2 * This file is part of UBIFS.
4 * Copyright (C) 2006-2008 Nokia Corporation.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 * Authors: Adrian Hunter
20 * Artem Bityutskiy (Битюцкий Артём)
24 * This file implements garbage collection. The procedure for garbage collection
25 * is different depending on whether a LEB as an index LEB (contains index
26 * nodes) or not. For non-index LEBs, garbage collection finds a LEB which
27 * contains a lot of dirty space (obsolete nodes), and copies the non-obsolete
28 * nodes to the journal, at which point the garbage-collected LEB is free to be
29 * reused. For index LEBs, garbage collection marks the non-obsolete index nodes
30 * dirty in the TNC, and after the next commit, the garbage-collected LEB is
31 * to be reused. Garbage collection will cause the number of dirty index nodes
32 * to grow, however sufficient space is reserved for the index to ensure the
33 * commit will never run out of space.
36 #include <linux/pagemap.h>
40 * GC tries to optimize the way it fit nodes to available space, and it sorts
41 * nodes a little. The below constants are watermarks which define "large",
42 * "medium", and "small" nodes.
44 #define MEDIUM_NODE_WM (UBIFS_BLOCK_SIZE / 4)
45 #define SMALL_NODE_WM UBIFS_MAX_DENT_NODE_SZ
48 * GC may need to move more then one LEB to make progress. The below constants
49 * define "soft" and "hard" limits on the number of LEBs the garbage collector
52 #define SOFT_LEBS_LIMIT 4
53 #define HARD_LEBS_LIMIT 32
56 * switch_gc_head - switch the garbage collection journal head.
57 * @c: UBIFS file-system description object
58 * @buf: buffer to write
59 * @len: length of the buffer to write
60 * @lnum: LEB number written is returned here
61 * @offs: offset written is returned here
63 * This function switch the GC head to the next LEB which is reserved in
64 * @c->gc_lnum. Returns %0 in case of success, %-EAGAIN if commit is required,
65 * and other negative error code in case of failures.
67 static int switch_gc_head(struct ubifs_info
*c
)
69 int err
, gc_lnum
= c
->gc_lnum
;
70 struct ubifs_wbuf
*wbuf
= &c
->jheads
[GCHD
].wbuf
;
72 ubifs_assert(gc_lnum
!= -1);
73 dbg_gc("switch GC head from LEB %d:%d to LEB %d (waste %d bytes)",
74 wbuf
->lnum
, wbuf
->offs
+ wbuf
->used
, gc_lnum
,
75 c
->leb_size
- wbuf
->offs
- wbuf
->used
);
77 err
= ubifs_wbuf_sync_nolock(wbuf
);
82 * The GC write-buffer was synchronized, we may safely unmap
85 err
= ubifs_leb_unmap(c
, gc_lnum
);
89 err
= ubifs_add_bud_to_log(c
, GCHD
, gc_lnum
, 0);
94 err
= ubifs_wbuf_seek_nolock(wbuf
, gc_lnum
, 0, UBI_LONGTERM
);
99 * joinup - bring data nodes for an inode together.
100 * @c: UBIFS file-system description object
101 * @sleb: describes scanned LEB
102 * @inum: inode number
104 * @data: list to which to add data nodes
106 * This function looks at the first few nodes in the scanned LEB @sleb and adds
107 * them to @data if they are data nodes from @inum and have a larger block
108 * number than @blk. This function returns %0 on success and a negative error
111 static int joinup(struct ubifs_info
*c
, struct ubifs_scan_leb
*sleb
, ino_t inum
,
112 unsigned int blk
, struct list_head
*data
)
114 int err
, cnt
= 6, lnum
= sleb
->lnum
, offs
;
115 struct ubifs_scan_node
*snod
, *tmp
;
116 union ubifs_key
*key
;
118 list_for_each_entry_safe(snod
, tmp
, &sleb
->nodes
, list
) {
120 if (key_inum(c
, key
) == inum
&&
121 key_type(c
, key
) == UBIFS_DATA_KEY
&&
122 key_block(c
, key
) > blk
) {
124 err
= ubifs_tnc_has_node(c
, key
, 0, lnum
, offs
, 0);
127 list_del(&snod
->list
);
129 list_add_tail(&snod
->list
, data
);
130 blk
= key_block(c
, key
);
134 } else if (--cnt
== 0)
141 * move_nodes - move nodes.
142 * @c: UBIFS file-system description object
143 * @sleb: describes nodes to move
145 * This function moves valid nodes from data LEB described by @sleb to the GC
146 * journal head. The obsolete nodes are dropped.
148 * When moving nodes we have to deal with classical bin-packing problem: the
149 * space in the current GC journal head LEB and in @c->gc_lnum are the "bins",
150 * where the nodes in the @sleb->nodes list are the elements which should be
151 * fit optimally to the bins. This function uses the "first fit decreasing"
152 * strategy, although it does not really sort the nodes but just split them on
153 * 3 classes - large, medium, and small, so they are roughly sorted.
155 * This function returns zero in case of success, %-EAGAIN if commit is
156 * required, and other negative error codes in case of other failures.
158 static int move_nodes(struct ubifs_info
*c
, struct ubifs_scan_leb
*sleb
)
160 struct ubifs_scan_node
*snod
, *tmp
;
161 struct list_head data
, large
, medium
, small
;
162 struct ubifs_wbuf
*wbuf
= &c
->jheads
[GCHD
].wbuf
;
163 int avail
, err
, min
= INT_MAX
;
164 unsigned int blk
= 0;
167 INIT_LIST_HEAD(&data
);
168 INIT_LIST_HEAD(&large
);
169 INIT_LIST_HEAD(&medium
);
170 INIT_LIST_HEAD(&small
);
172 while (!list_empty(&sleb
->nodes
)) {
173 struct list_head
*lst
= sleb
->nodes
.next
;
175 snod
= list_entry(lst
, struct ubifs_scan_node
, list
);
177 ubifs_assert(snod
->type
!= UBIFS_IDX_NODE
);
178 ubifs_assert(snod
->type
!= UBIFS_REF_NODE
);
179 ubifs_assert(snod
->type
!= UBIFS_CS_NODE
);
181 err
= ubifs_tnc_has_node(c
, &snod
->key
, 0, sleb
->lnum
,
188 /* The node is obsolete, remove it from the list */
194 * Sort the list of nodes so that data nodes go first, large
195 * nodes go second, and small nodes go last.
197 if (key_type(c
, &snod
->key
) == UBIFS_DATA_KEY
) {
198 if (inum
!= key_inum(c
, &snod
->key
)) {
201 * Try to move data nodes from the same
204 err
= joinup(c
, sleb
, inum
, blk
, &data
);
208 inum
= key_inum(c
, &snod
->key
);
209 blk
= key_block(c
, &snod
->key
);
211 list_add_tail(lst
, &data
);
212 } else if (snod
->len
> MEDIUM_NODE_WM
)
213 list_add_tail(lst
, &large
);
214 else if (snod
->len
> SMALL_NODE_WM
)
215 list_add_tail(lst
, &medium
);
217 list_add_tail(lst
, &small
);
219 /* And find the smallest node */
225 * Join the tree lists so that we'd have one roughly sorted list
226 * ('large' will be the head of the joined list).
228 list_splice(&data
, &large
);
229 list_splice(&medium
, large
.prev
);
230 list_splice(&small
, large
.prev
);
232 if (wbuf
->lnum
== -1) {
234 * The GC journal head is not set, because it is the first GC
235 * invocation since mount.
237 err
= switch_gc_head(c
);
242 /* Write nodes to their new location. Use the first-fit strategy */
244 avail
= c
->leb_size
- wbuf
->offs
- wbuf
->used
;
245 list_for_each_entry_safe(snod
, tmp
, &large
, list
) {
246 int new_lnum
, new_offs
;
251 if (snod
->len
> avail
)
252 /* This node does not fit */
257 new_lnum
= wbuf
->lnum
;
258 new_offs
= wbuf
->offs
+ wbuf
->used
;
259 err
= ubifs_wbuf_write_nolock(wbuf
, snod
->node
,
263 err
= ubifs_tnc_replace(c
, &snod
->key
, sleb
->lnum
,
264 snod
->offs
, new_lnum
, new_offs
,
269 avail
= c
->leb_size
- wbuf
->offs
- wbuf
->used
;
270 list_del(&snod
->list
);
274 if (list_empty(&large
))
278 * Waste the rest of the space in the LEB and switch to the
281 err
= switch_gc_head(c
);
289 list_for_each_entry_safe(snod
, tmp
, &large
, list
) {
290 list_del(&snod
->list
);
297 * gc_sync_wbufs - sync write-buffers for GC.
298 * @c: UBIFS file-system description object
300 * We must guarantee that obsoleting nodes are on flash. Unfortunately they may
301 * be in a write-buffer instead. That is, a node could be written to a
302 * write-buffer, obsoleting another node in a LEB that is GC'd. If that LEB is
303 * erased before the write-buffer is sync'd and then there is an unclean
304 * unmount, then an existing node is lost. To avoid this, we sync all
307 * This function returns %0 on success or a negative error code on failure.
309 static int gc_sync_wbufs(struct ubifs_info
*c
)
313 for (i
= 0; i
< c
->jhead_cnt
; i
++) {
316 err
= ubifs_wbuf_sync(&c
->jheads
[i
].wbuf
);
324 * ubifs_garbage_collect_leb - garbage-collect a logical eraseblock.
325 * @c: UBIFS file-system description object
326 * @lp: describes the LEB to garbage collect
328 * This function garbage-collects an LEB and returns one of the @LEB_FREED,
329 * @LEB_RETAINED, etc positive codes in case of success, %-EAGAIN if commit is
330 * required, and other negative error codes in case of failures.
332 int ubifs_garbage_collect_leb(struct ubifs_info
*c
, struct ubifs_lprops
*lp
)
334 struct ubifs_scan_leb
*sleb
;
335 struct ubifs_scan_node
*snod
;
336 struct ubifs_wbuf
*wbuf
= &c
->jheads
[GCHD
].wbuf
;
337 int err
= 0, lnum
= lp
->lnum
;
339 ubifs_assert(c
->gc_lnum
!= -1 || wbuf
->offs
+ wbuf
->used
== 0 ||
341 ubifs_assert(c
->gc_lnum
!= lnum
);
342 ubifs_assert(wbuf
->lnum
!= lnum
);
345 * We scan the entire LEB even though we only really need to scan up to
346 * (c->leb_size - lp->free).
348 sleb
= ubifs_scan(c
, lnum
, 0, c
->sbuf
);
350 return PTR_ERR(sleb
);
352 ubifs_assert(!list_empty(&sleb
->nodes
));
353 snod
= list_entry(sleb
->nodes
.next
, struct ubifs_scan_node
, list
);
355 if (snod
->type
== UBIFS_IDX_NODE
) {
356 struct ubifs_gced_idx_leb
*idx_gc
;
358 dbg_gc("indexing LEB %d (free %d, dirty %d)",
359 lnum
, lp
->free
, lp
->dirty
);
360 list_for_each_entry(snod
, &sleb
->nodes
, list
) {
361 struct ubifs_idx_node
*idx
= snod
->node
;
362 int level
= le16_to_cpu(idx
->level
);
364 ubifs_assert(snod
->type
== UBIFS_IDX_NODE
);
365 key_read(c
, ubifs_idx_key(c
, idx
), &snod
->key
);
366 err
= ubifs_dirty_idx_node(c
, &snod
->key
, level
, lnum
,
372 idx_gc
= kmalloc(sizeof(struct ubifs_gced_idx_leb
), GFP_NOFS
);
380 list_add(&idx_gc
->list
, &c
->idx_gc
);
383 * Don't release the LEB until after the next commit, because
384 * it may contain date which is needed for recovery. So
385 * although we freed this LEB, it will become usable only after
388 err
= ubifs_change_one_lp(c
, lnum
, c
->leb_size
, 0, 0,
394 dbg_gc("data LEB %d (free %d, dirty %d)",
395 lnum
, lp
->free
, lp
->dirty
);
397 err
= move_nodes(c
, sleb
);
401 err
= gc_sync_wbufs(c
);
405 err
= ubifs_change_one_lp(c
, lnum
, c
->leb_size
, 0, 0, 0, 0);
409 /* Allow for races with TNC */
415 if (c
->gc_lnum
== -1) {
419 err
= ubifs_wbuf_sync_nolock(wbuf
);
423 err
= ubifs_leb_unmap(c
, lnum
);
432 ubifs_scan_destroy(sleb
);
436 /* We may have moved at least some nodes so allow for races with TNC */
445 * ubifs_garbage_collect - UBIFS garbage collector.
446 * @c: UBIFS file-system description object
447 * @anyway: do GC even if there are free LEBs
449 * This function does out-of-place garbage collection. The return codes are:
450 * o positive LEB number if the LEB has been freed and may be used;
451 * o %-EAGAIN if the caller has to run commit;
452 * o %-ENOSPC if GC failed to make any progress;
453 * o other negative error codes in case of other errors.
455 * Garbage collector writes data to the journal when GC'ing data LEBs, and just
456 * marking indexing nodes dirty when GC'ing indexing LEBs. Thus, at some point
457 * commit may be required. But commit cannot be run from inside GC, because the
458 * caller might be holding the commit lock, so %-EAGAIN is returned instead;
459 * And this error code means that the caller has to run commit, and re-run GC
460 * if there is still no free space.
462 * There are many reasons why this function may return %-EAGAIN:
463 * o the log is full and there is no space to write an LEB reference for
465 * o the journal is too large and exceeds size limitations;
466 * o GC moved indexing LEBs, but they can be used only after the commit;
467 * o the shrinker fails to find clean znodes to free and requests the commit;
470 * Note, if the file-system is close to be full, this function may return
471 * %-EAGAIN infinitely, so the caller has to limit amount of re-invocations of
472 * the function. E.g., this happens if the limits on the journal size are too
473 * tough and GC writes too much to the journal before an LEB is freed. This
474 * might also mean that the journal is too large, and the TNC becomes to big,
475 * so that the shrinker is constantly called, finds not clean znodes to free,
476 * and requests commit. Well, this may also happen if the journal is all right,
477 * but another kernel process consumes too much memory. Anyway, infinite
478 * %-EAGAIN may happen, but in some extreme/misconfiguration cases.
480 int ubifs_garbage_collect(struct ubifs_info
*c
, int anyway
)
482 int i
, err
, ret
, min_space
= c
->dead_wm
;
483 struct ubifs_lprops lp
;
484 struct ubifs_wbuf
*wbuf
= &c
->jheads
[GCHD
].wbuf
;
486 ubifs_assert_cmt_locked(c
);
488 if (ubifs_gc_should_commit(c
))
491 mutex_lock_nested(&wbuf
->io_mutex
, wbuf
->jhead
);
498 /* We expect the write-buffer to be empty on entry */
499 ubifs_assert(!wbuf
->used
);
502 int space_before
= c
->leb_size
- wbuf
->offs
- wbuf
->used
;
507 /* Give the commit an opportunity to run */
508 if (ubifs_gc_should_commit(c
)) {
513 if (i
> SOFT_LEBS_LIMIT
&& !list_empty(&c
->idx_gc
)) {
515 * We've done enough iterations. Indexing LEBs were
516 * moved and will be available after the commit.
518 dbg_gc("soft limit, some index LEBs GC'ed, -EAGAIN");
519 ubifs_commit_required(c
);
524 if (i
> HARD_LEBS_LIMIT
) {
526 * We've moved too many LEBs and have not made
529 dbg_gc("hard limit, -ENOSPC");
535 * Empty and freeable LEBs can turn up while we waited for
536 * the wbuf lock, or while we have been running GC. In that
537 * case, we should just return one of those instead of
538 * continuing to GC dirty LEBs. Hence we request
539 * 'ubifs_find_dirty_leb()' to return an empty LEB if it can.
541 ret
= ubifs_find_dirty_leb(c
, &lp
, min_space
, anyway
? 0 : 1);
544 dbg_gc("no more dirty LEBs");
548 dbg_gc("found LEB %d: free %d, dirty %d, sum %d "
549 "(min. space %d)", lp
.lnum
, lp
.free
, lp
.dirty
,
550 lp
.free
+ lp
.dirty
, min_space
);
552 if (lp
.free
+ lp
.dirty
== c
->leb_size
) {
553 /* An empty LEB was returned */
554 dbg_gc("LEB %d is free, return it", lp
.lnum
);
556 * ubifs_find_dirty_leb() doesn't return freeable index
559 ubifs_assert(!(lp
.flags
& LPROPS_INDEX
));
560 if (lp
.free
!= c
->leb_size
) {
562 * Write buffers must be sync'd before
563 * unmapping freeable LEBs, because one of them
564 * may contain data which obsoletes something
567 ret
= gc_sync_wbufs(c
);
570 ret
= ubifs_change_one_lp(c
, lp
.lnum
,
571 c
->leb_size
, 0, 0, 0,
576 ret
= ubifs_leb_unmap(c
, lp
.lnum
);
583 space_before
= c
->leb_size
- wbuf
->offs
- wbuf
->used
;
584 if (wbuf
->lnum
== -1)
587 ret
= ubifs_garbage_collect_leb(c
, &lp
);
589 if (ret
== -EAGAIN
|| ret
== -ENOSPC
) {
591 * These codes are not errors, so we have to
592 * return the LEB to lprops. But if the
593 * 'ubifs_return_leb()' function fails, its
594 * failure code is propagated to the caller
595 * instead of the original '-EAGAIN' or
598 err
= ubifs_return_leb(c
, lp
.lnum
);
606 if (ret
== LEB_FREED
) {
607 /* An LEB has been freed and is ready for use */
608 dbg_gc("LEB %d freed, return", lp
.lnum
);
613 if (ret
== LEB_FREED_IDX
) {
615 * This was an indexing LEB and it cannot be
616 * immediately used. And instead of requesting the
617 * commit straight away, we try to garbage collect some
620 dbg_gc("indexing LEB %d freed, continue", lp
.lnum
);
624 ubifs_assert(ret
== LEB_RETAINED
);
625 space_after
= c
->leb_size
- wbuf
->offs
- wbuf
->used
;
626 dbg_gc("LEB %d retained, freed %d bytes", lp
.lnum
,
627 space_after
- space_before
);
629 if (space_after
> space_before
) {
630 /* GC makes progress, keep working */
632 if (min_space
< c
->dead_wm
)
633 min_space
= c
->dead_wm
;
637 dbg_gc("did not make progress");
640 * GC moved an LEB bud have not done any progress. This means
641 * that the previous GC head LEB contained too few free space
642 * and the LEB which was GC'ed contained only large nodes which
643 * did not fit that space.
645 * We can do 2 things:
646 * 1. pick another LEB in a hope it'll contain a small node
647 * which will fit the space we have at the end of current GC
648 * head LEB, but there is no guarantee, so we try this out
649 * unless we have already been working for too long;
650 * 2. request an LEB with more dirty space, which will force
651 * 'ubifs_find_dirty_leb()' to start scanning the lprops
652 * table, instead of just picking one from the heap
653 * (previously it already picked the dirtiest LEB).
655 if (i
< SOFT_LEBS_LIMIT
) {
661 if (min_space
> c
->dark_wm
)
662 min_space
= c
->dark_wm
;
663 dbg_gc("set min. space to %d", min_space
);
666 if (ret
== -ENOSPC
&& !list_empty(&c
->idx_gc
)) {
667 dbg_gc("no space, some index LEBs GC'ed, -EAGAIN");
668 ubifs_commit_required(c
);
672 err
= ubifs_wbuf_sync_nolock(wbuf
);
674 err
= ubifs_leb_unmap(c
, c
->gc_lnum
);
680 mutex_unlock(&wbuf
->io_mutex
);
684 ubifs_assert(ret
< 0);
685 ubifs_assert(ret
!= -ENOSPC
&& ret
!= -EAGAIN
);
686 ubifs_ro_mode(c
, ret
);
687 ubifs_wbuf_sync_nolock(wbuf
);
688 mutex_unlock(&wbuf
->io_mutex
);
689 ubifs_return_leb(c
, lp
.lnum
);
694 * ubifs_gc_start_commit - garbage collection at start of commit.
695 * @c: UBIFS file-system description object
697 * If a LEB has only dirty and free space, then we may safely unmap it and make
698 * it free. Note, we cannot do this with indexing LEBs because dirty space may
699 * correspond index nodes that are required for recovery. In that case, the
700 * LEB cannot be unmapped until after the next commit.
702 * This function returns %0 upon success and a negative error code upon failure.
704 int ubifs_gc_start_commit(struct ubifs_info
*c
)
706 struct ubifs_gced_idx_leb
*idx_gc
;
707 const struct ubifs_lprops
*lp
;
713 * Unmap (non-index) freeable LEBs. Note that recovery requires that all
714 * wbufs are sync'd before this, which is done in 'do_commit()'.
717 lp
= ubifs_fast_find_freeable(c
);
724 ubifs_assert(!(lp
->flags
& LPROPS_TAKEN
));
725 ubifs_assert(!(lp
->flags
& LPROPS_INDEX
));
726 err
= ubifs_leb_unmap(c
, lp
->lnum
);
729 lp
= ubifs_change_lp(c
, lp
, c
->leb_size
, 0, lp
->flags
, 0);
734 ubifs_assert(!(lp
->flags
& LPROPS_TAKEN
));
735 ubifs_assert(!(lp
->flags
& LPROPS_INDEX
));
738 /* Mark GC'd index LEBs OK to unmap after this commit finishes */
739 list_for_each_entry(idx_gc
, &c
->idx_gc
, list
)
742 /* Record index freeable LEBs for unmapping after commit */
744 lp
= ubifs_fast_find_frdi_idx(c
);
751 idx_gc
= kmalloc(sizeof(struct ubifs_gced_idx_leb
), GFP_NOFS
);
756 ubifs_assert(!(lp
->flags
& LPROPS_TAKEN
));
757 ubifs_assert(lp
->flags
& LPROPS_INDEX
);
758 /* Don't release the LEB until after the next commit */
759 flags
= (lp
->flags
| LPROPS_TAKEN
) ^ LPROPS_INDEX
;
760 lp
= ubifs_change_lp(c
, lp
, c
->leb_size
, 0, flags
, 1);
766 ubifs_assert(lp
->flags
& LPROPS_TAKEN
);
767 ubifs_assert(!(lp
->flags
& LPROPS_INDEX
));
768 idx_gc
->lnum
= lp
->lnum
;
770 list_add(&idx_gc
->list
, &c
->idx_gc
);
773 ubifs_release_lprops(c
);
778 * ubifs_gc_end_commit - garbage collection at end of commit.
779 * @c: UBIFS file-system description object
781 * This function completes out-of-place garbage collection of index LEBs.
783 int ubifs_gc_end_commit(struct ubifs_info
*c
)
785 struct ubifs_gced_idx_leb
*idx_gc
, *tmp
;
786 struct ubifs_wbuf
*wbuf
;
789 wbuf
= &c
->jheads
[GCHD
].wbuf
;
790 mutex_lock_nested(&wbuf
->io_mutex
, wbuf
->jhead
);
791 list_for_each_entry_safe(idx_gc
, tmp
, &c
->idx_gc
, list
)
793 dbg_gc("LEB %d", idx_gc
->lnum
);
794 err
= ubifs_leb_unmap(c
, idx_gc
->lnum
);
797 err
= ubifs_change_one_lp(c
, idx_gc
->lnum
, LPROPS_NC
,
798 LPROPS_NC
, 0, LPROPS_TAKEN
, -1);
801 list_del(&idx_gc
->list
);
805 mutex_unlock(&wbuf
->io_mutex
);
810 * ubifs_destroy_idx_gc - destroy idx_gc list.
811 * @c: UBIFS file-system description object
813 * This function destroys the idx_gc list. It is called when unmounting or
814 * remounting read-only so locks are not needed.
816 void ubifs_destroy_idx_gc(struct ubifs_info
*c
)
818 while (!list_empty(&c
->idx_gc
)) {
819 struct ubifs_gced_idx_leb
*idx_gc
;
821 idx_gc
= list_entry(c
->idx_gc
.next
, struct ubifs_gced_idx_leb
,
824 list_del(&idx_gc
->list
);
831 * ubifs_get_idx_gc_leb - get a LEB from GC'd index LEB list.
832 * @c: UBIFS file-system description object
834 * Called during start commit so locks are not needed.
836 int ubifs_get_idx_gc_leb(struct ubifs_info
*c
)
838 struct ubifs_gced_idx_leb
*idx_gc
;
841 if (list_empty(&c
->idx_gc
))
843 idx_gc
= list_entry(c
->idx_gc
.next
, struct ubifs_gced_idx_leb
, list
);
845 /* c->idx_gc_cnt is updated by the caller when lprops are updated */
846 list_del(&idx_gc
->list
);