x86: allow more than 8 cpus to be used on 32-bit
[linux-2.6/kvm.git] / kernel / fork.c
blob99309df985bf404a5f94aae5b86df6581d19bd2c
1 /*
2 * linux/kernel/fork.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/mnt_namespace.h>
21 #include <linux/personality.h>
22 #include <linux/mempolicy.h>
23 #include <linux/sem.h>
24 #include <linux/file.h>
25 #include <linux/fdtable.h>
26 #include <linux/iocontext.h>
27 #include <linux/key.h>
28 #include <linux/binfmts.h>
29 #include <linux/mman.h>
30 #include <linux/mmu_notifier.h>
31 #include <linux/fs.h>
32 #include <linux/nsproxy.h>
33 #include <linux/capability.h>
34 #include <linux/cpu.h>
35 #include <linux/cgroup.h>
36 #include <linux/security.h>
37 #include <linux/hugetlb.h>
38 #include <linux/swap.h>
39 #include <linux/syscalls.h>
40 #include <linux/jiffies.h>
41 #include <linux/tracehook.h>
42 #include <linux/futex.h>
43 #include <linux/compat.h>
44 #include <linux/task_io_accounting_ops.h>
45 #include <linux/rcupdate.h>
46 #include <linux/ptrace.h>
47 #include <linux/mount.h>
48 #include <linux/audit.h>
49 #include <linux/memcontrol.h>
50 #include <linux/ftrace.h>
51 #include <linux/profile.h>
52 #include <linux/rmap.h>
53 #include <linux/acct.h>
54 #include <linux/tsacct_kern.h>
55 #include <linux/cn_proc.h>
56 #include <linux/freezer.h>
57 #include <linux/delayacct.h>
58 #include <linux/taskstats_kern.h>
59 #include <linux/random.h>
60 #include <linux/tty.h>
61 #include <linux/proc_fs.h>
62 #include <linux/blkdev.h>
63 #include <trace/sched.h>
64 #include <linux/magic.h>
66 #include <asm/pgtable.h>
67 #include <asm/pgalloc.h>
68 #include <asm/uaccess.h>
69 #include <asm/mmu_context.h>
70 #include <asm/cacheflush.h>
71 #include <asm/tlbflush.h>
74 * Protected counters by write_lock_irq(&tasklist_lock)
76 unsigned long total_forks; /* Handle normal Linux uptimes. */
77 int nr_threads; /* The idle threads do not count.. */
79 int max_threads; /* tunable limit on nr_threads */
81 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
83 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
85 DEFINE_TRACE(sched_process_fork);
87 int nr_processes(void)
89 int cpu;
90 int total = 0;
92 for_each_online_cpu(cpu)
93 total += per_cpu(process_counts, cpu);
95 return total;
98 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
99 # define alloc_task_struct() kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
100 # define free_task_struct(tsk) kmem_cache_free(task_struct_cachep, (tsk))
101 static struct kmem_cache *task_struct_cachep;
102 #endif
104 #ifndef __HAVE_ARCH_THREAD_INFO_ALLOCATOR
105 static inline struct thread_info *alloc_thread_info(struct task_struct *tsk)
107 #ifdef CONFIG_DEBUG_STACK_USAGE
108 gfp_t mask = GFP_KERNEL | __GFP_ZERO;
109 #else
110 gfp_t mask = GFP_KERNEL;
111 #endif
112 return (struct thread_info *)__get_free_pages(mask, THREAD_SIZE_ORDER);
115 static inline void free_thread_info(struct thread_info *ti)
117 free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
119 #endif
121 /* SLAB cache for signal_struct structures (tsk->signal) */
122 static struct kmem_cache *signal_cachep;
124 /* SLAB cache for sighand_struct structures (tsk->sighand) */
125 struct kmem_cache *sighand_cachep;
127 /* SLAB cache for files_struct structures (tsk->files) */
128 struct kmem_cache *files_cachep;
130 /* SLAB cache for fs_struct structures (tsk->fs) */
131 struct kmem_cache *fs_cachep;
133 /* SLAB cache for vm_area_struct structures */
134 struct kmem_cache *vm_area_cachep;
136 /* SLAB cache for mm_struct structures (tsk->mm) */
137 static struct kmem_cache *mm_cachep;
139 void free_task(struct task_struct *tsk)
141 prop_local_destroy_single(&tsk->dirties);
142 free_thread_info(tsk->stack);
143 rt_mutex_debug_task_free(tsk);
144 ftrace_graph_exit_task(tsk);
145 free_task_struct(tsk);
147 EXPORT_SYMBOL(free_task);
149 void __put_task_struct(struct task_struct *tsk)
151 WARN_ON(!tsk->exit_state);
152 WARN_ON(atomic_read(&tsk->usage));
153 WARN_ON(tsk == current);
155 put_cred(tsk->real_cred);
156 put_cred(tsk->cred);
157 delayacct_tsk_free(tsk);
159 if (!profile_handoff_task(tsk))
160 free_task(tsk);
164 * macro override instead of weak attribute alias, to workaround
165 * gcc 4.1.0 and 4.1.1 bugs with weak attribute and empty functions.
167 #ifndef arch_task_cache_init
168 #define arch_task_cache_init()
169 #endif
171 void __init fork_init(unsigned long mempages)
173 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
174 #ifndef ARCH_MIN_TASKALIGN
175 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
176 #endif
177 /* create a slab on which task_structs can be allocated */
178 task_struct_cachep =
179 kmem_cache_create("task_struct", sizeof(struct task_struct),
180 ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL);
181 #endif
183 /* do the arch specific task caches init */
184 arch_task_cache_init();
187 * The default maximum number of threads is set to a safe
188 * value: the thread structures can take up at most half
189 * of memory.
191 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
194 * we need to allow at least 20 threads to boot a system
196 if(max_threads < 20)
197 max_threads = 20;
199 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
200 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
201 init_task.signal->rlim[RLIMIT_SIGPENDING] =
202 init_task.signal->rlim[RLIMIT_NPROC];
205 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
206 struct task_struct *src)
208 *dst = *src;
209 return 0;
212 static struct task_struct *dup_task_struct(struct task_struct *orig)
214 struct task_struct *tsk;
215 struct thread_info *ti;
216 unsigned long *stackend;
218 int err;
220 prepare_to_copy(orig);
222 tsk = alloc_task_struct();
223 if (!tsk)
224 return NULL;
226 ti = alloc_thread_info(tsk);
227 if (!ti) {
228 free_task_struct(tsk);
229 return NULL;
232 err = arch_dup_task_struct(tsk, orig);
233 if (err)
234 goto out;
236 tsk->stack = ti;
238 err = prop_local_init_single(&tsk->dirties);
239 if (err)
240 goto out;
242 setup_thread_stack(tsk, orig);
243 stackend = end_of_stack(tsk);
244 *stackend = STACK_END_MAGIC; /* for overflow detection */
246 #ifdef CONFIG_CC_STACKPROTECTOR
247 tsk->stack_canary = get_random_int();
248 #endif
250 /* One for us, one for whoever does the "release_task()" (usually parent) */
251 atomic_set(&tsk->usage,2);
252 atomic_set(&tsk->fs_excl, 0);
253 #ifdef CONFIG_BLK_DEV_IO_TRACE
254 tsk->btrace_seq = 0;
255 #endif
256 tsk->splice_pipe = NULL;
257 return tsk;
259 out:
260 free_thread_info(ti);
261 free_task_struct(tsk);
262 return NULL;
265 #ifdef CONFIG_MMU
266 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
268 struct vm_area_struct *mpnt, *tmp, **pprev;
269 struct rb_node **rb_link, *rb_parent;
270 int retval;
271 unsigned long charge;
272 struct mempolicy *pol;
274 down_write(&oldmm->mmap_sem);
275 flush_cache_dup_mm(oldmm);
277 * Not linked in yet - no deadlock potential:
279 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
281 mm->locked_vm = 0;
282 mm->mmap = NULL;
283 mm->mmap_cache = NULL;
284 mm->free_area_cache = oldmm->mmap_base;
285 mm->cached_hole_size = ~0UL;
286 mm->map_count = 0;
287 cpus_clear(mm->cpu_vm_mask);
288 mm->mm_rb = RB_ROOT;
289 rb_link = &mm->mm_rb.rb_node;
290 rb_parent = NULL;
291 pprev = &mm->mmap;
293 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
294 struct file *file;
296 if (mpnt->vm_flags & VM_DONTCOPY) {
297 long pages = vma_pages(mpnt);
298 mm->total_vm -= pages;
299 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
300 -pages);
301 continue;
303 charge = 0;
304 if (mpnt->vm_flags & VM_ACCOUNT) {
305 unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
306 if (security_vm_enough_memory(len))
307 goto fail_nomem;
308 charge = len;
310 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
311 if (!tmp)
312 goto fail_nomem;
313 *tmp = *mpnt;
314 pol = mpol_dup(vma_policy(mpnt));
315 retval = PTR_ERR(pol);
316 if (IS_ERR(pol))
317 goto fail_nomem_policy;
318 vma_set_policy(tmp, pol);
319 tmp->vm_flags &= ~VM_LOCKED;
320 tmp->vm_mm = mm;
321 tmp->vm_next = NULL;
322 anon_vma_link(tmp);
323 file = tmp->vm_file;
324 if (file) {
325 struct inode *inode = file->f_path.dentry->d_inode;
326 struct address_space *mapping = file->f_mapping;
328 get_file(file);
329 if (tmp->vm_flags & VM_DENYWRITE)
330 atomic_dec(&inode->i_writecount);
331 spin_lock(&mapping->i_mmap_lock);
332 if (tmp->vm_flags & VM_SHARED)
333 mapping->i_mmap_writable++;
334 tmp->vm_truncate_count = mpnt->vm_truncate_count;
335 flush_dcache_mmap_lock(mapping);
336 /* insert tmp into the share list, just after mpnt */
337 vma_prio_tree_add(tmp, mpnt);
338 flush_dcache_mmap_unlock(mapping);
339 spin_unlock(&mapping->i_mmap_lock);
343 * Clear hugetlb-related page reserves for children. This only
344 * affects MAP_PRIVATE mappings. Faults generated by the child
345 * are not guaranteed to succeed, even if read-only
347 if (is_vm_hugetlb_page(tmp))
348 reset_vma_resv_huge_pages(tmp);
351 * Link in the new vma and copy the page table entries.
353 *pprev = tmp;
354 pprev = &tmp->vm_next;
356 __vma_link_rb(mm, tmp, rb_link, rb_parent);
357 rb_link = &tmp->vm_rb.rb_right;
358 rb_parent = &tmp->vm_rb;
360 mm->map_count++;
361 retval = copy_page_range(mm, oldmm, mpnt);
363 if (tmp->vm_ops && tmp->vm_ops->open)
364 tmp->vm_ops->open(tmp);
366 if (retval)
367 goto out;
369 /* a new mm has just been created */
370 arch_dup_mmap(oldmm, mm);
371 retval = 0;
372 out:
373 up_write(&mm->mmap_sem);
374 flush_tlb_mm(oldmm);
375 up_write(&oldmm->mmap_sem);
376 return retval;
377 fail_nomem_policy:
378 kmem_cache_free(vm_area_cachep, tmp);
379 fail_nomem:
380 retval = -ENOMEM;
381 vm_unacct_memory(charge);
382 goto out;
385 static inline int mm_alloc_pgd(struct mm_struct * mm)
387 mm->pgd = pgd_alloc(mm);
388 if (unlikely(!mm->pgd))
389 return -ENOMEM;
390 return 0;
393 static inline void mm_free_pgd(struct mm_struct * mm)
395 pgd_free(mm, mm->pgd);
397 #else
398 #define dup_mmap(mm, oldmm) (0)
399 #define mm_alloc_pgd(mm) (0)
400 #define mm_free_pgd(mm)
401 #endif /* CONFIG_MMU */
403 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
405 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
406 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
408 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
410 static int __init coredump_filter_setup(char *s)
412 default_dump_filter =
413 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
414 MMF_DUMP_FILTER_MASK;
415 return 1;
418 __setup("coredump_filter=", coredump_filter_setup);
420 #include <linux/init_task.h>
422 static struct mm_struct * mm_init(struct mm_struct * mm, struct task_struct *p)
424 atomic_set(&mm->mm_users, 1);
425 atomic_set(&mm->mm_count, 1);
426 init_rwsem(&mm->mmap_sem);
427 INIT_LIST_HEAD(&mm->mmlist);
428 mm->flags = (current->mm) ? current->mm->flags : default_dump_filter;
429 mm->core_state = NULL;
430 mm->nr_ptes = 0;
431 set_mm_counter(mm, file_rss, 0);
432 set_mm_counter(mm, anon_rss, 0);
433 spin_lock_init(&mm->page_table_lock);
434 spin_lock_init(&mm->ioctx_lock);
435 INIT_HLIST_HEAD(&mm->ioctx_list);
436 mm->free_area_cache = TASK_UNMAPPED_BASE;
437 mm->cached_hole_size = ~0UL;
438 mm_init_owner(mm, p);
440 if (likely(!mm_alloc_pgd(mm))) {
441 mm->def_flags = 0;
442 mmu_notifier_mm_init(mm);
443 return mm;
446 free_mm(mm);
447 return NULL;
451 * Allocate and initialize an mm_struct.
453 struct mm_struct * mm_alloc(void)
455 struct mm_struct * mm;
457 mm = allocate_mm();
458 if (mm) {
459 memset(mm, 0, sizeof(*mm));
460 mm = mm_init(mm, current);
462 return mm;
466 * Called when the last reference to the mm
467 * is dropped: either by a lazy thread or by
468 * mmput. Free the page directory and the mm.
470 void __mmdrop(struct mm_struct *mm)
472 BUG_ON(mm == &init_mm);
473 mm_free_pgd(mm);
474 destroy_context(mm);
475 mmu_notifier_mm_destroy(mm);
476 free_mm(mm);
478 EXPORT_SYMBOL_GPL(__mmdrop);
481 * Decrement the use count and release all resources for an mm.
483 void mmput(struct mm_struct *mm)
485 might_sleep();
487 if (atomic_dec_and_test(&mm->mm_users)) {
488 exit_aio(mm);
489 exit_mmap(mm);
490 set_mm_exe_file(mm, NULL);
491 if (!list_empty(&mm->mmlist)) {
492 spin_lock(&mmlist_lock);
493 list_del(&mm->mmlist);
494 spin_unlock(&mmlist_lock);
496 put_swap_token(mm);
497 mmdrop(mm);
500 EXPORT_SYMBOL_GPL(mmput);
503 * get_task_mm - acquire a reference to the task's mm
505 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
506 * this kernel workthread has transiently adopted a user mm with use_mm,
507 * to do its AIO) is not set and if so returns a reference to it, after
508 * bumping up the use count. User must release the mm via mmput()
509 * after use. Typically used by /proc and ptrace.
511 struct mm_struct *get_task_mm(struct task_struct *task)
513 struct mm_struct *mm;
515 task_lock(task);
516 mm = task->mm;
517 if (mm) {
518 if (task->flags & PF_KTHREAD)
519 mm = NULL;
520 else
521 atomic_inc(&mm->mm_users);
523 task_unlock(task);
524 return mm;
526 EXPORT_SYMBOL_GPL(get_task_mm);
528 /* Please note the differences between mmput and mm_release.
529 * mmput is called whenever we stop holding onto a mm_struct,
530 * error success whatever.
532 * mm_release is called after a mm_struct has been removed
533 * from the current process.
535 * This difference is important for error handling, when we
536 * only half set up a mm_struct for a new process and need to restore
537 * the old one. Because we mmput the new mm_struct before
538 * restoring the old one. . .
539 * Eric Biederman 10 January 1998
541 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
543 struct completion *vfork_done = tsk->vfork_done;
545 /* Get rid of any futexes when releasing the mm */
546 #ifdef CONFIG_FUTEX
547 if (unlikely(tsk->robust_list))
548 exit_robust_list(tsk);
549 #ifdef CONFIG_COMPAT
550 if (unlikely(tsk->compat_robust_list))
551 compat_exit_robust_list(tsk);
552 #endif
553 #endif
555 /* Get rid of any cached register state */
556 deactivate_mm(tsk, mm);
558 /* notify parent sleeping on vfork() */
559 if (vfork_done) {
560 tsk->vfork_done = NULL;
561 complete(vfork_done);
565 * If we're exiting normally, clear a user-space tid field if
566 * requested. We leave this alone when dying by signal, to leave
567 * the value intact in a core dump, and to save the unnecessary
568 * trouble otherwise. Userland only wants this done for a sys_exit.
570 if (tsk->clear_child_tid
571 && !(tsk->flags & PF_SIGNALED)
572 && atomic_read(&mm->mm_users) > 1) {
573 u32 __user * tidptr = tsk->clear_child_tid;
574 tsk->clear_child_tid = NULL;
577 * We don't check the error code - if userspace has
578 * not set up a proper pointer then tough luck.
580 put_user(0, tidptr);
581 sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0);
586 * Allocate a new mm structure and copy contents from the
587 * mm structure of the passed in task structure.
589 struct mm_struct *dup_mm(struct task_struct *tsk)
591 struct mm_struct *mm, *oldmm = current->mm;
592 int err;
594 if (!oldmm)
595 return NULL;
597 mm = allocate_mm();
598 if (!mm)
599 goto fail_nomem;
601 memcpy(mm, oldmm, sizeof(*mm));
603 /* Initializing for Swap token stuff */
604 mm->token_priority = 0;
605 mm->last_interval = 0;
607 if (!mm_init(mm, tsk))
608 goto fail_nomem;
610 if (init_new_context(tsk, mm))
611 goto fail_nocontext;
613 dup_mm_exe_file(oldmm, mm);
615 err = dup_mmap(mm, oldmm);
616 if (err)
617 goto free_pt;
619 mm->hiwater_rss = get_mm_rss(mm);
620 mm->hiwater_vm = mm->total_vm;
622 return mm;
624 free_pt:
625 mmput(mm);
627 fail_nomem:
628 return NULL;
630 fail_nocontext:
632 * If init_new_context() failed, we cannot use mmput() to free the mm
633 * because it calls destroy_context()
635 mm_free_pgd(mm);
636 free_mm(mm);
637 return NULL;
640 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
642 struct mm_struct * mm, *oldmm;
643 int retval;
645 tsk->min_flt = tsk->maj_flt = 0;
646 tsk->nvcsw = tsk->nivcsw = 0;
648 tsk->mm = NULL;
649 tsk->active_mm = NULL;
652 * Are we cloning a kernel thread?
654 * We need to steal a active VM for that..
656 oldmm = current->mm;
657 if (!oldmm)
658 return 0;
660 if (clone_flags & CLONE_VM) {
661 atomic_inc(&oldmm->mm_users);
662 mm = oldmm;
663 goto good_mm;
666 retval = -ENOMEM;
667 mm = dup_mm(tsk);
668 if (!mm)
669 goto fail_nomem;
671 good_mm:
672 /* Initializing for Swap token stuff */
673 mm->token_priority = 0;
674 mm->last_interval = 0;
676 tsk->mm = mm;
677 tsk->active_mm = mm;
678 return 0;
680 fail_nomem:
681 return retval;
684 static struct fs_struct *__copy_fs_struct(struct fs_struct *old)
686 struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL);
687 /* We don't need to lock fs - think why ;-) */
688 if (fs) {
689 atomic_set(&fs->count, 1);
690 rwlock_init(&fs->lock);
691 fs->umask = old->umask;
692 read_lock(&old->lock);
693 fs->root = old->root;
694 path_get(&old->root);
695 fs->pwd = old->pwd;
696 path_get(&old->pwd);
697 read_unlock(&old->lock);
699 return fs;
702 struct fs_struct *copy_fs_struct(struct fs_struct *old)
704 return __copy_fs_struct(old);
707 EXPORT_SYMBOL_GPL(copy_fs_struct);
709 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
711 if (clone_flags & CLONE_FS) {
712 atomic_inc(&current->fs->count);
713 return 0;
715 tsk->fs = __copy_fs_struct(current->fs);
716 if (!tsk->fs)
717 return -ENOMEM;
718 return 0;
721 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
723 struct files_struct *oldf, *newf;
724 int error = 0;
727 * A background process may not have any files ...
729 oldf = current->files;
730 if (!oldf)
731 goto out;
733 if (clone_flags & CLONE_FILES) {
734 atomic_inc(&oldf->count);
735 goto out;
738 newf = dup_fd(oldf, &error);
739 if (!newf)
740 goto out;
742 tsk->files = newf;
743 error = 0;
744 out:
745 return error;
748 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
750 #ifdef CONFIG_BLOCK
751 struct io_context *ioc = current->io_context;
753 if (!ioc)
754 return 0;
756 * Share io context with parent, if CLONE_IO is set
758 if (clone_flags & CLONE_IO) {
759 tsk->io_context = ioc_task_link(ioc);
760 if (unlikely(!tsk->io_context))
761 return -ENOMEM;
762 } else if (ioprio_valid(ioc->ioprio)) {
763 tsk->io_context = alloc_io_context(GFP_KERNEL, -1);
764 if (unlikely(!tsk->io_context))
765 return -ENOMEM;
767 tsk->io_context->ioprio = ioc->ioprio;
769 #endif
770 return 0;
773 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
775 struct sighand_struct *sig;
777 if (clone_flags & CLONE_SIGHAND) {
778 atomic_inc(&current->sighand->count);
779 return 0;
781 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
782 rcu_assign_pointer(tsk->sighand, sig);
783 if (!sig)
784 return -ENOMEM;
785 atomic_set(&sig->count, 1);
786 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
787 return 0;
790 void __cleanup_sighand(struct sighand_struct *sighand)
792 if (atomic_dec_and_test(&sighand->count))
793 kmem_cache_free(sighand_cachep, sighand);
798 * Initialize POSIX timer handling for a thread group.
800 static void posix_cpu_timers_init_group(struct signal_struct *sig)
802 /* Thread group counters. */
803 thread_group_cputime_init(sig);
805 /* Expiration times and increments. */
806 sig->it_virt_expires = cputime_zero;
807 sig->it_virt_incr = cputime_zero;
808 sig->it_prof_expires = cputime_zero;
809 sig->it_prof_incr = cputime_zero;
811 /* Cached expiration times. */
812 sig->cputime_expires.prof_exp = cputime_zero;
813 sig->cputime_expires.virt_exp = cputime_zero;
814 sig->cputime_expires.sched_exp = 0;
816 /* The timer lists. */
817 INIT_LIST_HEAD(&sig->cpu_timers[0]);
818 INIT_LIST_HEAD(&sig->cpu_timers[1]);
819 INIT_LIST_HEAD(&sig->cpu_timers[2]);
822 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
824 struct signal_struct *sig;
826 if (clone_flags & CLONE_THREAD) {
827 atomic_inc(&current->signal->count);
828 atomic_inc(&current->signal->live);
829 return 0;
831 sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
833 if (sig)
834 posix_cpu_timers_init_group(sig);
836 tsk->signal = sig;
837 if (!sig)
838 return -ENOMEM;
840 atomic_set(&sig->count, 1);
841 atomic_set(&sig->live, 1);
842 init_waitqueue_head(&sig->wait_chldexit);
843 sig->flags = 0;
844 sig->group_exit_code = 0;
845 sig->group_exit_task = NULL;
846 sig->group_stop_count = 0;
847 sig->curr_target = tsk;
848 init_sigpending(&sig->shared_pending);
849 INIT_LIST_HEAD(&sig->posix_timers);
851 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
852 sig->it_real_incr.tv64 = 0;
853 sig->real_timer.function = it_real_fn;
855 sig->leader = 0; /* session leadership doesn't inherit */
856 sig->tty_old_pgrp = NULL;
857 sig->tty = NULL;
859 sig->cutime = sig->cstime = cputime_zero;
860 sig->gtime = cputime_zero;
861 sig->cgtime = cputime_zero;
862 sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
863 sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
864 sig->inblock = sig->oublock = sig->cinblock = sig->coublock = 0;
865 task_io_accounting_init(&sig->ioac);
866 taskstats_tgid_init(sig);
868 task_lock(current->group_leader);
869 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
870 task_unlock(current->group_leader);
872 acct_init_pacct(&sig->pacct);
874 tty_audit_fork(sig);
876 return 0;
879 void __cleanup_signal(struct signal_struct *sig)
881 thread_group_cputime_free(sig);
882 tty_kref_put(sig->tty);
883 kmem_cache_free(signal_cachep, sig);
886 static void cleanup_signal(struct task_struct *tsk)
888 struct signal_struct *sig = tsk->signal;
890 atomic_dec(&sig->live);
892 if (atomic_dec_and_test(&sig->count))
893 __cleanup_signal(sig);
896 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
898 unsigned long new_flags = p->flags;
900 new_flags &= ~PF_SUPERPRIV;
901 new_flags |= PF_FORKNOEXEC;
902 new_flags |= PF_STARTING;
903 p->flags = new_flags;
904 clear_freeze_flag(p);
907 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
909 current->clear_child_tid = tidptr;
911 return task_pid_vnr(current);
914 static void rt_mutex_init_task(struct task_struct *p)
916 spin_lock_init(&p->pi_lock);
917 #ifdef CONFIG_RT_MUTEXES
918 plist_head_init(&p->pi_waiters, &p->pi_lock);
919 p->pi_blocked_on = NULL;
920 #endif
923 #ifdef CONFIG_MM_OWNER
924 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
926 mm->owner = p;
928 #endif /* CONFIG_MM_OWNER */
931 * Initialize POSIX timer handling for a single task.
933 static void posix_cpu_timers_init(struct task_struct *tsk)
935 tsk->cputime_expires.prof_exp = cputime_zero;
936 tsk->cputime_expires.virt_exp = cputime_zero;
937 tsk->cputime_expires.sched_exp = 0;
938 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
939 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
940 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
944 * This creates a new process as a copy of the old one,
945 * but does not actually start it yet.
947 * It copies the registers, and all the appropriate
948 * parts of the process environment (as per the clone
949 * flags). The actual kick-off is left to the caller.
951 static struct task_struct *copy_process(unsigned long clone_flags,
952 unsigned long stack_start,
953 struct pt_regs *regs,
954 unsigned long stack_size,
955 int __user *child_tidptr,
956 struct pid *pid,
957 int trace)
959 int retval;
960 struct task_struct *p;
961 int cgroup_callbacks_done = 0;
963 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
964 return ERR_PTR(-EINVAL);
967 * Thread groups must share signals as well, and detached threads
968 * can only be started up within the thread group.
970 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
971 return ERR_PTR(-EINVAL);
974 * Shared signal handlers imply shared VM. By way of the above,
975 * thread groups also imply shared VM. Blocking this case allows
976 * for various simplifications in other code.
978 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
979 return ERR_PTR(-EINVAL);
981 retval = security_task_create(clone_flags);
982 if (retval)
983 goto fork_out;
985 retval = -ENOMEM;
986 p = dup_task_struct(current);
987 if (!p)
988 goto fork_out;
990 rt_mutex_init_task(p);
992 #ifdef CONFIG_PROVE_LOCKING
993 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
994 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
995 #endif
996 retval = -EAGAIN;
997 if (atomic_read(&p->real_cred->user->processes) >=
998 p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
999 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
1000 p->real_cred->user != INIT_USER)
1001 goto bad_fork_free;
1004 retval = copy_creds(p, clone_flags);
1005 if (retval < 0)
1006 goto bad_fork_free;
1009 * If multiple threads are within copy_process(), then this check
1010 * triggers too late. This doesn't hurt, the check is only there
1011 * to stop root fork bombs.
1013 if (nr_threads >= max_threads)
1014 goto bad_fork_cleanup_count;
1016 if (!try_module_get(task_thread_info(p)->exec_domain->module))
1017 goto bad_fork_cleanup_count;
1019 if (p->binfmt && !try_module_get(p->binfmt->module))
1020 goto bad_fork_cleanup_put_domain;
1022 p->did_exec = 0;
1023 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1024 copy_flags(clone_flags, p);
1025 INIT_LIST_HEAD(&p->children);
1026 INIT_LIST_HEAD(&p->sibling);
1027 #ifdef CONFIG_PREEMPT_RCU
1028 p->rcu_read_lock_nesting = 0;
1029 p->rcu_flipctr_idx = 0;
1030 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1031 p->vfork_done = NULL;
1032 spin_lock_init(&p->alloc_lock);
1034 clear_tsk_thread_flag(p, TIF_SIGPENDING);
1035 init_sigpending(&p->pending);
1037 p->utime = cputime_zero;
1038 p->stime = cputime_zero;
1039 p->gtime = cputime_zero;
1040 p->utimescaled = cputime_zero;
1041 p->stimescaled = cputime_zero;
1042 p->prev_utime = cputime_zero;
1043 p->prev_stime = cputime_zero;
1045 p->default_timer_slack_ns = current->timer_slack_ns;
1047 #ifdef CONFIG_DETECT_SOFTLOCKUP
1048 p->last_switch_count = 0;
1049 p->last_switch_timestamp = 0;
1050 #endif
1052 task_io_accounting_init(&p->ioac);
1053 acct_clear_integrals(p);
1055 posix_cpu_timers_init(p);
1057 p->lock_depth = -1; /* -1 = no lock */
1058 do_posix_clock_monotonic_gettime(&p->start_time);
1059 p->real_start_time = p->start_time;
1060 monotonic_to_bootbased(&p->real_start_time);
1061 p->io_context = NULL;
1062 p->audit_context = NULL;
1063 cgroup_fork(p);
1064 #ifdef CONFIG_NUMA
1065 p->mempolicy = mpol_dup(p->mempolicy);
1066 if (IS_ERR(p->mempolicy)) {
1067 retval = PTR_ERR(p->mempolicy);
1068 p->mempolicy = NULL;
1069 goto bad_fork_cleanup_cgroup;
1071 mpol_fix_fork_child_flag(p);
1072 #endif
1073 #ifdef CONFIG_TRACE_IRQFLAGS
1074 p->irq_events = 0;
1075 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1076 p->hardirqs_enabled = 1;
1077 #else
1078 p->hardirqs_enabled = 0;
1079 #endif
1080 p->hardirq_enable_ip = 0;
1081 p->hardirq_enable_event = 0;
1082 p->hardirq_disable_ip = _THIS_IP_;
1083 p->hardirq_disable_event = 0;
1084 p->softirqs_enabled = 1;
1085 p->softirq_enable_ip = _THIS_IP_;
1086 p->softirq_enable_event = 0;
1087 p->softirq_disable_ip = 0;
1088 p->softirq_disable_event = 0;
1089 p->hardirq_context = 0;
1090 p->softirq_context = 0;
1091 #endif
1092 #ifdef CONFIG_LOCKDEP
1093 p->lockdep_depth = 0; /* no locks held yet */
1094 p->curr_chain_key = 0;
1095 p->lockdep_recursion = 0;
1096 #endif
1098 #ifdef CONFIG_DEBUG_MUTEXES
1099 p->blocked_on = NULL; /* not blocked yet */
1100 #endif
1101 if (unlikely(ptrace_reparented(current)))
1102 ptrace_fork(p, clone_flags);
1104 /* Perform scheduler related setup. Assign this task to a CPU. */
1105 sched_fork(p, clone_flags);
1107 if ((retval = audit_alloc(p)))
1108 goto bad_fork_cleanup_policy;
1109 /* copy all the process information */
1110 if ((retval = copy_semundo(clone_flags, p)))
1111 goto bad_fork_cleanup_audit;
1112 if ((retval = copy_files(clone_flags, p)))
1113 goto bad_fork_cleanup_semundo;
1114 if ((retval = copy_fs(clone_flags, p)))
1115 goto bad_fork_cleanup_files;
1116 if ((retval = copy_sighand(clone_flags, p)))
1117 goto bad_fork_cleanup_fs;
1118 if ((retval = copy_signal(clone_flags, p)))
1119 goto bad_fork_cleanup_sighand;
1120 if ((retval = copy_mm(clone_flags, p)))
1121 goto bad_fork_cleanup_signal;
1122 if ((retval = copy_namespaces(clone_flags, p)))
1123 goto bad_fork_cleanup_mm;
1124 if ((retval = copy_io(clone_flags, p)))
1125 goto bad_fork_cleanup_namespaces;
1126 retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs);
1127 if (retval)
1128 goto bad_fork_cleanup_io;
1130 if (pid != &init_struct_pid) {
1131 retval = -ENOMEM;
1132 pid = alloc_pid(p->nsproxy->pid_ns);
1133 if (!pid)
1134 goto bad_fork_cleanup_io;
1136 if (clone_flags & CLONE_NEWPID) {
1137 retval = pid_ns_prepare_proc(p->nsproxy->pid_ns);
1138 if (retval < 0)
1139 goto bad_fork_free_pid;
1143 ftrace_graph_init_task(p);
1145 p->pid = pid_nr(pid);
1146 p->tgid = p->pid;
1147 if (clone_flags & CLONE_THREAD)
1148 p->tgid = current->tgid;
1150 if (current->nsproxy != p->nsproxy) {
1151 retval = ns_cgroup_clone(p, pid);
1152 if (retval)
1153 goto bad_fork_free_graph;
1156 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1158 * Clear TID on mm_release()?
1160 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1161 #ifdef CONFIG_FUTEX
1162 p->robust_list = NULL;
1163 #ifdef CONFIG_COMPAT
1164 p->compat_robust_list = NULL;
1165 #endif
1166 INIT_LIST_HEAD(&p->pi_state_list);
1167 p->pi_state_cache = NULL;
1168 #endif
1170 * sigaltstack should be cleared when sharing the same VM
1172 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1173 p->sas_ss_sp = p->sas_ss_size = 0;
1176 * Syscall tracing should be turned off in the child regardless
1177 * of CLONE_PTRACE.
1179 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1180 #ifdef TIF_SYSCALL_EMU
1181 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1182 #endif
1183 clear_all_latency_tracing(p);
1185 /* Our parent execution domain becomes current domain
1186 These must match for thread signalling to apply */
1187 p->parent_exec_id = p->self_exec_id;
1189 /* ok, now we should be set up.. */
1190 p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1191 p->pdeath_signal = 0;
1192 p->exit_state = 0;
1195 * Ok, make it visible to the rest of the system.
1196 * We dont wake it up yet.
1198 p->group_leader = p;
1199 INIT_LIST_HEAD(&p->thread_group);
1201 /* Now that the task is set up, run cgroup callbacks if
1202 * necessary. We need to run them before the task is visible
1203 * on the tasklist. */
1204 cgroup_fork_callbacks(p);
1205 cgroup_callbacks_done = 1;
1207 /* Need tasklist lock for parent etc handling! */
1208 write_lock_irq(&tasklist_lock);
1211 * The task hasn't been attached yet, so its cpus_allowed mask will
1212 * not be changed, nor will its assigned CPU.
1214 * The cpus_allowed mask of the parent may have changed after it was
1215 * copied first time - so re-copy it here, then check the child's CPU
1216 * to ensure it is on a valid CPU (and if not, just force it back to
1217 * parent's CPU). This avoids alot of nasty races.
1219 p->cpus_allowed = current->cpus_allowed;
1220 p->rt.nr_cpus_allowed = current->rt.nr_cpus_allowed;
1221 if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) ||
1222 !cpu_online(task_cpu(p))))
1223 set_task_cpu(p, smp_processor_id());
1225 /* CLONE_PARENT re-uses the old parent */
1226 if (clone_flags & (CLONE_PARENT|CLONE_THREAD))
1227 p->real_parent = current->real_parent;
1228 else
1229 p->real_parent = current;
1231 spin_lock(&current->sighand->siglock);
1234 * Process group and session signals need to be delivered to just the
1235 * parent before the fork or both the parent and the child after the
1236 * fork. Restart if a signal comes in before we add the new process to
1237 * it's process group.
1238 * A fatal signal pending means that current will exit, so the new
1239 * thread can't slip out of an OOM kill (or normal SIGKILL).
1241 recalc_sigpending();
1242 if (signal_pending(current)) {
1243 spin_unlock(&current->sighand->siglock);
1244 write_unlock_irq(&tasklist_lock);
1245 retval = -ERESTARTNOINTR;
1246 goto bad_fork_free_graph;
1249 if (clone_flags & CLONE_THREAD) {
1250 p->group_leader = current->group_leader;
1251 list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1254 if (likely(p->pid)) {
1255 list_add_tail(&p->sibling, &p->real_parent->children);
1256 tracehook_finish_clone(p, clone_flags, trace);
1258 if (thread_group_leader(p)) {
1259 if (clone_flags & CLONE_NEWPID)
1260 p->nsproxy->pid_ns->child_reaper = p;
1262 p->signal->leader_pid = pid;
1263 tty_kref_put(p->signal->tty);
1264 p->signal->tty = tty_kref_get(current->signal->tty);
1265 set_task_pgrp(p, task_pgrp_nr(current));
1266 set_task_session(p, task_session_nr(current));
1267 attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1268 attach_pid(p, PIDTYPE_SID, task_session(current));
1269 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1270 __get_cpu_var(process_counts)++;
1272 attach_pid(p, PIDTYPE_PID, pid);
1273 nr_threads++;
1276 total_forks++;
1277 spin_unlock(&current->sighand->siglock);
1278 write_unlock_irq(&tasklist_lock);
1279 proc_fork_connector(p);
1280 cgroup_post_fork(p);
1281 return p;
1283 bad_fork_free_graph:
1284 ftrace_graph_exit_task(p);
1285 bad_fork_free_pid:
1286 if (pid != &init_struct_pid)
1287 free_pid(pid);
1288 bad_fork_cleanup_io:
1289 put_io_context(p->io_context);
1290 bad_fork_cleanup_namespaces:
1291 exit_task_namespaces(p);
1292 bad_fork_cleanup_mm:
1293 if (p->mm)
1294 mmput(p->mm);
1295 bad_fork_cleanup_signal:
1296 cleanup_signal(p);
1297 bad_fork_cleanup_sighand:
1298 __cleanup_sighand(p->sighand);
1299 bad_fork_cleanup_fs:
1300 exit_fs(p); /* blocking */
1301 bad_fork_cleanup_files:
1302 exit_files(p); /* blocking */
1303 bad_fork_cleanup_semundo:
1304 exit_sem(p);
1305 bad_fork_cleanup_audit:
1306 audit_free(p);
1307 bad_fork_cleanup_policy:
1308 #ifdef CONFIG_NUMA
1309 mpol_put(p->mempolicy);
1310 bad_fork_cleanup_cgroup:
1311 #endif
1312 cgroup_exit(p, cgroup_callbacks_done);
1313 delayacct_tsk_free(p);
1314 if (p->binfmt)
1315 module_put(p->binfmt->module);
1316 bad_fork_cleanup_put_domain:
1317 module_put(task_thread_info(p)->exec_domain->module);
1318 bad_fork_cleanup_count:
1319 atomic_dec(&p->cred->user->processes);
1320 put_cred(p->real_cred);
1321 put_cred(p->cred);
1322 bad_fork_free:
1323 free_task(p);
1324 fork_out:
1325 return ERR_PTR(retval);
1328 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1330 memset(regs, 0, sizeof(struct pt_regs));
1331 return regs;
1334 struct task_struct * __cpuinit fork_idle(int cpu)
1336 struct task_struct *task;
1337 struct pt_regs regs;
1339 task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
1340 &init_struct_pid, 0);
1341 if (!IS_ERR(task))
1342 init_idle(task, cpu);
1344 return task;
1348 * Ok, this is the main fork-routine.
1350 * It copies the process, and if successful kick-starts
1351 * it and waits for it to finish using the VM if required.
1353 long do_fork(unsigned long clone_flags,
1354 unsigned long stack_start,
1355 struct pt_regs *regs,
1356 unsigned long stack_size,
1357 int __user *parent_tidptr,
1358 int __user *child_tidptr)
1360 struct task_struct *p;
1361 int trace = 0;
1362 long nr;
1365 * Do some preliminary argument and permissions checking before we
1366 * actually start allocating stuff
1368 if (clone_flags & CLONE_NEWUSER) {
1369 if (clone_flags & CLONE_THREAD)
1370 return -EINVAL;
1371 /* hopefully this check will go away when userns support is
1372 * complete
1374 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SETUID) ||
1375 !capable(CAP_SETGID))
1376 return -EPERM;
1380 * We hope to recycle these flags after 2.6.26
1382 if (unlikely(clone_flags & CLONE_STOPPED)) {
1383 static int __read_mostly count = 100;
1385 if (count > 0 && printk_ratelimit()) {
1386 char comm[TASK_COMM_LEN];
1388 count--;
1389 printk(KERN_INFO "fork(): process `%s' used deprecated "
1390 "clone flags 0x%lx\n",
1391 get_task_comm(comm, current),
1392 clone_flags & CLONE_STOPPED);
1397 * When called from kernel_thread, don't do user tracing stuff.
1399 if (likely(user_mode(regs)))
1400 trace = tracehook_prepare_clone(clone_flags);
1402 p = copy_process(clone_flags, stack_start, regs, stack_size,
1403 child_tidptr, NULL, trace);
1405 * Do this prior waking up the new thread - the thread pointer
1406 * might get invalid after that point, if the thread exits quickly.
1408 if (!IS_ERR(p)) {
1409 struct completion vfork;
1411 trace_sched_process_fork(current, p);
1413 nr = task_pid_vnr(p);
1415 if (clone_flags & CLONE_PARENT_SETTID)
1416 put_user(nr, parent_tidptr);
1418 if (clone_flags & CLONE_VFORK) {
1419 p->vfork_done = &vfork;
1420 init_completion(&vfork);
1423 audit_finish_fork(p);
1424 tracehook_report_clone(trace, regs, clone_flags, nr, p);
1427 * We set PF_STARTING at creation in case tracing wants to
1428 * use this to distinguish a fully live task from one that
1429 * hasn't gotten to tracehook_report_clone() yet. Now we
1430 * clear it and set the child going.
1432 p->flags &= ~PF_STARTING;
1434 if (unlikely(clone_flags & CLONE_STOPPED)) {
1436 * We'll start up with an immediate SIGSTOP.
1438 sigaddset(&p->pending.signal, SIGSTOP);
1439 set_tsk_thread_flag(p, TIF_SIGPENDING);
1440 __set_task_state(p, TASK_STOPPED);
1441 } else {
1442 wake_up_new_task(p, clone_flags);
1445 tracehook_report_clone_complete(trace, regs,
1446 clone_flags, nr, p);
1448 if (clone_flags & CLONE_VFORK) {
1449 freezer_do_not_count();
1450 wait_for_completion(&vfork);
1451 freezer_count();
1452 tracehook_report_vfork_done(p, nr);
1454 } else {
1455 nr = PTR_ERR(p);
1457 return nr;
1460 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1461 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1462 #endif
1464 static void sighand_ctor(void *data)
1466 struct sighand_struct *sighand = data;
1468 spin_lock_init(&sighand->siglock);
1469 init_waitqueue_head(&sighand->signalfd_wqh);
1472 void __init proc_caches_init(void)
1474 sighand_cachep = kmem_cache_create("sighand_cache",
1475 sizeof(struct sighand_struct), 0,
1476 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU,
1477 sighand_ctor);
1478 signal_cachep = kmem_cache_create("signal_cache",
1479 sizeof(struct signal_struct), 0,
1480 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1481 files_cachep = kmem_cache_create("files_cache",
1482 sizeof(struct files_struct), 0,
1483 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1484 fs_cachep = kmem_cache_create("fs_cache",
1485 sizeof(struct fs_struct), 0,
1486 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1487 mm_cachep = kmem_cache_create("mm_struct",
1488 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1489 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1490 mmap_init();
1494 * Check constraints on flags passed to the unshare system call and
1495 * force unsharing of additional process context as appropriate.
1497 static void check_unshare_flags(unsigned long *flags_ptr)
1500 * If unsharing a thread from a thread group, must also
1501 * unshare vm.
1503 if (*flags_ptr & CLONE_THREAD)
1504 *flags_ptr |= CLONE_VM;
1507 * If unsharing vm, must also unshare signal handlers.
1509 if (*flags_ptr & CLONE_VM)
1510 *flags_ptr |= CLONE_SIGHAND;
1513 * If unsharing signal handlers and the task was created
1514 * using CLONE_THREAD, then must unshare the thread
1516 if ((*flags_ptr & CLONE_SIGHAND) &&
1517 (atomic_read(&current->signal->count) > 1))
1518 *flags_ptr |= CLONE_THREAD;
1521 * If unsharing namespace, must also unshare filesystem information.
1523 if (*flags_ptr & CLONE_NEWNS)
1524 *flags_ptr |= CLONE_FS;
1528 * Unsharing of tasks created with CLONE_THREAD is not supported yet
1530 static int unshare_thread(unsigned long unshare_flags)
1532 if (unshare_flags & CLONE_THREAD)
1533 return -EINVAL;
1535 return 0;
1539 * Unshare the filesystem structure if it is being shared
1541 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1543 struct fs_struct *fs = current->fs;
1545 if ((unshare_flags & CLONE_FS) &&
1546 (fs && atomic_read(&fs->count) > 1)) {
1547 *new_fsp = __copy_fs_struct(current->fs);
1548 if (!*new_fsp)
1549 return -ENOMEM;
1552 return 0;
1556 * Unsharing of sighand is not supported yet
1558 static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
1560 struct sighand_struct *sigh = current->sighand;
1562 if ((unshare_flags & CLONE_SIGHAND) && atomic_read(&sigh->count) > 1)
1563 return -EINVAL;
1564 else
1565 return 0;
1569 * Unshare vm if it is being shared
1571 static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
1573 struct mm_struct *mm = current->mm;
1575 if ((unshare_flags & CLONE_VM) &&
1576 (mm && atomic_read(&mm->mm_users) > 1)) {
1577 return -EINVAL;
1580 return 0;
1584 * Unshare file descriptor table if it is being shared
1586 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1588 struct files_struct *fd = current->files;
1589 int error = 0;
1591 if ((unshare_flags & CLONE_FILES) &&
1592 (fd && atomic_read(&fd->count) > 1)) {
1593 *new_fdp = dup_fd(fd, &error);
1594 if (!*new_fdp)
1595 return error;
1598 return 0;
1602 * unshare allows a process to 'unshare' part of the process
1603 * context which was originally shared using clone. copy_*
1604 * functions used by do_fork() cannot be used here directly
1605 * because they modify an inactive task_struct that is being
1606 * constructed. Here we are modifying the current, active,
1607 * task_struct.
1609 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1611 int err = 0;
1612 struct fs_struct *fs, *new_fs = NULL;
1613 struct sighand_struct *new_sigh = NULL;
1614 struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
1615 struct files_struct *fd, *new_fd = NULL;
1616 struct nsproxy *new_nsproxy = NULL;
1617 int do_sysvsem = 0;
1619 check_unshare_flags(&unshare_flags);
1621 /* Return -EINVAL for all unsupported flags */
1622 err = -EINVAL;
1623 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1624 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1625 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET))
1626 goto bad_unshare_out;
1629 * CLONE_NEWIPC must also detach from the undolist: after switching
1630 * to a new ipc namespace, the semaphore arrays from the old
1631 * namespace are unreachable.
1633 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1634 do_sysvsem = 1;
1635 if ((err = unshare_thread(unshare_flags)))
1636 goto bad_unshare_out;
1637 if ((err = unshare_fs(unshare_flags, &new_fs)))
1638 goto bad_unshare_cleanup_thread;
1639 if ((err = unshare_sighand(unshare_flags, &new_sigh)))
1640 goto bad_unshare_cleanup_fs;
1641 if ((err = unshare_vm(unshare_flags, &new_mm)))
1642 goto bad_unshare_cleanup_sigh;
1643 if ((err = unshare_fd(unshare_flags, &new_fd)))
1644 goto bad_unshare_cleanup_vm;
1645 if ((err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1646 new_fs)))
1647 goto bad_unshare_cleanup_fd;
1649 if (new_fs || new_mm || new_fd || do_sysvsem || new_nsproxy) {
1650 if (do_sysvsem) {
1652 * CLONE_SYSVSEM is equivalent to sys_exit().
1654 exit_sem(current);
1657 if (new_nsproxy) {
1658 switch_task_namespaces(current, new_nsproxy);
1659 new_nsproxy = NULL;
1662 task_lock(current);
1664 if (new_fs) {
1665 fs = current->fs;
1666 current->fs = new_fs;
1667 new_fs = fs;
1670 if (new_mm) {
1671 mm = current->mm;
1672 active_mm = current->active_mm;
1673 current->mm = new_mm;
1674 current->active_mm = new_mm;
1675 activate_mm(active_mm, new_mm);
1676 new_mm = mm;
1679 if (new_fd) {
1680 fd = current->files;
1681 current->files = new_fd;
1682 new_fd = fd;
1685 task_unlock(current);
1688 if (new_nsproxy)
1689 put_nsproxy(new_nsproxy);
1691 bad_unshare_cleanup_fd:
1692 if (new_fd)
1693 put_files_struct(new_fd);
1695 bad_unshare_cleanup_vm:
1696 if (new_mm)
1697 mmput(new_mm);
1699 bad_unshare_cleanup_sigh:
1700 if (new_sigh)
1701 if (atomic_dec_and_test(&new_sigh->count))
1702 kmem_cache_free(sighand_cachep, new_sigh);
1704 bad_unshare_cleanup_fs:
1705 if (new_fs)
1706 put_fs_struct(new_fs);
1708 bad_unshare_cleanup_thread:
1709 bad_unshare_out:
1710 return err;
1714 * Helper to unshare the files of the current task.
1715 * We don't want to expose copy_files internals to
1716 * the exec layer of the kernel.
1719 int unshare_files(struct files_struct **displaced)
1721 struct task_struct *task = current;
1722 struct files_struct *copy = NULL;
1723 int error;
1725 error = unshare_fd(CLONE_FILES, &copy);
1726 if (error || !copy) {
1727 *displaced = NULL;
1728 return error;
1730 *displaced = task->files;
1731 task_lock(task);
1732 task->files = copy;
1733 task_unlock(task);
1734 return 0;