);
2215 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2216 struct ata_timing *m, unsigned int what)
2218 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2219 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2220 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2221 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2222 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2223 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2224 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2225 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2228 static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
2230 const struct ata_timing *t;
2232 for (t = ata_timing; t->mode != speed; t++)
2233 if (t->mode == 0xFF)
2234 return NULL;
2235 return t;
2238 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2239 struct ata_timing *t, int T, int UT)
2241 const struct ata_timing *s;
2242 struct ata_timing p;
2245 * Find the mode.
2248 if (!(s = ata_timing_find_mode(speed)))
2249 return -EINVAL;
2251 memcpy(t, s, sizeof(*s));
2254 * If the drive is an EIDE drive, it can tell us it needs extended
2255 * PIO/MW_DMA cycle timing.
2258 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2259 memset(&p, 0, sizeof(p));
2260 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
2261 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2262 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2263 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
2264 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2266 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2270 * Convert the timing to bus clock counts.
2273 ata_timing_quantize(t, t, T, UT);
2276 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2277 * S.M.A.R.T * and some other commands. We have to ensure that the
2278 * DMA cycle timing is slower/equal than the fastest PIO timing.
2281 if (speed > XFER_PIO_6) {
2282 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2283 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2287 * Lengthen active & recovery time so that cycle time is correct.
2290 if (t->act8b + t->rec8b < t->cyc8b) {
2291 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2292 t->rec8b = t->cyc8b - t->act8b;
2295 if (t->active + t->recover < t->cycle) {
2296 t->active += (t->cycle - (t->active + t->recover)) / 2;
2297 t->recover = t->cycle - t->active;
2300 return 0;
2304 * ata_down_xfermask_limit - adjust dev xfer masks downward
2305 * @dev: Device to adjust xfer masks
2306 * @sel: ATA_DNXFER_* selector
2308 * Adjust xfer masks of @dev downward. Note that this function
2309 * does not apply the change. Invoking ata_set_mode() afterwards
2310 * will apply the limit.
2312 * LOCKING:
2313 * Inherited from caller.
2315 * RETURNS:
2316 * 0 on success, negative errno on failure
2318 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
2320 char buf[32];
2321 unsigned int orig_mask, xfer_mask;
2322 unsigned int pio_mask, mwdma_mask, udma_mask;
2323 int quiet, highbit;
2325 quiet = !!(sel & ATA_DNXFER_QUIET);
2326 sel &= ~ATA_DNXFER_QUIET;
2328 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
2329 dev->mwdma_mask,
2330 dev->udma_mask);
2331 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
2333 switch (sel) {
2334 case ATA_DNXFER_PIO:
2335 highbit = fls(pio_mask) - 1;
2336 pio_mask &= ~(1 << highbit);
2337 break;
2339 case ATA_DNXFER_DMA:
2340 if (udma_mask) {
2341 highbit = fls(udma_mask) - 1;
2342 udma_mask &= ~(1 << highbit);
2343 if (!udma_mask)
2344 return -ENOENT;
2345 } else if (mwdma_mask) {
2346 highbit = fls(mwdma_mask) - 1;
2347 mwdma_mask &= ~(1 << highbit);
2348 if (!mwdma_mask)
2349 return -ENOENT;
2351 break;
2353 case ATA_DNXFER_40C:
2354 udma_mask &= ATA_UDMA_MASK_40C;
2355 break;
2357 case ATA_DNXFER_FORCE_PIO0:
2358 pio_mask &= 1;
2359 case ATA_DNXFER_FORCE_PIO:
2360 mwdma_mask = 0;
2361 udma_mask = 0;
2362 break;
2364 case ATA_DNXFER_ANY:
2365 /* don't gear down to MWDMA from UDMA, go directly to PIO */
2366 if (xfer_mask & ATA_MASK_UDMA)
2367 xfer_mask &= ~ATA_MASK_MWDMA;
2369 highbit = fls(xfer_mask) - 1;
2370 xfer_mask &= ~(1 << highbit);
2371 break;
2373 default:
2374 BUG();
2377 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
2379 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
2380 return -ENOENT;
2382 if (!quiet) {
2383 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
2384 snprintf(buf, sizeof(buf), "%s:%s",
2385 ata_mode_string(xfer_mask),
2386 ata_mode_string(xfer_mask & ATA_MASK_PIO));
2387 else
2388 snprintf(buf, sizeof(buf), "%s",
2389 ata_mode_string(xfer_mask));
2391 ata_dev_printk(dev, KERN_WARNING,
2392 "limiting speed to %s\n", buf);
2395 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2396 &dev->udma_mask);
2398 return 0;
2401 static int ata_dev_set_mode(struct ata_device *dev)
2403 struct ata_eh_context *ehc = &dev->ap->eh_context;
2404 unsigned int err_mask;
2405 int rc;
2407 dev->flags &= ~ATA_DFLAG_PIO;
2408 if (dev->xfer_shift == ATA_SHIFT_PIO)
2409 dev->flags |= ATA_DFLAG_PIO;
2411 err_mask = ata_dev_set_xfermode(dev);
2412 /* Old CFA may refuse this command, which is just fine */
2413 if (dev->xfer_shift == ATA_SHIFT_PIO && ata_id_is_cfa(dev->id))
2414 err_mask &= ~AC_ERR_DEV;
2416 if (err_mask) {
2417 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
2418 "(err_mask=0x%x)\n", err_mask);
2419 return -EIO;
2422 ehc->i.flags |= ATA_EHI_POST_SETMODE;
2423 rc = ata_dev_revalidate(dev, 0);
2424 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
2425 if (rc)
2426 return rc;
2428 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2429 dev->xfer_shift, (int)dev->xfer_mode);
2431 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
2432 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
2433 return 0;
2437 * ata_set_mode - Program timings and issue SET FEATURES - XFER
2438 * @ap: port on which timings will be programmed
2439 * @r_failed_dev: out paramter for failed device
2441 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2442 * ata_set_mode() fails, pointer to the failing device is
2443 * returned in @r_failed_dev.
2445 * LOCKING:
2446 * PCI/etc. bus probe sem.
2448 * RETURNS:
2449 * 0 on success, negative errno otherwise
2451 int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
2453 struct ata_device *dev;
2454 int i, rc = 0, used_dma = 0, found = 0;
2456 /* has private set_mode? */
2457 if (ap->ops->set_mode)
2458 return ap->ops->set_mode(ap, r_failed_dev);
2460 /* step 1: calculate xfer_mask */
2461 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2462 unsigned int pio_mask, dma_mask;
2464 dev = &ap->device[i];
2466 if (!ata_dev_enabled(dev))
2467 continue;
2469 ata_dev_xfermask(dev);
2471 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2472 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2473 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2474 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
2476 found = 1;
2477 if (dev->dma_mode)
2478 used_dma = 1;
2480 if (!found)
2481 goto out;
2483 /* step 2: always set host PIO timings */
2484 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2485 dev = &ap->device[i];
2486 if (!ata_dev_enabled(dev))
2487 continue;
2489 if (!dev->pio_mode) {
2490 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
2491 rc = -EINVAL;
2492 goto out;
2495 dev->xfer_mode = dev->pio_mode;
2496 dev->xfer_shift = ATA_SHIFT_PIO;
2497 if (ap->ops->set_piomode)
2498 ap->ops->set_piomode(ap, dev);
2501 /* step 3: set host DMA timings */
2502 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2503 dev = &ap->device[i];
2505 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2506 continue;
2508 dev->xfer_mode = dev->dma_mode;
2509 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2510 if (ap->ops->set_dmamode)
2511 ap->ops->set_dmamode(ap, dev);
2514 /* step 4: update devices' xfer mode */
2515 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2516 dev = &ap->device[i];
2518 /* don't update suspended devices' xfer mode */
2519 if (!ata_dev_ready(dev))
2520 continue;
2522 rc = ata_dev_set_mode(dev);
2523 if (rc)
2524 goto out;
2527 /* Record simplex status. If we selected DMA then the other
2528 * host channels are not permitted to do so.
2530 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
2531 ap->host->simplex_claimed = 1;
2533 /* step5: chip specific finalisation */
2534 if (ap->ops->post_set_mode)
2535 ap->ops->post_set_mode(ap);
2537 out:
2538 if (rc)
2539 *r_failed_dev = dev;
2540 return rc;
2544 * ata_tf_to_host - issue ATA taskfile to host controller
2545 * @ap: port to which command is being issued
2546 * @tf: ATA taskfile register set
2548 * Issues ATA taskfile register set to ATA host controller,
2549 * with proper synchronization with interrupt handler and
2550 * other threads.
2552 * LOCKING:
2553 * spin_lock_irqsave(host lock)
2556 static inline void ata_tf_to_host(struct ata_port *ap,
2557 const struct ata_taskfile *tf)
2559 ap->ops->tf_load(ap, tf);
2560 ap->ops->exec_command(ap, tf);
2564 * ata_busy_sleep - sleep until BSY clears, or timeout
2565 * @ap: port containing status register to be polled
2566 * @tmout_pat: impatience timeout
2567 * @tmout: overall timeout
2569 * Sleep until ATA Status register bit BSY clears,
2570 * or a timeout occurs.
2572 * LOCKING:
2573 * Kernel thread context (may sleep).
2575 * RETURNS:
2576 * 0 on success, -errno otherwise.
2578 int ata_busy_sleep(struct ata_port *ap,
2579 unsigned long tmout_pat, unsigned long tmout)
2581 unsigned long timer_start, timeout;
2582 u8 status;
2584 status = ata_busy_wait(ap, ATA_BUSY, 300);
2585 timer_start = jiffies;
2586 timeout = timer_start + tmout_pat;
2587 while (status != 0xff && (status & ATA_BUSY) &&
2588 time_before(jiffies, timeout)) {
2589 msleep(50);
2590 status = ata_busy_wait(ap, ATA_BUSY, 3);
2593 if (status != 0xff && (status & ATA_BUSY))
2594 ata_port_printk(ap, KERN_WARNING,
2595 "port is slow to respond, please be patient "
2596 "(Status 0x%x)\n", status);
2598 timeout = timer_start + tmout;
2599 while (status != 0xff && (status & ATA_BUSY) &&
2600 time_before(jiffies, timeout)) {
2601 msleep(50);
2602 status = ata_chk_status(ap);
2605 if (status == 0xff)
2606 return -ENODEV;
2608 if (status & ATA_BUSY) {
2609 ata_port_printk(ap, KERN_ERR, "port failed to respond "
2610 "(%lu secs, Status 0x%x)\n",
2611 tmout / HZ, status);
2612 return -EBUSY;
2615 return 0;
2618 static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
2620 struct ata_ioports *ioaddr = &ap->ioaddr;
2621 unsigned int dev0 = devmask & (1 << 0);
2622 unsigned int dev1 = devmask & (1 << 1);
2623 unsigned long timeout;
2625 /* if device 0 was found in ata_devchk, wait for its
2626 * BSY bit to clear
2628 if (dev0)
2629 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2631 /* if device 1 was found in ata_devchk, wait for
2632 * register access, then wait for BSY to clear
2634 timeout = jiffies + ATA_TMOUT_BOOT;
2635 while (dev1) {
2636 u8 nsect, lbal;
2638 ap->ops->dev_select(ap, 1);
2639 nsect = ioread8(ioaddr->nsect_addr);
2640 lbal = ioread8(ioaddr->lbal_addr);
2641 if ((nsect == 1) && (lbal == 1))
2642 break;
2643 if (time_after(jiffies, timeout)) {
2644 dev1 = 0;
2645 break;
2647 msleep(50); /* give drive a breather */
2649 if (dev1)
2650 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2652 /* is all this really necessary? */
2653 ap->ops->dev_select(ap, 0);
2654 if (dev1)
2655 ap->ops->dev_select(ap, 1);
2656 if (dev0)
2657 ap->ops->dev_select(ap, 0);
2660 static unsigned int ata_bus_softreset(struct ata_port *ap,
2661 unsigned int devmask)
2663 struct ata_ioports *ioaddr = &ap->ioaddr;
2665 DPRINTK("ata%u: bus reset via SRST\n", ap->id);
2667 /* software reset. causes dev0 to be selected */
2668 iowrite8(ap->ctl, ioaddr->ctl_addr);
2669 udelay(20); /* FIXME: flush */
2670 iowrite8(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2671 udelay(20); /* FIXME: flush */
2672 iowrite8(ap->ctl, ioaddr->ctl_addr);
2674 /* spec mandates ">= 2ms" before checking status.
2675 * We wait 150ms, because that was the magic delay used for
2676 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
2677 * between when the ATA command register is written, and then
2678 * status is checked. Because waiting for "a while" before
2679 * checking status is fine, post SRST, we perform this magic
2680 * delay here as well.
2682 * Old drivers/ide uses the 2mS rule and then waits for ready
2684 msleep(150);
2686 /* Before we perform post reset processing we want to see if
2687 * the bus shows 0xFF because the odd clown forgets the D7
2688 * pulldown resistor.
2690 if (ata_check_status(ap) == 0xFF)
2691 return 0;
2693 ata_bus_post_reset(ap, devmask);
2695 return 0;
2699 * ata_bus_reset - reset host port and associated ATA channel
2700 * @ap: port to reset
2702 * This is typically the first time we actually start issuing
2703 * commands to the ATA channel. We wait for BSY to clear, then
2704 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
2705 * result. Determine what devices, if any, are on the channel
2706 * by looking at the device 0/1 error register. Look at the signature
2707 * stored in each device's taskfile registers, to determine if
2708 * the device is ATA or ATAPI.
2710 * LOCKING:
2711 * PCI/etc. bus probe sem.
2712 * Obtains host lock.
2714 * SIDE EFFECTS:
2715 * Sets ATA_FLAG_DISABLED if bus reset fails.
2718 void ata_bus_reset(struct ata_port *ap)
2720 struct ata_ioports *ioaddr = &ap->ioaddr;
2721 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2722 u8 err;
2723 unsigned int dev0, dev1 = 0, devmask = 0;
2725 DPRINTK("ENTER, host %u, port %u\n", ap->id, ap->port_no);
2727 /* determine if device 0/1 are present */
2728 if (ap->flags & ATA_FLAG_SATA_RESET)
2729 dev0 = 1;
2730 else {
2731 dev0 = ata_devchk(ap, 0);
2732 if (slave_possible)
2733 dev1 = ata_devchk(ap, 1);
2736 if (dev0)
2737 devmask |= (1 << 0);
2738 if (dev1)
2739 devmask |= (1 << 1);
2741 /* select device 0 again */
2742 ap->ops->dev_select(ap, 0);
2744 /* issue bus reset */
2745 if (ap->flags & ATA_FLAG_SRST)
2746 if (ata_bus_softreset(ap, devmask))
2747 goto err_out;
2750 * determine by signature whether we have ATA or ATAPI devices
2752 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
2753 if ((slave_possible) && (err != 0x81))
2754 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
2756 /* re-enable interrupts */
2757 ap->ops->irq_on(ap);
2759 /* is double-select really necessary? */
2760 if (ap->device[1].class != ATA_DEV_NONE)
2761 ap->ops->dev_select(ap, 1);
2762 if (ap->device[0].class != ATA_DEV_NONE)
2763 ap->ops->dev_select(ap, 0);
2765 /* if no devices were detected, disable this port */
2766 if ((ap->device[0].class == ATA_DEV_NONE) &&
2767 (ap->device[1].class == ATA_DEV_NONE))
2768 goto err_out;
2770 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2771 /* set up device control for ATA_FLAG_SATA_RESET */
2772 iowrite8(ap->ctl, ioaddr->ctl_addr);
2775 DPRINTK("EXIT\n");
2776 return;
2778 err_out:
2779 ata_port_printk(ap, KERN_ERR, "disabling port\n");
2780 ap->ops->port_disable(ap);
2782 DPRINTK("EXIT\n");
2786 * sata_phy_debounce - debounce SATA phy status
2787 * @ap: ATA port to debounce SATA phy status for
2788 * @params: timing parameters { interval, duratinon, timeout } in msec
2790 * Make sure SStatus of @ap reaches stable state, determined by
2791 * holding the same value where DET is not 1 for @duration polled
2792 * every @interval, before @timeout. Timeout constraints the
2793 * beginning of the stable state. Because, after hot unplugging,
2794 * DET gets stuck at 1 on some controllers, this functions waits
2795 * until timeout then returns 0 if DET is stable at 1.
2797 * LOCKING:
2798 * Kernel thread context (may sleep)
2800 * RETURNS:
2801 * 0 on success, -errno on failure.
2803 int sata_phy_debounce(struct ata_port *ap, const unsigned long *params)
2805 unsigned long interval_msec = params[0];
2806 unsigned long duration = params[1] * HZ / 1000;
2807 unsigned long timeout = jiffies + params[2] * HZ / 1000;
2808 unsigned long last_jiffies;
2809 u32 last, cur;
2810 int rc;
2812 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
2813 return rc;
2814 cur &= 0xf;
2816 last = cur;
2817 last_jiffies = jiffies;
2819 while (1) {
2820 msleep(interval_msec);
2821 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
2822 return rc;
2823 cur &= 0xf;
2825 /* DET stable? */
2826 if (cur == last) {
2827 if (cur == 1 && time_before(jiffies, timeout))
2828 continue;
2829 if (time_after(jiffies, last_jiffies + duration))
2830 return 0;
2831 continue;
2834 /* unstable, start over */
2835 last = cur;
2836 last_jiffies = jiffies;
2838 /* check timeout */
2839 if (time_after(jiffies, timeout))
2840 return -EBUSY;
2845 * sata_phy_resume - resume SATA phy
2846 * @ap: ATA port to resume SATA phy for
2847 * @params: timing parameters { interval, duratinon, timeout } in msec
2849 * Resume SATA phy of @ap and debounce it.
2851 * LOCKING:
2852 * Kernel thread context (may sleep)
2854 * RETURNS:
2855 * 0 on success, -errno on failure.
2857 int sata_phy_resume(struct ata_port *ap, const unsigned long *params)
2859 u32 scontrol;
2860 int rc;
2862 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2863 return rc;
2865 scontrol = (scontrol & 0x0f0) | 0x300;
2867 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2868 return rc;
2870 /* Some PHYs react badly if SStatus is pounded immediately
2871 * after resuming. Delay 200ms before debouncing.
2873 msleep(200);
2875 return sata_phy_debounce(ap, params);
2878 static void ata_wait_spinup(struct ata_port *ap)
2880 struct ata_eh_context *ehc = &ap->eh_context;
2881 unsigned long end, secs;
2882 int rc;
2884 /* first, debounce phy if SATA */
2885 if (ap->cbl == ATA_CBL_SATA) {
2886 rc = sata_phy_debounce(ap, sata_deb_timing_hotplug);
2888 /* if debounced successfully and offline, no need to wait */
2889 if ((rc == 0 || rc == -EOPNOTSUPP) && ata_port_offline(ap))
2890 return;
2893 /* okay, let's give the drive time to spin up */
2894 end = ehc->i.hotplug_timestamp + ATA_SPINUP_WAIT * HZ / 1000;
2895 secs = ((end - jiffies) + HZ - 1) / HZ;
2897 if (time_after(jiffies, end))
2898 return;
2900 if (secs > 5)
2901 ata_port_printk(ap, KERN_INFO, "waiting for device to spin up "
2902 "(%lu secs)\n", secs);
2904 schedule_timeout_uninterruptible(end - jiffies);
2908 * ata_std_prereset - prepare for reset
2909 * @ap: ATA port to be reset
2911 * @ap is about to be reset. Initialize it.
2913 * LOCKING:
2914 * Kernel thread context (may sleep)
2916 * RETURNS:
2917 * 0 on success, -errno otherwise.
2919 int ata_std_prereset(struct ata_port *ap)
2921 struct ata_eh_context *ehc = &ap->eh_context;
2922 const unsigned long *timing = sata_ehc_deb_timing(ehc);
2923 int rc;
2925 /* handle link resume & hotplug spinup */
2926 if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
2927 (ap->flags & ATA_FLAG_HRST_TO_RESUME))
2928 ehc->i.action |= ATA_EH_HARDRESET;
2930 if ((ehc->i.flags & ATA_EHI_HOTPLUGGED) &&
2931 (ap->flags & ATA_FLAG_SKIP_D2H_BSY))
2932 ata_wait_spinup(ap);
2934 /* if we're about to do hardreset, nothing more to do */
2935 if (ehc->i.action & ATA_EH_HARDRESET)
2936 return 0;
2938 /* if SATA, resume phy */
2939 if (ap->cbl == ATA_CBL_SATA) {
2940 rc = sata_phy_resume(ap, timing);
2941 if (rc && rc != -EOPNOTSUPP) {
2942 /* phy resume failed */
2943 ata_port_printk(ap, KERN_WARNING, "failed to resume "
2944 "link for reset (errno=%d)\n", rc);
2945 return rc;
2949 /* Wait for !BSY if the controller can wait for the first D2H
2950 * Reg FIS and we don't know that no device is attached.
2952 if (!(ap->flags & ATA_FLAG_SKIP_D2H_BSY) && !ata_port_offline(ap))
2953 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2955 return 0;
2959 * ata_std_softreset - reset host port via ATA SRST
2960 * @ap: port to reset
2961 * @classes: resulting classes of attached devices
2963 * Reset host port using ATA SRST.
2965 * LOCKING:
2966 * Kernel thread context (may sleep)
2968 * RETURNS:
2969 * 0 on success, -errno otherwise.
2971 int ata_std_softreset(struct ata_port *ap, unsigned int *classes)
2973 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2974 unsigned int devmask = 0, err_mask;
2975 u8 err;
2977 DPRINTK("ENTER\n");
2979 if (ata_port_offline(ap)) {
2980 classes[0] = ATA_DEV_NONE;
2981 goto out;
2984 /* determine if device 0/1 are present */
2985 if (ata_devchk(ap, 0))
2986 devmask |= (1 << 0);
2987 if (slave_possible && ata_devchk(ap, 1))
2988 devmask |= (1 << 1);
2990 /* select device 0 again */
2991 ap->ops->dev_select(ap, 0);
2993 /* issue bus reset */
2994 DPRINTK("about to softreset, devmask=%x\n", devmask);
2995 err_mask = ata_bus_softreset(ap, devmask);
2996 if (err_mask) {
2997 ata_port_printk(ap, KERN_ERR, "SRST failed (err_mask=0x%x)\n",
2998 err_mask);
2999 return -EIO;
3002 /* determine by signature whether we have ATA or ATAPI devices */
3003 classes[0] = ata_dev_try_classify(ap, 0, &err);
3004 if (slave_possible && err != 0x81)
3005 classes[1] = ata_dev_try_classify(ap, 1, &err);
3007 out:
3008 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
3009 return 0;
3013 * sata_port_hardreset - reset port via SATA phy reset
3014 * @ap: port to reset
3015 * @timing: timing parameters { interval, duratinon, timeout } in msec
3017 * SATA phy-reset host port using DET bits of SControl register.
3019 * LOCKING:
3020 * Kernel thread context (may sleep)
3022 * RETURNS:
3023 * 0 on success, -errno otherwise.
3025 int sata_port_hardreset(struct ata_port *ap, const unsigned long *timing)
3027 u32 scontrol;
3028 int rc;
3030 DPRINTK("ENTER\n");
3032 if (sata_set_spd_needed(ap)) {
3033 /* SATA spec says nothing about how to reconfigure
3034 * spd. To be on the safe side, turn off phy during
3035 * reconfiguration. This works for at least ICH7 AHCI
3036 * and Sil3124.
3038 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
3039 goto out;
3041 scontrol = (scontrol & 0x0f0) | 0x304;
3043 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
3044 goto out;
3046 sata_set_spd(ap);
3049 /* issue phy wake/reset */
3050 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
3051 goto out;
3053 scontrol = (scontrol & 0x0f0) | 0x301;
3055 if ((rc = sata_scr_write_flush(ap, SCR_CONTROL, scontrol)))
3056 goto out;
3058 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3059 * 10.4.2 says at least 1 ms.
3061 msleep(1);
3063 /* bring phy back */
3064 rc = sata_phy_resume(ap, timing);
3065 out:
3066 DPRINTK("EXIT, rc=%d\n", rc);
3067 return rc;
3071 * sata_std_hardreset - reset host port via SATA phy reset
3072 * @ap: port to reset
3073 * @class: resulting class of attached device
3075 * SATA phy-reset host port using DET bits of SControl register,
3076 * wait for !BSY and classify the attached device.
3078 * LOCKING:
3079 * Kernel thread context (may sleep)
3081 * RETURNS:
3082 * 0 on success, -errno otherwise.
3084 int sata_std_hardreset(struct ata_port *ap, unsigned int *class)
3086 const unsigned long *timing = sata_ehc_deb_timing(&ap->eh_context);
3087 int rc;
3089 DPRINTK("ENTER\n");
3091 /* do hardreset */
3092 rc = sata_port_hardreset(ap, timing);
3093 if (rc) {
3094 ata_port_printk(ap, KERN_ERR,
3095 "COMRESET failed (errno=%d)\n", rc);
3096 return rc;
3099 /* TODO: phy layer with polling, timeouts, etc. */
3100 if (ata_port_offline(ap)) {
3101 *class = ATA_DEV_NONE;
3102 DPRINTK("EXIT, link offline\n");
3103 return 0;
3106 /* wait a while before checking status, see SRST for more info */
3107 msleep(150);
3109 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
3110 ata_port_printk(ap, KERN_ERR,
3111 "COMRESET failed (device not ready)\n");
3112 return -EIO;
3115 ap->ops->dev_select(ap, 0); /* probably unnecessary */
3117 *class = ata_dev_try_classify(ap, 0, NULL);
3119 DPRINTK("EXIT, class=%u\n", *class);
3120 return 0;
3124 * ata_std_postreset - standard postreset callback
3125 * @ap: the target ata_port
3126 * @classes: classes of attached devices
3128 * This function is invoked after a successful reset. Note that
3129 * the device might have been reset more than once using
3130 * different reset methods before postreset is invoked.
3132 * LOCKING:
3133 * Kernel thread context (may sleep)
3135 void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
3137 u32 serror;
3139 DPRINTK("ENTER\n");
3141 /* print link status */
3142 sata_print_link_status(ap);
3144 /* clear SError */
3145 if (sata_scr_read(ap, SCR_ERROR, &serror) == 0)
3146 sata_scr_write(ap, SCR_ERROR, serror);
3148 /* re-enable interrupts */
3149 if (!ap->ops->error_handler)
3150 ap->ops->irq_on(ap);
3152 /* is double-select really necessary? */
3153 if (classes[0] != ATA_DEV_NONE)
3154 ap->ops->dev_select(ap, 1);
3155 if (classes[1] != ATA_DEV_NONE)
3156 ap->ops->dev_select(ap, 0);
3158 /* bail out if no device is present */
3159 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
3160 DPRINTK("EXIT, no device\n");
3161 return;
3164 /* set up device control */
3165 if (ap->ioaddr.ctl_addr)
3166 iowrite8(ap->ctl, ap->ioaddr.ctl_addr);
3168 DPRINTK("EXIT\n");
3172 * ata_dev_same_device - Determine whether new ID matches configured device
3173 * @dev: device to compare against
3174 * @new_class: class of the new device
3175 * @new_id: IDENTIFY page of the new device
3177 * Compare @new_class and @new_id against @dev and determine
3178 * whether @dev is the device indicated by @new_class and
3179 * @new_id.
3181 * LOCKING:
3182 * None.
3184 * RETURNS:
3185 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3187 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3188 const u16 *new_id)
3190 const u16 *old_id = dev->id;
3191 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3192 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3193 u64 new_n_sectors;
3195 if (dev->class != new_class) {
3196 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
3197 dev->class, new_class);
3198 return 0;
3201 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3202 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3203 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3204 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3205 new_n_sectors = ata_id_n_sectors(new_id);
3207 if (strcmp(model[0], model[1])) {
3208 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
3209 "'%s' != '%s'\n", model[0], model[1]);
3210 return 0;
3213 if (strcmp(serial[0], serial[1])) {
3214 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
3215 "'%s' != '%s'\n", serial[0], serial[1]);
3216 return 0;
3219 if (dev->class == ATA_DEV_ATA && dev->n_sectors != new_n_sectors) {
3220 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
3221 "%llu != %llu\n",
3222 (unsigned long long)dev->n_sectors,
3223 (unsigned long long)new_n_sectors);
3224 return 0;
3227 return 1;
3231 * ata_dev_revalidate - Revalidate ATA device
3232 * @dev: device to revalidate
3233 * @readid_flags: read ID flags
3235 * Re-read IDENTIFY page and make sure @dev is still attached to
3236 * the port.
3238 * LOCKING:
3239 * Kernel thread context (may sleep)
3241 * RETURNS:
3242 * 0 on success, negative errno otherwise
3244 int ata_dev_revalidate(struct ata_device *dev, unsigned int readid_flags)
3246 unsigned int class = dev->class;
3247 u16 *id = (void *)dev->ap->sector_buf;
3248 int rc;
3250 if (!ata_dev_enabled(dev)) {
3251 rc = -ENODEV;
3252 goto fail;
3255 /* read ID data */
3256 rc = ata_dev_read_id(dev, &class, readid_flags, id);
3257 if (rc)
3258 goto fail;
3260 /* is the device still there? */
3261 if (!ata_dev_same_device(dev, class, id)) {
3262 rc = -ENODEV;
3263 goto fail;
3266 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3268 /* configure device according to the new ID */
3269 rc = ata_dev_configure(dev);
3270 if (rc == 0)
3271 return 0;
3273 fail:
3274 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
3275 return rc;
3278 struct ata_blacklist_entry {
3279 const char *model_num;
3280 const char *model_rev;
3281 unsigned long horkage;
3284 static const struct ata_blacklist_entry ata_device_blacklist [] = {
3285 /* Devices with DMA related problems under Linux */
3286 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
3287 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
3288 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
3289 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
3290 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
3291 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
3292 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
3293 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
3294 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
3295 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
3296 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
3297 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
3298 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
3299 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
3300 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
3301 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
3302 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
3303 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
3304 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
3305 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
3306 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
3307 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
3308 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
3309 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
3310 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
3311 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
3312 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
3313 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
3314 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
3315 { "SAMSUNG CD-ROM SN-124","N001", ATA_HORKAGE_NODMA },
3317 /* Devices we expect to fail diagnostics */
3319 /* Devices where NCQ should be avoided */
3320 /* NCQ is slow */
3321 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
3323 /* Devices with NCQ limits */
3325 /* End Marker */
3329 unsigned long ata_device_blacklisted(const struct ata_device *dev)
3331 unsigned char model_num[ATA_ID_PROD_LEN + 1];
3332 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
3333 const struct ata_blacklist_entry *ad = ata_device_blacklist;
3335 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
3336 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
3338 while (ad->model_num) {
3339 if (!strcmp(ad->model_num, model_num)) {
3340 if (ad->model_rev == NULL)
3341 return ad->horkage;
3342 if (!strcmp(ad->model_rev, model_rev))
3343 return ad->horkage;
3345 ad++;
3347 return 0;
3350 static int ata_dma_blacklisted(const struct ata_device *dev)
3352 /* We don't support polling DMA.
3353 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
3354 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
3356 if ((dev->ap->flags & ATA_FLAG_PIO_POLLING) &&
3357 (dev->flags & ATA_DFLAG_CDB_INTR))
3358 return 1;
3359 return (ata_device_blacklisted(dev) & ATA_HORKAGE_NODMA) ? 1 : 0;
3363 * ata_dev_xfermask - Compute supported xfermask of the given device
3364 * @dev: Device to compute xfermask for
3366 * Compute supported xfermask of @dev and store it in
3367 * dev->*_mask. This function is responsible for applying all
3368 * known limits including host controller limits, device
3369 * blacklist, etc...
3371 * LOCKING:
3372 * None.
3374 static void ata_dev_xfermask(struct ata_device *dev)
3376 struct ata_port *ap = dev->ap;
3377 struct ata_host *host = ap->host;
3378 unsigned long xfer_mask;
3380 /* controller modes available */
3381 xfer_mask = ata_pack_xfermask(ap->pio_mask,
3382 ap->mwdma_mask, ap->udma_mask);
3384 /* Apply cable rule here. Don't apply it early because when
3385 * we handle hot plug the cable type can itself change.
3387 if (ap->cbl == ATA_CBL_PATA40)
3388 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
3389 /* Apply drive side cable rule. Unknown or 80 pin cables reported
3390 * host side are checked drive side as well. Cases where we know a
3391 * 40wire cable is used safely for 80 are not checked here.
3393 if (ata_drive_40wire(dev->id) && (ap->cbl == ATA_CBL_PATA_UNK || ap->cbl == ATA_CBL_PATA80))
3394 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
3397 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
3398 dev->mwdma_mask, dev->udma_mask);
3399 xfer_mask &= ata_id_xfermask(dev->id);
3402 * CFA Advanced TrueIDE timings are not allowed on a shared
3403 * cable
3405 if (ata_dev_pair(dev)) {
3406 /* No PIO5 or PIO6 */
3407 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
3408 /* No MWDMA3 or MWDMA 4 */
3409 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
3412 if (ata_dma_blacklisted(dev)) {
3413 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3414 ata_dev_printk(dev, KERN_WARNING,
3415 "device is on DMA blacklist, disabling DMA\n");
3418 if ((host->flags & ATA_HOST_SIMPLEX) && host->simplex_claimed) {
3419 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3420 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
3421 "other device, disabling DMA\n");
3424 if (ap->ops->mode_filter)
3425 xfer_mask = ap->ops->mode_filter(ap, dev, xfer_mask);
3427 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
3428 &dev->mwdma_mask, &dev->udma_mask);
3432 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
3433 * @dev: Device to which command will be sent
3435 * Issue SET FEATURES - XFER MODE command to device @dev
3436 * on port @ap.
3438 * LOCKING:
3439 * PCI/etc. bus probe sem.
3441 * RETURNS:
3442 * 0 on success, AC_ERR_* mask otherwise.
3445 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
3447 struct ata_taskfile tf;
3448 unsigned int err_mask;
3450 /* set up set-features taskfile */
3451 DPRINTK("set features - xfer mode\n");
3453 ata_tf_init(dev, &tf);
3454 tf.command = ATA_CMD_SET_FEATURES;
3455 tf.feature = SETFEATURES_XFER;
3456 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3457 tf.protocol = ATA_PROT_NODATA;
3458 tf.nsect = dev->xfer_mode;
3460 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3462 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3463 return err_mask;
3467 * ata_dev_init_params - Issue INIT DEV PARAMS command
3468 * @dev: Device to which command will be sent
3469 * @heads: Number of heads (taskfile parameter)
3470 * @sectors: Number of sectors (taskfile parameter)
3472 * LOCKING:
3473 * Kernel thread context (may sleep)
3475 * RETURNS:
3476 * 0 on success, AC_ERR_* mask otherwise.
3478 static unsigned int ata_dev_init_params(struct ata_device *dev,
3479 u16 heads, u16 sectors)
3481 struct ata_taskfile tf;
3482 unsigned int err_mask;
3484 /* Number of sectors per track 1-255. Number of heads 1-16 */
3485 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
3486 return AC_ERR_INVALID;
3488 /* set up init dev params taskfile */
3489 DPRINTK("init dev params \n");
3491 ata_tf_init(dev, &tf);
3492 tf.command = ATA_CMD_INIT_DEV_PARAMS;
3493 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3494 tf.protocol = ATA_PROT_NODATA;
3495 tf.nsect = sectors;
3496 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
3498 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
3500 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3501 return err_mask;
3505 * ata_sg_clean - Unmap DMA memory associated with command
3506 * @qc: Command containing DMA memory to be released
3508 * Unmap all mapped DMA memory associated with this command.
3510 * LOCKING:
3511 * spin_lock_irqsave(host lock)
3513 void ata_sg_clean(struct ata_queued_cmd *qc)
3515 struct ata_port *ap = qc->ap;
3516 struct scatterlist *sg = qc->__sg;
3517 int dir = qc->dma_dir;
3518 void *pad_buf = NULL;
3520 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
3521 WARN_ON(sg == NULL);
3523 if (qc->flags & ATA_QCFLAG_SINGLE)
3524 WARN_ON(qc->n_elem > 1);
3526 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
3528 /* if we padded the buffer out to 32-bit bound, and data
3529 * xfer direction is from-device, we must copy from the
3530 * pad buffer back into the supplied buffer
3532 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
3533 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3535 if (qc->flags & ATA_QCFLAG_SG) {
3536 if (qc->n_elem)
3537 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
3538 /* restore last sg */
3539 sg[qc->orig_n_elem - 1].length += qc->pad_len;
3540 if (pad_buf) {
3541 struct scatterlist *psg = &qc->pad_sgent;
3542 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3543 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
3544 kunmap_atomic(addr, KM_IRQ0);
3546 } else {
3547 if (qc->n_elem)
3548 dma_unmap_single(ap->dev,
3549 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
3550 dir);
3551 /* restore sg */
3552 sg->length += qc->pad_len;
3553 if (pad_buf)
3554 memcpy(qc->buf_virt + sg->length - qc->pad_len,
3555 pad_buf, qc->pad_len);
3558 qc->flags &= ~ATA_QCFLAG_DMAMAP;
3559 qc->__sg = NULL;
3563 * ata_fill_sg - Fill PCI IDE PRD table
3564 * @qc: Metadata associated with taskfile to be transferred
3566 * Fill PCI IDE PRD (scatter-gather) table with segments
3567 * associated with the current disk command.
3569 * LOCKING:
3570 * spin_lock_irqsave(host lock)
3573 static void ata_fill_sg(struct ata_queued_cmd *qc)
3575 struct ata_port *ap = qc->ap;
3576 struct scatterlist *sg;
3577 unsigned int idx;
3579 WARN_ON(qc->__sg == NULL);
3580 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
3582 idx = 0;
3583 ata_for_each_sg(sg, qc) {
3584 u32 addr, offset;
3585 u32 sg_len, len;
3587 /* determine if physical DMA addr spans 64K boundary.
3588 * Note h/w doesn't support 64-bit, so we unconditionally
3589 * truncate dma_addr_t to u32.
3591 addr = (u32) sg_dma_address(sg);
3592 sg_len = sg_dma_len(sg);
3594 while (sg_len) {
3595 offset = addr & 0xffff;
3596 len = sg_len;
3597 if ((offset + sg_len) > 0x10000)
3598 len = 0x10000 - offset;
3600 ap->prd[idx].addr = cpu_to_le32(addr);
3601 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
3602 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
3604 idx++;
3605 sg_len -= len;
3606 addr += len;
3610 if (idx)
3611 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
3614 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
3615 * @qc: Metadata associated with taskfile to check
3617 * Allow low-level driver to filter ATA PACKET commands, returning
3618 * a status indicating whether or not it is OK to use DMA for the
3619 * supplied PACKET command.
3621 * LOCKING:
3622 * spin_lock_irqsave(host lock)
3624 * RETURNS: 0 when ATAPI DMA can be used
3625 * nonzero otherwise
3627 int ata_check_atapi_dma(struct ata_queued_cmd *qc)
3629 struct ata_port *ap = qc->ap;
3630 int rc = 0; /* Assume ATAPI DMA is OK by default */
3632 if (ap->ops->check_atapi_dma)
3633 rc = ap->ops->check_atapi_dma(qc);
3635 return rc;
3638 * ata_qc_prep - Prepare taskfile for submission
3639 * @qc: Metadata associated with taskfile to be prepared
3641 * Prepare ATA taskfile for submission.
3643 * LOCKING:
3644 * spin_lock_irqsave(host lock)
3646 void ata_qc_prep(struct ata_queued_cmd *qc)
3648 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
3649 return;
3651 ata_fill_sg(qc);
3654 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
3657 * ata_sg_init_one - Associate command with memory buffer
3658 * @qc: Command to be associated
3659 * @buf: Memory buffer
3660 * @buflen: Length of memory buffer, in bytes.
3662 * Initialize the data-related elements of queued_cmd @qc
3663 * to point to a single memory buffer, @buf of byte length @buflen.
3665 * LOCKING:
3666 * spin_lock_irqsave(host lock)
3669 void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
3671 qc->flags |= ATA_QCFLAG_SINGLE;
3673 qc->__sg = &qc->sgent;
3674 qc->n_elem = 1;
3675 qc->orig_n_elem = 1;
3676 qc->buf_virt = buf;
3677 qc->nbytes = buflen;
3679 sg_init_one(&qc->sgent, buf, buflen);
3683 * ata_sg_init - Associate command with scatter-gather table.
3684 * @qc: Command to be associated
3685 * @sg: Scatter-gather table.
3686 * @n_elem: Number of elements in s/g table.
3688 * Initialize the data-related elements of queued_cmd @qc
3689 * to point to a scatter-gather table @sg, containing @n_elem
3690 * elements.
3692 * LOCKING:
3693 * spin_lock_irqsave(host lock)
3696 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
3697 unsigned int n_elem)
3699 qc->flags |= ATA_QCFLAG_SG;
3700 qc->__sg = sg;
3701 qc->n_elem = n_elem;
3702 qc->orig_n_elem = n_elem;
3706 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
3707 * @qc: Command with memory buffer to be mapped.
3709 * DMA-map the memory buffer associated with queued_cmd @qc.
3711 * LOCKING:
3712 * spin_lock_irqsave(host lock)
3714 * RETURNS:
3715 * Zero on success, negative on error.
3718 static int ata_sg_setup_one(struct ata_queued_cmd *qc)
3720 struct ata_port *ap = qc->ap;
3721 int dir = qc->dma_dir;
3722 struct scatterlist *sg = qc->__sg;
3723 dma_addr_t dma_address;
3724 int trim_sg = 0;
3726 /* we must lengthen transfers to end on a 32-bit boundary */
3727 qc->pad_len = sg->length & 3;
3728 if (qc->pad_len) {
3729 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3730 struct scatterlist *psg = &qc->pad_sgent;
3732 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
3734 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3736 if (qc->tf.flags & ATA_TFLAG_WRITE)
3737 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
3738 qc->pad_len);
3740 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3741 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3742 /* trim sg */
3743 sg->length -= qc->pad_len;
3744 if (sg->length == 0)
3745 trim_sg = 1;
3747 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
3748 sg->length, qc->pad_len);
3751 if (trim_sg) {
3752 qc->n_elem--;
3753 goto skip_map;
3756 dma_address = dma_map_single(ap->dev, qc->buf_virt,
3757 sg->length, dir);
3758 if (dma_mapping_error(dma_address)) {
3759 /* restore sg */
3760 sg->length += qc->pad_len;
3761 return -1;
3764 sg_dma_address(sg) = dma_address;
3765 sg_dma_len(sg) = sg->length;
3767 skip_map:
3768 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
3769 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3771 return 0;
3775 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
3776 * @qc: Command with scatter-gather table to be mapped.
3778 * DMA-map the scatter-gather table associated with queued_cmd @qc.
3780 * LOCKING:
3781 * spin_lock_irqsave(host lock)
3783 * RETURNS:
3784 * Zero on success, negative on error.
3788 static int ata_sg_setup(struct ata_queued_cmd *qc)
3790 struct ata_port *ap = qc->ap;
3791 struct scatterlist *sg = qc->__sg;
3792 struct scatterlist *lsg = &sg[qc->n_elem - 1];
3793 int n_elem, pre_n_elem, dir, trim_sg = 0;
3795 VPRINTK("ENTER, ata%u\n", ap->id);
3796 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
3798 /* we must lengthen transfers to end on a 32-bit boundary */
3799 qc->pad_len = lsg->length & 3;
3800 if (qc->pad_len) {
3801 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3802 struct scatterlist *psg = &qc->pad_sgent;
3803 unsigned int offset;
3805 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
3807 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3810 * psg->page/offset are used to copy to-be-written
3811 * data in this function or read data in ata_sg_clean.
3813 offset = lsg->offset + lsg->length - qc->pad_len;
3814 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
3815 psg->offset = offset_in_page(offset);
3817 if (qc->tf.flags & ATA_TFLAG_WRITE) {
3818 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3819 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
3820 kunmap_atomic(addr, KM_IRQ0);
3823 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3824 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3825 /* trim last sg */
3826 lsg->length -= qc->pad_len;
3827 if (lsg->length == 0)
3828 trim_sg = 1;
3830 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
3831 qc->n_elem - 1, lsg->length, qc->pad_len);
3834 pre_n_elem = qc->n_elem;
3835 if (trim_sg && pre_n_elem)
3836 pre_n_elem--;
3838 if (!pre_n_elem) {
3839 n_elem = 0;
3840 goto skip_map;
3843 dir = qc->dma_dir;
3844 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
3845 if (n_elem < 1) {
3846 /* restore last sg */
3847 lsg->length += qc->pad_len;
3848 return -1;
3851 DPRINTK("%d sg elements mapped\n", n_elem);
3853 skip_map:
3854 qc->n_elem = n_elem;
3856 return 0;
3860 * swap_buf_le16 - swap halves of 16-bit words in place
3861 * @buf: Buffer to swap
3862 * @buf_words: Number of 16-bit words in buffer.
3864 * Swap halves of 16-bit words if needed to convert from
3865 * little-endian byte order to native cpu byte order, or
3866 * vice-versa.
3868 * LOCKING:
3869 * Inherited from caller.
3871 void swap_buf_le16(u16 *buf, unsigned int buf_words)
3873 #ifdef __BIG_ENDIAN
3874 unsigned int i;
3876 for (i = 0; i < buf_words; i++)
3877 buf[i] = le16_to_cpu(buf[i]);
3878 #endif /* __BIG_ENDIAN */
3882 * ata_data_xfer - Transfer data by PIO
3883 * @adev: device to target
3884 * @buf: data buffer
3885 * @buflen: buffer length
3886 * @write_data: read/write
3888 * Transfer data from/to the device data register by PIO.
3890 * LOCKING:
3891 * Inherited from caller.
3893 void ata_data_xfer(struct ata_device *adev, unsigned char *buf,
3894 unsigned int buflen, int write_data)
3896 struct ata_port *ap = adev->ap;
3897 unsigned int words = buflen >> 1;
3899 /* Transfer multiple of 2 bytes */
3900 if (write_data)
3901 iowrite16_rep(ap->ioaddr.data_addr, buf, words);
3902 else
3903 ioread16_rep(ap->ioaddr.data_addr, buf, words);
3905 /* Transfer trailing 1 byte, if any. */
3906 if (unlikely(buflen & 0x01)) {
3907 u16 align_buf[1] = { 0 };
3908 unsigned char *trailing_buf = buf + buflen - 1;
3910 if (write_data) {
3911 memcpy(align_buf, trailing_buf, 1);
3912 iowrite16(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
3913 } else {
3914 align_buf[0] = cpu_to_le16(ioread16(ap->ioaddr.data_addr));
3915 memcpy(trailing_buf, align_buf, 1);
3921 * ata_data_xfer_noirq - Transfer data by PIO
3922 * @adev: device to target
3923 * @buf: data buffer
3924 * @buflen: buffer length
3925 * @write_data: read/write
3927 * Transfer data from/to the device data register by PIO. Do the
3928 * transfer with interrupts disabled.
3930 * LOCKING:
3931 * Inherited from caller.
3933 void ata_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
3934 unsigned int buflen, int write_data)
3936 unsigned long flags;
3937 local_irq_save(flags);
3938 ata_data_xfer(adev, buf, buflen, write_data);
3939 local_irq_restore(flags);
3944 * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
3945 * @qc: Command on going
3947 * Transfer ATA_SECT_SIZE of data from/to the ATA device.
3949 * LOCKING:
3950 * Inherited from caller.
3953 static void ata_pio_sector(struct ata_queued_cmd *qc)
3955 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3956 struct scatterlist *sg = qc->__sg;
3957 struct ata_port *ap = qc->ap;
3958 struct page *page;
3959 unsigned int offset;
3960 unsigned char *buf;
3962 if (qc->curbytes == qc->nbytes - ATA_SECT_SIZE)
3963 ap->hsm_task_state = HSM_ST_LAST;
3965 page = sg[qc->cursg].page;
3966 offset = sg[qc->cursg].offset + qc->cursg_ofs;
3968 /* get the current page and offset */
3969 page = nth_page(page, (offset >> PAGE_SHIFT));
3970 offset %= PAGE_SIZE;
3972 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3974 if (PageHighMem(page)) {
3975 unsigned long flags;
3977 /* FIXME: use a bounce buffer */
3978 local_irq_save(flags);
3979 buf = kmap_atomic(page, KM_IRQ0);
3981 /* do the actual data transfer */
3982 ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write);
3984 kunmap_atomic(buf, KM_IRQ0);
3985 local_irq_restore(flags);
3986 } else {
3987 buf = page_address(page);
3988 ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write);
3991 qc->curbytes += ATA_SECT_SIZE;
3992 qc->cursg_ofs += ATA_SECT_SIZE;
3994 if (qc->cursg_ofs == (&sg[qc->cursg])->length) {
3995 qc->cursg++;
3996 qc->cursg_ofs = 0;
4001 * ata_pio_sectors - Transfer one or many 512-byte sectors.
4002 * @qc: Command on going
4004 * Transfer one or many ATA_SECT_SIZE of data from/to the
4005 * ATA device for the DRQ request.
4007 * LOCKING:
4008 * Inherited from caller.
4011 static void ata_pio_sectors(struct ata_queued_cmd *qc)
4013 if (is_multi_taskfile(&qc->tf)) {
4014 /* READ/WRITE MULTIPLE */
4015 unsigned int nsect;
4017 WARN_ON(qc->dev->multi_count == 0);
4019 nsect = min((qc->nbytes - qc->curbytes) / ATA_SECT_SIZE,
4020 qc->dev->multi_count);
4021 while (nsect--)
4022 ata_pio_sector(qc);
4023 } else
4024 ata_pio_sector(qc);
4028 * atapi_send_cdb - Write CDB bytes to hardware
4029 * @ap: Port to which ATAPI device is attached.
4030 * @qc: Taskfile currently active
4032 * When device has indicated its readiness to accept
4033 * a CDB, this function is called. Send the CDB.
4035 * LOCKING:
4036 * caller.
4039 static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
4041 /* send SCSI cdb */
4042 DPRINTK("send cdb\n");
4043 WARN_ON(qc->dev->cdb_len < 12);
4045 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
4046 ata_altstatus(ap); /* flush */
4048 switch (qc->tf.protocol) {
4049 case ATA_PROT_ATAPI:
4050 ap->hsm_task_state = HSM_ST;
4051 break;
4052 case ATA_PROT_ATAPI_NODATA:
4053 ap->hsm_task_state = HSM_ST_LAST;
4054 break;
4055 case ATA_PROT_ATAPI_DMA:
4056 ap->hsm_task_state = HSM_ST_LAST;
4057 /* initiate bmdma */
4058 ap->ops->bmdma_start(qc);
4059 break;
4064 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
4065 * @qc: Command on going
4066 * @bytes: number of bytes
4068 * Transfer Transfer data from/to the ATAPI device.
4070 * LOCKING:
4071 * Inherited from caller.
4075 static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
4077 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
4078 struct scatterlist *sg = qc->__sg;
4079 struct ata_port *ap = qc->ap;
4080 struct page *page;
4081 unsigned char *buf;
4082 unsigned int offset, count;
4084 if (qc->curbytes + bytes >= qc->nbytes)
4085 ap->hsm_task_state = HSM_ST_LAST;
4087 next_sg:
4088 if (unlikely(qc->cursg >= qc->n_elem)) {
4090 * The end of qc->sg is reached and the device expects
4091 * more data to transfer. In order not to overrun qc->sg
4092 * and fulfill length specified in the byte count register,
4093 * - for read case, discard trailing data from the device
4094 * - for write case, padding zero data to the device
4096 u16 pad_buf[1] = { 0 };
4097 unsigned int words = bytes >> 1;
4098 unsigned int i;
4100 if (words) /* warning if bytes > 1 */
4101 ata_dev_printk(qc->dev, KERN_WARNING,
4102 "%u bytes trailing data\n", bytes);
4104 for (i = 0; i < words; i++)
4105 ap->ops->data_xfer(qc->dev, (unsigned char*)pad_buf, 2, do_write);
4107 ap->hsm_task_state = HSM_ST_LAST;
4108 return;
4111 sg = &qc->__sg[qc->cursg];
4113 page = sg->page;
4114 offset = sg->offset + qc->cursg_ofs;
4116 /* get the current page and offset */
4117 page = nth_page(page, (offset >> PAGE_SHIFT));
4118 offset %= PAGE_SIZE;
4120 /* don't overrun current sg */
4121 count = min(sg->length - qc->cursg_ofs, bytes);
4123 /* don't cross page boundaries */
4124 count = min(count, (unsigned int)PAGE_SIZE - offset);
4126 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
4128 if (PageHighMem(page)) {
4129 unsigned long flags;
4131 /* FIXME: use bounce buffer */
4132 local_irq_save(flags);
4133 buf = kmap_atomic(page, KM_IRQ0);
4135 /* do the actual data transfer */
4136 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
4138 kunmap_atomic(buf, KM_IRQ0);
4139 local_irq_restore(flags);
4140 } else {
4141 buf = page_address(page);
4142 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
4145 bytes -= count;
4146 qc->curbytes += count;
4147 qc->cursg_ofs += count;
4149 if (qc->cursg_ofs == sg->length) {
4150 qc->cursg++;
4151 qc->cursg_ofs = 0;
4154 if (bytes)
4155 goto next_sg;
4159 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
4160 * @qc: Command on going
4162 * Transfer Transfer data from/to the ATAPI device.
4164 * LOCKING:
4165 * Inherited from caller.
4168 static void atapi_pio_bytes(struct ata_queued_cmd *qc)
4170 struct ata_port *ap = qc->ap;
4171 struct ata_device *dev = qc->dev;
4172 unsigned int ireason, bc_lo, bc_hi, bytes;
4173 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
4175 /* Abuse qc->result_tf for temp storage of intermediate TF
4176 * here to save some kernel stack usage.
4177 * For normal completion, qc->result_tf is not relevant. For
4178 * error, qc->result_tf is later overwritten by ata_qc_complete().
4179 * So, the correctness of qc->result_tf is not affected.
4181 ap->ops->tf_read(ap, &qc->result_tf);
4182 ireason = qc->result_tf.nsect;
4183 bc_lo = qc->result_tf.lbam;
4184 bc_hi = qc->result_tf.lbah;
4185 bytes = (bc_hi << 8) | bc_lo;
4187 /* shall be cleared to zero, indicating xfer of data */
4188 if (ireason & (1 << 0))
4189 goto err_out;
4191 /* make sure transfer direction matches expected */
4192 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
4193 if (do_write != i_write)
4194 goto err_out;
4196 VPRINTK("ata%u: xfering %d bytes\n", ap->id, bytes);
4198 __atapi_pio_bytes(qc, bytes);
4200 return;
4202 err_out:
4203 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
4204 qc->err_mask |= AC_ERR_HSM;
4205 ap->hsm_task_state = HSM_ST_ERR;
4209 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
4210 * @ap: the target ata_port
4211 * @qc: qc on going
4213 * RETURNS:
4214 * 1 if ok in workqueue, 0 otherwise.
4217 static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
4219 if (qc->tf.flags & ATA_TFLAG_POLLING)
4220 return 1;
4222 if (ap->hsm_task_state == HSM_ST_FIRST) {
4223 if (qc->tf.protocol == ATA_PROT_PIO &&
4224 (qc->tf.flags & ATA_TFLAG_WRITE))
4225 return 1;
4227 if (is_atapi_taskfile(&qc->tf) &&
4228 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4229 return 1;
4232 return 0;
4236 * ata_hsm_qc_complete - finish a qc running on standard HSM
4237 * @qc: Command to complete
4238 * @in_wq: 1 if called from workqueue, 0 otherwise
4240 * Finish @qc which is running on standard HSM.
4242 * LOCKING:
4243 * If @in_wq is zero, spin_lock_irqsave(host lock).
4244 * Otherwise, none on entry and grabs host lock.
4246 static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
4248 struct ata_port *ap = qc->ap;
4249 unsigned long flags;
4251 if (ap->ops->error_handler) {
4252 if (in_wq) {
4253 spin_lock_irqsave(ap->lock, flags);
4255 /* EH might have kicked in while host lock is
4256 * released.
4258 qc = ata_qc_from_tag(ap, qc->tag);
4259 if (qc) {
4260 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
4261 ap->ops->irq_on(ap);
4262 ata_qc_complete(qc);
4263 } else
4264 ata_port_freeze(ap);
4267 spin_unlock_irqrestore(ap->lock, flags);
4268 } else {
4269 if (likely(!(qc->err_mask & AC_ERR_HSM)))
4270 ata_qc_complete(qc);
4271 else
4272 ata_port_freeze(ap);
4274 } else {
4275 if (in_wq) {
4276 spin_lock_irqsave(ap->lock, flags);
4277 ap->ops->irq_on(ap);
4278 ata_qc_complete(qc);
4279 spin_unlock_irqrestore(ap->lock, flags);
4280 } else
4281 ata_qc_complete(qc);
4284 ata_altstatus(ap); /* flush */
4288 * ata_hsm_move - move the HSM to the next state.
4289 * @ap: the target ata_port
4290 * @qc: qc on going
4291 * @status: current device status
4292 * @in_wq: 1 if called from workqueue, 0 otherwise
4294 * RETURNS:
4295 * 1 when poll next status needed, 0 otherwise.
4297 int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
4298 u8 status, int in_wq)
4300 unsigned long flags = 0;
4301 int poll_next;
4303 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
4305 /* Make sure ata_qc_issue_prot() does not throw things
4306 * like DMA polling into the workqueue. Notice that
4307 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
4309 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
4311 fsm_start:
4312 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
4313 ap->id, qc->tf.protocol, ap->hsm_task_state, status);
4315 switch (ap->hsm_task_state) {
4316 case HSM_ST_FIRST:
4317 /* Send first data block or PACKET CDB */
4319 /* If polling, we will stay in the work queue after
4320 * sending the data. Otherwise, interrupt handler
4321 * takes over after sending the data.
4323 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
4325 /* check device status */
4326 if (unlikely((status & ATA_DRQ) == 0)) {
4327 /* handle BSY=0, DRQ=0 as error */
4328 if (likely(status & (ATA_ERR | ATA_DF)))
4329 /* device stops HSM for abort/error */
4330 qc->err_mask |= AC_ERR_DEV;
4331 else
4332 /* HSM violation. Let EH handle this */
4333 qc->err_mask |= AC_ERR_HSM;
4335 ap->hsm_task_state = HSM_ST_ERR;
4336 goto fsm_start;
4339 /* Device should not ask for data transfer (DRQ=1)
4340 * when it finds something wrong.
4341 * We ignore DRQ here and stop the HSM by
4342 * changing hsm_task_state to HSM_ST_ERR and
4343 * let the EH abort the command or reset the device.
4345 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4346 printk(KERN_WARNING "ata%d: DRQ=1 with device error, dev_stat 0x%X\n",
4347 ap->id, status);
4348 qc->err_mask |= AC_ERR_HSM;
4349 ap->hsm_task_state = HSM_ST_ERR;
4350 goto fsm_start;
4353 /* Send the CDB (atapi) or the first data block (ata pio out).
4354 * During the state transition, interrupt handler shouldn't
4355 * be invoked before the data transfer is complete and
4356 * hsm_task_state is changed. Hence, the following locking.
4358 if (in_wq)
4359 spin_lock_irqsave(ap->lock, flags);
4361 if (qc->tf.protocol == ATA_PROT_PIO) {
4362 /* PIO data out protocol.
4363 * send first data block.
4366 /* ata_pio_sectors() might change the state
4367 * to HSM_ST_LAST. so, the state is changed here
4368 * before ata_pio_sectors().
4370 ap->hsm_task_state = HSM_ST;
4371 ata_pio_sectors(qc);
4372 ata_altstatus(ap); /* flush */
4373 } else
4374 /* send CDB */
4375 atapi_send_cdb(ap, qc);
4377 if (in_wq)
4378 spin_unlock_irqrestore(ap->lock, flags);
4380 /* if polling, ata_pio_task() handles the rest.
4381 * otherwise, interrupt handler takes over from here.
4383 break;
4385 case HSM_ST:
4386 /* complete command or read/write the data register */
4387 if (qc->tf.protocol == ATA_PROT_ATAPI) {
4388 /* ATAPI PIO protocol */
4389 if ((status & ATA_DRQ) == 0) {
4390 /* No more data to transfer or device error.
4391 * Device error will be tagged in HSM_ST_LAST.
4393 ap->hsm_task_state = HSM_ST_LAST;
4394 goto fsm_start;
4397 /* Device should not ask for data transfer (DRQ=1)
4398 * when it finds something wrong.
4399 * We ignore DRQ here and stop the HSM by
4400 * changing hsm_task_state to HSM_ST_ERR and
4401 * let the EH abort the command or reset the device.
4403 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4404 printk(KERN_WARNING "ata%d: DRQ=1 with device error, dev_stat 0x%X\n",
4405 ap->id, status);
4406 qc->err_mask |= AC_ERR_HSM;
4407 ap->hsm_task_state = HSM_ST_ERR;
4408 goto fsm_start;
4411 atapi_pio_bytes(qc);
4413 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
4414 /* bad ireason reported by device */
4415 goto fsm_start;
4417 } else {
4418 /* ATA PIO protocol */
4419 if (unlikely((status & ATA_DRQ) == 0)) {
4420 /* handle BSY=0, DRQ=0 as error */
4421 if (likely(status & (ATA_ERR | ATA_DF)))
4422 /* device stops HSM for abort/error */
4423 qc->err_mask |= AC_ERR_DEV;
4424 else
4425 /* HSM violation. Let EH handle this.
4426 * Phantom devices also trigger this
4427 * condition. Mark hint.
4429 qc->err_mask |= AC_ERR_HSM |
4430 AC_ERR_NODEV_HINT;
4432 ap->hsm_task_state = HSM_ST_ERR;
4433 goto fsm_start;
4436 /* For PIO reads, some devices may ask for
4437 * data transfer (DRQ=1) alone with ERR=1.
4438 * We respect DRQ here and transfer one
4439 * block of junk data before changing the
4440 * hsm_task_state to HSM_ST_ERR.
4442 * For PIO writes, ERR=1 DRQ=1 doesn't make
4443 * sense since the data block has been
4444 * transferred to the device.
4446 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4447 /* data might be corrputed */
4448 qc->err_mask |= AC_ERR_DEV;
4450 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
4451 ata_pio_sectors(qc);
4452 ata_altstatus(ap);
4453 status = ata_wait_idle(ap);
4456 if (status & (ATA_BUSY | ATA_DRQ))
4457 qc->err_mask |= AC_ERR_HSM;
4459 /* ata_pio_sectors() might change the
4460 * state to HSM_ST_LAST. so, the state
4461 * is changed after ata_pio_sectors().
4463 ap->hsm_task_state = HSM_ST_ERR;
4464 goto fsm_start;
4467 ata_pio_sectors(qc);
4469 if (ap->hsm_task_state == HSM_ST_LAST &&
4470 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
4471 /* all data read */
4472 ata_altstatus(ap);
4473 status = ata_wait_idle(ap);
4474 goto fsm_start;
4478 ata_altstatus(ap); /* flush */
4479 poll_next = 1;
4480 break;
4482 case HSM_ST_LAST:
4483 if (unlikely(!ata_ok(status))) {
4484 qc->err_mask |= __ac_err_mask(status);
4485 ap->hsm_task_state = HSM_ST_ERR;
4486 goto fsm_start;
4489 /* no more data to transfer */
4490 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
4491 ap->id, qc->dev->devno, status);
4493 WARN_ON(qc->err_mask);
4495 ap->hsm_task_state = HSM_ST_IDLE;
4497 /* complete taskfile transaction */
4498 ata_hsm_qc_complete(qc, in_wq);
4500 poll_next = 0;
4501 break;
4503 case HSM_ST_ERR:
4504 /* make sure qc->err_mask is available to
4505 * know what's wrong and recover
4507 WARN_ON(qc->err_mask == 0);
4509 ap->hsm_task_state = HSM_ST_IDLE;
4511 /* complete taskfile transaction */
4512 ata_hsm_qc_complete(qc, in_wq);
4514 poll_next = 0;
4515 break;
4516 default:
4517 poll_next = 0;
4518 BUG();
4521 return poll_next;
4524 static void ata_pio_task(struct work_struct *work)
4526 struct ata_port *ap =
4527 container_of(work, struct ata_port, port_task.work);
4528 struct ata_queued_cmd *qc = ap->port_task_data;
4529 u8 status;
4530 int poll_next;
4532 fsm_start:
4533 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
4536 * This is purely heuristic. This is a fast path.
4537 * Sometimes when we enter, BSY will be cleared in
4538 * a chk-status or two. If not, the drive is probably seeking
4539 * or something. Snooze for a couple msecs, then
4540 * chk-status again. If still busy, queue delayed work.
4542 status = ata_busy_wait(ap, ATA_BUSY, 5);
4543 if (status & ATA_BUSY) {
4544 msleep(2);
4545 status = ata_busy_wait(ap, ATA_BUSY, 10);
4546 if (status & ATA_BUSY) {
4547 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
4548 return;
4552 /* move the HSM */
4553 poll_next = ata_hsm_move(ap, qc, status, 1);
4555 /* another command or interrupt handler
4556 * may be running at this point.
4558 if (poll_next)
4559 goto fsm_start;
4563 * ata_qc_new - Request an available ATA command, for queueing
4564 * @ap: Port associated with device @dev
4565 * @dev: Device from whom we request an available command structure
4567 * LOCKING:
4568 * None.
4571 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4573 struct ata_queued_cmd *qc = NULL;
4574 unsigned int i;
4576 /* no command while frozen */
4577 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4578 return NULL;
4580 /* the last tag is reserved for internal command. */
4581 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
4582 if (!test_and_set_bit(i, &ap->qc_allocated)) {
4583 qc = __ata_qc_from_tag(ap, i);
4584 break;
4587 if (qc)
4588 qc->tag = i;
4590 return qc;
4594 * ata_qc_new_init - Request an available ATA command, and initialize it
4595 * @dev: Device from whom we request an available command structure
4597 * LOCKING:
4598 * None.
4601 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
4603 struct ata_port *ap = dev->ap;
4604 struct ata_queued_cmd *qc;
4606 qc = ata_qc_new(ap);
4607 if (qc) {
4608 qc->scsicmd = NULL;
4609 qc->ap = ap;
4610 qc->dev = dev;
4612 ata_qc_reinit(qc);
4615 return qc;
4619 * ata_qc_free - free unused ata_queued_cmd
4620 * @qc: Command to complete
4622 * Designed to free unused ata_queued_cmd object
4623 * in case something prevents using it.
4625 * LOCKING:
4626 * spin_lock_irqsave(host lock)
4628 void ata_qc_free(struct ata_queued_cmd *qc)
4630 struct ata_port *ap = qc->ap;
4631 unsigned int tag;
4633 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4635 qc->flags = 0;
4636 tag = qc->tag;
4637 if (likely(ata_tag_valid(tag))) {
4638 qc->tag = ATA_TAG_POISON;
4639 clear_bit(tag, &ap->qc_allocated);
4643 void __ata_qc_complete(struct ata_queued_cmd *qc)
4645 struct ata_port *ap = qc->ap;
4647 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4648 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
4650 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4651 ata_sg_clean(qc);
4653 /* command should be marked inactive atomically with qc completion */
4654 if (qc->tf.protocol == ATA_PROT_NCQ)
4655 ap->sactive &= ~(1 << qc->tag);
4656 else
4657 ap->active_tag = ATA_TAG_POISON;
4659 /* atapi: mark qc as inactive to prevent the interrupt handler
4660 * from completing the command twice later, before the error handler
4661 * is called. (when rc != 0 and atapi request sense is needed)
4663 qc->flags &= ~ATA_QCFLAG_ACTIVE;
4664 ap->qc_active &= ~(1 << qc->tag);
4666 /* call completion callback */
4667 qc->complete_fn(qc);
4670 static void fill_result_tf(struct ata_queued_cmd *qc)
4672 struct ata_port *ap = qc->ap;
4674 ap->ops->tf_read(ap, &qc->result_tf);
4675 qc->result_tf.flags = qc->tf.flags;
4679 * ata_qc_complete - Complete an active ATA command
4680 * @qc: Command to complete
4681 * @err_mask: ATA Status register contents
4683 * Indicate to the mid and upper layers that an ATA
4684 * command has completed, with either an ok or not-ok status.
4686 * LOCKING:
4687 * spin_lock_irqsave(host lock)
4689 void ata_qc_complete(struct ata_queued_cmd *qc)
4691 struct ata_port *ap = qc->ap;
4693 /* XXX: New EH and old EH use different mechanisms to
4694 * synchronize EH with regular execution path.
4696 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4697 * Normal execution path is responsible for not accessing a
4698 * failed qc. libata core enforces the rule by returning NULL
4699 * from ata_qc_from_tag() for failed qcs.
4701 * Old EH depends on ata_qc_complete() nullifying completion
4702 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4703 * not synchronize with interrupt handler. Only PIO task is
4704 * taken care of.
4706 if (ap->ops->error_handler) {
4707 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
4709 if (unlikely(qc->err_mask))
4710 qc->flags |= ATA_QCFLAG_FAILED;
4712 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4713 if (!ata_tag_internal(qc->tag)) {
4714 /* always fill result TF for failed qc */
4715 fill_result_tf(qc);
4716 ata_qc_schedule_eh(qc);
4717 return;
4721 /* read result TF if requested */
4722 if (qc->flags & ATA_QCFLAG_RESULT_TF)
4723 fill_result_tf(qc);
4725 __ata_qc_complete(qc);
4726 } else {
4727 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4728 return;
4730 /* read result TF if failed or requested */
4731 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4732 fill_result_tf(qc);
4734 __ata_qc_complete(qc);
4739 * ata_qc_complete_multiple - Complete multiple qcs successfully
4740 * @ap: port in question
4741 * @qc_active: new qc_active mask
4742 * @finish_qc: LLDD callback invoked before completing a qc
4744 * Complete in-flight commands. This functions is meant to be
4745 * called from low-level driver's interrupt routine to complete
4746 * requests normally. ap->qc_active and @qc_active is compared
4747 * and commands are completed accordingly.
4749 * LOCKING:
4750 * spin_lock_irqsave(host lock)
4752 * RETURNS:
4753 * Number of completed commands on success, -errno otherwise.
4755 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
4756 void (*finish_qc)(struct ata_queued_cmd *))
4758 int nr_done = 0;
4759 u32 done_mask;
4760 int i;
4762 done_mask = ap->qc_active ^ qc_active;
4764 if (unlikely(done_mask & qc_active)) {
4765 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
4766 "(%08x->%08x)\n", ap->qc_active, qc_active);
4767 return -EINVAL;
4770 for (i = 0; i < ATA_MAX_QUEUE; i++) {
4771 struct ata_queued_cmd *qc;
4773 if (!(done_mask & (1 << i)))
4774 continue;
4776 if ((qc = ata_qc_from_tag(ap, i))) {
4777 if (finish_qc)
4778 finish_qc(qc);
4779 ata_qc_complete(qc);
4780 nr_done++;
4784 return nr_done;
4787 static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
4789 struct ata_port *ap = qc->ap;
4791 switch (qc->tf.protocol) {
4792 case ATA_PROT_NCQ:
4793 case ATA_PROT_DMA:
4794 case ATA_PROT_ATAPI_DMA:
4795 return 1;
4797 case ATA_PROT_ATAPI:
4798 case ATA_PROT_PIO:
4799 if (ap->flags & ATA_FLAG_PIO_DMA)
4800 return 1;
4802 /* fall through */
4804 default:
4805 return 0;
4808 /* never reached */
4812 * ata_qc_issue - issue taskfile to device
4813 * @qc: command to issue to device
4815 * Prepare an ATA command to submission to device.
4816 * This includes mapping the data into a DMA-able
4817 * area, filling in the S/G table, and finally
4818 * writing the taskfile to hardware, starting the command.
4820 * LOCKING:
4821 * spin_lock_irqsave(host lock)
4823 void ata_qc_issue(struct ata_queued_cmd *qc)
4825 struct ata_port *ap = qc->ap;
4827 /* Make sure only one non-NCQ command is outstanding. The
4828 * check is skipped for old EH because it reuses active qc to
4829 * request ATAPI sense.
4831 WARN_ON(ap->ops->error_handler && ata_tag_valid(ap->active_tag));
4833 if (qc->tf.protocol == ATA_PROT_NCQ) {
4834 WARN_ON(ap->sactive & (1 << qc->tag));
4835 ap->sactive |= 1 << qc->tag;
4836 } else {
4837 WARN_ON(ap->sactive);
4838 ap->active_tag = qc->tag;
4841 qc->flags |= ATA_QCFLAG_ACTIVE;
4842 ap->qc_active |= 1 << qc->tag;
4844 if (ata_should_dma_map(qc)) {
4845 if (qc->flags & ATA_QCFLAG_SG) {
4846 if (ata_sg_setup(qc))
4847 goto sg_err;
4848 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
4849 if (ata_sg_setup_one(qc))
4850 goto sg_err;
4852 } else {
4853 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4856 ap->ops->qc_prep(qc);
4858 qc->err_mask |= ap->ops->qc_issue(qc);
4859 if (unlikely(qc->err_mask))
4860 goto err;
4861 return;
4863 sg_err:
4864 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4865 qc->err_mask |= AC_ERR_SYSTEM;
4866 err:
4867 ata_qc_complete(qc);
4871 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
4872 * @qc: command to issue to device
4874 * Using various libata functions and hooks, this function
4875 * starts an ATA command. ATA commands are grouped into
4876 * classes called "protocols", and issuing each type of protocol
4877 * is slightly different.
4879 * May be used as the qc_issue() entry in ata_port_operations.
4881 * LOCKING:
4882 * spin_lock_irqsave(host lock)
4884 * RETURNS:
4885 * Zero on success, AC_ERR_* mask on failure
4888 unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
4890 struct ata_port *ap = qc->ap;
4892 /* Use polling pio if the LLD doesn't handle
4893 * interrupt driven pio and atapi CDB interrupt.
4895 if (ap->flags & ATA_FLAG_PIO_POLLING) {
4896 switch (qc->tf.protocol) {
4897 case ATA_PROT_PIO:
4898 case ATA_PROT_NODATA:
4899 case ATA_PROT_ATAPI:
4900 case ATA_PROT_ATAPI_NODATA:
4901 qc->tf.flags |= ATA_TFLAG_POLLING;
4902 break;
4903 case ATA_PROT_ATAPI_DMA:
4904 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
4905 /* see ata_dma_blacklisted() */
4906 BUG();
4907 break;
4908 default:
4909 break;
4913 /* Some controllers show flaky interrupt behavior after
4914 * setting xfer mode. Use polling instead.
4916 if (unlikely(qc->tf.command == ATA_CMD_SET_FEATURES &&
4917 qc->tf.feature == SETFEATURES_XFER) &&
4918 (ap->flags & ATA_FLAG_SETXFER_POLLING))
4919 qc->tf.flags |= ATA_TFLAG_POLLING;
4921 /* select the device */
4922 ata_dev_select(ap, qc->dev->devno, 1, 0);
4924 /* start the command */
4925 switch (qc->tf.protocol) {
4926 case ATA_PROT_NODATA:
4927 if (qc->tf.flags & ATA_TFLAG_POLLING)
4928 ata_qc_set_polling(qc);
4930 ata_tf_to_host(ap, &qc->tf);
4931 ap->hsm_task_state = HSM_ST_LAST;
4933 if (qc->tf.flags & ATA_TFLAG_POLLING)
4934 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4936 break;
4938 case ATA_PROT_DMA:
4939 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
4941 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4942 ap->ops->bmdma_setup(qc); /* set up bmdma */
4943 ap->ops->bmdma_start(qc); /* initiate bmdma */
4944 ap->hsm_task_state = HSM_ST_LAST;
4945 break;
4947 case ATA_PROT_PIO:
4948 if (qc->tf.flags & ATA_TFLAG_POLLING)
4949 ata_qc_set_polling(qc);
4951 ata_tf_to_host(ap, &qc->tf);
4953 if (qc->tf.flags & ATA_TFLAG_WRITE) {
4954 /* PIO data out protocol */
4955 ap->hsm_task_state = HSM_ST_FIRST;
4956 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4958 /* always send first data block using
4959 * the ata_pio_task() codepath.
4961 } else {
4962 /* PIO data in protocol */
4963 ap->hsm_task_state = HSM_ST;
4965 if (qc->tf.flags & ATA_TFLAG_POLLING)
4966 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4968 /* if polling, ata_pio_task() handles the rest.
4969 * otherwise, interrupt handler takes over from here.
4973 break;
4975 case ATA_PROT_ATAPI:
4976 case ATA_PROT_ATAPI_NODATA:
4977 if (qc->tf.flags & ATA_TFLAG_POLLING)
4978 ata_qc_set_polling(qc);
4980 ata_tf_to_host(ap, &qc->tf);
4982 ap->hsm_task_state = HSM_ST_FIRST;
4984 /* send cdb by polling if no cdb interrupt */
4985 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
4986 (qc->tf.flags & ATA_TFLAG_POLLING))
4987 ata_port_queue_task(ap, ata_pio_task, qc, 0);
4988 break;
4990 case ATA_PROT_ATAPI_DMA:
4991 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
4993 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4994 ap->ops->bmdma_setup(qc); /* set up bmdma */
4995 ap->hsm_task_state = HSM_ST_FIRST;
4997 /* send cdb by polling if no cdb interrupt */
4998 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
4999 ata_port_queue_task(ap, ata_pio_task, qc, 0);
5000 break;
5002 default:
5003 WARN_ON(1);
5004 return AC_ERR_SYSTEM;
5007 return 0;
5011 * ata_host_intr - Handle host interrupt for given (port, task)
5012 * @ap: Port on which interrupt arrived (possibly...)
5013 * @qc: Taskfile currently active in engine
5015 * Handle host interrupt for given queued command. Currently,
5016 * only DMA interrupts are handled. All other commands are
5017 * handled via polling with interrupts disabled (nIEN bit).
5019 * LOCKING:
5020 * spin_lock_irqsave(host lock)
5022 * RETURNS:
5023 * One if interrupt was handled, zero if not (shared irq).
5026 inline unsigned int ata_host_intr (struct ata_port *ap,
5027 struct ata_queued_cmd *qc)
5029 struct ata_eh_info *ehi = &ap->eh_info;
5030 u8 status, host_stat = 0;
5032 VPRINTK("ata%u: protocol %d task_state %d\n",
5033 ap->id, qc->tf.protocol, ap->hsm_task_state);
5035 /* Check whether we are expecting interrupt in this state */
5036 switch (ap->hsm_task_state) {
5037 case HSM_ST_FIRST:
5038 /* Some pre-ATAPI-4 devices assert INTRQ
5039 * at this state when ready to receive CDB.
5042 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
5043 * The flag was turned on only for atapi devices.
5044 * No need to check is_atapi_taskfile(&qc->tf) again.
5046 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
5047 goto idle_irq;
5048 break;
5049 case HSM_ST_LAST:
5050 if (qc->tf.protocol == ATA_PROT_DMA ||
5051 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
5052 /* check status of DMA engine */
5053 host_stat = ap->ops->bmdma_status(ap);
5054 VPRINTK("ata%u: host_stat 0x%X\n", ap->id, host_stat);
5056 /* if it's not our irq... */
5057 if (!(host_stat & ATA_DMA_INTR))
5058 goto idle_irq;
5060 /* before we do anything else, clear DMA-Start bit */
5061 ap->ops->bmdma_stop(qc);
5063 if (unlikely(host_stat & ATA_DMA_ERR)) {
5064 /* error when transfering data to/from memory */
5065 qc->err_mask |= AC_ERR_HOST_BUS;
5066 ap->hsm_task_state = HSM_ST_ERR;
5069 break;
5070 case HSM_ST:
5071 break;
5072 default:
5073 goto idle_irq;
5076 /* check altstatus */
5077 status = ata_altstatus(ap);
5078 if (status & ATA_BUSY)
5079 goto idle_irq;
5081 /* check main status, clearing INTRQ */
5082 status = ata_chk_status(ap);
5083 if (unlikely(status & ATA_BUSY))
5084 goto idle_irq;
5086 /* ack bmdma irq events */
5087 ap->ops->irq_clear(ap);
5089 ata_hsm_move(ap, qc, status, 0);
5091 if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA ||
5092 qc->tf.protocol == ATA_PROT_ATAPI_DMA))
5093 ata_ehi_push_desc(ehi, "BMDMA stat 0x%x", host_stat);
5095 return 1; /* irq handled */
5097 idle_irq:
5098 ap->stats.idle_irq++;
5100 #ifdef ATA_IRQ_TRAP
5101 if ((ap->stats.idle_irq % 1000) == 0) {
5102 ap->ops->irq_ack(ap, 0); /* debug trap */
5103 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
5104 return 1;
5106 #endif
5107 return 0; /* irq not handled */
5111 * ata_interrupt - Default ATA host interrupt handler
5112 * @irq: irq line (unused)
5113 * @dev_instance: pointer to our ata_host information structure
5115 * Default interrupt handler for PCI IDE devices. Calls
5116 * ata_host_intr() for each port that is not disabled.
5118 * LOCKING:
5119 * Obtains host lock during operation.
5121 * RETURNS:
5122 * IRQ_NONE or IRQ_HANDLED.
5125 irqreturn_t ata_interrupt (int irq, void *dev_instance)
5127 struct ata_host *host = dev_instance;
5128 unsigned int i;
5129 unsigned int handled = 0;
5130 unsigned long flags;
5132 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
5133 spin_lock_irqsave(&host->lock, flags);
5135 for (i = 0; i < host->n_ports; i++) {
5136 struct ata_port *ap;
5138 ap = host->ports[i];
5139 if (ap &&
5140 !(ap->flags & ATA_FLAG_DISABLED)) {
5141 struct ata_queued_cmd *qc;
5143 qc = ata_qc_from_tag(ap, ap->active_tag);
5144 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
5145 (qc->flags & ATA_QCFLAG_ACTIVE))
5146 handled |= ata_host_intr(ap, qc);
5150 spin_unlock_irqrestore(&host->lock, flags);
5152 return IRQ_RETVAL(handled);
5156 * sata_scr_valid - test whether SCRs are accessible
5157 * @ap: ATA port to test SCR accessibility for
5159 * Test whether SCRs are accessible for @ap.
5161 * LOCKING:
5162 * None.
5164 * RETURNS:
5165 * 1 if SCRs are accessible, 0 otherwise.
5167 int sata_scr_valid(struct ata_port *ap)
5169 return ap->cbl == ATA_CBL_SATA && ap->ops->scr_read;
5173 * sata_scr_read - read SCR register of the specified port
5174 * @ap: ATA port to read SCR for
5175 * @reg: SCR to read
5176 * @val: Place to store read value
5178 * Read SCR register @reg of @ap into *@val. This function is
5179 * guaranteed to succeed if the cable type of the port is SATA
5180 * and the port implements ->scr_read.
5182 * LOCKING:
5183 * None.
5185 * RETURNS:
5186 * 0 on success, negative errno on failure.
5188 int sata_scr_read(struct ata_port *ap, int reg, u32 *val)
5190 if (sata_scr_valid(ap)) {
5191 *val = ap->ops->scr_read(ap, reg);
5192 return 0;
5194 return -EOPNOTSUPP;
5198 * sata_scr_write - write SCR register of the specified port
5199 * @ap: ATA port to write SCR for
5200 * @reg: SCR to write
5201 * @val: value to write
5203 * Write @val to SCR register @reg of @ap. This function is
5204 * guaranteed to succeed if the cable type of the port is SATA
5205 * and the port implements ->scr_read.
5207 * LOCKING:
5208 * None.
5210 * RETURNS:
5211 * 0 on success, negative errno on failure.
5213 int sata_scr_write(struct ata_port *ap, int reg, u32 val)
5215 if (sata_scr_valid(ap)) {
5216 ap->ops->scr_write(ap, reg, val);
5217 return 0;
5219 return -EOPNOTSUPP;
5223 * sata_scr_write_flush - write SCR register of the specified port and flush
5224 * @ap: ATA port to write SCR for
5225 * @reg: SCR to write
5226 * @val: value to write
5228 * This function is identical to sata_scr_write() except that this
5229 * function performs flush after writing to the register.
5231 * LOCKING:
5232 * None.
5234 * RETURNS:
5235 * 0 on success, negative errno on failure.
5237 int sata_scr_write_flush(struct ata_port *ap, int reg, u32 val)
5239 if (sata_scr_valid(ap)) {
5240 ap->ops->scr_write(ap, reg, val);
5241 ap->ops->scr_read(ap, reg);
5242 return 0;
5244 return -EOPNOTSUPP;
5248 * ata_port_online - test whether the given port is online
5249 * @ap: ATA port to test
5251 * Test whether @ap is online. Note that this function returns 0
5252 * if online status of @ap cannot be obtained, so
5253 * ata_port_online(ap) != !ata_port_offline(ap).
5255 * LOCKING:
5256 * None.
5258 * RETURNS:
5259 * 1 if the port online status is available and online.
5261 int ata_port_online(struct ata_port *ap)
5263 u32 sstatus;
5265 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) == 0x3)
5266 return 1;
5267 return 0;
5271 * ata_port_offline - test whether the given port is offline
5272 * @ap: ATA port to test
5274 * Test whether @ap is offline. Note that this function returns
5275 * 0 if offline status of @ap cannot be obtained, so
5276 * ata_port_online(ap) != !ata_port_offline(ap).
5278 * LOCKING:
5279 * None.
5281 * RETURNS:
5282 * 1 if the port offline status is available and offline.
5284 int ata_port_offline(struct ata_port *ap)
5286 u32 sstatus;
5288 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) != 0x3)
5289 return 1;
5290 return 0;
5293 int ata_flush_cache(struct ata_device *dev)
5295 unsigned int err_mask;
5296 u8 cmd;
5298 if (!ata_try_flush_cache(dev))
5299 return 0;
5301 if (dev->flags & ATA_DFLAG_FLUSH_EXT)
5302 cmd = ATA_CMD_FLUSH_EXT;
5303 else
5304 cmd = ATA_CMD_FLUSH;
5306 err_mask = ata_do_simple_cmd(dev, cmd);
5307 if (err_mask) {
5308 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
5309 return -EIO;
5312 return 0;
5315 static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
5316 unsigned int action, unsigned int ehi_flags,
5317 int wait)
5319 unsigned long flags;
5320 int i, rc;
5322 for (i = 0; i < host->n_ports; i++) {
5323 struct ata_port *ap = host->ports[i];
5325 /* Previous resume operation might still be in
5326 * progress. Wait for PM_PENDING to clear.
5328 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5329 ata_port_wait_eh(ap);
5330 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5333 /* request PM ops to EH */
5334 spin_lock_irqsave(ap->lock, flags);
5336 ap->pm_mesg = mesg;
5337 if (wait) {
5338 rc = 0;
5339 ap->pm_result = &rc;
5342 ap->pflags |= ATA_PFLAG_PM_PENDING;
5343 ap->eh_info.action |= action;
5344 ap->eh_info.flags |= ehi_flags;
5346 ata_port_schedule_eh(ap);
5348 spin_unlock_irqrestore(ap->lock, flags);
5350 /* wait and check result */
5351 if (wait) {
5352 ata_port_wait_eh(ap);
5353 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5354 if (rc)
5355 return rc;
5359 return 0;
5363 * ata_host_suspend - suspend host
5364 * @host: host to suspend
5365 * @mesg: PM message
5367 * Suspend @host. Actual operation is performed by EH. This
5368 * function requests EH to perform PM operations and waits for EH
5369 * to finish.
5371 * LOCKING:
5372 * Kernel thread context (may sleep).
5374 * RETURNS:
5375 * 0 on success, -errno on failure.
5377 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5379 int i, j, rc;
5381 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
5382 if (rc)
5383 goto fail;
5385 /* EH is quiescent now. Fail if we have any ready device.
5386 * This happens if hotplug occurs between completion of device
5387 * suspension and here.
5389 for (i = 0; i < host->n_ports; i++) {
5390 struct ata_port *ap = host->ports[i];
5392 for (j = 0; j < ATA_MAX_DEVICES; j++) {
5393 struct ata_device *dev = &ap->device[j];
5395 if (ata_dev_ready(dev)) {
5396 ata_port_printk(ap, KERN_WARNING,
5397 "suspend failed, device %d "
5398 "still active\n", dev->devno);
5399 rc = -EBUSY;
5400 goto fail;
5405 host->dev->power.power_state = mesg;
5406 return 0;
5408 fail:
5409 ata_host_resume(host);
5410 return rc;
5414 * ata_host_resume - resume host
5415 * @host: host to resume
5417 * Resume @host. Actual operation is performed by EH. This
5418 * function requests EH to perform PM operations and returns.
5419 * Note that all resume operations are performed parallely.
5421 * LOCKING:
5422 * Kernel thread context (may sleep).
5424 void ata_host_resume(struct ata_host *host)
5426 ata_host_request_pm(host, PMSG_ON, ATA_EH_SOFTRESET,
5427 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
5428 host->dev->power.power_state = PMSG_ON;
5432 * ata_port_start - Set port up for dma.
5433 * @ap: Port to initialize
5435 * Called just after data structures for each port are
5436 * initialized. Allocates space for PRD table.
5438 * May be used as the port_start() entry in ata_port_operations.
5440 * LOCKING:
5441 * Inherited from caller.
5443 int ata_port_start(struct ata_port *ap)
5445 struct device *dev = ap->dev;
5446 int rc;
5448 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
5449 GFP_KERNEL);
5450 if (!ap->prd)
5451 return -ENOMEM;
5453 rc = ata_pad_alloc(ap, dev);
5454 if (rc)
5455 return rc;
5457 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd,
5458 (unsigned long long)ap->prd_dma);
5459 return 0;
5463 * ata_dev_init - Initialize an ata_device structure
5464 * @dev: Device structure to initialize
5466 * Initialize @dev in preparation for probing.
5468 * LOCKING:
5469 * Inherited from caller.
5471 void ata_dev_init(struct ata_device *dev)
5473 struct ata_port *ap = dev->ap;
5474 unsigned long flags;
5476 /* SATA spd limit is bound to the first device */
5477 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5479 /* High bits of dev->flags are used to record warm plug
5480 * requests which occur asynchronously. Synchronize using
5481 * host lock.
5483 spin_lock_irqsave(ap->lock, flags);
5484 dev->flags &= ~ATA_DFLAG_INIT_MASK;
5485 spin_unlock_irqrestore(ap->lock, flags);
5487 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
5488 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
5489 dev->pio_mask = UINT_MAX;
5490 dev->mwdma_mask = UINT_MAX;
5491 dev->udma_mask = UINT_MAX;
5495 * ata_port_init - Initialize an ata_port structure
5496 * @ap: Structure to initialize
5497 * @host: Collection of hosts to which @ap belongs
5498 * @ent: Probe information provided by low-level driver
5499 * @port_no: Port number associated with this ata_port
5501 * Initialize a new ata_port structure.
5503 * LOCKING:
5504 * Inherited from caller.
5506 void ata_port_init(struct ata_port *ap, struct ata_host *host,
5507 const struct ata_probe_ent *ent, unsigned int port_no)
5509 unsigned int i;
5511 ap->lock = &host->lock;
5512 ap->flags = ATA_FLAG_DISABLED;
5513 ap->id = ata_unique_id++;
5514 ap->ctl = ATA_DEVCTL_OBS;
5515 ap->host = host;
5516 ap->dev = ent->dev;
5517 ap->port_no = port_no;
5518 if (port_no == 1 && ent->pinfo2) {
5519 ap->pio_mask = ent->pinfo2->pio_mask;
5520 ap->mwdma_mask = ent->pinfo2->mwdma_mask;
5521 ap->udma_mask = ent->pinfo2->udma_mask;
5522 ap->flags |= ent->pinfo2->flags;
5523 ap->ops = ent->pinfo2->port_ops;
5524 } else {
5525 ap->pio_mask = ent->pio_mask;
5526 ap->mwdma_mask = ent->mwdma_mask;
5527 ap->udma_mask = ent->udma_mask;
5528 ap->flags |= ent->port_flags;
5529 ap->ops = ent->port_ops;
5531 ap->hw_sata_spd_limit = UINT_MAX;
5532 ap->active_tag = ATA_TAG_POISON;
5533 ap->last_ctl = 0xFF;
5535 #if defined(ATA_VERBOSE_DEBUG)
5536 /* turn on all debugging levels */
5537 ap->msg_enable = 0x00FF;
5538 #elif defined(ATA_DEBUG)
5539 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5540 #else
5541 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5542 #endif
5544 INIT_DELAYED_WORK(&ap->port_task, NULL);
5545 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5546 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5547 INIT_LIST_HEAD(&ap->eh_done_q);
5548 init_waitqueue_head(&ap->eh_wait_q);
5550 /* set cable type */
5551 ap->cbl = ATA_CBL_NONE;
5552 if (ap->flags & ATA_FLAG_SATA)
5553 ap->cbl = ATA_CBL_SATA;
5555 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5556 struct ata_device *dev = &ap->device[i];
5557 dev->ap = ap;
5558 dev->devno = i;
5559 ata_dev_init(dev);
5562 #ifdef ATA_IRQ_TRAP
5563 ap->stats.unhandled_irq = 1;
5564 ap->stats.idle_irq = 1;
5565 #endif
5567 memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports));
5571 * ata_port_init_shost - Initialize SCSI host associated with ATA port
5572 * @ap: ATA port to initialize SCSI host for
5573 * @shost: SCSI host associated with @ap
5575 * Initialize SCSI host @shost associated with ATA port @ap.
5577 * LOCKING:
5578 * Inherited from caller.
5580 static void ata_port_init_shost(struct ata_port *ap, struct Scsi_Host *shost)
5582 ap->scsi_host = shost;
5584 shost->unique_id = ap->id;
5585 shost->max_id = 16;
5586 shost->max_lun = 1;
5587 shost->max_channel = 1;
5588 shost->max_cmd_len = 12;
5592 * ata_port_add - Attach low-level ATA driver to system
5593 * @ent: Information provided by low-level driver
5594 * @host: Collections of ports to which we add
5595 * @port_no: Port number associated with this host
5597 * Attach low-level ATA driver to system.
5599 * LOCKING:
5600 * PCI/etc. bus probe sem.
5602 * RETURNS:
5603 * New ata_port on success, for NULL on error.
5605 static struct ata_port * ata_port_add(const struct ata_probe_ent *ent,
5606 struct ata_host *host,
5607 unsigned int port_no)
5609 struct Scsi_Host *shost;
5610 struct ata_port *ap;
5612 DPRINTK("ENTER\n");
5614 if (!ent->port_ops->error_handler &&
5615 !(ent->port_flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST))) {
5616 printk(KERN_ERR "ata%u: no reset mechanism available\n",
5617 port_no);
5618 return NULL;
5621 shost = scsi_host_alloc(ent->sht, sizeof(struct ata_port));
5622 if (!shost)
5623 return NULL;
5625 shost->transportt = &ata_scsi_transport_template;
5627 ap = ata_shost_to_port(shost);
5629 ata_port_init(ap, host, ent, port_no);
5630 ata_port_init_shost(ap, shost);
5632 return ap;
5635 static void ata_host_release(struct device *gendev, void *res)
5637 struct ata_host *host = dev_get_drvdata(gendev);
5638 int i;
5640 for (i = 0; i < host->n_ports; i++) {
5641 struct ata_port *ap = host->ports[i];
5643 if (!ap)
5644 continue;
5646 if (ap->ops->port_stop)
5647 ap->ops->port_stop(ap);
5649 scsi_host_put(ap->scsi_host);
5652 if (host->ops->host_stop)
5653 host->ops->host_stop(host);
5657 * ata_sas_host_init - Initialize a host struct
5658 * @host: host to initialize
5659 * @dev: device host is attached to
5660 * @flags: host flags
5661 * @ops: port_ops
5663 * LOCKING:
5664 * PCI/etc. bus probe sem.
5668 void ata_host_init(struct ata_host *host, struct device *dev,
5669 unsigned long flags, const struct ata_port_operations *ops)
5671 spin_lock_init(&host->lock);
5672 host->dev = dev;
5673 host->flags = flags;
5674 host->ops = ops;
5678 * ata_device_add - Register hardware device with ATA and SCSI layers
5679 * @ent: Probe information describing hardware device to be registered
5681 * This function processes the information provided in the probe
5682 * information struct @ent, allocates the necessary ATA and SCSI
5683 * host information structures, initializes them, and registers
5684 * everything with requisite kernel subsystems.
5686 * This function requests irqs, probes the ATA bus, and probes
5687 * the SCSI bus.
5689 * LOCKING:
5690 * PCI/etc. bus probe sem.
5692 * RETURNS:
5693 * Number of ports registered. Zero on error (no ports registered).
5695 int ata_device_add(const struct ata_probe_ent *ent)
5697 unsigned int i;
5698 struct device *dev = ent->dev;
5699 struct ata_host *host;
5700 int rc;
5702 DPRINTK("ENTER\n");
5704 if (ent->irq == 0) {
5705 dev_printk(KERN_ERR, dev, "is not available: No interrupt assigned.\n");
5706 return 0;
5709 if (!devres_open_group(dev, ata_device_add, GFP_KERNEL))
5710 return 0;
5712 /* alloc a container for our list of ATA ports (buses) */
5713 host = devres_alloc(ata_host_release, sizeof(struct ata_host) +
5714 (ent->n_ports * sizeof(void *)), GFP_KERNEL);
5715 if (!host)
5716 goto err_out;
5717 devres_add(dev, host);
5718 dev_set_drvdata(dev, host);
5720 ata_host_init(host, dev, ent->_host_flags, ent->port_ops);
5721 host->n_ports = ent->n_ports;
5722 host->irq = ent->irq;
5723 host->irq2 = ent->irq2;
5724 host->iomap = ent->iomap;
5725 host->private_data = ent->private_data;
5727 /* register each port bound to this device */
5728 for (i = 0; i < host->n_ports; i++) {
5729 struct ata_port *ap;
5730 unsigned long xfer_mode_mask;
5731 int irq_line = ent->irq;
5733 ap = ata_port_add(ent, host, i);
5734 host->ports[i] = ap;
5735 if (!ap)
5736 goto err_out;
5738 /* dummy? */
5739 if (ent->dummy_port_mask & (1 << i)) {
5740 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
5741 ap->ops = &ata_dummy_port_ops;
5742 continue;
5745 /* start port */
5746 rc = ap->ops->port_start(ap);
5747 if (rc) {
5748 host->ports[i] = NULL;
5749 scsi_host_put(ap->scsi_host);
5750 goto err_out;
5753 /* Report the secondary IRQ for second channel legacy */
5754 if (i == 1 && ent->irq2)
5755 irq_line = ent->irq2;
5757 xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) |
5758 (ap->mwdma_mask << ATA_SHIFT_MWDMA) |
5759 (ap->pio_mask << ATA_SHIFT_PIO);
5761 /* print per-port info to dmesg */
5762 ata_port_printk(ap, KERN_INFO, "%cATA max %s cmd 0x%p "
5763 "ctl 0x%p bmdma 0x%p irq %d\n",
5764 ap->flags & ATA_FLAG_SATA ? 'S' : 'P',
5765 ata_mode_string(xfer_mode_mask),
5766 ap->ioaddr.cmd_addr,
5767 ap->ioaddr.ctl_addr,
5768 ap->ioaddr.bmdma_addr,
5769 irq_line);
5771 /* freeze port before requesting IRQ */
5772 ata_eh_freeze_port(ap);
5775 /* obtain irq, that may be shared between channels */
5776 rc = devm_request_irq(dev, ent->irq, ent->port_ops->irq_handler,
5777 ent->irq_flags, DRV_NAME, host);
5778 if (rc) {
5779 dev_printk(KERN_ERR, dev, "irq %lu request failed: %d\n",
5780 ent->irq, rc);
5781 goto err_out;
5784 /* do we have a second IRQ for the other channel, eg legacy mode */
5785 if (ent->irq2) {
5786 /* We will get weird core code crashes later if this is true
5787 so trap it now */
5788 BUG_ON(ent->irq == ent->irq2);
5790 rc = devm_request_irq(dev, ent->irq2,
5791 ent->port_ops->irq_handler, ent->irq_flags,
5792 DRV_NAME, host);
5793 if (rc) {
5794 dev_printk(KERN_ERR, dev, "irq %lu request failed: %d\n",
5795 ent->irq2, rc);
5796 goto err_out;
5800 /* resource acquisition complete */
5801 devres_remove_group(dev, ata_device_add);
5803 /* perform each probe synchronously */
5804 DPRINTK("probe begin\n");
5805 for (i = 0; i < host->n_ports; i++) {
5806 struct ata_port *ap = host->ports[i];
5807 u32 scontrol;
5808 int rc;
5810 /* init sata_spd_limit to the current value */
5811 if (sata_scr_read(ap, SCR_CONTROL, &scontrol) == 0) {
5812 int spd = (scontrol >> 4) & 0xf;
5813 ap->hw_sata_spd_limit &= (1 << spd) - 1;
5815 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5817 rc = scsi_add_host(ap->scsi_host, dev);
5818 if (rc) {
5819 ata_port_printk(ap, KERN_ERR, "scsi_add_host failed\n");
5820 /* FIXME: do something useful here */
5821 /* FIXME: handle unconditional calls to
5822 * scsi_scan_host and ata_host_remove, below,
5823 * at the very least
5827 if (ap->ops->error_handler) {
5828 struct ata_eh_info *ehi = &ap->eh_info;
5829 unsigned long flags;
5831 ata_port_probe(ap);
5833 /* kick EH for boot probing */
5834 spin_lock_irqsave(ap->lock, flags);
5836 ehi->probe_mask = (1 << ATA_MAX_DEVICES) - 1;
5837 ehi->action |= ATA_EH_SOFTRESET;
5838 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
5840 ap->pflags |= ATA_PFLAG_LOADING;
5841 ata_port_schedule_eh(ap);
5843 spin_unlock_irqrestore(ap->lock, flags);
5845 /* wait for EH to finish */
5846 ata_port_wait_eh(ap);
5847 } else {
5848 DPRINTK("ata%u: bus probe begin\n", ap->id);
5849 rc = ata_bus_probe(ap);
5850 DPRINTK("ata%u: bus probe end\n", ap->id);
5852 if (rc) {
5853 /* FIXME: do something useful here?
5854 * Current libata behavior will
5855 * tear down everything when
5856 * the module is removed
5857 * or the h/w is unplugged.
5863 /* probes are done, now scan each port's disk(s) */
5864 DPRINTK("host probe begin\n");
5865 for (i = 0; i < host->n_ports; i++) {
5866 struct ata_port *ap = host->ports[i];
5868 ata_scsi_scan_host(ap);
5871 VPRINTK("EXIT, returning %u\n", ent->n_ports);
5872 return ent->n_ports; /* success */
5874 err_out:
5875 devres_release_group(dev, ata_device_add);
5876 dev_set_drvdata(dev, NULL);
5877 VPRINTK("EXIT, returning %d\n", rc);
5878 return 0;
5882 * ata_port_detach - Detach ATA port in prepration of device removal
5883 * @ap: ATA port to be detached
5885 * Detach all ATA devices and the associated SCSI devices of @ap;
5886 * then, remove the associated SCSI host. @ap is guaranteed to
5887 * be quiescent on return from this function.
5889 * LOCKING:
5890 * Kernel thread context (may sleep).
5892 void ata_port_detach(struct ata_port *ap)
5894 unsigned long flags;
5895 int i;
5897 if (!ap->ops->error_handler)
5898 goto skip_eh;
5900 /* tell EH we're leaving & flush EH */
5901 spin_lock_irqsave(ap->lock, flags);
5902 ap->pflags |= ATA_PFLAG_UNLOADING;
5903 spin_unlock_irqrestore(ap->lock, flags);
5905 ata_port_wait_eh(ap);
5907 /* EH is now guaranteed to see UNLOADING, so no new device
5908 * will be attached. Disable all existing devices.
5910 spin_lock_irqsave(ap->lock, flags);
5912 for (i = 0; i < ATA_MAX_DEVICES; i++)
5913 ata_dev_disable(&ap->device[i]);
5915 spin_unlock_irqrestore(ap->lock, flags);
5917 /* Final freeze & EH. All in-flight commands are aborted. EH
5918 * will be skipped and retrials will be terminated with bad
5919 * target.
5921 spin_lock_irqsave(ap->lock, flags);
5922 ata_port_freeze(ap); /* won't be thawed */
5923 spin_unlock_irqrestore(ap->lock, flags);
5925 ata_port_wait_eh(ap);
5927 /* Flush hotplug task. The sequence is similar to
5928 * ata_port_flush_task().
5930 flush_workqueue(ata_aux_wq);
5931 cancel_delayed_work(&ap->hotplug_task);
5932 flush_workqueue(ata_aux_wq);
5934 skip_eh:
5935 /* remove the associated SCSI host */
5936 scsi_remove_host(ap->scsi_host);
5940 * ata_host_detach - Detach all ports of an ATA host
5941 * @host: Host to detach
5943 * Detach all ports of @host.
5945 * LOCKING:
5946 * Kernel thread context (may sleep).
5948 void ata_host_detach(struct ata_host *host)
5950 int i;
5952 for (i = 0; i < host->n_ports; i++)
5953 ata_port_detach(host->ports[i]);
5956 struct ata_probe_ent *
5957 ata_probe_ent_alloc(struct device *dev, const struct ata_port_info *port)
5959 struct ata_probe_ent *probe_ent;
5961 /* XXX - the following if can go away once all LLDs are managed */
5962 if (!list_empty(&dev->devres_head))
5963 probe_ent = devm_kzalloc(dev, sizeof(*probe_ent), GFP_KERNEL);
5964 else
5965 probe_ent = kzalloc(sizeof(*probe_ent), GFP_KERNEL);
5966 if (!probe_ent) {
5967 printk(KERN_ERR DRV_NAME "(%s): out of memory\n",
5968 kobject_name(&(dev->kobj)));
5969 return NULL;
5972 INIT_LIST_HEAD(&probe_ent->node);
5973 probe_ent->dev = dev;
5975 probe_ent->sht = port->sht;
5976 probe_ent->port_flags = port->flags;
5977 probe_ent->pio_mask = port->pio_mask;
5978 probe_ent->mwdma_mask = port->mwdma_mask;
5979 probe_ent->udma_mask = port->udma_mask;
5980 probe_ent->port_ops = port->port_ops;
5981 probe_ent->private_data = port->private_data;
5983 return probe_ent;
5987 * ata_std_ports - initialize ioaddr with standard port offsets.
5988 * @ioaddr: IO address structure to be initialized
5990 * Utility function which initializes data_addr, error_addr,
5991 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
5992 * device_addr, status_addr, and command_addr to standard offsets
5993 * relative to cmd_addr.
5995 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
5998 void ata_std_ports(struct ata_ioports *ioaddr)
6000 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
6001 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
6002 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
6003 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
6004 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
6005 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
6006 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
6007 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
6008 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
6009 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
6013 #ifdef CONFIG_PCI
6016 * ata_pci_remove_one - PCI layer callback for device removal
6017 * @pdev: PCI device that was removed
6019 * PCI layer indicates to libata via this hook that hot-unplug or
6020 * module unload event has occurred. Detach all ports. Resource
6021 * release is handled via devres.
6023 * LOCKING:
6024 * Inherited from PCI layer (may sleep).
6026 void ata_pci_remove_one(struct pci_dev *pdev)
6028 struct device *dev = pci_dev_to_dev(pdev);
6029 struct ata_host *host = dev_get_drvdata(dev);
6031 ata_host_detach(host);
6034 /* move to PCI subsystem */
6035 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6037 unsigned long tmp = 0;
6039 switch (bits->width) {
6040 case 1: {
6041 u8 tmp8 = 0;
6042 pci_read_config_byte(pdev, bits->reg, &tmp8);
6043 tmp = tmp8;
6044 break;
6046 case 2: {
6047 u16 tmp16 = 0;
6048 pci_read_config_word(pdev, bits->reg, &tmp16);
6049 tmp = tmp16;
6050 break;
6052 case 4: {
6053 u32 tmp32 = 0;
6054 pci_read_config_dword(pdev, bits->reg, &tmp32);
6055 tmp = tmp32;
6056 break;
6059 default:
6060 return -EINVAL;
6063 tmp &= bits->mask;
6065 return (tmp == bits->val) ? 1 : 0;
6068 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6070 pci_save_state(pdev);
6072 if (mesg.event == PM_EVENT_SUSPEND) {
6073 pci_disable_device(pdev);
6074 pci_set_power_state(pdev, PCI_D3hot);
6078 int ata_pci_device_do_resume(struct pci_dev *pdev)
6080 int rc;
6082 pci_set_power_state(pdev, PCI_D0);
6083 pci_restore_state(pdev);
6085 rc = pcim_enable_device(pdev);
6086 if (rc) {
6087 dev_printk(KERN_ERR, &pdev->dev,
6088 "failed to enable device after resume (%d)\n", rc);
6089 return rc;
6092 pci_set_master(pdev);
6093 return 0;
6096 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6098 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6099 int rc = 0;
6101 rc = ata_host_suspend(host, mesg);
6102 if (rc)
6103 return rc;
6105 ata_pci_device_do_suspend(pdev, mesg);
6107 return 0;
6110 int ata_pci_device_resume(struct pci_dev *pdev)
6112 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6113 int rc;
6115 rc = ata_pci_device_do_resume(pdev);
6116 if (rc == 0)
6117 ata_host_resume(host);
6118 return rc;
6120 #endif /* CONFIG_PCI */
6123 static int __init ata_init(void)
6125 ata_probe_timeout *= HZ;
6126 ata_wq = create_workqueue("ata");
6127 if (!ata_wq)
6128 return -ENOMEM;
6130 ata_aux_wq = create_singlethread_workqueue("ata_aux");
6131 if (!ata_aux_wq) {
6132 destroy_workqueue(ata_wq);
6133 return -ENOMEM;
6136 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6137 return 0;
6140 static void __exit ata_exit(void)
6142 destroy_workqueue(ata_wq);
6143 destroy_workqueue(ata_aux_wq);
6146 subsys_initcall(ata_init);
6147 module_exit(ata_exit);
6149 static unsigned long ratelimit_time;
6150 static DEFINE_SPINLOCK(ata_ratelimit_lock);
6152 int ata_ratelimit(void)
6154 int rc;
6155 unsigned long flags;
6157 spin_lock_irqsave(&ata_ratelimit_lock, flags);
6159 if (time_after(jiffies, ratelimit_time)) {
6160 rc = 1;
6161 ratelimit_time = jiffies + (HZ/5);
6162 } else
6163 rc = 0;
6165 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
6167 return rc;
6171 * ata_wait_register - wait until register value changes
6172 * @reg: IO-mapped register
6173 * @mask: Mask to apply to read register value
6174 * @val: Wait condition
6175 * @interval_msec: polling interval in milliseconds
6176 * @timeout_msec: timeout in milliseconds
6178 * Waiting for some bits of register to change is a common
6179 * operation for ATA controllers. This function reads 32bit LE
6180 * IO-mapped register @reg and tests for the following condition.
6182 * (*@reg & mask) != val
6184 * If the condition is met, it returns; otherwise, the process is
6185 * repeated after @interval_msec until timeout.
6187 * LOCKING:
6188 * Kernel thread context (may sleep)
6190 * RETURNS:
6191 * The final register value.
6193 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
6194 unsigned long interval_msec,
6195 unsigned long timeout_msec)
6197 unsigned long timeout;
6198 u32 tmp;
6200 tmp = ioread32(reg);
6202 /* Calculate timeout _after_ the first read to make sure
6203 * preceding writes reach the controller before starting to
6204 * eat away the timeout.
6206 timeout = jiffies + (timeout_msec * HZ) / 1000;
6208 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
6209 msleep(interval_msec);
6210 tmp = ioread32(reg);
6213 return tmp;
6217 * Dummy port_ops
6219 static void ata_dummy_noret(struct ata_port *ap) { }
6220 static int ata_dummy_ret0(struct ata_port *ap) { return 0; }
6221 static void ata_dummy_qc_noret(struct ata_queued_cmd *qc) { }
6223 static u8 ata_dummy_check_status(struct ata_port *ap)
6225 return ATA_DRDY;
6228 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6230 return AC_ERR_SYSTEM;
6233 const struct ata_port_operations ata_dummy_port_ops = {
6234 .port_disable = ata_port_disable,
6235 .check_status = ata_dummy_check_status,
6236 .check_altstatus = ata_dummy_check_status,
6237 .dev_select = ata_noop_dev_select,
6238 .qc_prep = ata_noop_qc_prep,
6239 .qc_issue = ata_dummy_qc_issue,
6240 .freeze = ata_dummy_noret,
6241 .thaw = ata_dummy_noret,
6242 .error_handler = ata_dummy_noret,
6243 .post_internal_cmd = ata_dummy_qc_noret,
6244 .irq_clear = ata_dummy_noret,
6245 .port_start = ata_dummy_ret0,
6246 .port_stop = ata_dummy_noret,
6250 * libata is essentially a library of internal helper functions for
6251 * low-level ATA host controller drivers. As such, the API/ABI is
6252 * likely to change as new drivers are added and updated.
6253 * Do not depend on ABI/API stability.
6256 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6257 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6258 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
6259 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6260 EXPORT_SYMBOL_GPL(ata_std_bios_param);
6261 EXPORT_SYMBOL_GPL(ata_std_ports);
6262 EXPORT_SYMBOL_GPL(ata_host_init);
6263 EXPORT_SYMBOL_GPL(ata_device_add);
6264 EXPORT_SYMBOL_GPL(ata_host_detach);
6265 EXPORT_SYMBOL_GPL(ata_sg_init);
6266 EXPORT_SYMBOL_GPL(ata_sg_init_one);
6267 EXPORT_SYMBOL_GPL(ata_hsm_move);
6268 EXPORT_SYMBOL_GPL(ata_qc_complete);
6269 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
6270 EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
6271 EXPORT_SYMBOL_GPL(ata_tf_load);
6272 EXPORT_SYMBOL_GPL(ata_tf_read);
6273 EXPORT_SYMBOL_GPL(ata_noop_dev_select);
6274 EXPORT_SYMBOL_GPL(ata_std_dev_select);
6275 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6276 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6277 EXPORT_SYMBOL_GPL(ata_check_status);
6278 EXPORT_SYMBOL_GPL(ata_altstatus);
6279 EXPORT_SYMBOL_GPL(ata_exec_command);
6280 EXPORT_SYMBOL_GPL(ata_port_start);
6281 EXPORT_SYMBOL_GPL(ata_interrupt);
6282 EXPORT_SYMBOL_GPL(ata_data_xfer);
6283 EXPORT_SYMBOL_GPL(ata_data_xfer_noirq);
6284 EXPORT_SYMBOL_GPL(ata_qc_prep);
6285 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
6286 EXPORT_SYMBOL_GPL(ata_bmdma_setup);
6287 EXPORT_SYMBOL_GPL(ata_bmdma_start);
6288 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
6289 EXPORT_SYMBOL_GPL(ata_bmdma_status);
6290 EXPORT_SYMBOL_GPL(ata_bmdma_stop);
6291 EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
6292 EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
6293 EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
6294 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
6295 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
6296 EXPORT_SYMBOL_GPL(ata_port_probe);
6297 EXPORT_SYMBOL_GPL(sata_set_spd);
6298 EXPORT_SYMBOL_GPL(sata_phy_debounce);
6299 EXPORT_SYMBOL_GPL(sata_phy_resume);
6300 EXPORT_SYMBOL_GPL(sata_phy_reset);
6301 EXPORT_SYMBOL_GPL(__sata_phy_reset);
6302 EXPORT_SYMBOL_GPL(ata_bus_reset);
6303 EXPORT_SYMBOL_GPL(ata_std_prereset);
6304 EXPORT_SYMBOL_GPL(ata_std_softreset);
6305 EXPORT_SYMBOL_GPL(sata_port_hardreset);
6306 EXPORT_SYMBOL_GPL(sata_std_hardreset);
6307 EXPORT_SYMBOL_GPL(ata_std_postreset);
6308 EXPORT_SYMBOL_GPL(ata_dev_classify);
6309 EXPORT_SYMBOL_GPL(ata_dev_pair);
6310 EXPORT_SYMBOL_GPL(ata_port_disable);
6311 EXPORT_SYMBOL_GPL(ata_ratelimit);
6312 EXPORT_SYMBOL_GPL(ata_wait_register);
6313 EXPORT_SYMBOL_GPL(ata_busy_sleep);
6314 EXPORT_SYMBOL_GPL(ata_port_queue_task);
6315 EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
6316 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
6317 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
6318 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
6319 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
6320 EXPORT_SYMBOL_GPL(ata_host_intr);
6321 EXPORT_SYMBOL_GPL(sata_scr_valid);
6322 EXPORT_SYMBOL_GPL(sata_scr_read);
6323 EXPORT_SYMBOL_GPL(sata_scr_write);
6324 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6325 EXPORT_SYMBOL_GPL(ata_port_online);
6326 EXPORT_SYMBOL_GPL(ata_port_offline);
6327 EXPORT_SYMBOL_GPL(ata_host_suspend);
6328 EXPORT_SYMBOL_GPL(ata_host_resume);
6329 EXPORT_SYMBOL_GPL(ata_id_string);
6330 EXPORT_SYMBOL_GPL(ata_id_c_string);
6331 EXPORT_SYMBOL_GPL(ata_device_blacklisted);
6332 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6334 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6335 EXPORT_SYMBOL_GPL(ata_timing_compute);
6336 EXPORT_SYMBOL_GPL(ata_timing_merge);
6338 #ifdef CONFIG_PCI
6339 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6340 EXPORT_SYMBOL_GPL(ata_pci_init_native_mode);
6341 EXPORT_SYMBOL_GPL(ata_pci_init_one);
6342 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6343 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6344 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6345 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6346 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6347 EXPORT_SYMBOL_GPL(ata_pci_default_filter);
6348 EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
6349 #endif /* CONFIG_PCI */
6351 EXPORT_SYMBOL_GPL(ata_scsi_device_suspend);
6352 EXPORT_SYMBOL_GPL(ata_scsi_device_resume);
6354 EXPORT_SYMBOL_GPL(ata_eng_timeout);
6355 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6356 EXPORT_SYMBOL_GPL(ata_port_abort);
6357 EXPORT_SYMBOL_GPL(ata_port_freeze);
6358 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6359 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
6360 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6361 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
6362 EXPORT_SYMBOL_GPL(ata_do_eh);
6363 EXPORT_SYMBOL_GPL(ata_irq_on);
6364 EXPORT_SYMBOL_GPL(ata_dummy_irq_on);
6365 EXPORT_SYMBOL_GPL(ata_irq_ack);
6366 EXPORT_SYMBOL_GPL(ata_dummy_irq_ack);
6367 EXPORT_SYMBOL_GPL(ata_dev_try_classify);