[S390] Convert monitor calls to function calls.
[linux-2.6/kvm.git] / arch / s390 / kernel / smp.c
blob5a445b1b1217afe018e788bdd6912a368fcece4a
1 /*
2 * arch/s390/kernel/smp.c
4 * Copyright IBM Corp. 1999,2007
5 * Author(s): Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com),
6 * Martin Schwidefsky (schwidefsky@de.ibm.com)
7 * Heiko Carstens (heiko.carstens@de.ibm.com)
9 * based on other smp stuff by
10 * (c) 1995 Alan Cox, CymruNET Ltd <alan@cymru.net>
11 * (c) 1998 Ingo Molnar
13 * We work with logical cpu numbering everywhere we can. The only
14 * functions using the real cpu address (got from STAP) are the sigp
15 * functions. For all other functions we use the identity mapping.
16 * That means that cpu_number_map[i] == i for every cpu. cpu_number_map is
17 * used e.g. to find the idle task belonging to a logical cpu. Every array
18 * in the kernel is sorted by the logical cpu number and not by the physical
19 * one which is causing all the confusion with __cpu_logical_map and
20 * cpu_number_map in other architectures.
23 #include <linux/module.h>
24 #include <linux/init.h>
25 #include <linux/mm.h>
26 #include <linux/err.h>
27 #include <linux/spinlock.h>
28 #include <linux/kernel_stat.h>
29 #include <linux/delay.h>
30 #include <linux/cache.h>
31 #include <linux/interrupt.h>
32 #include <linux/cpu.h>
33 #include <linux/timex.h>
34 #include <linux/bootmem.h>
35 #include <asm/ipl.h>
36 #include <asm/setup.h>
37 #include <asm/sigp.h>
38 #include <asm/pgalloc.h>
39 #include <asm/irq.h>
40 #include <asm/s390_ext.h>
41 #include <asm/cpcmd.h>
42 #include <asm/tlbflush.h>
43 #include <asm/timer.h>
44 #include <asm/lowcore.h>
45 #include <asm/sclp.h>
46 #include <asm/cpu.h>
49 * An array with a pointer the lowcore of every CPU.
51 struct _lowcore *lowcore_ptr[NR_CPUS];
52 EXPORT_SYMBOL(lowcore_ptr);
54 cpumask_t cpu_online_map = CPU_MASK_NONE;
55 EXPORT_SYMBOL(cpu_online_map);
57 cpumask_t cpu_possible_map = CPU_MASK_ALL;
58 EXPORT_SYMBOL(cpu_possible_map);
60 static struct task_struct *current_set[NR_CPUS];
62 static u8 smp_cpu_type;
63 static int smp_use_sigp_detection;
65 enum s390_cpu_state {
66 CPU_STATE_STANDBY,
67 CPU_STATE_CONFIGURED,
70 DEFINE_MUTEX(smp_cpu_state_mutex);
71 int smp_cpu_polarization[NR_CPUS];
72 static int smp_cpu_state[NR_CPUS];
73 static int cpu_management;
75 static DEFINE_PER_CPU(struct cpu, cpu_devices);
77 static void smp_ext_bitcall(int, ec_bit_sig);
80 * Structure and data for __smp_call_function_map(). This is designed to
81 * minimise static memory requirements. It also looks cleaner.
83 static DEFINE_SPINLOCK(call_lock);
85 struct call_data_struct {
86 void (*func) (void *info);
87 void *info;
88 cpumask_t started;
89 cpumask_t finished;
90 int wait;
93 static struct call_data_struct *call_data;
96 * 'Call function' interrupt callback
98 static void do_call_function(void)
100 void (*func) (void *info) = call_data->func;
101 void *info = call_data->info;
102 int wait = call_data->wait;
104 cpu_set(smp_processor_id(), call_data->started);
105 (*func)(info);
106 if (wait)
107 cpu_set(smp_processor_id(), call_data->finished);;
110 static void __smp_call_function_map(void (*func) (void *info), void *info,
111 int nonatomic, int wait, cpumask_t map)
113 struct call_data_struct data;
114 int cpu, local = 0;
117 * Can deadlock when interrupts are disabled or if in wrong context.
119 WARN_ON(irqs_disabled() || in_irq());
122 * Check for local function call. We have to have the same call order
123 * as in on_each_cpu() because of machine_restart_smp().
125 if (cpu_isset(smp_processor_id(), map)) {
126 local = 1;
127 cpu_clear(smp_processor_id(), map);
130 cpus_and(map, map, cpu_online_map);
131 if (cpus_empty(map))
132 goto out;
134 data.func = func;
135 data.info = info;
136 data.started = CPU_MASK_NONE;
137 data.wait = wait;
138 if (wait)
139 data.finished = CPU_MASK_NONE;
141 spin_lock(&call_lock);
142 call_data = &data;
144 for_each_cpu_mask(cpu, map)
145 smp_ext_bitcall(cpu, ec_call_function);
147 /* Wait for response */
148 while (!cpus_equal(map, data.started))
149 cpu_relax();
150 if (wait)
151 while (!cpus_equal(map, data.finished))
152 cpu_relax();
153 spin_unlock(&call_lock);
154 out:
155 if (local) {
156 local_irq_disable();
157 func(info);
158 local_irq_enable();
163 * smp_call_function:
164 * @func: the function to run; this must be fast and non-blocking
165 * @info: an arbitrary pointer to pass to the function
166 * @nonatomic: unused
167 * @wait: if true, wait (atomically) until function has completed on other CPUs
169 * Run a function on all other CPUs.
171 * You must not call this function with disabled interrupts, from a
172 * hardware interrupt handler or from a bottom half.
174 int smp_call_function(void (*func) (void *info), void *info, int nonatomic,
175 int wait)
177 cpumask_t map;
179 preempt_disable();
180 map = cpu_online_map;
181 cpu_clear(smp_processor_id(), map);
182 __smp_call_function_map(func, info, nonatomic, wait, map);
183 preempt_enable();
184 return 0;
186 EXPORT_SYMBOL(smp_call_function);
189 * smp_call_function_single:
190 * @cpu: the CPU where func should run
191 * @func: the function to run; this must be fast and non-blocking
192 * @info: an arbitrary pointer to pass to the function
193 * @nonatomic: unused
194 * @wait: if true, wait (atomically) until function has completed on other CPUs
196 * Run a function on one processor.
198 * You must not call this function with disabled interrupts, from a
199 * hardware interrupt handler or from a bottom half.
201 int smp_call_function_single(int cpu, void (*func) (void *info), void *info,
202 int nonatomic, int wait)
204 preempt_disable();
205 __smp_call_function_map(func, info, nonatomic, wait,
206 cpumask_of_cpu(cpu));
207 preempt_enable();
208 return 0;
210 EXPORT_SYMBOL(smp_call_function_single);
213 * smp_call_function_mask(): Run a function on a set of other CPUs.
214 * @mask: The set of cpus to run on. Must not include the current cpu.
215 * @func: The function to run. This must be fast and non-blocking.
216 * @info: An arbitrary pointer to pass to the function.
217 * @wait: If true, wait (atomically) until function has completed on other CPUs.
219 * Returns 0 on success, else a negative status code.
221 * If @wait is true, then returns once @func has returned; otherwise
222 * it returns just before the target cpu calls @func.
224 * You must not call this function with disabled interrupts or from a
225 * hardware interrupt handler or from a bottom half handler.
227 int smp_call_function_mask(cpumask_t mask, void (*func)(void *), void *info,
228 int wait)
230 preempt_disable();
231 cpu_clear(smp_processor_id(), mask);
232 __smp_call_function_map(func, info, 0, wait, mask);
233 preempt_enable();
234 return 0;
236 EXPORT_SYMBOL(smp_call_function_mask);
238 void smp_send_stop(void)
240 int cpu, rc;
242 /* Disable all interrupts/machine checks */
243 __load_psw_mask(psw_kernel_bits & ~PSW_MASK_MCHECK);
245 /* write magic number to zero page (absolute 0) */
246 lowcore_ptr[smp_processor_id()]->panic_magic = __PANIC_MAGIC;
248 /* stop all processors */
249 for_each_online_cpu(cpu) {
250 if (cpu == smp_processor_id())
251 continue;
252 do {
253 rc = signal_processor(cpu, sigp_stop);
254 } while (rc == sigp_busy);
256 while (!smp_cpu_not_running(cpu))
257 cpu_relax();
262 * This is the main routine where commands issued by other
263 * cpus are handled.
266 static void do_ext_call_interrupt(__u16 code)
268 unsigned long bits;
271 * handle bit signal external calls
273 * For the ec_schedule signal we have to do nothing. All the work
274 * is done automatically when we return from the interrupt.
276 bits = xchg(&S390_lowcore.ext_call_fast, 0);
278 if (test_bit(ec_call_function, &bits))
279 do_call_function();
283 * Send an external call sigp to another cpu and return without waiting
284 * for its completion.
286 static void smp_ext_bitcall(int cpu, ec_bit_sig sig)
289 * Set signaling bit in lowcore of target cpu and kick it
291 set_bit(sig, (unsigned long *) &lowcore_ptr[cpu]->ext_call_fast);
292 while (signal_processor(cpu, sigp_emergency_signal) == sigp_busy)
293 udelay(10);
296 #ifndef CONFIG_64BIT
298 * this function sends a 'purge tlb' signal to another CPU.
300 void smp_ptlb_callback(void *info)
302 __tlb_flush_local();
305 void smp_ptlb_all(void)
307 on_each_cpu(smp_ptlb_callback, NULL, 0, 1);
309 EXPORT_SYMBOL(smp_ptlb_all);
310 #endif /* ! CONFIG_64BIT */
313 * this function sends a 'reschedule' IPI to another CPU.
314 * it goes straight through and wastes no time serializing
315 * anything. Worst case is that we lose a reschedule ...
317 void smp_send_reschedule(int cpu)
319 smp_ext_bitcall(cpu, ec_schedule);
323 * parameter area for the set/clear control bit callbacks
325 struct ec_creg_mask_parms {
326 unsigned long orvals[16];
327 unsigned long andvals[16];
331 * callback for setting/clearing control bits
333 static void smp_ctl_bit_callback(void *info)
335 struct ec_creg_mask_parms *pp = info;
336 unsigned long cregs[16];
337 int i;
339 __ctl_store(cregs, 0, 15);
340 for (i = 0; i <= 15; i++)
341 cregs[i] = (cregs[i] & pp->andvals[i]) | pp->orvals[i];
342 __ctl_load(cregs, 0, 15);
346 * Set a bit in a control register of all cpus
348 void smp_ctl_set_bit(int cr, int bit)
350 struct ec_creg_mask_parms parms;
352 memset(&parms.orvals, 0, sizeof(parms.orvals));
353 memset(&parms.andvals, 0xff, sizeof(parms.andvals));
354 parms.orvals[cr] = 1 << bit;
355 on_each_cpu(smp_ctl_bit_callback, &parms, 0, 1);
357 EXPORT_SYMBOL(smp_ctl_set_bit);
360 * Clear a bit in a control register of all cpus
362 void smp_ctl_clear_bit(int cr, int bit)
364 struct ec_creg_mask_parms parms;
366 memset(&parms.orvals, 0, sizeof(parms.orvals));
367 memset(&parms.andvals, 0xff, sizeof(parms.andvals));
368 parms.andvals[cr] = ~(1L << bit);
369 on_each_cpu(smp_ctl_bit_callback, &parms, 0, 1);
371 EXPORT_SYMBOL(smp_ctl_clear_bit);
374 * In early ipl state a temp. logically cpu number is needed, so the sigp
375 * functions can be used to sense other cpus. Since NR_CPUS is >= 2 on
376 * CONFIG_SMP and the ipl cpu is logical cpu 0, it must be 1.
378 #define CPU_INIT_NO 1
380 #if defined(CONFIG_ZFCPDUMP) || defined(CONFIG_ZFCPDUMP_MODULE)
383 * zfcpdump_prefix_array holds prefix registers for the following scenario:
384 * 64 bit zfcpdump kernel and 31 bit kernel which is to be dumped. We have to
385 * save its prefix registers, since they get lost, when switching from 31 bit
386 * to 64 bit.
388 unsigned int zfcpdump_prefix_array[NR_CPUS + 1] \
389 __attribute__((__section__(".data")));
391 static void __init smp_get_save_area(unsigned int cpu, unsigned int phy_cpu)
393 if (ipl_info.type != IPL_TYPE_FCP_DUMP)
394 return;
395 if (cpu >= NR_CPUS) {
396 printk(KERN_WARNING "Registers for cpu %i not saved since dump "
397 "kernel was compiled with NR_CPUS=%i\n", cpu, NR_CPUS);
398 return;
400 zfcpdump_save_areas[cpu] = kmalloc(sizeof(union save_area), GFP_KERNEL);
401 __cpu_logical_map[CPU_INIT_NO] = (__u16) phy_cpu;
402 while (signal_processor(CPU_INIT_NO, sigp_stop_and_store_status) ==
403 sigp_busy)
404 cpu_relax();
405 memcpy(zfcpdump_save_areas[cpu],
406 (void *)(unsigned long) store_prefix() + SAVE_AREA_BASE,
407 SAVE_AREA_SIZE);
408 #ifdef CONFIG_64BIT
409 /* copy original prefix register */
410 zfcpdump_save_areas[cpu]->s390x.pref_reg = zfcpdump_prefix_array[cpu];
411 #endif
414 union save_area *zfcpdump_save_areas[NR_CPUS + 1];
415 EXPORT_SYMBOL_GPL(zfcpdump_save_areas);
417 #else
419 static inline void smp_get_save_area(unsigned int cpu, unsigned int phy_cpu) { }
421 #endif /* CONFIG_ZFCPDUMP || CONFIG_ZFCPDUMP_MODULE */
423 static int cpu_stopped(int cpu)
425 __u32 status;
427 /* Check for stopped state */
428 if (signal_processor_ps(&status, 0, cpu, sigp_sense) ==
429 sigp_status_stored) {
430 if (status & 0x40)
431 return 1;
433 return 0;
436 static int cpu_known(int cpu_id)
438 int cpu;
440 for_each_present_cpu(cpu) {
441 if (__cpu_logical_map[cpu] == cpu_id)
442 return 1;
444 return 0;
447 static int smp_rescan_cpus_sigp(cpumask_t avail)
449 int cpu_id, logical_cpu;
451 logical_cpu = first_cpu(avail);
452 if (logical_cpu == NR_CPUS)
453 return 0;
454 for (cpu_id = 0; cpu_id <= 65535; cpu_id++) {
455 if (cpu_known(cpu_id))
456 continue;
457 __cpu_logical_map[logical_cpu] = cpu_id;
458 smp_cpu_polarization[logical_cpu] = POLARIZATION_UNKNWN;
459 if (!cpu_stopped(logical_cpu))
460 continue;
461 cpu_set(logical_cpu, cpu_present_map);
462 smp_cpu_state[logical_cpu] = CPU_STATE_CONFIGURED;
463 logical_cpu = next_cpu(logical_cpu, avail);
464 if (logical_cpu == NR_CPUS)
465 break;
467 return 0;
470 static int smp_rescan_cpus_sclp(cpumask_t avail)
472 struct sclp_cpu_info *info;
473 int cpu_id, logical_cpu, cpu;
474 int rc;
476 logical_cpu = first_cpu(avail);
477 if (logical_cpu == NR_CPUS)
478 return 0;
479 info = kmalloc(sizeof(*info), GFP_KERNEL);
480 if (!info)
481 return -ENOMEM;
482 rc = sclp_get_cpu_info(info);
483 if (rc)
484 goto out;
485 for (cpu = 0; cpu < info->combined; cpu++) {
486 if (info->has_cpu_type && info->cpu[cpu].type != smp_cpu_type)
487 continue;
488 cpu_id = info->cpu[cpu].address;
489 if (cpu_known(cpu_id))
490 continue;
491 __cpu_logical_map[logical_cpu] = cpu_id;
492 smp_cpu_polarization[logical_cpu] = POLARIZATION_UNKNWN;
493 cpu_set(logical_cpu, cpu_present_map);
494 if (cpu >= info->configured)
495 smp_cpu_state[logical_cpu] = CPU_STATE_STANDBY;
496 else
497 smp_cpu_state[logical_cpu] = CPU_STATE_CONFIGURED;
498 logical_cpu = next_cpu(logical_cpu, avail);
499 if (logical_cpu == NR_CPUS)
500 break;
502 out:
503 kfree(info);
504 return rc;
507 static int smp_rescan_cpus(void)
509 cpumask_t avail;
511 cpus_xor(avail, cpu_possible_map, cpu_present_map);
512 if (smp_use_sigp_detection)
513 return smp_rescan_cpus_sigp(avail);
514 else
515 return smp_rescan_cpus_sclp(avail);
518 static void __init smp_detect_cpus(void)
520 unsigned int cpu, c_cpus, s_cpus;
521 struct sclp_cpu_info *info;
522 u16 boot_cpu_addr, cpu_addr;
524 c_cpus = 1;
525 s_cpus = 0;
526 boot_cpu_addr = S390_lowcore.cpu_data.cpu_addr;
527 info = kmalloc(sizeof(*info), GFP_KERNEL);
528 if (!info)
529 panic("smp_detect_cpus failed to allocate memory\n");
530 /* Use sigp detection algorithm if sclp doesn't work. */
531 if (sclp_get_cpu_info(info)) {
532 smp_use_sigp_detection = 1;
533 for (cpu = 0; cpu <= 65535; cpu++) {
534 if (cpu == boot_cpu_addr)
535 continue;
536 __cpu_logical_map[CPU_INIT_NO] = cpu;
537 if (!cpu_stopped(CPU_INIT_NO))
538 continue;
539 smp_get_save_area(c_cpus, cpu);
540 c_cpus++;
542 goto out;
545 if (info->has_cpu_type) {
546 for (cpu = 0; cpu < info->combined; cpu++) {
547 if (info->cpu[cpu].address == boot_cpu_addr) {
548 smp_cpu_type = info->cpu[cpu].type;
549 break;
554 for (cpu = 0; cpu < info->combined; cpu++) {
555 if (info->has_cpu_type && info->cpu[cpu].type != smp_cpu_type)
556 continue;
557 cpu_addr = info->cpu[cpu].address;
558 if (cpu_addr == boot_cpu_addr)
559 continue;
560 __cpu_logical_map[CPU_INIT_NO] = cpu_addr;
561 if (!cpu_stopped(CPU_INIT_NO)) {
562 s_cpus++;
563 continue;
565 smp_get_save_area(c_cpus, cpu_addr);
566 c_cpus++;
568 out:
569 kfree(info);
570 printk(KERN_INFO "CPUs: %d configured, %d standby\n", c_cpus, s_cpus);
571 get_online_cpus();
572 smp_rescan_cpus();
573 put_online_cpus();
577 * Activate a secondary processor.
579 int __cpuinit start_secondary(void *cpuvoid)
581 /* Setup the cpu */
582 cpu_init();
583 preempt_disable();
584 /* Enable TOD clock interrupts on the secondary cpu. */
585 init_cpu_timer();
586 #ifdef CONFIG_VIRT_TIMER
587 /* Enable cpu timer interrupts on the secondary cpu. */
588 init_cpu_vtimer();
589 #endif
590 /* Enable pfault pseudo page faults on this cpu. */
591 pfault_init();
593 /* Mark this cpu as online */
594 cpu_set(smp_processor_id(), cpu_online_map);
595 /* Switch on interrupts */
596 local_irq_enable();
597 /* Print info about this processor */
598 print_cpu_info(&S390_lowcore.cpu_data);
599 /* cpu_idle will call schedule for us */
600 cpu_idle();
601 return 0;
604 static void __init smp_create_idle(unsigned int cpu)
606 struct task_struct *p;
609 * don't care about the psw and regs settings since we'll never
610 * reschedule the forked task.
612 p = fork_idle(cpu);
613 if (IS_ERR(p))
614 panic("failed fork for CPU %u: %li", cpu, PTR_ERR(p));
615 current_set[cpu] = p;
616 spin_lock_init(&(&per_cpu(s390_idle, cpu))->lock);
619 static int __cpuinit smp_alloc_lowcore(int cpu)
621 unsigned long async_stack, panic_stack;
622 struct _lowcore *lowcore;
623 int lc_order;
625 lc_order = sizeof(long) == 8 ? 1 : 0;
626 lowcore = (void *) __get_free_pages(GFP_KERNEL | GFP_DMA, lc_order);
627 if (!lowcore)
628 return -ENOMEM;
629 async_stack = __get_free_pages(GFP_KERNEL, ASYNC_ORDER);
630 panic_stack = __get_free_page(GFP_KERNEL);
631 if (!panic_stack || !async_stack)
632 goto out;
633 memcpy(lowcore, &S390_lowcore, 512);
634 memset((char *)lowcore + 512, 0, sizeof(*lowcore) - 512);
635 lowcore->async_stack = async_stack + ASYNC_SIZE;
636 lowcore->panic_stack = panic_stack + PAGE_SIZE;
638 #ifndef CONFIG_64BIT
639 if (MACHINE_HAS_IEEE) {
640 unsigned long save_area;
642 save_area = get_zeroed_page(GFP_KERNEL);
643 if (!save_area)
644 goto out_save_area;
645 lowcore->extended_save_area_addr = (u32) save_area;
647 #endif
648 lowcore_ptr[cpu] = lowcore;
649 return 0;
651 #ifndef CONFIG_64BIT
652 out_save_area:
653 free_page(panic_stack);
654 #endif
655 out:
656 free_pages(async_stack, ASYNC_ORDER);
657 free_pages((unsigned long) lowcore, lc_order);
658 return -ENOMEM;
661 #ifdef CONFIG_HOTPLUG_CPU
662 static void smp_free_lowcore(int cpu)
664 struct _lowcore *lowcore;
665 int lc_order;
667 lc_order = sizeof(long) == 8 ? 1 : 0;
668 lowcore = lowcore_ptr[cpu];
669 #ifndef CONFIG_64BIT
670 if (MACHINE_HAS_IEEE)
671 free_page((unsigned long) lowcore->extended_save_area_addr);
672 #endif
673 free_page(lowcore->panic_stack - PAGE_SIZE);
674 free_pages(lowcore->async_stack - ASYNC_SIZE, ASYNC_ORDER);
675 free_pages((unsigned long) lowcore, lc_order);
676 lowcore_ptr[cpu] = NULL;
678 #endif /* CONFIG_HOTPLUG_CPU */
680 /* Upping and downing of CPUs */
681 int __cpuinit __cpu_up(unsigned int cpu)
683 struct task_struct *idle;
684 struct _lowcore *cpu_lowcore;
685 struct stack_frame *sf;
686 sigp_ccode ccode;
688 if (smp_cpu_state[cpu] != CPU_STATE_CONFIGURED)
689 return -EIO;
690 if (smp_alloc_lowcore(cpu))
691 return -ENOMEM;
693 ccode = signal_processor_p((__u32)(unsigned long)(lowcore_ptr[cpu]),
694 cpu, sigp_set_prefix);
695 if (ccode) {
696 printk("sigp_set_prefix failed for cpu %d "
697 "with condition code %d\n",
698 (int) cpu, (int) ccode);
699 return -EIO;
702 idle = current_set[cpu];
703 cpu_lowcore = lowcore_ptr[cpu];
704 cpu_lowcore->kernel_stack = (unsigned long)
705 task_stack_page(idle) + THREAD_SIZE;
706 cpu_lowcore->thread_info = (unsigned long) task_thread_info(idle);
707 sf = (struct stack_frame *) (cpu_lowcore->kernel_stack
708 - sizeof(struct pt_regs)
709 - sizeof(struct stack_frame));
710 memset(sf, 0, sizeof(struct stack_frame));
711 sf->gprs[9] = (unsigned long) sf;
712 cpu_lowcore->save_area[15] = (unsigned long) sf;
713 __ctl_store(cpu_lowcore->cregs_save_area[0], 0, 15);
714 asm volatile(
715 " stam 0,15,0(%0)"
716 : : "a" (&cpu_lowcore->access_regs_save_area) : "memory");
717 cpu_lowcore->percpu_offset = __per_cpu_offset[cpu];
718 cpu_lowcore->current_task = (unsigned long) idle;
719 cpu_lowcore->cpu_data.cpu_nr = cpu;
720 cpu_lowcore->kernel_asce = S390_lowcore.kernel_asce;
721 cpu_lowcore->ipl_device = S390_lowcore.ipl_device;
722 eieio();
724 while (signal_processor(cpu, sigp_restart) == sigp_busy)
725 udelay(10);
727 while (!cpu_online(cpu))
728 cpu_relax();
729 return 0;
732 static int __init setup_possible_cpus(char *s)
734 int pcpus, cpu;
736 pcpus = simple_strtoul(s, NULL, 0);
737 cpu_possible_map = cpumask_of_cpu(0);
738 for (cpu = 1; cpu < pcpus && cpu < NR_CPUS; cpu++)
739 cpu_set(cpu, cpu_possible_map);
740 return 0;
742 early_param("possible_cpus", setup_possible_cpus);
744 #ifdef CONFIG_HOTPLUG_CPU
746 int __cpu_disable(void)
748 struct ec_creg_mask_parms cr_parms;
749 int cpu = smp_processor_id();
751 cpu_clear(cpu, cpu_online_map);
753 /* Disable pfault pseudo page faults on this cpu. */
754 pfault_fini();
756 memset(&cr_parms.orvals, 0, sizeof(cr_parms.orvals));
757 memset(&cr_parms.andvals, 0xff, sizeof(cr_parms.andvals));
759 /* disable all external interrupts */
760 cr_parms.orvals[0] = 0;
761 cr_parms.andvals[0] = ~(1 << 15 | 1 << 14 | 1 << 13 | 1 << 12 |
762 1 << 11 | 1 << 10 | 1 << 6 | 1 << 4);
763 /* disable all I/O interrupts */
764 cr_parms.orvals[6] = 0;
765 cr_parms.andvals[6] = ~(1 << 31 | 1 << 30 | 1 << 29 | 1 << 28 |
766 1 << 27 | 1 << 26 | 1 << 25 | 1 << 24);
767 /* disable most machine checks */
768 cr_parms.orvals[14] = 0;
769 cr_parms.andvals[14] = ~(1 << 28 | 1 << 27 | 1 << 26 |
770 1 << 25 | 1 << 24);
772 smp_ctl_bit_callback(&cr_parms);
774 return 0;
777 void __cpu_die(unsigned int cpu)
779 /* Wait until target cpu is down */
780 while (!smp_cpu_not_running(cpu))
781 cpu_relax();
782 smp_free_lowcore(cpu);
783 printk(KERN_INFO "Processor %d spun down\n", cpu);
786 void cpu_die(void)
788 idle_task_exit();
789 signal_processor(smp_processor_id(), sigp_stop);
790 BUG();
791 for (;;);
794 #endif /* CONFIG_HOTPLUG_CPU */
796 void __init smp_prepare_cpus(unsigned int max_cpus)
798 #ifndef CONFIG_64BIT
799 unsigned long save_area = 0;
800 #endif
801 unsigned long async_stack, panic_stack;
802 struct _lowcore *lowcore;
803 unsigned int cpu;
804 int lc_order;
806 smp_detect_cpus();
808 /* request the 0x1201 emergency signal external interrupt */
809 if (register_external_interrupt(0x1201, do_ext_call_interrupt) != 0)
810 panic("Couldn't request external interrupt 0x1201");
811 print_cpu_info(&S390_lowcore.cpu_data);
813 /* Reallocate current lowcore, but keep its contents. */
814 lc_order = sizeof(long) == 8 ? 1 : 0;
815 lowcore = (void *) __get_free_pages(GFP_KERNEL | GFP_DMA, lc_order);
816 panic_stack = __get_free_page(GFP_KERNEL);
817 async_stack = __get_free_pages(GFP_KERNEL, ASYNC_ORDER);
818 #ifndef CONFIG_64BIT
819 if (MACHINE_HAS_IEEE)
820 save_area = get_zeroed_page(GFP_KERNEL);
821 #endif
822 local_irq_disable();
823 local_mcck_disable();
824 lowcore_ptr[smp_processor_id()] = lowcore;
825 *lowcore = S390_lowcore;
826 lowcore->panic_stack = panic_stack + PAGE_SIZE;
827 lowcore->async_stack = async_stack + ASYNC_SIZE;
828 #ifndef CONFIG_64BIT
829 if (MACHINE_HAS_IEEE)
830 lowcore->extended_save_area_addr = (u32) save_area;
831 #endif
832 set_prefix((u32)(unsigned long) lowcore);
833 local_mcck_enable();
834 local_irq_enable();
835 for_each_possible_cpu(cpu)
836 if (cpu != smp_processor_id())
837 smp_create_idle(cpu);
840 void __init smp_prepare_boot_cpu(void)
842 BUG_ON(smp_processor_id() != 0);
844 current_thread_info()->cpu = 0;
845 cpu_set(0, cpu_present_map);
846 cpu_set(0, cpu_online_map);
847 S390_lowcore.percpu_offset = __per_cpu_offset[0];
848 current_set[0] = current;
849 smp_cpu_state[0] = CPU_STATE_CONFIGURED;
850 smp_cpu_polarization[0] = POLARIZATION_UNKNWN;
851 spin_lock_init(&(&__get_cpu_var(s390_idle))->lock);
854 void __init smp_cpus_done(unsigned int max_cpus)
859 * the frequency of the profiling timer can be changed
860 * by writing a multiplier value into /proc/profile.
862 * usually you want to run this on all CPUs ;)
864 int setup_profiling_timer(unsigned int multiplier)
866 return 0;
869 #ifdef CONFIG_HOTPLUG_CPU
870 static ssize_t cpu_configure_show(struct sys_device *dev, char *buf)
872 ssize_t count;
874 mutex_lock(&smp_cpu_state_mutex);
875 count = sprintf(buf, "%d\n", smp_cpu_state[dev->id]);
876 mutex_unlock(&smp_cpu_state_mutex);
877 return count;
880 static ssize_t cpu_configure_store(struct sys_device *dev, const char *buf,
881 size_t count)
883 int cpu = dev->id;
884 int val, rc;
885 char delim;
887 if (sscanf(buf, "%d %c", &val, &delim) != 1)
888 return -EINVAL;
889 if (val != 0 && val != 1)
890 return -EINVAL;
892 mutex_lock(&smp_cpu_state_mutex);
893 get_online_cpus();
894 rc = -EBUSY;
895 if (cpu_online(cpu))
896 goto out;
897 rc = 0;
898 switch (val) {
899 case 0:
900 if (smp_cpu_state[cpu] == CPU_STATE_CONFIGURED) {
901 rc = sclp_cpu_deconfigure(__cpu_logical_map[cpu]);
902 if (!rc) {
903 smp_cpu_state[cpu] = CPU_STATE_STANDBY;
904 smp_cpu_polarization[cpu] = POLARIZATION_UNKNWN;
907 break;
908 case 1:
909 if (smp_cpu_state[cpu] == CPU_STATE_STANDBY) {
910 rc = sclp_cpu_configure(__cpu_logical_map[cpu]);
911 if (!rc) {
912 smp_cpu_state[cpu] = CPU_STATE_CONFIGURED;
913 smp_cpu_polarization[cpu] = POLARIZATION_UNKNWN;
916 break;
917 default:
918 break;
920 out:
921 put_online_cpus();
922 mutex_unlock(&smp_cpu_state_mutex);
923 return rc ? rc : count;
925 static SYSDEV_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store);
926 #endif /* CONFIG_HOTPLUG_CPU */
928 static ssize_t cpu_polarization_show(struct sys_device *dev, char *buf)
930 int cpu = dev->id;
931 ssize_t count;
933 mutex_lock(&smp_cpu_state_mutex);
934 switch (smp_cpu_polarization[cpu]) {
935 case POLARIZATION_HRZ:
936 count = sprintf(buf, "horizontal\n");
937 break;
938 case POLARIZATION_VL:
939 count = sprintf(buf, "vertical:low\n");
940 break;
941 case POLARIZATION_VM:
942 count = sprintf(buf, "vertical:medium\n");
943 break;
944 case POLARIZATION_VH:
945 count = sprintf(buf, "vertical:high\n");
946 break;
947 default:
948 count = sprintf(buf, "unknown\n");
949 break;
951 mutex_unlock(&smp_cpu_state_mutex);
952 return count;
954 static SYSDEV_ATTR(polarization, 0444, cpu_polarization_show, NULL);
956 static ssize_t show_cpu_address(struct sys_device *dev, char *buf)
958 return sprintf(buf, "%d\n", __cpu_logical_map[dev->id]);
960 static SYSDEV_ATTR(address, 0444, show_cpu_address, NULL);
963 static struct attribute *cpu_common_attrs[] = {
964 #ifdef CONFIG_HOTPLUG_CPU
965 &attr_configure.attr,
966 #endif
967 &attr_address.attr,
968 &attr_polarization.attr,
969 NULL,
972 static struct attribute_group cpu_common_attr_group = {
973 .attrs = cpu_common_attrs,
976 static ssize_t show_capability(struct sys_device *dev, char *buf)
978 unsigned int capability;
979 int rc;
981 rc = get_cpu_capability(&capability);
982 if (rc)
983 return rc;
984 return sprintf(buf, "%u\n", capability);
986 static SYSDEV_ATTR(capability, 0444, show_capability, NULL);
988 static ssize_t show_idle_count(struct sys_device *dev, char *buf)
990 struct s390_idle_data *idle;
991 unsigned long long idle_count;
993 idle = &per_cpu(s390_idle, dev->id);
994 spin_lock_irq(&idle->lock);
995 idle_count = idle->idle_count;
996 spin_unlock_irq(&idle->lock);
997 return sprintf(buf, "%llu\n", idle_count);
999 static SYSDEV_ATTR(idle_count, 0444, show_idle_count, NULL);
1001 static ssize_t show_idle_time(struct sys_device *dev, char *buf)
1003 struct s390_idle_data *idle;
1004 unsigned long long new_time;
1006 idle = &per_cpu(s390_idle, dev->id);
1007 spin_lock_irq(&idle->lock);
1008 if (idle->in_idle) {
1009 new_time = get_clock();
1010 idle->idle_time += new_time - idle->idle_enter;
1011 idle->idle_enter = new_time;
1013 new_time = idle->idle_time;
1014 spin_unlock_irq(&idle->lock);
1015 return sprintf(buf, "%llu\n", new_time >> 12);
1017 static SYSDEV_ATTR(idle_time_us, 0444, show_idle_time, NULL);
1019 static struct attribute *cpu_online_attrs[] = {
1020 &attr_capability.attr,
1021 &attr_idle_count.attr,
1022 &attr_idle_time_us.attr,
1023 NULL,
1026 static struct attribute_group cpu_online_attr_group = {
1027 .attrs = cpu_online_attrs,
1030 static int __cpuinit smp_cpu_notify(struct notifier_block *self,
1031 unsigned long action, void *hcpu)
1033 unsigned int cpu = (unsigned int)(long)hcpu;
1034 struct cpu *c = &per_cpu(cpu_devices, cpu);
1035 struct sys_device *s = &c->sysdev;
1036 struct s390_idle_data *idle;
1038 switch (action) {
1039 case CPU_ONLINE:
1040 case CPU_ONLINE_FROZEN:
1041 idle = &per_cpu(s390_idle, cpu);
1042 spin_lock_irq(&idle->lock);
1043 idle->idle_enter = 0;
1044 idle->idle_time = 0;
1045 idle->idle_count = 0;
1046 spin_unlock_irq(&idle->lock);
1047 if (sysfs_create_group(&s->kobj, &cpu_online_attr_group))
1048 return NOTIFY_BAD;
1049 break;
1050 case CPU_DEAD:
1051 case CPU_DEAD_FROZEN:
1052 sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
1053 break;
1055 return NOTIFY_OK;
1058 static struct notifier_block __cpuinitdata smp_cpu_nb = {
1059 .notifier_call = smp_cpu_notify,
1062 static int __devinit smp_add_present_cpu(int cpu)
1064 struct cpu *c = &per_cpu(cpu_devices, cpu);
1065 struct sys_device *s = &c->sysdev;
1066 int rc;
1068 c->hotpluggable = 1;
1069 rc = register_cpu(c, cpu);
1070 if (rc)
1071 goto out;
1072 rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group);
1073 if (rc)
1074 goto out_cpu;
1075 if (!cpu_online(cpu))
1076 goto out;
1077 rc = sysfs_create_group(&s->kobj, &cpu_online_attr_group);
1078 if (!rc)
1079 return 0;
1080 sysfs_remove_group(&s->kobj, &cpu_common_attr_group);
1081 out_cpu:
1082 #ifdef CONFIG_HOTPLUG_CPU
1083 unregister_cpu(c);
1084 #endif
1085 out:
1086 return rc;
1089 #ifdef CONFIG_HOTPLUG_CPU
1090 static ssize_t __ref rescan_store(struct sys_device *dev,
1091 const char *buf, size_t count)
1093 cpumask_t newcpus;
1094 int cpu;
1095 int rc;
1097 mutex_lock(&smp_cpu_state_mutex);
1098 get_online_cpus();
1099 newcpus = cpu_present_map;
1100 rc = smp_rescan_cpus();
1101 if (rc)
1102 goto out;
1103 cpus_andnot(newcpus, cpu_present_map, newcpus);
1104 for_each_cpu_mask(cpu, newcpus) {
1105 rc = smp_add_present_cpu(cpu);
1106 if (rc)
1107 cpu_clear(cpu, cpu_present_map);
1109 rc = 0;
1110 out:
1111 put_online_cpus();
1112 mutex_unlock(&smp_cpu_state_mutex);
1113 if (!cpus_empty(newcpus))
1114 topology_schedule_update();
1115 return rc ? rc : count;
1117 static SYSDEV_ATTR(rescan, 0200, NULL, rescan_store);
1118 #endif /* CONFIG_HOTPLUG_CPU */
1120 static ssize_t dispatching_show(struct sys_device *dev, char *buf)
1122 ssize_t count;
1124 mutex_lock(&smp_cpu_state_mutex);
1125 count = sprintf(buf, "%d\n", cpu_management);
1126 mutex_unlock(&smp_cpu_state_mutex);
1127 return count;
1130 static ssize_t dispatching_store(struct sys_device *dev, const char *buf,
1131 size_t count)
1133 int val, rc;
1134 char delim;
1136 if (sscanf(buf, "%d %c", &val, &delim) != 1)
1137 return -EINVAL;
1138 if (val != 0 && val != 1)
1139 return -EINVAL;
1140 rc = 0;
1141 mutex_lock(&smp_cpu_state_mutex);
1142 get_online_cpus();
1143 if (cpu_management == val)
1144 goto out;
1145 rc = topology_set_cpu_management(val);
1146 if (!rc)
1147 cpu_management = val;
1148 out:
1149 put_online_cpus();
1150 mutex_unlock(&smp_cpu_state_mutex);
1151 return rc ? rc : count;
1153 static SYSDEV_ATTR(dispatching, 0644, dispatching_show, dispatching_store);
1155 static int __init topology_init(void)
1157 int cpu;
1158 int rc;
1160 register_cpu_notifier(&smp_cpu_nb);
1162 #ifdef CONFIG_HOTPLUG_CPU
1163 rc = sysfs_create_file(&cpu_sysdev_class.kset.kobj,
1164 &attr_rescan.attr);
1165 if (rc)
1166 return rc;
1167 #endif
1168 rc = sysfs_create_file(&cpu_sysdev_class.kset.kobj,
1169 &attr_dispatching.attr);
1170 if (rc)
1171 return rc;
1172 for_each_present_cpu(cpu) {
1173 rc = smp_add_present_cpu(cpu);
1174 if (rc)
1175 return rc;
1177 return 0;
1179 subsys_initcall(topology_init);