1 /* memcontrol.c - Memory Controller
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
24 #include <linux/res_counter.h>
25 #include <linux/memcontrol.h>
26 #include <linux/cgroup.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagemap.h>
30 #include <linux/smp.h>
31 #include <linux/page-flags.h>
32 #include <linux/backing-dev.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/rcupdate.h>
35 #include <linux/limits.h>
36 #include <linux/mutex.h>
37 #include <linux/rbtree.h>
38 #include <linux/slab.h>
39 #include <linux/swap.h>
40 #include <linux/swapops.h>
41 #include <linux/spinlock.h>
42 #include <linux/eventfd.h>
43 #include <linux/sort.h>
45 #include <linux/seq_file.h>
46 #include <linux/vmalloc.h>
47 #include <linux/mm_inline.h>
48 #include <linux/page_cgroup.h>
49 #include <linux/cpu.h>
50 #include <linux/oom.h>
53 #include <asm/uaccess.h>
55 #include <trace/events/vmscan.h>
57 struct cgroup_subsys mem_cgroup_subsys __read_mostly
;
58 #define MEM_CGROUP_RECLAIM_RETRIES 5
59 struct mem_cgroup
*root_mem_cgroup __read_mostly
;
61 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
62 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
63 int do_swap_account __read_mostly
;
65 /* for remember boot option*/
66 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
67 static int really_do_swap_account __initdata
= 1;
69 static int really_do_swap_account __initdata
= 0;
73 #define do_swap_account (0)
77 * Per memcg event counter is incremented at every pagein/pageout. This counter
78 * is used for trigger some periodic events. This is straightforward and better
79 * than using jiffies etc. to handle periodic memcg event.
81 * These values will be used as !((event) & ((1 <<(thresh)) - 1))
83 #define THRESHOLDS_EVENTS_THRESH (7) /* once in 128 */
84 #define SOFTLIMIT_EVENTS_THRESH (10) /* once in 1024 */
87 * Statistics for memory cgroup.
89 enum mem_cgroup_stat_index
{
91 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
93 MEM_CGROUP_STAT_CACHE
, /* # of pages charged as cache */
94 MEM_CGROUP_STAT_RSS
, /* # of pages charged as anon rss */
95 MEM_CGROUP_STAT_FILE_MAPPED
, /* # of pages charged as file rss */
96 MEM_CGROUP_STAT_PGPGIN_COUNT
, /* # of pages paged in */
97 MEM_CGROUP_STAT_PGPGOUT_COUNT
, /* # of pages paged out */
98 MEM_CGROUP_STAT_SWAPOUT
, /* # of pages, swapped out */
99 MEM_CGROUP_STAT_DATA
, /* end of data requires synchronization */
100 /* incremented at every pagein/pageout */
101 MEM_CGROUP_EVENTS
= MEM_CGROUP_STAT_DATA
,
102 MEM_CGROUP_ON_MOVE
, /* someone is moving account between groups */
104 MEM_CGROUP_STAT_NSTATS
,
107 struct mem_cgroup_stat_cpu
{
108 s64 count
[MEM_CGROUP_STAT_NSTATS
];
112 * per-zone information in memory controller.
114 struct mem_cgroup_per_zone
{
116 * spin_lock to protect the per cgroup LRU
118 struct list_head lists
[NR_LRU_LISTS
];
119 unsigned long count
[NR_LRU_LISTS
];
121 struct zone_reclaim_stat reclaim_stat
;
122 struct rb_node tree_node
; /* RB tree node */
123 unsigned long long usage_in_excess
;/* Set to the value by which */
124 /* the soft limit is exceeded*/
126 struct mem_cgroup
*mem
; /* Back pointer, we cannot */
127 /* use container_of */
129 /* Macro for accessing counter */
130 #define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
132 struct mem_cgroup_per_node
{
133 struct mem_cgroup_per_zone zoneinfo
[MAX_NR_ZONES
];
136 struct mem_cgroup_lru_info
{
137 struct mem_cgroup_per_node
*nodeinfo
[MAX_NUMNODES
];
141 * Cgroups above their limits are maintained in a RB-Tree, independent of
142 * their hierarchy representation
145 struct mem_cgroup_tree_per_zone
{
146 struct rb_root rb_root
;
150 struct mem_cgroup_tree_per_node
{
151 struct mem_cgroup_tree_per_zone rb_tree_per_zone
[MAX_NR_ZONES
];
154 struct mem_cgroup_tree
{
155 struct mem_cgroup_tree_per_node
*rb_tree_per_node
[MAX_NUMNODES
];
158 static struct mem_cgroup_tree soft_limit_tree __read_mostly
;
160 struct mem_cgroup_threshold
{
161 struct eventfd_ctx
*eventfd
;
166 struct mem_cgroup_threshold_ary
{
167 /* An array index points to threshold just below usage. */
168 int current_threshold
;
169 /* Size of entries[] */
171 /* Array of thresholds */
172 struct mem_cgroup_threshold entries
[0];
175 struct mem_cgroup_thresholds
{
176 /* Primary thresholds array */
177 struct mem_cgroup_threshold_ary
*primary
;
179 * Spare threshold array.
180 * This is needed to make mem_cgroup_unregister_event() "never fail".
181 * It must be able to store at least primary->size - 1 entries.
183 struct mem_cgroup_threshold_ary
*spare
;
187 struct mem_cgroup_eventfd_list
{
188 struct list_head list
;
189 struct eventfd_ctx
*eventfd
;
192 static void mem_cgroup_threshold(struct mem_cgroup
*mem
);
193 static void mem_cgroup_oom_notify(struct mem_cgroup
*mem
);
196 * The memory controller data structure. The memory controller controls both
197 * page cache and RSS per cgroup. We would eventually like to provide
198 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
199 * to help the administrator determine what knobs to tune.
201 * TODO: Add a water mark for the memory controller. Reclaim will begin when
202 * we hit the water mark. May be even add a low water mark, such that
203 * no reclaim occurs from a cgroup at it's low water mark, this is
204 * a feature that will be implemented much later in the future.
207 struct cgroup_subsys_state css
;
209 * the counter to account for memory usage
211 struct res_counter res
;
213 * the counter to account for mem+swap usage.
215 struct res_counter memsw
;
217 * Per cgroup active and inactive list, similar to the
218 * per zone LRU lists.
220 struct mem_cgroup_lru_info info
;
223 protect against reclaim related member.
225 spinlock_t reclaim_param_lock
;
228 * While reclaiming in a hierarchy, we cache the last child we
231 int last_scanned_child
;
233 * Should the accounting and control be hierarchical, per subtree?
239 unsigned int swappiness
;
240 /* OOM-Killer disable */
241 int oom_kill_disable
;
243 /* set when res.limit == memsw.limit */
244 bool memsw_is_minimum
;
246 /* protect arrays of thresholds */
247 struct mutex thresholds_lock
;
249 /* thresholds for memory usage. RCU-protected */
250 struct mem_cgroup_thresholds thresholds
;
252 /* thresholds for mem+swap usage. RCU-protected */
253 struct mem_cgroup_thresholds memsw_thresholds
;
255 /* For oom notifier event fd */
256 struct list_head oom_notify
;
259 * Should we move charges of a task when a task is moved into this
260 * mem_cgroup ? And what type of charges should we move ?
262 unsigned long move_charge_at_immigrate
;
266 struct mem_cgroup_stat_cpu
*stat
;
268 * used when a cpu is offlined or other synchronizations
269 * See mem_cgroup_read_stat().
271 struct mem_cgroup_stat_cpu nocpu_base
;
272 spinlock_t pcp_counter_lock
;
275 /* Stuffs for move charges at task migration. */
277 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
278 * left-shifted bitmap of these types.
281 MOVE_CHARGE_TYPE_ANON
, /* private anonymous page and swap of it */
282 MOVE_CHARGE_TYPE_FILE
, /* file page(including tmpfs) and swap of it */
286 /* "mc" and its members are protected by cgroup_mutex */
287 static struct move_charge_struct
{
288 spinlock_t lock
; /* for from, to */
289 struct mem_cgroup
*from
;
290 struct mem_cgroup
*to
;
291 unsigned long precharge
;
292 unsigned long moved_charge
;
293 unsigned long moved_swap
;
294 struct task_struct
*moving_task
; /* a task moving charges */
295 wait_queue_head_t waitq
; /* a waitq for other context */
297 .lock
= __SPIN_LOCK_UNLOCKED(mc
.lock
),
298 .waitq
= __WAIT_QUEUE_HEAD_INITIALIZER(mc
.waitq
),
301 static bool move_anon(void)
303 return test_bit(MOVE_CHARGE_TYPE_ANON
,
304 &mc
.to
->move_charge_at_immigrate
);
307 static bool move_file(void)
309 return test_bit(MOVE_CHARGE_TYPE_FILE
,
310 &mc
.to
->move_charge_at_immigrate
);
314 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
315 * limit reclaim to prevent infinite loops, if they ever occur.
317 #define MEM_CGROUP_MAX_RECLAIM_LOOPS (100)
318 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
321 MEM_CGROUP_CHARGE_TYPE_CACHE
= 0,
322 MEM_CGROUP_CHARGE_TYPE_MAPPED
,
323 MEM_CGROUP_CHARGE_TYPE_SHMEM
, /* used by page migration of shmem */
324 MEM_CGROUP_CHARGE_TYPE_FORCE
, /* used by force_empty */
325 MEM_CGROUP_CHARGE_TYPE_SWAPOUT
, /* for accounting swapcache */
326 MEM_CGROUP_CHARGE_TYPE_DROP
, /* a page was unused swap cache */
330 /* only for here (for easy reading.) */
331 #define PCGF_CACHE (1UL << PCG_CACHE)
332 #define PCGF_USED (1UL << PCG_USED)
333 #define PCGF_LOCK (1UL << PCG_LOCK)
334 /* Not used, but added here for completeness */
335 #define PCGF_ACCT (1UL << PCG_ACCT)
337 /* for encoding cft->private value on file */
340 #define _OOM_TYPE (2)
341 #define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
342 #define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
343 #define MEMFILE_ATTR(val) ((val) & 0xffff)
344 /* Used for OOM nofiier */
345 #define OOM_CONTROL (0)
348 * Reclaim flags for mem_cgroup_hierarchical_reclaim
350 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
351 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
352 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
353 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
354 #define MEM_CGROUP_RECLAIM_SOFT_BIT 0x2
355 #define MEM_CGROUP_RECLAIM_SOFT (1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
357 static void mem_cgroup_get(struct mem_cgroup
*mem
);
358 static void mem_cgroup_put(struct mem_cgroup
*mem
);
359 static struct mem_cgroup
*parent_mem_cgroup(struct mem_cgroup
*mem
);
360 static void drain_all_stock_async(void);
362 static struct mem_cgroup_per_zone
*
363 mem_cgroup_zoneinfo(struct mem_cgroup
*mem
, int nid
, int zid
)
365 return &mem
->info
.nodeinfo
[nid
]->zoneinfo
[zid
];
368 struct cgroup_subsys_state
*mem_cgroup_css(struct mem_cgroup
*mem
)
373 static struct mem_cgroup_per_zone
*
374 page_cgroup_zoneinfo(struct page_cgroup
*pc
)
376 struct mem_cgroup
*mem
= pc
->mem_cgroup
;
377 int nid
= page_cgroup_nid(pc
);
378 int zid
= page_cgroup_zid(pc
);
383 return mem_cgroup_zoneinfo(mem
, nid
, zid
);
386 static struct mem_cgroup_tree_per_zone
*
387 soft_limit_tree_node_zone(int nid
, int zid
)
389 return &soft_limit_tree
.rb_tree_per_node
[nid
]->rb_tree_per_zone
[zid
];
392 static struct mem_cgroup_tree_per_zone
*
393 soft_limit_tree_from_page(struct page
*page
)
395 int nid
= page_to_nid(page
);
396 int zid
= page_zonenum(page
);
398 return &soft_limit_tree
.rb_tree_per_node
[nid
]->rb_tree_per_zone
[zid
];
402 __mem_cgroup_insert_exceeded(struct mem_cgroup
*mem
,
403 struct mem_cgroup_per_zone
*mz
,
404 struct mem_cgroup_tree_per_zone
*mctz
,
405 unsigned long long new_usage_in_excess
)
407 struct rb_node
**p
= &mctz
->rb_root
.rb_node
;
408 struct rb_node
*parent
= NULL
;
409 struct mem_cgroup_per_zone
*mz_node
;
414 mz
->usage_in_excess
= new_usage_in_excess
;
415 if (!mz
->usage_in_excess
)
419 mz_node
= rb_entry(parent
, struct mem_cgroup_per_zone
,
421 if (mz
->usage_in_excess
< mz_node
->usage_in_excess
)
424 * We can't avoid mem cgroups that are over their soft
425 * limit by the same amount
427 else if (mz
->usage_in_excess
>= mz_node
->usage_in_excess
)
430 rb_link_node(&mz
->tree_node
, parent
, p
);
431 rb_insert_color(&mz
->tree_node
, &mctz
->rb_root
);
436 __mem_cgroup_remove_exceeded(struct mem_cgroup
*mem
,
437 struct mem_cgroup_per_zone
*mz
,
438 struct mem_cgroup_tree_per_zone
*mctz
)
442 rb_erase(&mz
->tree_node
, &mctz
->rb_root
);
447 mem_cgroup_remove_exceeded(struct mem_cgroup
*mem
,
448 struct mem_cgroup_per_zone
*mz
,
449 struct mem_cgroup_tree_per_zone
*mctz
)
451 spin_lock(&mctz
->lock
);
452 __mem_cgroup_remove_exceeded(mem
, mz
, mctz
);
453 spin_unlock(&mctz
->lock
);
457 static void mem_cgroup_update_tree(struct mem_cgroup
*mem
, struct page
*page
)
459 unsigned long long excess
;
460 struct mem_cgroup_per_zone
*mz
;
461 struct mem_cgroup_tree_per_zone
*mctz
;
462 int nid
= page_to_nid(page
);
463 int zid
= page_zonenum(page
);
464 mctz
= soft_limit_tree_from_page(page
);
467 * Necessary to update all ancestors when hierarchy is used.
468 * because their event counter is not touched.
470 for (; mem
; mem
= parent_mem_cgroup(mem
)) {
471 mz
= mem_cgroup_zoneinfo(mem
, nid
, zid
);
472 excess
= res_counter_soft_limit_excess(&mem
->res
);
474 * We have to update the tree if mz is on RB-tree or
475 * mem is over its softlimit.
477 if (excess
|| mz
->on_tree
) {
478 spin_lock(&mctz
->lock
);
479 /* if on-tree, remove it */
481 __mem_cgroup_remove_exceeded(mem
, mz
, mctz
);
483 * Insert again. mz->usage_in_excess will be updated.
484 * If excess is 0, no tree ops.
486 __mem_cgroup_insert_exceeded(mem
, mz
, mctz
, excess
);
487 spin_unlock(&mctz
->lock
);
492 static void mem_cgroup_remove_from_trees(struct mem_cgroup
*mem
)
495 struct mem_cgroup_per_zone
*mz
;
496 struct mem_cgroup_tree_per_zone
*mctz
;
498 for_each_node_state(node
, N_POSSIBLE
) {
499 for (zone
= 0; zone
< MAX_NR_ZONES
; zone
++) {
500 mz
= mem_cgroup_zoneinfo(mem
, node
, zone
);
501 mctz
= soft_limit_tree_node_zone(node
, zone
);
502 mem_cgroup_remove_exceeded(mem
, mz
, mctz
);
507 static inline unsigned long mem_cgroup_get_excess(struct mem_cgroup
*mem
)
509 return res_counter_soft_limit_excess(&mem
->res
) >> PAGE_SHIFT
;
512 static struct mem_cgroup_per_zone
*
513 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone
*mctz
)
515 struct rb_node
*rightmost
= NULL
;
516 struct mem_cgroup_per_zone
*mz
;
520 rightmost
= rb_last(&mctz
->rb_root
);
522 goto done
; /* Nothing to reclaim from */
524 mz
= rb_entry(rightmost
, struct mem_cgroup_per_zone
, tree_node
);
526 * Remove the node now but someone else can add it back,
527 * we will to add it back at the end of reclaim to its correct
528 * position in the tree.
530 __mem_cgroup_remove_exceeded(mz
->mem
, mz
, mctz
);
531 if (!res_counter_soft_limit_excess(&mz
->mem
->res
) ||
532 !css_tryget(&mz
->mem
->css
))
538 static struct mem_cgroup_per_zone
*
539 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone
*mctz
)
541 struct mem_cgroup_per_zone
*mz
;
543 spin_lock(&mctz
->lock
);
544 mz
= __mem_cgroup_largest_soft_limit_node(mctz
);
545 spin_unlock(&mctz
->lock
);
550 * Implementation Note: reading percpu statistics for memcg.
552 * Both of vmstat[] and percpu_counter has threshold and do periodic
553 * synchronization to implement "quick" read. There are trade-off between
554 * reading cost and precision of value. Then, we may have a chance to implement
555 * a periodic synchronizion of counter in memcg's counter.
557 * But this _read() function is used for user interface now. The user accounts
558 * memory usage by memory cgroup and he _always_ requires exact value because
559 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
560 * have to visit all online cpus and make sum. So, for now, unnecessary
561 * synchronization is not implemented. (just implemented for cpu hotplug)
563 * If there are kernel internal actions which can make use of some not-exact
564 * value, and reading all cpu value can be performance bottleneck in some
565 * common workload, threashold and synchonization as vmstat[] should be
568 static s64
mem_cgroup_read_stat(struct mem_cgroup
*mem
,
569 enum mem_cgroup_stat_index idx
)
575 for_each_online_cpu(cpu
)
576 val
+= per_cpu(mem
->stat
->count
[idx
], cpu
);
577 #ifdef CONFIG_HOTPLUG_CPU
578 spin_lock(&mem
->pcp_counter_lock
);
579 val
+= mem
->nocpu_base
.count
[idx
];
580 spin_unlock(&mem
->pcp_counter_lock
);
586 static s64
mem_cgroup_local_usage(struct mem_cgroup
*mem
)
590 ret
= mem_cgroup_read_stat(mem
, MEM_CGROUP_STAT_RSS
);
591 ret
+= mem_cgroup_read_stat(mem
, MEM_CGROUP_STAT_CACHE
);
595 static void mem_cgroup_swap_statistics(struct mem_cgroup
*mem
,
598 int val
= (charge
) ? 1 : -1;
599 this_cpu_add(mem
->stat
->count
[MEM_CGROUP_STAT_SWAPOUT
], val
);
602 static void mem_cgroup_charge_statistics(struct mem_cgroup
*mem
,
603 bool file
, int nr_pages
)
608 __this_cpu_add(mem
->stat
->count
[MEM_CGROUP_STAT_CACHE
], nr_pages
);
610 __this_cpu_add(mem
->stat
->count
[MEM_CGROUP_STAT_RSS
], nr_pages
);
612 /* pagein of a big page is an event. So, ignore page size */
614 __this_cpu_inc(mem
->stat
->count
[MEM_CGROUP_STAT_PGPGIN_COUNT
]);
616 __this_cpu_inc(mem
->stat
->count
[MEM_CGROUP_STAT_PGPGOUT_COUNT
]);
617 nr_pages
= -nr_pages
; /* for event */
620 __this_cpu_add(mem
->stat
->count
[MEM_CGROUP_EVENTS
], nr_pages
);
625 static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup
*mem
,
629 struct mem_cgroup_per_zone
*mz
;
632 for_each_online_node(nid
)
633 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
634 mz
= mem_cgroup_zoneinfo(mem
, nid
, zid
);
635 total
+= MEM_CGROUP_ZSTAT(mz
, idx
);
640 static bool __memcg_event_check(struct mem_cgroup
*mem
, int event_mask_shift
)
644 val
= this_cpu_read(mem
->stat
->count
[MEM_CGROUP_EVENTS
]);
646 return !(val
& ((1 << event_mask_shift
) - 1));
650 * Check events in order.
653 static void memcg_check_events(struct mem_cgroup
*mem
, struct page
*page
)
655 /* threshold event is triggered in finer grain than soft limit */
656 if (unlikely(__memcg_event_check(mem
, THRESHOLDS_EVENTS_THRESH
))) {
657 mem_cgroup_threshold(mem
);
658 if (unlikely(__memcg_event_check(mem
, SOFTLIMIT_EVENTS_THRESH
)))
659 mem_cgroup_update_tree(mem
, page
);
663 static struct mem_cgroup
*mem_cgroup_from_cont(struct cgroup
*cont
)
665 return container_of(cgroup_subsys_state(cont
,
666 mem_cgroup_subsys_id
), struct mem_cgroup
,
670 struct mem_cgroup
*mem_cgroup_from_task(struct task_struct
*p
)
673 * mm_update_next_owner() may clear mm->owner to NULL
674 * if it races with swapoff, page migration, etc.
675 * So this can be called with p == NULL.
680 return container_of(task_subsys_state(p
, mem_cgroup_subsys_id
),
681 struct mem_cgroup
, css
);
684 static struct mem_cgroup
*try_get_mem_cgroup_from_mm(struct mm_struct
*mm
)
686 struct mem_cgroup
*mem
= NULL
;
691 * Because we have no locks, mm->owner's may be being moved to other
692 * cgroup. We use css_tryget() here even if this looks
693 * pessimistic (rather than adding locks here).
697 mem
= mem_cgroup_from_task(rcu_dereference(mm
->owner
));
700 } while (!css_tryget(&mem
->css
));
705 /* The caller has to guarantee "mem" exists before calling this */
706 static struct mem_cgroup
*mem_cgroup_start_loop(struct mem_cgroup
*mem
)
708 struct cgroup_subsys_state
*css
;
711 if (!mem
) /* ROOT cgroup has the smallest ID */
712 return root_mem_cgroup
; /*css_put/get against root is ignored*/
713 if (!mem
->use_hierarchy
) {
714 if (css_tryget(&mem
->css
))
720 * searching a memory cgroup which has the smallest ID under given
721 * ROOT cgroup. (ID >= 1)
723 css
= css_get_next(&mem_cgroup_subsys
, 1, &mem
->css
, &found
);
724 if (css
&& css_tryget(css
))
725 mem
= container_of(css
, struct mem_cgroup
, css
);
732 static struct mem_cgroup
*mem_cgroup_get_next(struct mem_cgroup
*iter
,
733 struct mem_cgroup
*root
,
736 int nextid
= css_id(&iter
->css
) + 1;
739 struct cgroup_subsys_state
*css
;
741 hierarchy_used
= iter
->use_hierarchy
;
744 /* If no ROOT, walk all, ignore hierarchy */
745 if (!cond
|| (root
&& !hierarchy_used
))
749 root
= root_mem_cgroup
;
755 css
= css_get_next(&mem_cgroup_subsys
, nextid
,
757 if (css
&& css_tryget(css
))
758 iter
= container_of(css
, struct mem_cgroup
, css
);
760 /* If css is NULL, no more cgroups will be found */
762 } while (css
&& !iter
);
767 * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please
768 * be careful that "break" loop is not allowed. We have reference count.
769 * Instead of that modify "cond" to be false and "continue" to exit the loop.
771 #define for_each_mem_cgroup_tree_cond(iter, root, cond) \
772 for (iter = mem_cgroup_start_loop(root);\
774 iter = mem_cgroup_get_next(iter, root, cond))
776 #define for_each_mem_cgroup_tree(iter, root) \
777 for_each_mem_cgroup_tree_cond(iter, root, true)
779 #define for_each_mem_cgroup_all(iter) \
780 for_each_mem_cgroup_tree_cond(iter, NULL, true)
783 static inline bool mem_cgroup_is_root(struct mem_cgroup
*mem
)
785 return (mem
== root_mem_cgroup
);
789 * Following LRU functions are allowed to be used without PCG_LOCK.
790 * Operations are called by routine of global LRU independently from memcg.
791 * What we have to take care of here is validness of pc->mem_cgroup.
793 * Changes to pc->mem_cgroup happens when
796 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
797 * It is added to LRU before charge.
798 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
799 * When moving account, the page is not on LRU. It's isolated.
802 void mem_cgroup_del_lru_list(struct page
*page
, enum lru_list lru
)
804 struct page_cgroup
*pc
;
805 struct mem_cgroup_per_zone
*mz
;
807 if (mem_cgroup_disabled())
809 pc
= lookup_page_cgroup(page
);
810 /* can happen while we handle swapcache. */
811 if (!TestClearPageCgroupAcctLRU(pc
))
813 VM_BUG_ON(!pc
->mem_cgroup
);
815 * We don't check PCG_USED bit. It's cleared when the "page" is finally
816 * removed from global LRU.
818 mz
= page_cgroup_zoneinfo(pc
);
819 /* huge page split is done under lru_lock. so, we have no races. */
820 MEM_CGROUP_ZSTAT(mz
, lru
) -= 1 << compound_order(page
);
821 if (mem_cgroup_is_root(pc
->mem_cgroup
))
823 VM_BUG_ON(list_empty(&pc
->lru
));
824 list_del_init(&pc
->lru
);
827 void mem_cgroup_del_lru(struct page
*page
)
829 mem_cgroup_del_lru_list(page
, page_lru(page
));
833 * Writeback is about to end against a page which has been marked for immediate
834 * reclaim. If it still appears to be reclaimable, move it to the tail of the
837 void mem_cgroup_rotate_reclaimable_page(struct page
*page
)
839 struct mem_cgroup_per_zone
*mz
;
840 struct page_cgroup
*pc
;
841 enum lru_list lru
= page_lru(page
);
843 if (mem_cgroup_disabled())
846 pc
= lookup_page_cgroup(page
);
847 /* unused or root page is not rotated. */
848 if (!PageCgroupUsed(pc
))
850 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
852 if (mem_cgroup_is_root(pc
->mem_cgroup
))
854 mz
= page_cgroup_zoneinfo(pc
);
855 list_move_tail(&pc
->lru
, &mz
->lists
[lru
]);
858 void mem_cgroup_rotate_lru_list(struct page
*page
, enum lru_list lru
)
860 struct mem_cgroup_per_zone
*mz
;
861 struct page_cgroup
*pc
;
863 if (mem_cgroup_disabled())
866 pc
= lookup_page_cgroup(page
);
867 /* unused or root page is not rotated. */
868 if (!PageCgroupUsed(pc
))
870 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
872 if (mem_cgroup_is_root(pc
->mem_cgroup
))
874 mz
= page_cgroup_zoneinfo(pc
);
875 list_move(&pc
->lru
, &mz
->lists
[lru
]);
878 void mem_cgroup_add_lru_list(struct page
*page
, enum lru_list lru
)
880 struct page_cgroup
*pc
;
881 struct mem_cgroup_per_zone
*mz
;
883 if (mem_cgroup_disabled())
885 pc
= lookup_page_cgroup(page
);
886 VM_BUG_ON(PageCgroupAcctLRU(pc
));
887 if (!PageCgroupUsed(pc
))
889 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
891 mz
= page_cgroup_zoneinfo(pc
);
892 /* huge page split is done under lru_lock. so, we have no races. */
893 MEM_CGROUP_ZSTAT(mz
, lru
) += 1 << compound_order(page
);
894 SetPageCgroupAcctLRU(pc
);
895 if (mem_cgroup_is_root(pc
->mem_cgroup
))
897 list_add(&pc
->lru
, &mz
->lists
[lru
]);
901 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
902 * lru because the page may.be reused after it's fully uncharged (because of
903 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
904 * it again. This function is only used to charge SwapCache. It's done under
905 * lock_page and expected that zone->lru_lock is never held.
907 static void mem_cgroup_lru_del_before_commit_swapcache(struct page
*page
)
910 struct zone
*zone
= page_zone(page
);
911 struct page_cgroup
*pc
= lookup_page_cgroup(page
);
913 spin_lock_irqsave(&zone
->lru_lock
, flags
);
915 * Forget old LRU when this page_cgroup is *not* used. This Used bit
916 * is guarded by lock_page() because the page is SwapCache.
918 if (!PageCgroupUsed(pc
))
919 mem_cgroup_del_lru_list(page
, page_lru(page
));
920 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
923 static void mem_cgroup_lru_add_after_commit_swapcache(struct page
*page
)
926 struct zone
*zone
= page_zone(page
);
927 struct page_cgroup
*pc
= lookup_page_cgroup(page
);
929 spin_lock_irqsave(&zone
->lru_lock
, flags
);
930 /* link when the page is linked to LRU but page_cgroup isn't */
931 if (PageLRU(page
) && !PageCgroupAcctLRU(pc
))
932 mem_cgroup_add_lru_list(page
, page_lru(page
));
933 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
937 void mem_cgroup_move_lists(struct page
*page
,
938 enum lru_list from
, enum lru_list to
)
940 if (mem_cgroup_disabled())
942 mem_cgroup_del_lru_list(page
, from
);
943 mem_cgroup_add_lru_list(page
, to
);
946 int task_in_mem_cgroup(struct task_struct
*task
, const struct mem_cgroup
*mem
)
949 struct mem_cgroup
*curr
= NULL
;
950 struct task_struct
*p
;
952 p
= find_lock_task_mm(task
);
955 curr
= try_get_mem_cgroup_from_mm(p
->mm
);
960 * We should check use_hierarchy of "mem" not "curr". Because checking
961 * use_hierarchy of "curr" here make this function true if hierarchy is
962 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
963 * hierarchy(even if use_hierarchy is disabled in "mem").
965 if (mem
->use_hierarchy
)
966 ret
= css_is_ancestor(&curr
->css
, &mem
->css
);
973 static int calc_inactive_ratio(struct mem_cgroup
*memcg
, unsigned long *present_pages
)
975 unsigned long active
;
976 unsigned long inactive
;
978 unsigned long inactive_ratio
;
980 inactive
= mem_cgroup_get_local_zonestat(memcg
, LRU_INACTIVE_ANON
);
981 active
= mem_cgroup_get_local_zonestat(memcg
, LRU_ACTIVE_ANON
);
983 gb
= (inactive
+ active
) >> (30 - PAGE_SHIFT
);
985 inactive_ratio
= int_sqrt(10 * gb
);
990 present_pages
[0] = inactive
;
991 present_pages
[1] = active
;
994 return inactive_ratio
;
997 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup
*memcg
)
999 unsigned long active
;
1000 unsigned long inactive
;
1001 unsigned long present_pages
[2];
1002 unsigned long inactive_ratio
;
1004 inactive_ratio
= calc_inactive_ratio(memcg
, present_pages
);
1006 inactive
= present_pages
[0];
1007 active
= present_pages
[1];
1009 if (inactive
* inactive_ratio
< active
)
1015 int mem_cgroup_inactive_file_is_low(struct mem_cgroup
*memcg
)
1017 unsigned long active
;
1018 unsigned long inactive
;
1020 inactive
= mem_cgroup_get_local_zonestat(memcg
, LRU_INACTIVE_FILE
);
1021 active
= mem_cgroup_get_local_zonestat(memcg
, LRU_ACTIVE_FILE
);
1023 return (active
> inactive
);
1026 unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup
*memcg
,
1030 int nid
= zone_to_nid(zone
);
1031 int zid
= zone_idx(zone
);
1032 struct mem_cgroup_per_zone
*mz
= mem_cgroup_zoneinfo(memcg
, nid
, zid
);
1034 return MEM_CGROUP_ZSTAT(mz
, lru
);
1037 struct zone_reclaim_stat
*mem_cgroup_get_reclaim_stat(struct mem_cgroup
*memcg
,
1040 int nid
= zone_to_nid(zone
);
1041 int zid
= zone_idx(zone
);
1042 struct mem_cgroup_per_zone
*mz
= mem_cgroup_zoneinfo(memcg
, nid
, zid
);
1044 return &mz
->reclaim_stat
;
1047 struct zone_reclaim_stat
*
1048 mem_cgroup_get_reclaim_stat_from_page(struct page
*page
)
1050 struct page_cgroup
*pc
;
1051 struct mem_cgroup_per_zone
*mz
;
1053 if (mem_cgroup_disabled())
1056 pc
= lookup_page_cgroup(page
);
1057 if (!PageCgroupUsed(pc
))
1059 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1061 mz
= page_cgroup_zoneinfo(pc
);
1065 return &mz
->reclaim_stat
;
1068 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan
,
1069 struct list_head
*dst
,
1070 unsigned long *scanned
, int order
,
1071 int mode
, struct zone
*z
,
1072 struct mem_cgroup
*mem_cont
,
1073 int active
, int file
)
1075 unsigned long nr_taken
= 0;
1079 struct list_head
*src
;
1080 struct page_cgroup
*pc
, *tmp
;
1081 int nid
= zone_to_nid(z
);
1082 int zid
= zone_idx(z
);
1083 struct mem_cgroup_per_zone
*mz
;
1084 int lru
= LRU_FILE
* file
+ active
;
1088 mz
= mem_cgroup_zoneinfo(mem_cont
, nid
, zid
);
1089 src
= &mz
->lists
[lru
];
1092 list_for_each_entry_safe_reverse(pc
, tmp
, src
, lru
) {
1093 if (scan
>= nr_to_scan
)
1097 if (unlikely(!PageCgroupUsed(pc
)))
1099 if (unlikely(!PageLRU(page
)))
1103 ret
= __isolate_lru_page(page
, mode
, file
);
1106 list_move(&page
->lru
, dst
);
1107 mem_cgroup_del_lru(page
);
1108 nr_taken
+= hpage_nr_pages(page
);
1111 /* we don't affect global LRU but rotate in our LRU */
1112 mem_cgroup_rotate_lru_list(page
, page_lru(page
));
1121 trace_mm_vmscan_memcg_isolate(0, nr_to_scan
, scan
, nr_taken
,
1127 #define mem_cgroup_from_res_counter(counter, member) \
1128 container_of(counter, struct mem_cgroup, member)
1130 static bool mem_cgroup_check_under_limit(struct mem_cgroup
*mem
)
1132 if (do_swap_account
) {
1133 if (res_counter_check_under_limit(&mem
->res
) &&
1134 res_counter_check_under_limit(&mem
->memsw
))
1137 if (res_counter_check_under_limit(&mem
->res
))
1143 * mem_cgroup_check_margin - check if the memory cgroup allows charging
1144 * @mem: memory cgroup to check
1145 * @bytes: the number of bytes the caller intends to charge
1147 * Returns a boolean value on whether @mem can be charged @bytes or
1148 * whether this would exceed the limit.
1150 static bool mem_cgroup_check_margin(struct mem_cgroup
*mem
, unsigned long bytes
)
1152 if (!res_counter_check_margin(&mem
->res
, bytes
))
1154 if (do_swap_account
&& !res_counter_check_margin(&mem
->memsw
, bytes
))
1159 static unsigned int get_swappiness(struct mem_cgroup
*memcg
)
1161 struct cgroup
*cgrp
= memcg
->css
.cgroup
;
1162 unsigned int swappiness
;
1165 if (cgrp
->parent
== NULL
)
1166 return vm_swappiness
;
1168 spin_lock(&memcg
->reclaim_param_lock
);
1169 swappiness
= memcg
->swappiness
;
1170 spin_unlock(&memcg
->reclaim_param_lock
);
1175 static void mem_cgroup_start_move(struct mem_cgroup
*mem
)
1180 spin_lock(&mem
->pcp_counter_lock
);
1181 for_each_online_cpu(cpu
)
1182 per_cpu(mem
->stat
->count
[MEM_CGROUP_ON_MOVE
], cpu
) += 1;
1183 mem
->nocpu_base
.count
[MEM_CGROUP_ON_MOVE
] += 1;
1184 spin_unlock(&mem
->pcp_counter_lock
);
1190 static void mem_cgroup_end_move(struct mem_cgroup
*mem
)
1197 spin_lock(&mem
->pcp_counter_lock
);
1198 for_each_online_cpu(cpu
)
1199 per_cpu(mem
->stat
->count
[MEM_CGROUP_ON_MOVE
], cpu
) -= 1;
1200 mem
->nocpu_base
.count
[MEM_CGROUP_ON_MOVE
] -= 1;
1201 spin_unlock(&mem
->pcp_counter_lock
);
1205 * 2 routines for checking "mem" is under move_account() or not.
1207 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
1208 * for avoiding race in accounting. If true,
1209 * pc->mem_cgroup may be overwritten.
1211 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1212 * under hierarchy of moving cgroups. This is for
1213 * waiting at hith-memory prressure caused by "move".
1216 static bool mem_cgroup_stealed(struct mem_cgroup
*mem
)
1218 VM_BUG_ON(!rcu_read_lock_held());
1219 return this_cpu_read(mem
->stat
->count
[MEM_CGROUP_ON_MOVE
]) > 0;
1222 static bool mem_cgroup_under_move(struct mem_cgroup
*mem
)
1224 struct mem_cgroup
*from
;
1225 struct mem_cgroup
*to
;
1228 * Unlike task_move routines, we access mc.to, mc.from not under
1229 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1231 spin_lock(&mc
.lock
);
1236 if (from
== mem
|| to
== mem
1237 || (mem
->use_hierarchy
&& css_is_ancestor(&from
->css
, &mem
->css
))
1238 || (mem
->use_hierarchy
&& css_is_ancestor(&to
->css
, &mem
->css
)))
1241 spin_unlock(&mc
.lock
);
1245 static bool mem_cgroup_wait_acct_move(struct mem_cgroup
*mem
)
1247 if (mc
.moving_task
&& current
!= mc
.moving_task
) {
1248 if (mem_cgroup_under_move(mem
)) {
1250 prepare_to_wait(&mc
.waitq
, &wait
, TASK_INTERRUPTIBLE
);
1251 /* moving charge context might have finished. */
1254 finish_wait(&mc
.waitq
, &wait
);
1262 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1263 * @memcg: The memory cgroup that went over limit
1264 * @p: Task that is going to be killed
1266 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1269 void mem_cgroup_print_oom_info(struct mem_cgroup
*memcg
, struct task_struct
*p
)
1271 struct cgroup
*task_cgrp
;
1272 struct cgroup
*mem_cgrp
;
1274 * Need a buffer in BSS, can't rely on allocations. The code relies
1275 * on the assumption that OOM is serialized for memory controller.
1276 * If this assumption is broken, revisit this code.
1278 static char memcg_name
[PATH_MAX
];
1287 mem_cgrp
= memcg
->css
.cgroup
;
1288 task_cgrp
= task_cgroup(p
, mem_cgroup_subsys_id
);
1290 ret
= cgroup_path(task_cgrp
, memcg_name
, PATH_MAX
);
1293 * Unfortunately, we are unable to convert to a useful name
1294 * But we'll still print out the usage information
1301 printk(KERN_INFO
"Task in %s killed", memcg_name
);
1304 ret
= cgroup_path(mem_cgrp
, memcg_name
, PATH_MAX
);
1312 * Continues from above, so we don't need an KERN_ level
1314 printk(KERN_CONT
" as a result of limit of %s\n", memcg_name
);
1317 printk(KERN_INFO
"memory: usage %llukB, limit %llukB, failcnt %llu\n",
1318 res_counter_read_u64(&memcg
->res
, RES_USAGE
) >> 10,
1319 res_counter_read_u64(&memcg
->res
, RES_LIMIT
) >> 10,
1320 res_counter_read_u64(&memcg
->res
, RES_FAILCNT
));
1321 printk(KERN_INFO
"memory+swap: usage %llukB, limit %llukB, "
1323 res_counter_read_u64(&memcg
->memsw
, RES_USAGE
) >> 10,
1324 res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
) >> 10,
1325 res_counter_read_u64(&memcg
->memsw
, RES_FAILCNT
));
1329 * This function returns the number of memcg under hierarchy tree. Returns
1330 * 1(self count) if no children.
1332 static int mem_cgroup_count_children(struct mem_cgroup
*mem
)
1335 struct mem_cgroup
*iter
;
1337 for_each_mem_cgroup_tree(iter
, mem
)
1343 * Return the memory (and swap, if configured) limit for a memcg.
1345 u64
mem_cgroup_get_limit(struct mem_cgroup
*memcg
)
1350 limit
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
1351 limit
+= total_swap_pages
<< PAGE_SHIFT
;
1353 memsw
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
1355 * If memsw is finite and limits the amount of swap space available
1356 * to this memcg, return that limit.
1358 return min(limit
, memsw
);
1362 * Visit the first child (need not be the first child as per the ordering
1363 * of the cgroup list, since we track last_scanned_child) of @mem and use
1364 * that to reclaim free pages from.
1366 static struct mem_cgroup
*
1367 mem_cgroup_select_victim(struct mem_cgroup
*root_mem
)
1369 struct mem_cgroup
*ret
= NULL
;
1370 struct cgroup_subsys_state
*css
;
1373 if (!root_mem
->use_hierarchy
) {
1374 css_get(&root_mem
->css
);
1380 nextid
= root_mem
->last_scanned_child
+ 1;
1381 css
= css_get_next(&mem_cgroup_subsys
, nextid
, &root_mem
->css
,
1383 if (css
&& css_tryget(css
))
1384 ret
= container_of(css
, struct mem_cgroup
, css
);
1387 /* Updates scanning parameter */
1388 spin_lock(&root_mem
->reclaim_param_lock
);
1390 /* this means start scan from ID:1 */
1391 root_mem
->last_scanned_child
= 0;
1393 root_mem
->last_scanned_child
= found
;
1394 spin_unlock(&root_mem
->reclaim_param_lock
);
1401 * Scan the hierarchy if needed to reclaim memory. We remember the last child
1402 * we reclaimed from, so that we don't end up penalizing one child extensively
1403 * based on its position in the children list.
1405 * root_mem is the original ancestor that we've been reclaim from.
1407 * We give up and return to the caller when we visit root_mem twice.
1408 * (other groups can be removed while we're walking....)
1410 * If shrink==true, for avoiding to free too much, this returns immedieately.
1412 static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup
*root_mem
,
1415 unsigned long reclaim_options
)
1417 struct mem_cgroup
*victim
;
1420 bool noswap
= reclaim_options
& MEM_CGROUP_RECLAIM_NOSWAP
;
1421 bool shrink
= reclaim_options
& MEM_CGROUP_RECLAIM_SHRINK
;
1422 bool check_soft
= reclaim_options
& MEM_CGROUP_RECLAIM_SOFT
;
1423 unsigned long excess
= mem_cgroup_get_excess(root_mem
);
1425 /* If memsw_is_minimum==1, swap-out is of-no-use. */
1426 if (root_mem
->memsw_is_minimum
)
1430 victim
= mem_cgroup_select_victim(root_mem
);
1431 if (victim
== root_mem
) {
1434 drain_all_stock_async();
1437 * If we have not been able to reclaim
1438 * anything, it might because there are
1439 * no reclaimable pages under this hierarchy
1441 if (!check_soft
|| !total
) {
1442 css_put(&victim
->css
);
1446 * We want to do more targetted reclaim.
1447 * excess >> 2 is not to excessive so as to
1448 * reclaim too much, nor too less that we keep
1449 * coming back to reclaim from this cgroup
1451 if (total
>= (excess
>> 2) ||
1452 (loop
> MEM_CGROUP_MAX_RECLAIM_LOOPS
)) {
1453 css_put(&victim
->css
);
1458 if (!mem_cgroup_local_usage(victim
)) {
1459 /* this cgroup's local usage == 0 */
1460 css_put(&victim
->css
);
1463 /* we use swappiness of local cgroup */
1465 ret
= mem_cgroup_shrink_node_zone(victim
, gfp_mask
,
1466 noswap
, get_swappiness(victim
), zone
);
1468 ret
= try_to_free_mem_cgroup_pages(victim
, gfp_mask
,
1469 noswap
, get_swappiness(victim
));
1470 css_put(&victim
->css
);
1472 * At shrinking usage, we can't check we should stop here or
1473 * reclaim more. It's depends on callers. last_scanned_child
1474 * will work enough for keeping fairness under tree.
1480 if (res_counter_check_under_soft_limit(&root_mem
->res
))
1482 } else if (mem_cgroup_check_under_limit(root_mem
))
1489 * Check OOM-Killer is already running under our hierarchy.
1490 * If someone is running, return false.
1492 static bool mem_cgroup_oom_lock(struct mem_cgroup
*mem
)
1494 int x
, lock_count
= 0;
1495 struct mem_cgroup
*iter
;
1497 for_each_mem_cgroup_tree(iter
, mem
) {
1498 x
= atomic_inc_return(&iter
->oom_lock
);
1499 lock_count
= max(x
, lock_count
);
1502 if (lock_count
== 1)
1507 static int mem_cgroup_oom_unlock(struct mem_cgroup
*mem
)
1509 struct mem_cgroup
*iter
;
1512 * When a new child is created while the hierarchy is under oom,
1513 * mem_cgroup_oom_lock() may not be called. We have to use
1514 * atomic_add_unless() here.
1516 for_each_mem_cgroup_tree(iter
, mem
)
1517 atomic_add_unless(&iter
->oom_lock
, -1, 0);
1522 static DEFINE_MUTEX(memcg_oom_mutex
);
1523 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq
);
1525 struct oom_wait_info
{
1526 struct mem_cgroup
*mem
;
1530 static int memcg_oom_wake_function(wait_queue_t
*wait
,
1531 unsigned mode
, int sync
, void *arg
)
1533 struct mem_cgroup
*wake_mem
= (struct mem_cgroup
*)arg
;
1534 struct oom_wait_info
*oom_wait_info
;
1536 oom_wait_info
= container_of(wait
, struct oom_wait_info
, wait
);
1538 if (oom_wait_info
->mem
== wake_mem
)
1540 /* if no hierarchy, no match */
1541 if (!oom_wait_info
->mem
->use_hierarchy
|| !wake_mem
->use_hierarchy
)
1544 * Both of oom_wait_info->mem and wake_mem are stable under us.
1545 * Then we can use css_is_ancestor without taking care of RCU.
1547 if (!css_is_ancestor(&oom_wait_info
->mem
->css
, &wake_mem
->css
) &&
1548 !css_is_ancestor(&wake_mem
->css
, &oom_wait_info
->mem
->css
))
1552 return autoremove_wake_function(wait
, mode
, sync
, arg
);
1555 static void memcg_wakeup_oom(struct mem_cgroup
*mem
)
1557 /* for filtering, pass "mem" as argument. */
1558 __wake_up(&memcg_oom_waitq
, TASK_NORMAL
, 0, mem
);
1561 static void memcg_oom_recover(struct mem_cgroup
*mem
)
1563 if (mem
&& atomic_read(&mem
->oom_lock
))
1564 memcg_wakeup_oom(mem
);
1568 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1570 bool mem_cgroup_handle_oom(struct mem_cgroup
*mem
, gfp_t mask
)
1572 struct oom_wait_info owait
;
1573 bool locked
, need_to_kill
;
1576 owait
.wait
.flags
= 0;
1577 owait
.wait
.func
= memcg_oom_wake_function
;
1578 owait
.wait
.private = current
;
1579 INIT_LIST_HEAD(&owait
.wait
.task_list
);
1580 need_to_kill
= true;
1581 /* At first, try to OOM lock hierarchy under mem.*/
1582 mutex_lock(&memcg_oom_mutex
);
1583 locked
= mem_cgroup_oom_lock(mem
);
1585 * Even if signal_pending(), we can't quit charge() loop without
1586 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1587 * under OOM is always welcomed, use TASK_KILLABLE here.
1589 prepare_to_wait(&memcg_oom_waitq
, &owait
.wait
, TASK_KILLABLE
);
1590 if (!locked
|| mem
->oom_kill_disable
)
1591 need_to_kill
= false;
1593 mem_cgroup_oom_notify(mem
);
1594 mutex_unlock(&memcg_oom_mutex
);
1597 finish_wait(&memcg_oom_waitq
, &owait
.wait
);
1598 mem_cgroup_out_of_memory(mem
, mask
);
1601 finish_wait(&memcg_oom_waitq
, &owait
.wait
);
1603 mutex_lock(&memcg_oom_mutex
);
1604 mem_cgroup_oom_unlock(mem
);
1605 memcg_wakeup_oom(mem
);
1606 mutex_unlock(&memcg_oom_mutex
);
1608 if (test_thread_flag(TIF_MEMDIE
) || fatal_signal_pending(current
))
1610 /* Give chance to dying process */
1611 schedule_timeout(1);
1616 * Currently used to update mapped file statistics, but the routine can be
1617 * generalized to update other statistics as well.
1619 * Notes: Race condition
1621 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1622 * it tends to be costly. But considering some conditions, we doesn't need
1623 * to do so _always_.
1625 * Considering "charge", lock_page_cgroup() is not required because all
1626 * file-stat operations happen after a page is attached to radix-tree. There
1627 * are no race with "charge".
1629 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1630 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1631 * if there are race with "uncharge". Statistics itself is properly handled
1634 * Considering "move", this is an only case we see a race. To make the race
1635 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
1636 * possibility of race condition. If there is, we take a lock.
1639 void mem_cgroup_update_page_stat(struct page
*page
,
1640 enum mem_cgroup_page_stat_item idx
, int val
)
1642 struct mem_cgroup
*mem
;
1643 struct page_cgroup
*pc
= lookup_page_cgroup(page
);
1644 bool need_unlock
= false;
1645 unsigned long uninitialized_var(flags
);
1651 mem
= pc
->mem_cgroup
;
1652 if (unlikely(!mem
|| !PageCgroupUsed(pc
)))
1654 /* pc->mem_cgroup is unstable ? */
1655 if (unlikely(mem_cgroup_stealed(mem
)) || PageTransHuge(page
)) {
1656 /* take a lock against to access pc->mem_cgroup */
1657 move_lock_page_cgroup(pc
, &flags
);
1659 mem
= pc
->mem_cgroup
;
1660 if (!mem
|| !PageCgroupUsed(pc
))
1665 case MEMCG_NR_FILE_MAPPED
:
1667 SetPageCgroupFileMapped(pc
);
1668 else if (!page_mapped(page
))
1669 ClearPageCgroupFileMapped(pc
);
1670 idx
= MEM_CGROUP_STAT_FILE_MAPPED
;
1676 this_cpu_add(mem
->stat
->count
[idx
], val
);
1679 if (unlikely(need_unlock
))
1680 move_unlock_page_cgroup(pc
, &flags
);
1684 EXPORT_SYMBOL(mem_cgroup_update_page_stat
);
1687 * size of first charge trial. "32" comes from vmscan.c's magic value.
1688 * TODO: maybe necessary to use big numbers in big irons.
1690 #define CHARGE_SIZE (32 * PAGE_SIZE)
1691 struct memcg_stock_pcp
{
1692 struct mem_cgroup
*cached
; /* this never be root cgroup */
1694 struct work_struct work
;
1696 static DEFINE_PER_CPU(struct memcg_stock_pcp
, memcg_stock
);
1697 static atomic_t memcg_drain_count
;
1700 * Try to consume stocked charge on this cpu. If success, PAGE_SIZE is consumed
1701 * from local stock and true is returned. If the stock is 0 or charges from a
1702 * cgroup which is not current target, returns false. This stock will be
1705 static bool consume_stock(struct mem_cgroup
*mem
)
1707 struct memcg_stock_pcp
*stock
;
1710 stock
= &get_cpu_var(memcg_stock
);
1711 if (mem
== stock
->cached
&& stock
->charge
)
1712 stock
->charge
-= PAGE_SIZE
;
1713 else /* need to call res_counter_charge */
1715 put_cpu_var(memcg_stock
);
1720 * Returns stocks cached in percpu to res_counter and reset cached information.
1722 static void drain_stock(struct memcg_stock_pcp
*stock
)
1724 struct mem_cgroup
*old
= stock
->cached
;
1726 if (stock
->charge
) {
1727 res_counter_uncharge(&old
->res
, stock
->charge
);
1728 if (do_swap_account
)
1729 res_counter_uncharge(&old
->memsw
, stock
->charge
);
1731 stock
->cached
= NULL
;
1736 * This must be called under preempt disabled or must be called by
1737 * a thread which is pinned to local cpu.
1739 static void drain_local_stock(struct work_struct
*dummy
)
1741 struct memcg_stock_pcp
*stock
= &__get_cpu_var(memcg_stock
);
1746 * Cache charges(val) which is from res_counter, to local per_cpu area.
1747 * This will be consumed by consume_stock() function, later.
1749 static void refill_stock(struct mem_cgroup
*mem
, int val
)
1751 struct memcg_stock_pcp
*stock
= &get_cpu_var(memcg_stock
);
1753 if (stock
->cached
!= mem
) { /* reset if necessary */
1755 stock
->cached
= mem
;
1757 stock
->charge
+= val
;
1758 put_cpu_var(memcg_stock
);
1762 * Tries to drain stocked charges in other cpus. This function is asynchronous
1763 * and just put a work per cpu for draining localy on each cpu. Caller can
1764 * expects some charges will be back to res_counter later but cannot wait for
1767 static void drain_all_stock_async(void)
1770 /* This function is for scheduling "drain" in asynchronous way.
1771 * The result of "drain" is not directly handled by callers. Then,
1772 * if someone is calling drain, we don't have to call drain more.
1773 * Anyway, WORK_STRUCT_PENDING check in queue_work_on() will catch if
1774 * there is a race. We just do loose check here.
1776 if (atomic_read(&memcg_drain_count
))
1778 /* Notify other cpus that system-wide "drain" is running */
1779 atomic_inc(&memcg_drain_count
);
1781 for_each_online_cpu(cpu
) {
1782 struct memcg_stock_pcp
*stock
= &per_cpu(memcg_stock
, cpu
);
1783 schedule_work_on(cpu
, &stock
->work
);
1786 atomic_dec(&memcg_drain_count
);
1787 /* We don't wait for flush_work */
1790 /* This is a synchronous drain interface. */
1791 static void drain_all_stock_sync(void)
1793 /* called when force_empty is called */
1794 atomic_inc(&memcg_drain_count
);
1795 schedule_on_each_cpu(drain_local_stock
);
1796 atomic_dec(&memcg_drain_count
);
1800 * This function drains percpu counter value from DEAD cpu and
1801 * move it to local cpu. Note that this function can be preempted.
1803 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup
*mem
, int cpu
)
1807 spin_lock(&mem
->pcp_counter_lock
);
1808 for (i
= 0; i
< MEM_CGROUP_STAT_DATA
; i
++) {
1809 s64 x
= per_cpu(mem
->stat
->count
[i
], cpu
);
1811 per_cpu(mem
->stat
->count
[i
], cpu
) = 0;
1812 mem
->nocpu_base
.count
[i
] += x
;
1814 /* need to clear ON_MOVE value, works as a kind of lock. */
1815 per_cpu(mem
->stat
->count
[MEM_CGROUP_ON_MOVE
], cpu
) = 0;
1816 spin_unlock(&mem
->pcp_counter_lock
);
1819 static void synchronize_mem_cgroup_on_move(struct mem_cgroup
*mem
, int cpu
)
1821 int idx
= MEM_CGROUP_ON_MOVE
;
1823 spin_lock(&mem
->pcp_counter_lock
);
1824 per_cpu(mem
->stat
->count
[idx
], cpu
) = mem
->nocpu_base
.count
[idx
];
1825 spin_unlock(&mem
->pcp_counter_lock
);
1828 static int __cpuinit
memcg_cpu_hotplug_callback(struct notifier_block
*nb
,
1829 unsigned long action
,
1832 int cpu
= (unsigned long)hcpu
;
1833 struct memcg_stock_pcp
*stock
;
1834 struct mem_cgroup
*iter
;
1836 if ((action
== CPU_ONLINE
)) {
1837 for_each_mem_cgroup_all(iter
)
1838 synchronize_mem_cgroup_on_move(iter
, cpu
);
1842 if ((action
!= CPU_DEAD
) || action
!= CPU_DEAD_FROZEN
)
1845 for_each_mem_cgroup_all(iter
)
1846 mem_cgroup_drain_pcp_counter(iter
, cpu
);
1848 stock
= &per_cpu(memcg_stock
, cpu
);
1854 /* See __mem_cgroup_try_charge() for details */
1856 CHARGE_OK
, /* success */
1857 CHARGE_RETRY
, /* need to retry but retry is not bad */
1858 CHARGE_NOMEM
, /* we can't do more. return -ENOMEM */
1859 CHARGE_WOULDBLOCK
, /* GFP_WAIT wasn't set and no enough res. */
1860 CHARGE_OOM_DIE
, /* the current is killed because of OOM */
1863 static int __mem_cgroup_do_charge(struct mem_cgroup
*mem
, gfp_t gfp_mask
,
1864 int csize
, bool oom_check
)
1866 struct mem_cgroup
*mem_over_limit
;
1867 struct res_counter
*fail_res
;
1868 unsigned long flags
= 0;
1871 ret
= res_counter_charge(&mem
->res
, csize
, &fail_res
);
1874 if (!do_swap_account
)
1876 ret
= res_counter_charge(&mem
->memsw
, csize
, &fail_res
);
1880 res_counter_uncharge(&mem
->res
, csize
);
1881 mem_over_limit
= mem_cgroup_from_res_counter(fail_res
, memsw
);
1882 flags
|= MEM_CGROUP_RECLAIM_NOSWAP
;
1884 mem_over_limit
= mem_cgroup_from_res_counter(fail_res
, res
);
1886 * csize can be either a huge page (HPAGE_SIZE), a batch of
1887 * regular pages (CHARGE_SIZE), or a single regular page
1890 * Never reclaim on behalf of optional batching, retry with a
1891 * single page instead.
1893 if (csize
== CHARGE_SIZE
)
1894 return CHARGE_RETRY
;
1896 if (!(gfp_mask
& __GFP_WAIT
))
1897 return CHARGE_WOULDBLOCK
;
1899 ret
= mem_cgroup_hierarchical_reclaim(mem_over_limit
, NULL
,
1901 if (mem_cgroup_check_margin(mem_over_limit
, csize
))
1902 return CHARGE_RETRY
;
1904 * Even though the limit is exceeded at this point, reclaim
1905 * may have been able to free some pages. Retry the charge
1906 * before killing the task.
1908 * Only for regular pages, though: huge pages are rather
1909 * unlikely to succeed so close to the limit, and we fall back
1910 * to regular pages anyway in case of failure.
1912 if (csize
== PAGE_SIZE
&& ret
)
1913 return CHARGE_RETRY
;
1916 * At task move, charge accounts can be doubly counted. So, it's
1917 * better to wait until the end of task_move if something is going on.
1919 if (mem_cgroup_wait_acct_move(mem_over_limit
))
1920 return CHARGE_RETRY
;
1922 /* If we don't need to call oom-killer at el, return immediately */
1924 return CHARGE_NOMEM
;
1926 if (!mem_cgroup_handle_oom(mem_over_limit
, gfp_mask
))
1927 return CHARGE_OOM_DIE
;
1929 return CHARGE_RETRY
;
1933 * Unlike exported interface, "oom" parameter is added. if oom==true,
1934 * oom-killer can be invoked.
1936 static int __mem_cgroup_try_charge(struct mm_struct
*mm
,
1938 struct mem_cgroup
**memcg
, bool oom
,
1941 int nr_oom_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
1942 struct mem_cgroup
*mem
= NULL
;
1944 int csize
= max(CHARGE_SIZE
, (unsigned long) page_size
);
1947 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
1948 * in system level. So, allow to go ahead dying process in addition to
1951 if (unlikely(test_thread_flag(TIF_MEMDIE
)
1952 || fatal_signal_pending(current
)))
1956 * We always charge the cgroup the mm_struct belongs to.
1957 * The mm_struct's mem_cgroup changes on task migration if the
1958 * thread group leader migrates. It's possible that mm is not
1959 * set, if so charge the init_mm (happens for pagecache usage).
1964 if (*memcg
) { /* css should be a valid one */
1966 VM_BUG_ON(css_is_removed(&mem
->css
));
1967 if (mem_cgroup_is_root(mem
))
1969 if (page_size
== PAGE_SIZE
&& consume_stock(mem
))
1973 struct task_struct
*p
;
1976 p
= rcu_dereference(mm
->owner
);
1978 * Because we don't have task_lock(), "p" can exit.
1979 * In that case, "mem" can point to root or p can be NULL with
1980 * race with swapoff. Then, we have small risk of mis-accouning.
1981 * But such kind of mis-account by race always happens because
1982 * we don't have cgroup_mutex(). It's overkill and we allo that
1984 * (*) swapoff at el will charge against mm-struct not against
1985 * task-struct. So, mm->owner can be NULL.
1987 mem
= mem_cgroup_from_task(p
);
1988 if (!mem
|| mem_cgroup_is_root(mem
)) {
1992 if (page_size
== PAGE_SIZE
&& consume_stock(mem
)) {
1994 * It seems dagerous to access memcg without css_get().
1995 * But considering how consume_stok works, it's not
1996 * necessary. If consume_stock success, some charges
1997 * from this memcg are cached on this cpu. So, we
1998 * don't need to call css_get()/css_tryget() before
1999 * calling consume_stock().
2004 /* after here, we may be blocked. we need to get refcnt */
2005 if (!css_tryget(&mem
->css
)) {
2015 /* If killed, bypass charge */
2016 if (fatal_signal_pending(current
)) {
2022 if (oom
&& !nr_oom_retries
) {
2024 nr_oom_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
2027 ret
= __mem_cgroup_do_charge(mem
, gfp_mask
, csize
, oom_check
);
2032 case CHARGE_RETRY
: /* not in OOM situation but retry */
2037 case CHARGE_WOULDBLOCK
: /* !__GFP_WAIT */
2040 case CHARGE_NOMEM
: /* OOM routine works */
2045 /* If oom, we never return -ENOMEM */
2048 case CHARGE_OOM_DIE
: /* Killed by OOM Killer */
2052 } while (ret
!= CHARGE_OK
);
2054 if (csize
> page_size
)
2055 refill_stock(mem
, csize
- page_size
);
2069 * Somemtimes we have to undo a charge we got by try_charge().
2070 * This function is for that and do uncharge, put css's refcnt.
2071 * gotten by try_charge().
2073 static void __mem_cgroup_cancel_charge(struct mem_cgroup
*mem
,
2074 unsigned long count
)
2076 if (!mem_cgroup_is_root(mem
)) {
2077 res_counter_uncharge(&mem
->res
, PAGE_SIZE
* count
);
2078 if (do_swap_account
)
2079 res_counter_uncharge(&mem
->memsw
, PAGE_SIZE
* count
);
2083 static void mem_cgroup_cancel_charge(struct mem_cgroup
*mem
,
2086 __mem_cgroup_cancel_charge(mem
, page_size
>> PAGE_SHIFT
);
2090 * A helper function to get mem_cgroup from ID. must be called under
2091 * rcu_read_lock(). The caller must check css_is_removed() or some if
2092 * it's concern. (dropping refcnt from swap can be called against removed
2095 static struct mem_cgroup
*mem_cgroup_lookup(unsigned short id
)
2097 struct cgroup_subsys_state
*css
;
2099 /* ID 0 is unused ID */
2102 css
= css_lookup(&mem_cgroup_subsys
, id
);
2105 return container_of(css
, struct mem_cgroup
, css
);
2108 struct mem_cgroup
*try_get_mem_cgroup_from_page(struct page
*page
)
2110 struct mem_cgroup
*mem
= NULL
;
2111 struct page_cgroup
*pc
;
2115 VM_BUG_ON(!PageLocked(page
));
2117 pc
= lookup_page_cgroup(page
);
2118 lock_page_cgroup(pc
);
2119 if (PageCgroupUsed(pc
)) {
2120 mem
= pc
->mem_cgroup
;
2121 if (mem
&& !css_tryget(&mem
->css
))
2123 } else if (PageSwapCache(page
)) {
2124 ent
.val
= page_private(page
);
2125 id
= lookup_swap_cgroup(ent
);
2127 mem
= mem_cgroup_lookup(id
);
2128 if (mem
&& !css_tryget(&mem
->css
))
2132 unlock_page_cgroup(pc
);
2136 static void __mem_cgroup_commit_charge(struct mem_cgroup
*mem
,
2137 struct page_cgroup
*pc
,
2138 enum charge_type ctype
,
2141 int nr_pages
= page_size
>> PAGE_SHIFT
;
2143 /* try_charge() can return NULL to *memcg, taking care of it. */
2147 lock_page_cgroup(pc
);
2148 if (unlikely(PageCgroupUsed(pc
))) {
2149 unlock_page_cgroup(pc
);
2150 mem_cgroup_cancel_charge(mem
, page_size
);
2154 * we don't need page_cgroup_lock about tail pages, becase they are not
2155 * accessed by any other context at this point.
2157 pc
->mem_cgroup
= mem
;
2159 * We access a page_cgroup asynchronously without lock_page_cgroup().
2160 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2161 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2162 * before USED bit, we need memory barrier here.
2163 * See mem_cgroup_add_lru_list(), etc.
2167 case MEM_CGROUP_CHARGE_TYPE_CACHE
:
2168 case MEM_CGROUP_CHARGE_TYPE_SHMEM
:
2169 SetPageCgroupCache(pc
);
2170 SetPageCgroupUsed(pc
);
2172 case MEM_CGROUP_CHARGE_TYPE_MAPPED
:
2173 ClearPageCgroupCache(pc
);
2174 SetPageCgroupUsed(pc
);
2180 mem_cgroup_charge_statistics(mem
, PageCgroupCache(pc
), nr_pages
);
2181 unlock_page_cgroup(pc
);
2183 * "charge_statistics" updated event counter. Then, check it.
2184 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2185 * if they exceeds softlimit.
2187 memcg_check_events(mem
, pc
->page
);
2190 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2192 #define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
2193 (1 << PCG_ACCT_LRU) | (1 << PCG_MIGRATION))
2195 * Because tail pages are not marked as "used", set it. We're under
2196 * zone->lru_lock, 'splitting on pmd' and compund_lock.
2198 void mem_cgroup_split_huge_fixup(struct page
*head
, struct page
*tail
)
2200 struct page_cgroup
*head_pc
= lookup_page_cgroup(head
);
2201 struct page_cgroup
*tail_pc
= lookup_page_cgroup(tail
);
2202 unsigned long flags
;
2204 if (mem_cgroup_disabled())
2207 * We have no races with charge/uncharge but will have races with
2208 * page state accounting.
2210 move_lock_page_cgroup(head_pc
, &flags
);
2212 tail_pc
->mem_cgroup
= head_pc
->mem_cgroup
;
2213 smp_wmb(); /* see __commit_charge() */
2214 if (PageCgroupAcctLRU(head_pc
)) {
2216 struct mem_cgroup_per_zone
*mz
;
2219 * LRU flags cannot be copied because we need to add tail
2220 *.page to LRU by generic call and our hook will be called.
2221 * We hold lru_lock, then, reduce counter directly.
2223 lru
= page_lru(head
);
2224 mz
= page_cgroup_zoneinfo(head_pc
);
2225 MEM_CGROUP_ZSTAT(mz
, lru
) -= 1;
2227 tail_pc
->flags
= head_pc
->flags
& ~PCGF_NOCOPY_AT_SPLIT
;
2228 move_unlock_page_cgroup(head_pc
, &flags
);
2233 * __mem_cgroup_move_account - move account of the page
2234 * @pc: page_cgroup of the page.
2235 * @from: mem_cgroup which the page is moved from.
2236 * @to: mem_cgroup which the page is moved to. @from != @to.
2237 * @uncharge: whether we should call uncharge and css_put against @from.
2239 * The caller must confirm following.
2240 * - page is not on LRU (isolate_page() is useful.)
2241 * - the pc is locked, used, and ->mem_cgroup points to @from.
2243 * This function doesn't do "charge" nor css_get to new cgroup. It should be
2244 * done by a caller(__mem_cgroup_try_charge would be usefull). If @uncharge is
2245 * true, this function does "uncharge" from old cgroup, but it doesn't if
2246 * @uncharge is false, so a caller should do "uncharge".
2249 static void __mem_cgroup_move_account(struct page_cgroup
*pc
,
2250 struct mem_cgroup
*from
, struct mem_cgroup
*to
, bool uncharge
,
2253 int nr_pages
= charge_size
>> PAGE_SHIFT
;
2255 VM_BUG_ON(from
== to
);
2256 VM_BUG_ON(PageLRU(pc
->page
));
2257 VM_BUG_ON(!page_is_cgroup_locked(pc
));
2258 VM_BUG_ON(!PageCgroupUsed(pc
));
2259 VM_BUG_ON(pc
->mem_cgroup
!= from
);
2261 if (PageCgroupFileMapped(pc
)) {
2262 /* Update mapped_file data for mem_cgroup */
2264 __this_cpu_dec(from
->stat
->count
[MEM_CGROUP_STAT_FILE_MAPPED
]);
2265 __this_cpu_inc(to
->stat
->count
[MEM_CGROUP_STAT_FILE_MAPPED
]);
2268 mem_cgroup_charge_statistics(from
, PageCgroupCache(pc
), -nr_pages
);
2270 /* This is not "cancel", but cancel_charge does all we need. */
2271 mem_cgroup_cancel_charge(from
, charge_size
);
2273 /* caller should have done css_get */
2274 pc
->mem_cgroup
= to
;
2275 mem_cgroup_charge_statistics(to
, PageCgroupCache(pc
), nr_pages
);
2277 * We charges against "to" which may not have any tasks. Then, "to"
2278 * can be under rmdir(). But in current implementation, caller of
2279 * this function is just force_empty() and move charge, so it's
2280 * garanteed that "to" is never removed. So, we don't check rmdir
2286 * check whether the @pc is valid for moving account and call
2287 * __mem_cgroup_move_account()
2289 static int mem_cgroup_move_account(struct page_cgroup
*pc
,
2290 struct mem_cgroup
*from
, struct mem_cgroup
*to
,
2291 bool uncharge
, int charge_size
)
2294 unsigned long flags
;
2296 * The page is isolated from LRU. So, collapse function
2297 * will not handle this page. But page splitting can happen.
2298 * Do this check under compound_page_lock(). The caller should
2301 if ((charge_size
> PAGE_SIZE
) && !PageTransHuge(pc
->page
))
2304 lock_page_cgroup(pc
);
2305 if (PageCgroupUsed(pc
) && pc
->mem_cgroup
== from
) {
2306 move_lock_page_cgroup(pc
, &flags
);
2307 __mem_cgroup_move_account(pc
, from
, to
, uncharge
, charge_size
);
2308 move_unlock_page_cgroup(pc
, &flags
);
2311 unlock_page_cgroup(pc
);
2315 memcg_check_events(to
, pc
->page
);
2316 memcg_check_events(from
, pc
->page
);
2321 * move charges to its parent.
2324 static int mem_cgroup_move_parent(struct page_cgroup
*pc
,
2325 struct mem_cgroup
*child
,
2328 struct page
*page
= pc
->page
;
2329 struct cgroup
*cg
= child
->css
.cgroup
;
2330 struct cgroup
*pcg
= cg
->parent
;
2331 struct mem_cgroup
*parent
;
2332 int page_size
= PAGE_SIZE
;
2333 unsigned long flags
;
2341 if (!get_page_unless_zero(page
))
2343 if (isolate_lru_page(page
))
2346 if (PageTransHuge(page
))
2347 page_size
= HPAGE_SIZE
;
2349 parent
= mem_cgroup_from_cont(pcg
);
2350 ret
= __mem_cgroup_try_charge(NULL
, gfp_mask
,
2351 &parent
, false, page_size
);
2355 if (page_size
> PAGE_SIZE
)
2356 flags
= compound_lock_irqsave(page
);
2358 ret
= mem_cgroup_move_account(pc
, child
, parent
, true, page_size
);
2360 mem_cgroup_cancel_charge(parent
, page_size
);
2362 if (page_size
> PAGE_SIZE
)
2363 compound_unlock_irqrestore(page
, flags
);
2365 putback_lru_page(page
);
2373 * Charge the memory controller for page usage.
2375 * 0 if the charge was successful
2376 * < 0 if the cgroup is over its limit
2378 static int mem_cgroup_charge_common(struct page
*page
, struct mm_struct
*mm
,
2379 gfp_t gfp_mask
, enum charge_type ctype
)
2381 struct mem_cgroup
*mem
= NULL
;
2382 int page_size
= PAGE_SIZE
;
2383 struct page_cgroup
*pc
;
2387 if (PageTransHuge(page
)) {
2388 page_size
<<= compound_order(page
);
2389 VM_BUG_ON(!PageTransHuge(page
));
2391 * Never OOM-kill a process for a huge page. The
2392 * fault handler will fall back to regular pages.
2397 pc
= lookup_page_cgroup(page
);
2398 /* can happen at boot */
2403 ret
= __mem_cgroup_try_charge(mm
, gfp_mask
, &mem
, oom
, page_size
);
2407 __mem_cgroup_commit_charge(mem
, pc
, ctype
, page_size
);
2411 int mem_cgroup_newpage_charge(struct page
*page
,
2412 struct mm_struct
*mm
, gfp_t gfp_mask
)
2414 if (mem_cgroup_disabled())
2417 * If already mapped, we don't have to account.
2418 * If page cache, page->mapping has address_space.
2419 * But page->mapping may have out-of-use anon_vma pointer,
2420 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
2423 if (page_mapped(page
) || (page
->mapping
&& !PageAnon(page
)))
2427 return mem_cgroup_charge_common(page
, mm
, gfp_mask
,
2428 MEM_CGROUP_CHARGE_TYPE_MAPPED
);
2432 __mem_cgroup_commit_charge_swapin(struct page
*page
, struct mem_cgroup
*ptr
,
2433 enum charge_type ctype
);
2435 int mem_cgroup_cache_charge(struct page
*page
, struct mm_struct
*mm
,
2440 if (mem_cgroup_disabled())
2442 if (PageCompound(page
))
2445 * Corner case handling. This is called from add_to_page_cache()
2446 * in usual. But some FS (shmem) precharges this page before calling it
2447 * and call add_to_page_cache() with GFP_NOWAIT.
2449 * For GFP_NOWAIT case, the page may be pre-charged before calling
2450 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
2451 * charge twice. (It works but has to pay a bit larger cost.)
2452 * And when the page is SwapCache, it should take swap information
2453 * into account. This is under lock_page() now.
2455 if (!(gfp_mask
& __GFP_WAIT
)) {
2456 struct page_cgroup
*pc
;
2458 pc
= lookup_page_cgroup(page
);
2461 lock_page_cgroup(pc
);
2462 if (PageCgroupUsed(pc
)) {
2463 unlock_page_cgroup(pc
);
2466 unlock_page_cgroup(pc
);
2472 if (page_is_file_cache(page
))
2473 return mem_cgroup_charge_common(page
, mm
, gfp_mask
,
2474 MEM_CGROUP_CHARGE_TYPE_CACHE
);
2477 if (PageSwapCache(page
)) {
2478 struct mem_cgroup
*mem
= NULL
;
2480 ret
= mem_cgroup_try_charge_swapin(mm
, page
, gfp_mask
, &mem
);
2482 __mem_cgroup_commit_charge_swapin(page
, mem
,
2483 MEM_CGROUP_CHARGE_TYPE_SHMEM
);
2485 ret
= mem_cgroup_charge_common(page
, mm
, gfp_mask
,
2486 MEM_CGROUP_CHARGE_TYPE_SHMEM
);
2492 * While swap-in, try_charge -> commit or cancel, the page is locked.
2493 * And when try_charge() successfully returns, one refcnt to memcg without
2494 * struct page_cgroup is acquired. This refcnt will be consumed by
2495 * "commit()" or removed by "cancel()"
2497 int mem_cgroup_try_charge_swapin(struct mm_struct
*mm
,
2499 gfp_t mask
, struct mem_cgroup
**ptr
)
2501 struct mem_cgroup
*mem
;
2504 if (mem_cgroup_disabled())
2507 if (!do_swap_account
)
2510 * A racing thread's fault, or swapoff, may have already updated
2511 * the pte, and even removed page from swap cache: in those cases
2512 * do_swap_page()'s pte_same() test will fail; but there's also a
2513 * KSM case which does need to charge the page.
2515 if (!PageSwapCache(page
))
2517 mem
= try_get_mem_cgroup_from_page(page
);
2521 ret
= __mem_cgroup_try_charge(NULL
, mask
, ptr
, true, PAGE_SIZE
);
2527 return __mem_cgroup_try_charge(mm
, mask
, ptr
, true, PAGE_SIZE
);
2531 __mem_cgroup_commit_charge_swapin(struct page
*page
, struct mem_cgroup
*ptr
,
2532 enum charge_type ctype
)
2534 struct page_cgroup
*pc
;
2536 if (mem_cgroup_disabled())
2540 cgroup_exclude_rmdir(&ptr
->css
);
2541 pc
= lookup_page_cgroup(page
);
2542 mem_cgroup_lru_del_before_commit_swapcache(page
);
2543 __mem_cgroup_commit_charge(ptr
, pc
, ctype
, PAGE_SIZE
);
2544 mem_cgroup_lru_add_after_commit_swapcache(page
);
2546 * Now swap is on-memory. This means this page may be
2547 * counted both as mem and swap....double count.
2548 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2549 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2550 * may call delete_from_swap_cache() before reach here.
2552 if (do_swap_account
&& PageSwapCache(page
)) {
2553 swp_entry_t ent
= {.val
= page_private(page
)};
2555 struct mem_cgroup
*memcg
;
2557 id
= swap_cgroup_record(ent
, 0);
2559 memcg
= mem_cgroup_lookup(id
);
2562 * This recorded memcg can be obsolete one. So, avoid
2563 * calling css_tryget
2565 if (!mem_cgroup_is_root(memcg
))
2566 res_counter_uncharge(&memcg
->memsw
, PAGE_SIZE
);
2567 mem_cgroup_swap_statistics(memcg
, false);
2568 mem_cgroup_put(memcg
);
2573 * At swapin, we may charge account against cgroup which has no tasks.
2574 * So, rmdir()->pre_destroy() can be called while we do this charge.
2575 * In that case, we need to call pre_destroy() again. check it here.
2577 cgroup_release_and_wakeup_rmdir(&ptr
->css
);
2580 void mem_cgroup_commit_charge_swapin(struct page
*page
, struct mem_cgroup
*ptr
)
2582 __mem_cgroup_commit_charge_swapin(page
, ptr
,
2583 MEM_CGROUP_CHARGE_TYPE_MAPPED
);
2586 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup
*mem
)
2588 if (mem_cgroup_disabled())
2592 mem_cgroup_cancel_charge(mem
, PAGE_SIZE
);
2596 __do_uncharge(struct mem_cgroup
*mem
, const enum charge_type ctype
,
2599 struct memcg_batch_info
*batch
= NULL
;
2600 bool uncharge_memsw
= true;
2601 /* If swapout, usage of swap doesn't decrease */
2602 if (!do_swap_account
|| ctype
== MEM_CGROUP_CHARGE_TYPE_SWAPOUT
)
2603 uncharge_memsw
= false;
2605 batch
= ¤t
->memcg_batch
;
2607 * In usual, we do css_get() when we remember memcg pointer.
2608 * But in this case, we keep res->usage until end of a series of
2609 * uncharges. Then, it's ok to ignore memcg's refcnt.
2614 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2615 * In those cases, all pages freed continously can be expected to be in
2616 * the same cgroup and we have chance to coalesce uncharges.
2617 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2618 * because we want to do uncharge as soon as possible.
2621 if (!batch
->do_batch
|| test_thread_flag(TIF_MEMDIE
))
2622 goto direct_uncharge
;
2624 if (page_size
!= PAGE_SIZE
)
2625 goto direct_uncharge
;
2628 * In typical case, batch->memcg == mem. This means we can
2629 * merge a series of uncharges to an uncharge of res_counter.
2630 * If not, we uncharge res_counter ony by one.
2632 if (batch
->memcg
!= mem
)
2633 goto direct_uncharge
;
2634 /* remember freed charge and uncharge it later */
2635 batch
->bytes
+= PAGE_SIZE
;
2637 batch
->memsw_bytes
+= PAGE_SIZE
;
2640 res_counter_uncharge(&mem
->res
, page_size
);
2642 res_counter_uncharge(&mem
->memsw
, page_size
);
2643 if (unlikely(batch
->memcg
!= mem
))
2644 memcg_oom_recover(mem
);
2649 * uncharge if !page_mapped(page)
2651 static struct mem_cgroup
*
2652 __mem_cgroup_uncharge_common(struct page
*page
, enum charge_type ctype
)
2655 struct page_cgroup
*pc
;
2656 struct mem_cgroup
*mem
= NULL
;
2657 int page_size
= PAGE_SIZE
;
2659 if (mem_cgroup_disabled())
2662 if (PageSwapCache(page
))
2665 if (PageTransHuge(page
)) {
2666 page_size
<<= compound_order(page
);
2667 VM_BUG_ON(!PageTransHuge(page
));
2670 count
= page_size
>> PAGE_SHIFT
;
2672 * Check if our page_cgroup is valid
2674 pc
= lookup_page_cgroup(page
);
2675 if (unlikely(!pc
|| !PageCgroupUsed(pc
)))
2678 lock_page_cgroup(pc
);
2680 mem
= pc
->mem_cgroup
;
2682 if (!PageCgroupUsed(pc
))
2686 case MEM_CGROUP_CHARGE_TYPE_MAPPED
:
2687 case MEM_CGROUP_CHARGE_TYPE_DROP
:
2688 /* See mem_cgroup_prepare_migration() */
2689 if (page_mapped(page
) || PageCgroupMigration(pc
))
2692 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT
:
2693 if (!PageAnon(page
)) { /* Shared memory */
2694 if (page
->mapping
&& !page_is_file_cache(page
))
2696 } else if (page_mapped(page
)) /* Anon */
2703 mem_cgroup_charge_statistics(mem
, PageCgroupCache(pc
), -count
);
2705 ClearPageCgroupUsed(pc
);
2707 * pc->mem_cgroup is not cleared here. It will be accessed when it's
2708 * freed from LRU. This is safe because uncharged page is expected not
2709 * to be reused (freed soon). Exception is SwapCache, it's handled by
2710 * special functions.
2713 unlock_page_cgroup(pc
);
2715 * even after unlock, we have mem->res.usage here and this memcg
2716 * will never be freed.
2718 memcg_check_events(mem
, page
);
2719 if (do_swap_account
&& ctype
== MEM_CGROUP_CHARGE_TYPE_SWAPOUT
) {
2720 mem_cgroup_swap_statistics(mem
, true);
2721 mem_cgroup_get(mem
);
2723 if (!mem_cgroup_is_root(mem
))
2724 __do_uncharge(mem
, ctype
, page_size
);
2729 unlock_page_cgroup(pc
);
2733 void mem_cgroup_uncharge_page(struct page
*page
)
2736 if (page_mapped(page
))
2738 if (page
->mapping
&& !PageAnon(page
))
2740 __mem_cgroup_uncharge_common(page
, MEM_CGROUP_CHARGE_TYPE_MAPPED
);
2743 void mem_cgroup_uncharge_cache_page(struct page
*page
)
2745 VM_BUG_ON(page_mapped(page
));
2746 VM_BUG_ON(page
->mapping
);
2747 __mem_cgroup_uncharge_common(page
, MEM_CGROUP_CHARGE_TYPE_CACHE
);
2751 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
2752 * In that cases, pages are freed continuously and we can expect pages
2753 * are in the same memcg. All these calls itself limits the number of
2754 * pages freed at once, then uncharge_start/end() is called properly.
2755 * This may be called prural(2) times in a context,
2758 void mem_cgroup_uncharge_start(void)
2760 current
->memcg_batch
.do_batch
++;
2761 /* We can do nest. */
2762 if (current
->memcg_batch
.do_batch
== 1) {
2763 current
->memcg_batch
.memcg
= NULL
;
2764 current
->memcg_batch
.bytes
= 0;
2765 current
->memcg_batch
.memsw_bytes
= 0;
2769 void mem_cgroup_uncharge_end(void)
2771 struct memcg_batch_info
*batch
= ¤t
->memcg_batch
;
2773 if (!batch
->do_batch
)
2777 if (batch
->do_batch
) /* If stacked, do nothing. */
2783 * This "batch->memcg" is valid without any css_get/put etc...
2784 * bacause we hide charges behind us.
2787 res_counter_uncharge(&batch
->memcg
->res
, batch
->bytes
);
2788 if (batch
->memsw_bytes
)
2789 res_counter_uncharge(&batch
->memcg
->memsw
, batch
->memsw_bytes
);
2790 memcg_oom_recover(batch
->memcg
);
2791 /* forget this pointer (for sanity check) */
2792 batch
->memcg
= NULL
;
2797 * called after __delete_from_swap_cache() and drop "page" account.
2798 * memcg information is recorded to swap_cgroup of "ent"
2801 mem_cgroup_uncharge_swapcache(struct page
*page
, swp_entry_t ent
, bool swapout
)
2803 struct mem_cgroup
*memcg
;
2804 int ctype
= MEM_CGROUP_CHARGE_TYPE_SWAPOUT
;
2806 if (!swapout
) /* this was a swap cache but the swap is unused ! */
2807 ctype
= MEM_CGROUP_CHARGE_TYPE_DROP
;
2809 memcg
= __mem_cgroup_uncharge_common(page
, ctype
);
2812 * record memcg information, if swapout && memcg != NULL,
2813 * mem_cgroup_get() was called in uncharge().
2815 if (do_swap_account
&& swapout
&& memcg
)
2816 swap_cgroup_record(ent
, css_id(&memcg
->css
));
2820 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2822 * called from swap_entry_free(). remove record in swap_cgroup and
2823 * uncharge "memsw" account.
2825 void mem_cgroup_uncharge_swap(swp_entry_t ent
)
2827 struct mem_cgroup
*memcg
;
2830 if (!do_swap_account
)
2833 id
= swap_cgroup_record(ent
, 0);
2835 memcg
= mem_cgroup_lookup(id
);
2838 * We uncharge this because swap is freed.
2839 * This memcg can be obsolete one. We avoid calling css_tryget
2841 if (!mem_cgroup_is_root(memcg
))
2842 res_counter_uncharge(&memcg
->memsw
, PAGE_SIZE
);
2843 mem_cgroup_swap_statistics(memcg
, false);
2844 mem_cgroup_put(memcg
);
2850 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2851 * @entry: swap entry to be moved
2852 * @from: mem_cgroup which the entry is moved from
2853 * @to: mem_cgroup which the entry is moved to
2854 * @need_fixup: whether we should fixup res_counters and refcounts.
2856 * It succeeds only when the swap_cgroup's record for this entry is the same
2857 * as the mem_cgroup's id of @from.
2859 * Returns 0 on success, -EINVAL on failure.
2861 * The caller must have charged to @to, IOW, called res_counter_charge() about
2862 * both res and memsw, and called css_get().
2864 static int mem_cgroup_move_swap_account(swp_entry_t entry
,
2865 struct mem_cgroup
*from
, struct mem_cgroup
*to
, bool need_fixup
)
2867 unsigned short old_id
, new_id
;
2869 old_id
= css_id(&from
->css
);
2870 new_id
= css_id(&to
->css
);
2872 if (swap_cgroup_cmpxchg(entry
, old_id
, new_id
) == old_id
) {
2873 mem_cgroup_swap_statistics(from
, false);
2874 mem_cgroup_swap_statistics(to
, true);
2876 * This function is only called from task migration context now.
2877 * It postpones res_counter and refcount handling till the end
2878 * of task migration(mem_cgroup_clear_mc()) for performance
2879 * improvement. But we cannot postpone mem_cgroup_get(to)
2880 * because if the process that has been moved to @to does
2881 * swap-in, the refcount of @to might be decreased to 0.
2885 if (!mem_cgroup_is_root(from
))
2886 res_counter_uncharge(&from
->memsw
, PAGE_SIZE
);
2887 mem_cgroup_put(from
);
2889 * we charged both to->res and to->memsw, so we should
2892 if (!mem_cgroup_is_root(to
))
2893 res_counter_uncharge(&to
->res
, PAGE_SIZE
);
2900 static inline int mem_cgroup_move_swap_account(swp_entry_t entry
,
2901 struct mem_cgroup
*from
, struct mem_cgroup
*to
, bool need_fixup
)
2908 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
2911 int mem_cgroup_prepare_migration(struct page
*page
,
2912 struct page
*newpage
, struct mem_cgroup
**ptr
, gfp_t gfp_mask
)
2914 struct page_cgroup
*pc
;
2915 struct mem_cgroup
*mem
= NULL
;
2916 enum charge_type ctype
;
2919 VM_BUG_ON(PageTransHuge(page
));
2920 if (mem_cgroup_disabled())
2923 pc
= lookup_page_cgroup(page
);
2924 lock_page_cgroup(pc
);
2925 if (PageCgroupUsed(pc
)) {
2926 mem
= pc
->mem_cgroup
;
2929 * At migrating an anonymous page, its mapcount goes down
2930 * to 0 and uncharge() will be called. But, even if it's fully
2931 * unmapped, migration may fail and this page has to be
2932 * charged again. We set MIGRATION flag here and delay uncharge
2933 * until end_migration() is called
2935 * Corner Case Thinking
2937 * When the old page was mapped as Anon and it's unmap-and-freed
2938 * while migration was ongoing.
2939 * If unmap finds the old page, uncharge() of it will be delayed
2940 * until end_migration(). If unmap finds a new page, it's
2941 * uncharged when it make mapcount to be 1->0. If unmap code
2942 * finds swap_migration_entry, the new page will not be mapped
2943 * and end_migration() will find it(mapcount==0).
2946 * When the old page was mapped but migraion fails, the kernel
2947 * remaps it. A charge for it is kept by MIGRATION flag even
2948 * if mapcount goes down to 0. We can do remap successfully
2949 * without charging it again.
2952 * The "old" page is under lock_page() until the end of
2953 * migration, so, the old page itself will not be swapped-out.
2954 * If the new page is swapped out before end_migraton, our
2955 * hook to usual swap-out path will catch the event.
2958 SetPageCgroupMigration(pc
);
2960 unlock_page_cgroup(pc
);
2962 * If the page is not charged at this point,
2969 ret
= __mem_cgroup_try_charge(NULL
, gfp_mask
, ptr
, false, PAGE_SIZE
);
2970 css_put(&mem
->css
);/* drop extra refcnt */
2971 if (ret
|| *ptr
== NULL
) {
2972 if (PageAnon(page
)) {
2973 lock_page_cgroup(pc
);
2974 ClearPageCgroupMigration(pc
);
2975 unlock_page_cgroup(pc
);
2977 * The old page may be fully unmapped while we kept it.
2979 mem_cgroup_uncharge_page(page
);
2984 * We charge new page before it's used/mapped. So, even if unlock_page()
2985 * is called before end_migration, we can catch all events on this new
2986 * page. In the case new page is migrated but not remapped, new page's
2987 * mapcount will be finally 0 and we call uncharge in end_migration().
2989 pc
= lookup_page_cgroup(newpage
);
2991 ctype
= MEM_CGROUP_CHARGE_TYPE_MAPPED
;
2992 else if (page_is_file_cache(page
))
2993 ctype
= MEM_CGROUP_CHARGE_TYPE_CACHE
;
2995 ctype
= MEM_CGROUP_CHARGE_TYPE_SHMEM
;
2996 __mem_cgroup_commit_charge(mem
, pc
, ctype
, PAGE_SIZE
);
3000 /* remove redundant charge if migration failed*/
3001 void mem_cgroup_end_migration(struct mem_cgroup
*mem
,
3002 struct page
*oldpage
, struct page
*newpage
, bool migration_ok
)
3004 struct page
*used
, *unused
;
3005 struct page_cgroup
*pc
;
3009 /* blocks rmdir() */
3010 cgroup_exclude_rmdir(&mem
->css
);
3011 if (!migration_ok
) {
3019 * We disallowed uncharge of pages under migration because mapcount
3020 * of the page goes down to zero, temporarly.
3021 * Clear the flag and check the page should be charged.
3023 pc
= lookup_page_cgroup(oldpage
);
3024 lock_page_cgroup(pc
);
3025 ClearPageCgroupMigration(pc
);
3026 unlock_page_cgroup(pc
);
3028 __mem_cgroup_uncharge_common(unused
, MEM_CGROUP_CHARGE_TYPE_FORCE
);
3031 * If a page is a file cache, radix-tree replacement is very atomic
3032 * and we can skip this check. When it was an Anon page, its mapcount
3033 * goes down to 0. But because we added MIGRATION flage, it's not
3034 * uncharged yet. There are several case but page->mapcount check
3035 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3036 * check. (see prepare_charge() also)
3039 mem_cgroup_uncharge_page(used
);
3041 * At migration, we may charge account against cgroup which has no
3043 * So, rmdir()->pre_destroy() can be called while we do this charge.
3044 * In that case, we need to call pre_destroy() again. check it here.
3046 cgroup_release_and_wakeup_rmdir(&mem
->css
);
3050 * A call to try to shrink memory usage on charge failure at shmem's swapin.
3051 * Calling hierarchical_reclaim is not enough because we should update
3052 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
3053 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
3054 * not from the memcg which this page would be charged to.
3055 * try_charge_swapin does all of these works properly.
3057 int mem_cgroup_shmem_charge_fallback(struct page
*page
,
3058 struct mm_struct
*mm
,
3061 struct mem_cgroup
*mem
= NULL
;
3064 if (mem_cgroup_disabled())
3067 ret
= mem_cgroup_try_charge_swapin(mm
, page
, gfp_mask
, &mem
);
3069 mem_cgroup_cancel_charge_swapin(mem
); /* it does !mem check */
3074 static DEFINE_MUTEX(set_limit_mutex
);
3076 static int mem_cgroup_resize_limit(struct mem_cgroup
*memcg
,
3077 unsigned long long val
)
3080 u64 memswlimit
, memlimit
;
3082 int children
= mem_cgroup_count_children(memcg
);
3083 u64 curusage
, oldusage
;
3087 * For keeping hierarchical_reclaim simple, how long we should retry
3088 * is depends on callers. We set our retry-count to be function
3089 * of # of children which we should visit in this loop.
3091 retry_count
= MEM_CGROUP_RECLAIM_RETRIES
* children
;
3093 oldusage
= res_counter_read_u64(&memcg
->res
, RES_USAGE
);
3096 while (retry_count
) {
3097 if (signal_pending(current
)) {
3102 * Rather than hide all in some function, I do this in
3103 * open coded manner. You see what this really does.
3104 * We have to guarantee mem->res.limit < mem->memsw.limit.
3106 mutex_lock(&set_limit_mutex
);
3107 memswlimit
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
3108 if (memswlimit
< val
) {
3110 mutex_unlock(&set_limit_mutex
);
3114 memlimit
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
3118 ret
= res_counter_set_limit(&memcg
->res
, val
);
3120 if (memswlimit
== val
)
3121 memcg
->memsw_is_minimum
= true;
3123 memcg
->memsw_is_minimum
= false;
3125 mutex_unlock(&set_limit_mutex
);
3130 mem_cgroup_hierarchical_reclaim(memcg
, NULL
, GFP_KERNEL
,
3131 MEM_CGROUP_RECLAIM_SHRINK
);
3132 curusage
= res_counter_read_u64(&memcg
->res
, RES_USAGE
);
3133 /* Usage is reduced ? */
3134 if (curusage
>= oldusage
)
3137 oldusage
= curusage
;
3139 if (!ret
&& enlarge
)
3140 memcg_oom_recover(memcg
);
3145 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup
*memcg
,
3146 unsigned long long val
)
3149 u64 memlimit
, memswlimit
, oldusage
, curusage
;
3150 int children
= mem_cgroup_count_children(memcg
);
3154 /* see mem_cgroup_resize_res_limit */
3155 retry_count
= children
* MEM_CGROUP_RECLAIM_RETRIES
;
3156 oldusage
= res_counter_read_u64(&memcg
->memsw
, RES_USAGE
);
3157 while (retry_count
) {
3158 if (signal_pending(current
)) {
3163 * Rather than hide all in some function, I do this in
3164 * open coded manner. You see what this really does.
3165 * We have to guarantee mem->res.limit < mem->memsw.limit.
3167 mutex_lock(&set_limit_mutex
);
3168 memlimit
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
3169 if (memlimit
> val
) {
3171 mutex_unlock(&set_limit_mutex
);
3174 memswlimit
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
3175 if (memswlimit
< val
)
3177 ret
= res_counter_set_limit(&memcg
->memsw
, val
);
3179 if (memlimit
== val
)
3180 memcg
->memsw_is_minimum
= true;
3182 memcg
->memsw_is_minimum
= false;
3184 mutex_unlock(&set_limit_mutex
);
3189 mem_cgroup_hierarchical_reclaim(memcg
, NULL
, GFP_KERNEL
,
3190 MEM_CGROUP_RECLAIM_NOSWAP
|
3191 MEM_CGROUP_RECLAIM_SHRINK
);
3192 curusage
= res_counter_read_u64(&memcg
->memsw
, RES_USAGE
);
3193 /* Usage is reduced ? */
3194 if (curusage
>= oldusage
)
3197 oldusage
= curusage
;
3199 if (!ret
&& enlarge
)
3200 memcg_oom_recover(memcg
);
3204 unsigned long mem_cgroup_soft_limit_reclaim(struct zone
*zone
, int order
,
3207 unsigned long nr_reclaimed
= 0;
3208 struct mem_cgroup_per_zone
*mz
, *next_mz
= NULL
;
3209 unsigned long reclaimed
;
3211 struct mem_cgroup_tree_per_zone
*mctz
;
3212 unsigned long long excess
;
3217 mctz
= soft_limit_tree_node_zone(zone_to_nid(zone
), zone_idx(zone
));
3219 * This loop can run a while, specially if mem_cgroup's continuously
3220 * keep exceeding their soft limit and putting the system under
3227 mz
= mem_cgroup_largest_soft_limit_node(mctz
);
3231 reclaimed
= mem_cgroup_hierarchical_reclaim(mz
->mem
, zone
,
3233 MEM_CGROUP_RECLAIM_SOFT
);
3234 nr_reclaimed
+= reclaimed
;
3235 spin_lock(&mctz
->lock
);
3238 * If we failed to reclaim anything from this memory cgroup
3239 * it is time to move on to the next cgroup
3245 * Loop until we find yet another one.
3247 * By the time we get the soft_limit lock
3248 * again, someone might have aded the
3249 * group back on the RB tree. Iterate to
3250 * make sure we get a different mem.
3251 * mem_cgroup_largest_soft_limit_node returns
3252 * NULL if no other cgroup is present on
3256 __mem_cgroup_largest_soft_limit_node(mctz
);
3257 if (next_mz
== mz
) {
3258 css_put(&next_mz
->mem
->css
);
3260 } else /* next_mz == NULL or other memcg */
3264 __mem_cgroup_remove_exceeded(mz
->mem
, mz
, mctz
);
3265 excess
= res_counter_soft_limit_excess(&mz
->mem
->res
);
3267 * One school of thought says that we should not add
3268 * back the node to the tree if reclaim returns 0.
3269 * But our reclaim could return 0, simply because due
3270 * to priority we are exposing a smaller subset of
3271 * memory to reclaim from. Consider this as a longer
3274 /* If excess == 0, no tree ops */
3275 __mem_cgroup_insert_exceeded(mz
->mem
, mz
, mctz
, excess
);
3276 spin_unlock(&mctz
->lock
);
3277 css_put(&mz
->mem
->css
);
3280 * Could not reclaim anything and there are no more
3281 * mem cgroups to try or we seem to be looping without
3282 * reclaiming anything.
3284 if (!nr_reclaimed
&&
3286 loop
> MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS
))
3288 } while (!nr_reclaimed
);
3290 css_put(&next_mz
->mem
->css
);
3291 return nr_reclaimed
;
3295 * This routine traverse page_cgroup in given list and drop them all.
3296 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3298 static int mem_cgroup_force_empty_list(struct mem_cgroup
*mem
,
3299 int node
, int zid
, enum lru_list lru
)
3302 struct mem_cgroup_per_zone
*mz
;
3303 struct page_cgroup
*pc
, *busy
;
3304 unsigned long flags
, loop
;
3305 struct list_head
*list
;
3308 zone
= &NODE_DATA(node
)->node_zones
[zid
];
3309 mz
= mem_cgroup_zoneinfo(mem
, node
, zid
);
3310 list
= &mz
->lists
[lru
];
3312 loop
= MEM_CGROUP_ZSTAT(mz
, lru
);
3313 /* give some margin against EBUSY etc...*/
3318 spin_lock_irqsave(&zone
->lru_lock
, flags
);
3319 if (list_empty(list
)) {
3320 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
3323 pc
= list_entry(list
->prev
, struct page_cgroup
, lru
);
3325 list_move(&pc
->lru
, list
);
3327 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
3330 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
3332 ret
= mem_cgroup_move_parent(pc
, mem
, GFP_KERNEL
);
3336 if (ret
== -EBUSY
|| ret
== -EINVAL
) {
3337 /* found lock contention or "pc" is obsolete. */
3344 if (!ret
&& !list_empty(list
))
3350 * make mem_cgroup's charge to be 0 if there is no task.
3351 * This enables deleting this mem_cgroup.
3353 static int mem_cgroup_force_empty(struct mem_cgroup
*mem
, bool free_all
)
3356 int node
, zid
, shrink
;
3357 int nr_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
3358 struct cgroup
*cgrp
= mem
->css
.cgroup
;
3363 /* should free all ? */
3369 if (cgroup_task_count(cgrp
) || !list_empty(&cgrp
->children
))
3372 if (signal_pending(current
))
3374 /* This is for making all *used* pages to be on LRU. */
3375 lru_add_drain_all();
3376 drain_all_stock_sync();
3378 mem_cgroup_start_move(mem
);
3379 for_each_node_state(node
, N_HIGH_MEMORY
) {
3380 for (zid
= 0; !ret
&& zid
< MAX_NR_ZONES
; zid
++) {
3383 ret
= mem_cgroup_force_empty_list(mem
,
3392 mem_cgroup_end_move(mem
);
3393 memcg_oom_recover(mem
);
3394 /* it seems parent cgroup doesn't have enough mem */
3398 /* "ret" should also be checked to ensure all lists are empty. */
3399 } while (mem
->res
.usage
> 0 || ret
);
3405 /* returns EBUSY if there is a task or if we come here twice. */
3406 if (cgroup_task_count(cgrp
) || !list_empty(&cgrp
->children
) || shrink
) {
3410 /* we call try-to-free pages for make this cgroup empty */
3411 lru_add_drain_all();
3412 /* try to free all pages in this cgroup */
3414 while (nr_retries
&& mem
->res
.usage
> 0) {
3417 if (signal_pending(current
)) {
3421 progress
= try_to_free_mem_cgroup_pages(mem
, GFP_KERNEL
,
3422 false, get_swappiness(mem
));
3425 /* maybe some writeback is necessary */
3426 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
3431 /* try move_account...there may be some *locked* pages. */
3435 int mem_cgroup_force_empty_write(struct cgroup
*cont
, unsigned int event
)
3437 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont
), true);
3441 static u64
mem_cgroup_hierarchy_read(struct cgroup
*cont
, struct cftype
*cft
)
3443 return mem_cgroup_from_cont(cont
)->use_hierarchy
;
3446 static int mem_cgroup_hierarchy_write(struct cgroup
*cont
, struct cftype
*cft
,
3450 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cont
);
3451 struct cgroup
*parent
= cont
->parent
;
3452 struct mem_cgroup
*parent_mem
= NULL
;
3455 parent_mem
= mem_cgroup_from_cont(parent
);
3459 * If parent's use_hierarchy is set, we can't make any modifications
3460 * in the child subtrees. If it is unset, then the change can
3461 * occur, provided the current cgroup has no children.
3463 * For the root cgroup, parent_mem is NULL, we allow value to be
3464 * set if there are no children.
3466 if ((!parent_mem
|| !parent_mem
->use_hierarchy
) &&
3467 (val
== 1 || val
== 0)) {
3468 if (list_empty(&cont
->children
))
3469 mem
->use_hierarchy
= val
;
3480 static u64
mem_cgroup_get_recursive_idx_stat(struct mem_cgroup
*mem
,
3481 enum mem_cgroup_stat_index idx
)
3483 struct mem_cgroup
*iter
;
3486 /* each per cpu's value can be minus.Then, use s64 */
3487 for_each_mem_cgroup_tree(iter
, mem
)
3488 val
+= mem_cgroup_read_stat(iter
, idx
);
3490 if (val
< 0) /* race ? */
3495 static inline u64
mem_cgroup_usage(struct mem_cgroup
*mem
, bool swap
)
3499 if (!mem_cgroup_is_root(mem
)) {
3501 return res_counter_read_u64(&mem
->res
, RES_USAGE
);
3503 return res_counter_read_u64(&mem
->memsw
, RES_USAGE
);
3506 val
= mem_cgroup_get_recursive_idx_stat(mem
, MEM_CGROUP_STAT_CACHE
);
3507 val
+= mem_cgroup_get_recursive_idx_stat(mem
, MEM_CGROUP_STAT_RSS
);
3510 val
+= mem_cgroup_get_recursive_idx_stat(mem
,
3511 MEM_CGROUP_STAT_SWAPOUT
);
3513 return val
<< PAGE_SHIFT
;
3516 static u64
mem_cgroup_read(struct cgroup
*cont
, struct cftype
*cft
)
3518 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cont
);
3522 type
= MEMFILE_TYPE(cft
->private);
3523 name
= MEMFILE_ATTR(cft
->private);
3526 if (name
== RES_USAGE
)
3527 val
= mem_cgroup_usage(mem
, false);
3529 val
= res_counter_read_u64(&mem
->res
, name
);
3532 if (name
== RES_USAGE
)
3533 val
= mem_cgroup_usage(mem
, true);
3535 val
= res_counter_read_u64(&mem
->memsw
, name
);
3544 * The user of this function is...
3547 static int mem_cgroup_write(struct cgroup
*cont
, struct cftype
*cft
,
3550 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cont
);
3552 unsigned long long val
;
3555 type
= MEMFILE_TYPE(cft
->private);
3556 name
= MEMFILE_ATTR(cft
->private);
3559 if (mem_cgroup_is_root(memcg
)) { /* Can't set limit on root */
3563 /* This function does all necessary parse...reuse it */
3564 ret
= res_counter_memparse_write_strategy(buffer
, &val
);
3568 ret
= mem_cgroup_resize_limit(memcg
, val
);
3570 ret
= mem_cgroup_resize_memsw_limit(memcg
, val
);
3572 case RES_SOFT_LIMIT
:
3573 ret
= res_counter_memparse_write_strategy(buffer
, &val
);
3577 * For memsw, soft limits are hard to implement in terms
3578 * of semantics, for now, we support soft limits for
3579 * control without swap
3582 ret
= res_counter_set_soft_limit(&memcg
->res
, val
);
3587 ret
= -EINVAL
; /* should be BUG() ? */
3593 static void memcg_get_hierarchical_limit(struct mem_cgroup
*memcg
,
3594 unsigned long long *mem_limit
, unsigned long long *memsw_limit
)
3596 struct cgroup
*cgroup
;
3597 unsigned long long min_limit
, min_memsw_limit
, tmp
;
3599 min_limit
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
3600 min_memsw_limit
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
3601 cgroup
= memcg
->css
.cgroup
;
3602 if (!memcg
->use_hierarchy
)
3605 while (cgroup
->parent
) {
3606 cgroup
= cgroup
->parent
;
3607 memcg
= mem_cgroup_from_cont(cgroup
);
3608 if (!memcg
->use_hierarchy
)
3610 tmp
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
3611 min_limit
= min(min_limit
, tmp
);
3612 tmp
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
3613 min_memsw_limit
= min(min_memsw_limit
, tmp
);
3616 *mem_limit
= min_limit
;
3617 *memsw_limit
= min_memsw_limit
;
3621 static int mem_cgroup_reset(struct cgroup
*cont
, unsigned int event
)
3623 struct mem_cgroup
*mem
;
3626 mem
= mem_cgroup_from_cont(cont
);
3627 type
= MEMFILE_TYPE(event
);
3628 name
= MEMFILE_ATTR(event
);
3632 res_counter_reset_max(&mem
->res
);
3634 res_counter_reset_max(&mem
->memsw
);
3638 res_counter_reset_failcnt(&mem
->res
);
3640 res_counter_reset_failcnt(&mem
->memsw
);
3647 static u64
mem_cgroup_move_charge_read(struct cgroup
*cgrp
,
3650 return mem_cgroup_from_cont(cgrp
)->move_charge_at_immigrate
;
3654 static int mem_cgroup_move_charge_write(struct cgroup
*cgrp
,
3655 struct cftype
*cft
, u64 val
)
3657 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cgrp
);
3659 if (val
>= (1 << NR_MOVE_TYPE
))
3662 * We check this value several times in both in can_attach() and
3663 * attach(), so we need cgroup lock to prevent this value from being
3667 mem
->move_charge_at_immigrate
= val
;
3673 static int mem_cgroup_move_charge_write(struct cgroup
*cgrp
,
3674 struct cftype
*cft
, u64 val
)
3681 /* For read statistics */
3697 struct mcs_total_stat
{
3698 s64 stat
[NR_MCS_STAT
];
3704 } memcg_stat_strings
[NR_MCS_STAT
] = {
3705 {"cache", "total_cache"},
3706 {"rss", "total_rss"},
3707 {"mapped_file", "total_mapped_file"},
3708 {"pgpgin", "total_pgpgin"},
3709 {"pgpgout", "total_pgpgout"},
3710 {"swap", "total_swap"},
3711 {"inactive_anon", "total_inactive_anon"},
3712 {"active_anon", "total_active_anon"},
3713 {"inactive_file", "total_inactive_file"},
3714 {"active_file", "total_active_file"},
3715 {"unevictable", "total_unevictable"}
3720 mem_cgroup_get_local_stat(struct mem_cgroup
*mem
, struct mcs_total_stat
*s
)
3725 val
= mem_cgroup_read_stat(mem
, MEM_CGROUP_STAT_CACHE
);
3726 s
->stat
[MCS_CACHE
] += val
* PAGE_SIZE
;
3727 val
= mem_cgroup_read_stat(mem
, MEM_CGROUP_STAT_RSS
);
3728 s
->stat
[MCS_RSS
] += val
* PAGE_SIZE
;
3729 val
= mem_cgroup_read_stat(mem
, MEM_CGROUP_STAT_FILE_MAPPED
);
3730 s
->stat
[MCS_FILE_MAPPED
] += val
* PAGE_SIZE
;
3731 val
= mem_cgroup_read_stat(mem
, MEM_CGROUP_STAT_PGPGIN_COUNT
);
3732 s
->stat
[MCS_PGPGIN
] += val
;
3733 val
= mem_cgroup_read_stat(mem
, MEM_CGROUP_STAT_PGPGOUT_COUNT
);
3734 s
->stat
[MCS_PGPGOUT
] += val
;
3735 if (do_swap_account
) {
3736 val
= mem_cgroup_read_stat(mem
, MEM_CGROUP_STAT_SWAPOUT
);
3737 s
->stat
[MCS_SWAP
] += val
* PAGE_SIZE
;
3741 val
= mem_cgroup_get_local_zonestat(mem
, LRU_INACTIVE_ANON
);
3742 s
->stat
[MCS_INACTIVE_ANON
] += val
* PAGE_SIZE
;
3743 val
= mem_cgroup_get_local_zonestat(mem
, LRU_ACTIVE_ANON
);
3744 s
->stat
[MCS_ACTIVE_ANON
] += val
* PAGE_SIZE
;
3745 val
= mem_cgroup_get_local_zonestat(mem
, LRU_INACTIVE_FILE
);
3746 s
->stat
[MCS_INACTIVE_FILE
] += val
* PAGE_SIZE
;
3747 val
= mem_cgroup_get_local_zonestat(mem
, LRU_ACTIVE_FILE
);
3748 s
->stat
[MCS_ACTIVE_FILE
] += val
* PAGE_SIZE
;
3749 val
= mem_cgroup_get_local_zonestat(mem
, LRU_UNEVICTABLE
);
3750 s
->stat
[MCS_UNEVICTABLE
] += val
* PAGE_SIZE
;
3754 mem_cgroup_get_total_stat(struct mem_cgroup
*mem
, struct mcs_total_stat
*s
)
3756 struct mem_cgroup
*iter
;
3758 for_each_mem_cgroup_tree(iter
, mem
)
3759 mem_cgroup_get_local_stat(iter
, s
);
3762 static int mem_control_stat_show(struct cgroup
*cont
, struct cftype
*cft
,
3763 struct cgroup_map_cb
*cb
)
3765 struct mem_cgroup
*mem_cont
= mem_cgroup_from_cont(cont
);
3766 struct mcs_total_stat mystat
;
3769 memset(&mystat
, 0, sizeof(mystat
));
3770 mem_cgroup_get_local_stat(mem_cont
, &mystat
);
3772 for (i
= 0; i
< NR_MCS_STAT
; i
++) {
3773 if (i
== MCS_SWAP
&& !do_swap_account
)
3775 cb
->fill(cb
, memcg_stat_strings
[i
].local_name
, mystat
.stat
[i
]);
3778 /* Hierarchical information */
3780 unsigned long long limit
, memsw_limit
;
3781 memcg_get_hierarchical_limit(mem_cont
, &limit
, &memsw_limit
);
3782 cb
->fill(cb
, "hierarchical_memory_limit", limit
);
3783 if (do_swap_account
)
3784 cb
->fill(cb
, "hierarchical_memsw_limit", memsw_limit
);
3787 memset(&mystat
, 0, sizeof(mystat
));
3788 mem_cgroup_get_total_stat(mem_cont
, &mystat
);
3789 for (i
= 0; i
< NR_MCS_STAT
; i
++) {
3790 if (i
== MCS_SWAP
&& !do_swap_account
)
3792 cb
->fill(cb
, memcg_stat_strings
[i
].total_name
, mystat
.stat
[i
]);
3795 #ifdef CONFIG_DEBUG_VM
3796 cb
->fill(cb
, "inactive_ratio", calc_inactive_ratio(mem_cont
, NULL
));
3800 struct mem_cgroup_per_zone
*mz
;
3801 unsigned long recent_rotated
[2] = {0, 0};
3802 unsigned long recent_scanned
[2] = {0, 0};
3804 for_each_online_node(nid
)
3805 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
3806 mz
= mem_cgroup_zoneinfo(mem_cont
, nid
, zid
);
3808 recent_rotated
[0] +=
3809 mz
->reclaim_stat
.recent_rotated
[0];
3810 recent_rotated
[1] +=
3811 mz
->reclaim_stat
.recent_rotated
[1];
3812 recent_scanned
[0] +=
3813 mz
->reclaim_stat
.recent_scanned
[0];
3814 recent_scanned
[1] +=
3815 mz
->reclaim_stat
.recent_scanned
[1];
3817 cb
->fill(cb
, "recent_rotated_anon", recent_rotated
[0]);
3818 cb
->fill(cb
, "recent_rotated_file", recent_rotated
[1]);
3819 cb
->fill(cb
, "recent_scanned_anon", recent_scanned
[0]);
3820 cb
->fill(cb
, "recent_scanned_file", recent_scanned
[1]);
3827 static u64
mem_cgroup_swappiness_read(struct cgroup
*cgrp
, struct cftype
*cft
)
3829 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
3831 return get_swappiness(memcg
);
3834 static int mem_cgroup_swappiness_write(struct cgroup
*cgrp
, struct cftype
*cft
,
3837 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
3838 struct mem_cgroup
*parent
;
3843 if (cgrp
->parent
== NULL
)
3846 parent
= mem_cgroup_from_cont(cgrp
->parent
);
3850 /* If under hierarchy, only empty-root can set this value */
3851 if ((parent
->use_hierarchy
) ||
3852 (memcg
->use_hierarchy
&& !list_empty(&cgrp
->children
))) {
3857 spin_lock(&memcg
->reclaim_param_lock
);
3858 memcg
->swappiness
= val
;
3859 spin_unlock(&memcg
->reclaim_param_lock
);
3866 static void __mem_cgroup_threshold(struct mem_cgroup
*memcg
, bool swap
)
3868 struct mem_cgroup_threshold_ary
*t
;
3874 t
= rcu_dereference(memcg
->thresholds
.primary
);
3876 t
= rcu_dereference(memcg
->memsw_thresholds
.primary
);
3881 usage
= mem_cgroup_usage(memcg
, swap
);
3884 * current_threshold points to threshold just below usage.
3885 * If it's not true, a threshold was crossed after last
3886 * call of __mem_cgroup_threshold().
3888 i
= t
->current_threshold
;
3891 * Iterate backward over array of thresholds starting from
3892 * current_threshold and check if a threshold is crossed.
3893 * If none of thresholds below usage is crossed, we read
3894 * only one element of the array here.
3896 for (; i
>= 0 && unlikely(t
->entries
[i
].threshold
> usage
); i
--)
3897 eventfd_signal(t
->entries
[i
].eventfd
, 1);
3899 /* i = current_threshold + 1 */
3903 * Iterate forward over array of thresholds starting from
3904 * current_threshold+1 and check if a threshold is crossed.
3905 * If none of thresholds above usage is crossed, we read
3906 * only one element of the array here.
3908 for (; i
< t
->size
&& unlikely(t
->entries
[i
].threshold
<= usage
); i
++)
3909 eventfd_signal(t
->entries
[i
].eventfd
, 1);
3911 /* Update current_threshold */
3912 t
->current_threshold
= i
- 1;
3917 static void mem_cgroup_threshold(struct mem_cgroup
*memcg
)
3920 __mem_cgroup_threshold(memcg
, false);
3921 if (do_swap_account
)
3922 __mem_cgroup_threshold(memcg
, true);
3924 memcg
= parent_mem_cgroup(memcg
);
3928 static int compare_thresholds(const void *a
, const void *b
)
3930 const struct mem_cgroup_threshold
*_a
= a
;
3931 const struct mem_cgroup_threshold
*_b
= b
;
3933 return _a
->threshold
- _b
->threshold
;
3936 static int mem_cgroup_oom_notify_cb(struct mem_cgroup
*mem
)
3938 struct mem_cgroup_eventfd_list
*ev
;
3940 list_for_each_entry(ev
, &mem
->oom_notify
, list
)
3941 eventfd_signal(ev
->eventfd
, 1);
3945 static void mem_cgroup_oom_notify(struct mem_cgroup
*mem
)
3947 struct mem_cgroup
*iter
;
3949 for_each_mem_cgroup_tree(iter
, mem
)
3950 mem_cgroup_oom_notify_cb(iter
);
3953 static int mem_cgroup_usage_register_event(struct cgroup
*cgrp
,
3954 struct cftype
*cft
, struct eventfd_ctx
*eventfd
, const char *args
)
3956 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
3957 struct mem_cgroup_thresholds
*thresholds
;
3958 struct mem_cgroup_threshold_ary
*new;
3959 int type
= MEMFILE_TYPE(cft
->private);
3960 u64 threshold
, usage
;
3963 ret
= res_counter_memparse_write_strategy(args
, &threshold
);
3967 mutex_lock(&memcg
->thresholds_lock
);
3970 thresholds
= &memcg
->thresholds
;
3971 else if (type
== _MEMSWAP
)
3972 thresholds
= &memcg
->memsw_thresholds
;
3976 usage
= mem_cgroup_usage(memcg
, type
== _MEMSWAP
);
3978 /* Check if a threshold crossed before adding a new one */
3979 if (thresholds
->primary
)
3980 __mem_cgroup_threshold(memcg
, type
== _MEMSWAP
);
3982 size
= thresholds
->primary
? thresholds
->primary
->size
+ 1 : 1;
3984 /* Allocate memory for new array of thresholds */
3985 new = kmalloc(sizeof(*new) + size
* sizeof(struct mem_cgroup_threshold
),
3993 /* Copy thresholds (if any) to new array */
3994 if (thresholds
->primary
) {
3995 memcpy(new->entries
, thresholds
->primary
->entries
, (size
- 1) *
3996 sizeof(struct mem_cgroup_threshold
));
3999 /* Add new threshold */
4000 new->entries
[size
- 1].eventfd
= eventfd
;
4001 new->entries
[size
- 1].threshold
= threshold
;
4003 /* Sort thresholds. Registering of new threshold isn't time-critical */
4004 sort(new->entries
, size
, sizeof(struct mem_cgroup_threshold
),
4005 compare_thresholds
, NULL
);
4007 /* Find current threshold */
4008 new->current_threshold
= -1;
4009 for (i
= 0; i
< size
; i
++) {
4010 if (new->entries
[i
].threshold
< usage
) {
4012 * new->current_threshold will not be used until
4013 * rcu_assign_pointer(), so it's safe to increment
4016 ++new->current_threshold
;
4020 /* Free old spare buffer and save old primary buffer as spare */
4021 kfree(thresholds
->spare
);
4022 thresholds
->spare
= thresholds
->primary
;
4024 rcu_assign_pointer(thresholds
->primary
, new);
4026 /* To be sure that nobody uses thresholds */
4030 mutex_unlock(&memcg
->thresholds_lock
);
4035 static void mem_cgroup_usage_unregister_event(struct cgroup
*cgrp
,
4036 struct cftype
*cft
, struct eventfd_ctx
*eventfd
)
4038 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
4039 struct mem_cgroup_thresholds
*thresholds
;
4040 struct mem_cgroup_threshold_ary
*new;
4041 int type
= MEMFILE_TYPE(cft
->private);
4045 mutex_lock(&memcg
->thresholds_lock
);
4047 thresholds
= &memcg
->thresholds
;
4048 else if (type
== _MEMSWAP
)
4049 thresholds
= &memcg
->memsw_thresholds
;
4054 * Something went wrong if we trying to unregister a threshold
4055 * if we don't have thresholds
4057 BUG_ON(!thresholds
);
4059 usage
= mem_cgroup_usage(memcg
, type
== _MEMSWAP
);
4061 /* Check if a threshold crossed before removing */
4062 __mem_cgroup_threshold(memcg
, type
== _MEMSWAP
);
4064 /* Calculate new number of threshold */
4066 for (i
= 0; i
< thresholds
->primary
->size
; i
++) {
4067 if (thresholds
->primary
->entries
[i
].eventfd
!= eventfd
)
4071 new = thresholds
->spare
;
4073 /* Set thresholds array to NULL if we don't have thresholds */
4082 /* Copy thresholds and find current threshold */
4083 new->current_threshold
= -1;
4084 for (i
= 0, j
= 0; i
< thresholds
->primary
->size
; i
++) {
4085 if (thresholds
->primary
->entries
[i
].eventfd
== eventfd
)
4088 new->entries
[j
] = thresholds
->primary
->entries
[i
];
4089 if (new->entries
[j
].threshold
< usage
) {
4091 * new->current_threshold will not be used
4092 * until rcu_assign_pointer(), so it's safe to increment
4095 ++new->current_threshold
;
4101 /* Swap primary and spare array */
4102 thresholds
->spare
= thresholds
->primary
;
4103 rcu_assign_pointer(thresholds
->primary
, new);
4105 /* To be sure that nobody uses thresholds */
4108 mutex_unlock(&memcg
->thresholds_lock
);
4111 static int mem_cgroup_oom_register_event(struct cgroup
*cgrp
,
4112 struct cftype
*cft
, struct eventfd_ctx
*eventfd
, const char *args
)
4114 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
4115 struct mem_cgroup_eventfd_list
*event
;
4116 int type
= MEMFILE_TYPE(cft
->private);
4118 BUG_ON(type
!= _OOM_TYPE
);
4119 event
= kmalloc(sizeof(*event
), GFP_KERNEL
);
4123 mutex_lock(&memcg_oom_mutex
);
4125 event
->eventfd
= eventfd
;
4126 list_add(&event
->list
, &memcg
->oom_notify
);
4128 /* already in OOM ? */
4129 if (atomic_read(&memcg
->oom_lock
))
4130 eventfd_signal(eventfd
, 1);
4131 mutex_unlock(&memcg_oom_mutex
);
4136 static void mem_cgroup_oom_unregister_event(struct cgroup
*cgrp
,
4137 struct cftype
*cft
, struct eventfd_ctx
*eventfd
)
4139 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cgrp
);
4140 struct mem_cgroup_eventfd_list
*ev
, *tmp
;
4141 int type
= MEMFILE_TYPE(cft
->private);
4143 BUG_ON(type
!= _OOM_TYPE
);
4145 mutex_lock(&memcg_oom_mutex
);
4147 list_for_each_entry_safe(ev
, tmp
, &mem
->oom_notify
, list
) {
4148 if (ev
->eventfd
== eventfd
) {
4149 list_del(&ev
->list
);
4154 mutex_unlock(&memcg_oom_mutex
);
4157 static int mem_cgroup_oom_control_read(struct cgroup
*cgrp
,
4158 struct cftype
*cft
, struct cgroup_map_cb
*cb
)
4160 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cgrp
);
4162 cb
->fill(cb
, "oom_kill_disable", mem
->oom_kill_disable
);
4164 if (atomic_read(&mem
->oom_lock
))
4165 cb
->fill(cb
, "under_oom", 1);
4167 cb
->fill(cb
, "under_oom", 0);
4171 static int mem_cgroup_oom_control_write(struct cgroup
*cgrp
,
4172 struct cftype
*cft
, u64 val
)
4174 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cgrp
);
4175 struct mem_cgroup
*parent
;
4177 /* cannot set to root cgroup and only 0 and 1 are allowed */
4178 if (!cgrp
->parent
|| !((val
== 0) || (val
== 1)))
4181 parent
= mem_cgroup_from_cont(cgrp
->parent
);
4184 /* oom-kill-disable is a flag for subhierarchy. */
4185 if ((parent
->use_hierarchy
) ||
4186 (mem
->use_hierarchy
&& !list_empty(&cgrp
->children
))) {
4190 mem
->oom_kill_disable
= val
;
4192 memcg_oom_recover(mem
);
4197 static struct cftype mem_cgroup_files
[] = {
4199 .name
= "usage_in_bytes",
4200 .private = MEMFILE_PRIVATE(_MEM
, RES_USAGE
),
4201 .read_u64
= mem_cgroup_read
,
4202 .register_event
= mem_cgroup_usage_register_event
,
4203 .unregister_event
= mem_cgroup_usage_unregister_event
,
4206 .name
= "max_usage_in_bytes",
4207 .private = MEMFILE_PRIVATE(_MEM
, RES_MAX_USAGE
),
4208 .trigger
= mem_cgroup_reset
,
4209 .read_u64
= mem_cgroup_read
,
4212 .name
= "limit_in_bytes",
4213 .private = MEMFILE_PRIVATE(_MEM
, RES_LIMIT
),
4214 .write_string
= mem_cgroup_write
,
4215 .read_u64
= mem_cgroup_read
,
4218 .name
= "soft_limit_in_bytes",
4219 .private = MEMFILE_PRIVATE(_MEM
, RES_SOFT_LIMIT
),
4220 .write_string
= mem_cgroup_write
,
4221 .read_u64
= mem_cgroup_read
,
4225 .private = MEMFILE_PRIVATE(_MEM
, RES_FAILCNT
),
4226 .trigger
= mem_cgroup_reset
,
4227 .read_u64
= mem_cgroup_read
,
4231 .read_map
= mem_control_stat_show
,
4234 .name
= "force_empty",
4235 .trigger
= mem_cgroup_force_empty_write
,
4238 .name
= "use_hierarchy",
4239 .write_u64
= mem_cgroup_hierarchy_write
,
4240 .read_u64
= mem_cgroup_hierarchy_read
,
4243 .name
= "swappiness",
4244 .read_u64
= mem_cgroup_swappiness_read
,
4245 .write_u64
= mem_cgroup_swappiness_write
,
4248 .name
= "move_charge_at_immigrate",
4249 .read_u64
= mem_cgroup_move_charge_read
,
4250 .write_u64
= mem_cgroup_move_charge_write
,
4253 .name
= "oom_control",
4254 .read_map
= mem_cgroup_oom_control_read
,
4255 .write_u64
= mem_cgroup_oom_control_write
,
4256 .register_event
= mem_cgroup_oom_register_event
,
4257 .unregister_event
= mem_cgroup_oom_unregister_event
,
4258 .private = MEMFILE_PRIVATE(_OOM_TYPE
, OOM_CONTROL
),
4262 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4263 static struct cftype memsw_cgroup_files
[] = {
4265 .name
= "memsw.usage_in_bytes",
4266 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_USAGE
),
4267 .read_u64
= mem_cgroup_read
,
4268 .register_event
= mem_cgroup_usage_register_event
,
4269 .unregister_event
= mem_cgroup_usage_unregister_event
,
4272 .name
= "memsw.max_usage_in_bytes",
4273 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_MAX_USAGE
),
4274 .trigger
= mem_cgroup_reset
,
4275 .read_u64
= mem_cgroup_read
,
4278 .name
= "memsw.limit_in_bytes",
4279 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_LIMIT
),
4280 .write_string
= mem_cgroup_write
,
4281 .read_u64
= mem_cgroup_read
,
4284 .name
= "memsw.failcnt",
4285 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_FAILCNT
),
4286 .trigger
= mem_cgroup_reset
,
4287 .read_u64
= mem_cgroup_read
,
4291 static int register_memsw_files(struct cgroup
*cont
, struct cgroup_subsys
*ss
)
4293 if (!do_swap_account
)
4295 return cgroup_add_files(cont
, ss
, memsw_cgroup_files
,
4296 ARRAY_SIZE(memsw_cgroup_files
));
4299 static int register_memsw_files(struct cgroup
*cont
, struct cgroup_subsys
*ss
)
4305 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup
*mem
, int node
)
4307 struct mem_cgroup_per_node
*pn
;
4308 struct mem_cgroup_per_zone
*mz
;
4310 int zone
, tmp
= node
;
4312 * This routine is called against possible nodes.
4313 * But it's BUG to call kmalloc() against offline node.
4315 * TODO: this routine can waste much memory for nodes which will
4316 * never be onlined. It's better to use memory hotplug callback
4319 if (!node_state(node
, N_NORMAL_MEMORY
))
4321 pn
= kzalloc_node(sizeof(*pn
), GFP_KERNEL
, tmp
);
4325 mem
->info
.nodeinfo
[node
] = pn
;
4326 for (zone
= 0; zone
< MAX_NR_ZONES
; zone
++) {
4327 mz
= &pn
->zoneinfo
[zone
];
4329 INIT_LIST_HEAD(&mz
->lists
[l
]);
4330 mz
->usage_in_excess
= 0;
4331 mz
->on_tree
= false;
4337 static void free_mem_cgroup_per_zone_info(struct mem_cgroup
*mem
, int node
)
4339 kfree(mem
->info
.nodeinfo
[node
]);
4342 static struct mem_cgroup
*mem_cgroup_alloc(void)
4344 struct mem_cgroup
*mem
;
4345 int size
= sizeof(struct mem_cgroup
);
4347 /* Can be very big if MAX_NUMNODES is very big */
4348 if (size
< PAGE_SIZE
)
4349 mem
= kzalloc(size
, GFP_KERNEL
);
4351 mem
= vzalloc(size
);
4356 mem
->stat
= alloc_percpu(struct mem_cgroup_stat_cpu
);
4359 spin_lock_init(&mem
->pcp_counter_lock
);
4363 if (size
< PAGE_SIZE
)
4371 * At destroying mem_cgroup, references from swap_cgroup can remain.
4372 * (scanning all at force_empty is too costly...)
4374 * Instead of clearing all references at force_empty, we remember
4375 * the number of reference from swap_cgroup and free mem_cgroup when
4376 * it goes down to 0.
4378 * Removal of cgroup itself succeeds regardless of refs from swap.
4381 static void __mem_cgroup_free(struct mem_cgroup
*mem
)
4385 mem_cgroup_remove_from_trees(mem
);
4386 free_css_id(&mem_cgroup_subsys
, &mem
->css
);
4388 for_each_node_state(node
, N_POSSIBLE
)
4389 free_mem_cgroup_per_zone_info(mem
, node
);
4391 free_percpu(mem
->stat
);
4392 if (sizeof(struct mem_cgroup
) < PAGE_SIZE
)
4398 static void mem_cgroup_get(struct mem_cgroup
*mem
)
4400 atomic_inc(&mem
->refcnt
);
4403 static void __mem_cgroup_put(struct mem_cgroup
*mem
, int count
)
4405 if (atomic_sub_and_test(count
, &mem
->refcnt
)) {
4406 struct mem_cgroup
*parent
= parent_mem_cgroup(mem
);
4407 __mem_cgroup_free(mem
);
4409 mem_cgroup_put(parent
);
4413 static void mem_cgroup_put(struct mem_cgroup
*mem
)
4415 __mem_cgroup_put(mem
, 1);
4419 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4421 static struct mem_cgroup
*parent_mem_cgroup(struct mem_cgroup
*mem
)
4423 if (!mem
->res
.parent
)
4425 return mem_cgroup_from_res_counter(mem
->res
.parent
, res
);
4428 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4429 static void __init
enable_swap_cgroup(void)
4431 if (!mem_cgroup_disabled() && really_do_swap_account
)
4432 do_swap_account
= 1;
4435 static void __init
enable_swap_cgroup(void)
4440 static int mem_cgroup_soft_limit_tree_init(void)
4442 struct mem_cgroup_tree_per_node
*rtpn
;
4443 struct mem_cgroup_tree_per_zone
*rtpz
;
4444 int tmp
, node
, zone
;
4446 for_each_node_state(node
, N_POSSIBLE
) {
4448 if (!node_state(node
, N_NORMAL_MEMORY
))
4450 rtpn
= kzalloc_node(sizeof(*rtpn
), GFP_KERNEL
, tmp
);
4454 soft_limit_tree
.rb_tree_per_node
[node
] = rtpn
;
4456 for (zone
= 0; zone
< MAX_NR_ZONES
; zone
++) {
4457 rtpz
= &rtpn
->rb_tree_per_zone
[zone
];
4458 rtpz
->rb_root
= RB_ROOT
;
4459 spin_lock_init(&rtpz
->lock
);
4465 static struct cgroup_subsys_state
* __ref
4466 mem_cgroup_create(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
4468 struct mem_cgroup
*mem
, *parent
;
4469 long error
= -ENOMEM
;
4472 mem
= mem_cgroup_alloc();
4474 return ERR_PTR(error
);
4476 for_each_node_state(node
, N_POSSIBLE
)
4477 if (alloc_mem_cgroup_per_zone_info(mem
, node
))
4481 if (cont
->parent
== NULL
) {
4483 enable_swap_cgroup();
4485 root_mem_cgroup
= mem
;
4486 if (mem_cgroup_soft_limit_tree_init())
4488 for_each_possible_cpu(cpu
) {
4489 struct memcg_stock_pcp
*stock
=
4490 &per_cpu(memcg_stock
, cpu
);
4491 INIT_WORK(&stock
->work
, drain_local_stock
);
4493 hotcpu_notifier(memcg_cpu_hotplug_callback
, 0);
4495 parent
= mem_cgroup_from_cont(cont
->parent
);
4496 mem
->use_hierarchy
= parent
->use_hierarchy
;
4497 mem
->oom_kill_disable
= parent
->oom_kill_disable
;
4500 if (parent
&& parent
->use_hierarchy
) {
4501 res_counter_init(&mem
->res
, &parent
->res
);
4502 res_counter_init(&mem
->memsw
, &parent
->memsw
);
4504 * We increment refcnt of the parent to ensure that we can
4505 * safely access it on res_counter_charge/uncharge.
4506 * This refcnt will be decremented when freeing this
4507 * mem_cgroup(see mem_cgroup_put).
4509 mem_cgroup_get(parent
);
4511 res_counter_init(&mem
->res
, NULL
);
4512 res_counter_init(&mem
->memsw
, NULL
);
4514 mem
->last_scanned_child
= 0;
4515 spin_lock_init(&mem
->reclaim_param_lock
);
4516 INIT_LIST_HEAD(&mem
->oom_notify
);
4519 mem
->swappiness
= get_swappiness(parent
);
4520 atomic_set(&mem
->refcnt
, 1);
4521 mem
->move_charge_at_immigrate
= 0;
4522 mutex_init(&mem
->thresholds_lock
);
4525 __mem_cgroup_free(mem
);
4526 root_mem_cgroup
= NULL
;
4527 return ERR_PTR(error
);
4530 static int mem_cgroup_pre_destroy(struct cgroup_subsys
*ss
,
4531 struct cgroup
*cont
)
4533 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cont
);
4535 return mem_cgroup_force_empty(mem
, false);
4538 static void mem_cgroup_destroy(struct cgroup_subsys
*ss
,
4539 struct cgroup
*cont
)
4541 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cont
);
4543 mem_cgroup_put(mem
);
4546 static int mem_cgroup_populate(struct cgroup_subsys
*ss
,
4547 struct cgroup
*cont
)
4551 ret
= cgroup_add_files(cont
, ss
, mem_cgroup_files
,
4552 ARRAY_SIZE(mem_cgroup_files
));
4555 ret
= register_memsw_files(cont
, ss
);
4560 /* Handlers for move charge at task migration. */
4561 #define PRECHARGE_COUNT_AT_ONCE 256
4562 static int mem_cgroup_do_precharge(unsigned long count
)
4565 int batch_count
= PRECHARGE_COUNT_AT_ONCE
;
4566 struct mem_cgroup
*mem
= mc
.to
;
4568 if (mem_cgroup_is_root(mem
)) {
4569 mc
.precharge
+= count
;
4570 /* we don't need css_get for root */
4573 /* try to charge at once */
4575 struct res_counter
*dummy
;
4577 * "mem" cannot be under rmdir() because we've already checked
4578 * by cgroup_lock_live_cgroup() that it is not removed and we
4579 * are still under the same cgroup_mutex. So we can postpone
4582 if (res_counter_charge(&mem
->res
, PAGE_SIZE
* count
, &dummy
))
4584 if (do_swap_account
&& res_counter_charge(&mem
->memsw
,
4585 PAGE_SIZE
* count
, &dummy
)) {
4586 res_counter_uncharge(&mem
->res
, PAGE_SIZE
* count
);
4589 mc
.precharge
+= count
;
4593 /* fall back to one by one charge */
4595 if (signal_pending(current
)) {
4599 if (!batch_count
--) {
4600 batch_count
= PRECHARGE_COUNT_AT_ONCE
;
4603 ret
= __mem_cgroup_try_charge(NULL
, GFP_KERNEL
, &mem
, false,
4606 /* mem_cgroup_clear_mc() will do uncharge later */
4614 * is_target_pte_for_mc - check a pte whether it is valid for move charge
4615 * @vma: the vma the pte to be checked belongs
4616 * @addr: the address corresponding to the pte to be checked
4617 * @ptent: the pte to be checked
4618 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4621 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4622 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4623 * move charge. if @target is not NULL, the page is stored in target->page
4624 * with extra refcnt got(Callers should handle it).
4625 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4626 * target for charge migration. if @target is not NULL, the entry is stored
4629 * Called with pte lock held.
4636 enum mc_target_type
{
4637 MC_TARGET_NONE
, /* not used */
4642 static struct page
*mc_handle_present_pte(struct vm_area_struct
*vma
,
4643 unsigned long addr
, pte_t ptent
)
4645 struct page
*page
= vm_normal_page(vma
, addr
, ptent
);
4647 if (!page
|| !page_mapped(page
))
4649 if (PageAnon(page
)) {
4650 /* we don't move shared anon */
4651 if (!move_anon() || page_mapcount(page
) > 2)
4653 } else if (!move_file())
4654 /* we ignore mapcount for file pages */
4656 if (!get_page_unless_zero(page
))
4662 static struct page
*mc_handle_swap_pte(struct vm_area_struct
*vma
,
4663 unsigned long addr
, pte_t ptent
, swp_entry_t
*entry
)
4666 struct page
*page
= NULL
;
4667 swp_entry_t ent
= pte_to_swp_entry(ptent
);
4669 if (!move_anon() || non_swap_entry(ent
))
4671 usage_count
= mem_cgroup_count_swap_user(ent
, &page
);
4672 if (usage_count
> 1) { /* we don't move shared anon */
4677 if (do_swap_account
)
4678 entry
->val
= ent
.val
;
4683 static struct page
*mc_handle_file_pte(struct vm_area_struct
*vma
,
4684 unsigned long addr
, pte_t ptent
, swp_entry_t
*entry
)
4686 struct page
*page
= NULL
;
4687 struct inode
*inode
;
4688 struct address_space
*mapping
;
4691 if (!vma
->vm_file
) /* anonymous vma */
4696 inode
= vma
->vm_file
->f_path
.dentry
->d_inode
;
4697 mapping
= vma
->vm_file
->f_mapping
;
4698 if (pte_none(ptent
))
4699 pgoff
= linear_page_index(vma
, addr
);
4700 else /* pte_file(ptent) is true */
4701 pgoff
= pte_to_pgoff(ptent
);
4703 /* page is moved even if it's not RSS of this task(page-faulted). */
4704 if (!mapping_cap_swap_backed(mapping
)) { /* normal file */
4705 page
= find_get_page(mapping
, pgoff
);
4706 } else { /* shmem/tmpfs file. we should take account of swap too. */
4708 mem_cgroup_get_shmem_target(inode
, pgoff
, &page
, &ent
);
4709 if (do_swap_account
)
4710 entry
->val
= ent
.val
;
4716 static int is_target_pte_for_mc(struct vm_area_struct
*vma
,
4717 unsigned long addr
, pte_t ptent
, union mc_target
*target
)
4719 struct page
*page
= NULL
;
4720 struct page_cgroup
*pc
;
4722 swp_entry_t ent
= { .val
= 0 };
4724 if (pte_present(ptent
))
4725 page
= mc_handle_present_pte(vma
, addr
, ptent
);
4726 else if (is_swap_pte(ptent
))
4727 page
= mc_handle_swap_pte(vma
, addr
, ptent
, &ent
);
4728 else if (pte_none(ptent
) || pte_file(ptent
))
4729 page
= mc_handle_file_pte(vma
, addr
, ptent
, &ent
);
4731 if (!page
&& !ent
.val
)
4734 pc
= lookup_page_cgroup(page
);
4736 * Do only loose check w/o page_cgroup lock.
4737 * mem_cgroup_move_account() checks the pc is valid or not under
4740 if (PageCgroupUsed(pc
) && pc
->mem_cgroup
== mc
.from
) {
4741 ret
= MC_TARGET_PAGE
;
4743 target
->page
= page
;
4745 if (!ret
|| !target
)
4748 /* There is a swap entry and a page doesn't exist or isn't charged */
4749 if (ent
.val
&& !ret
&&
4750 css_id(&mc
.from
->css
) == lookup_swap_cgroup(ent
)) {
4751 ret
= MC_TARGET_SWAP
;
4758 static int mem_cgroup_count_precharge_pte_range(pmd_t
*pmd
,
4759 unsigned long addr
, unsigned long end
,
4760 struct mm_walk
*walk
)
4762 struct vm_area_struct
*vma
= walk
->private;
4766 split_huge_page_pmd(walk
->mm
, pmd
);
4768 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
4769 for (; addr
!= end
; pte
++, addr
+= PAGE_SIZE
)
4770 if (is_target_pte_for_mc(vma
, addr
, *pte
, NULL
))
4771 mc
.precharge
++; /* increment precharge temporarily */
4772 pte_unmap_unlock(pte
- 1, ptl
);
4778 static unsigned long mem_cgroup_count_precharge(struct mm_struct
*mm
)
4780 unsigned long precharge
;
4781 struct vm_area_struct
*vma
;
4783 down_read(&mm
->mmap_sem
);
4784 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
4785 struct mm_walk mem_cgroup_count_precharge_walk
= {
4786 .pmd_entry
= mem_cgroup_count_precharge_pte_range
,
4790 if (is_vm_hugetlb_page(vma
))
4792 walk_page_range(vma
->vm_start
, vma
->vm_end
,
4793 &mem_cgroup_count_precharge_walk
);
4795 up_read(&mm
->mmap_sem
);
4797 precharge
= mc
.precharge
;
4803 static int mem_cgroup_precharge_mc(struct mm_struct
*mm
)
4805 unsigned long precharge
= mem_cgroup_count_precharge(mm
);
4807 VM_BUG_ON(mc
.moving_task
);
4808 mc
.moving_task
= current
;
4809 return mem_cgroup_do_precharge(precharge
);
4812 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4813 static void __mem_cgroup_clear_mc(void)
4815 struct mem_cgroup
*from
= mc
.from
;
4816 struct mem_cgroup
*to
= mc
.to
;
4818 /* we must uncharge all the leftover precharges from mc.to */
4820 __mem_cgroup_cancel_charge(mc
.to
, mc
.precharge
);
4824 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4825 * we must uncharge here.
4827 if (mc
.moved_charge
) {
4828 __mem_cgroup_cancel_charge(mc
.from
, mc
.moved_charge
);
4829 mc
.moved_charge
= 0;
4831 /* we must fixup refcnts and charges */
4832 if (mc
.moved_swap
) {
4833 /* uncharge swap account from the old cgroup */
4834 if (!mem_cgroup_is_root(mc
.from
))
4835 res_counter_uncharge(&mc
.from
->memsw
,
4836 PAGE_SIZE
* mc
.moved_swap
);
4837 __mem_cgroup_put(mc
.from
, mc
.moved_swap
);
4839 if (!mem_cgroup_is_root(mc
.to
)) {
4841 * we charged both to->res and to->memsw, so we should
4844 res_counter_uncharge(&mc
.to
->res
,
4845 PAGE_SIZE
* mc
.moved_swap
);
4847 /* we've already done mem_cgroup_get(mc.to) */
4850 memcg_oom_recover(from
);
4851 memcg_oom_recover(to
);
4852 wake_up_all(&mc
.waitq
);
4855 static void mem_cgroup_clear_mc(void)
4857 struct mem_cgroup
*from
= mc
.from
;
4860 * we must clear moving_task before waking up waiters at the end of
4863 mc
.moving_task
= NULL
;
4864 __mem_cgroup_clear_mc();
4865 spin_lock(&mc
.lock
);
4868 spin_unlock(&mc
.lock
);
4869 mem_cgroup_end_move(from
);
4872 static int mem_cgroup_can_attach(struct cgroup_subsys
*ss
,
4873 struct cgroup
*cgroup
,
4874 struct task_struct
*p
,
4878 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cgroup
);
4880 if (mem
->move_charge_at_immigrate
) {
4881 struct mm_struct
*mm
;
4882 struct mem_cgroup
*from
= mem_cgroup_from_task(p
);
4884 VM_BUG_ON(from
== mem
);
4886 mm
= get_task_mm(p
);
4889 /* We move charges only when we move a owner of the mm */
4890 if (mm
->owner
== p
) {
4893 VM_BUG_ON(mc
.precharge
);
4894 VM_BUG_ON(mc
.moved_charge
);
4895 VM_BUG_ON(mc
.moved_swap
);
4896 mem_cgroup_start_move(from
);
4897 spin_lock(&mc
.lock
);
4900 spin_unlock(&mc
.lock
);
4901 /* We set mc.moving_task later */
4903 ret
= mem_cgroup_precharge_mc(mm
);
4905 mem_cgroup_clear_mc();
4912 static void mem_cgroup_cancel_attach(struct cgroup_subsys
*ss
,
4913 struct cgroup
*cgroup
,
4914 struct task_struct
*p
,
4917 mem_cgroup_clear_mc();
4920 static int mem_cgroup_move_charge_pte_range(pmd_t
*pmd
,
4921 unsigned long addr
, unsigned long end
,
4922 struct mm_walk
*walk
)
4925 struct vm_area_struct
*vma
= walk
->private;
4929 split_huge_page_pmd(walk
->mm
, pmd
);
4931 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
4932 for (; addr
!= end
; addr
+= PAGE_SIZE
) {
4933 pte_t ptent
= *(pte
++);
4934 union mc_target target
;
4937 struct page_cgroup
*pc
;
4943 type
= is_target_pte_for_mc(vma
, addr
, ptent
, &target
);
4945 case MC_TARGET_PAGE
:
4947 if (isolate_lru_page(page
))
4949 pc
= lookup_page_cgroup(page
);
4950 if (!mem_cgroup_move_account(pc
,
4951 mc
.from
, mc
.to
, false, PAGE_SIZE
)) {
4953 /* we uncharge from mc.from later. */
4956 putback_lru_page(page
);
4957 put
: /* is_target_pte_for_mc() gets the page */
4960 case MC_TARGET_SWAP
:
4962 if (!mem_cgroup_move_swap_account(ent
,
4963 mc
.from
, mc
.to
, false)) {
4965 /* we fixup refcnts and charges later. */
4973 pte_unmap_unlock(pte
- 1, ptl
);
4978 * We have consumed all precharges we got in can_attach().
4979 * We try charge one by one, but don't do any additional
4980 * charges to mc.to if we have failed in charge once in attach()
4983 ret
= mem_cgroup_do_precharge(1);
4991 static void mem_cgroup_move_charge(struct mm_struct
*mm
)
4993 struct vm_area_struct
*vma
;
4995 lru_add_drain_all();
4997 if (unlikely(!down_read_trylock(&mm
->mmap_sem
))) {
4999 * Someone who are holding the mmap_sem might be waiting in
5000 * waitq. So we cancel all extra charges, wake up all waiters,
5001 * and retry. Because we cancel precharges, we might not be able
5002 * to move enough charges, but moving charge is a best-effort
5003 * feature anyway, so it wouldn't be a big problem.
5005 __mem_cgroup_clear_mc();
5009 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
5011 struct mm_walk mem_cgroup_move_charge_walk
= {
5012 .pmd_entry
= mem_cgroup_move_charge_pte_range
,
5016 if (is_vm_hugetlb_page(vma
))
5018 ret
= walk_page_range(vma
->vm_start
, vma
->vm_end
,
5019 &mem_cgroup_move_charge_walk
);
5022 * means we have consumed all precharges and failed in
5023 * doing additional charge. Just abandon here.
5027 up_read(&mm
->mmap_sem
);
5030 static void mem_cgroup_move_task(struct cgroup_subsys
*ss
,
5031 struct cgroup
*cont
,
5032 struct cgroup
*old_cont
,
5033 struct task_struct
*p
,
5036 struct mm_struct
*mm
;
5039 /* no need to move charge */
5042 mm
= get_task_mm(p
);
5044 mem_cgroup_move_charge(mm
);
5047 mem_cgroup_clear_mc();
5049 #else /* !CONFIG_MMU */
5050 static int mem_cgroup_can_attach(struct cgroup_subsys
*ss
,
5051 struct cgroup
*cgroup
,
5052 struct task_struct
*p
,
5057 static void mem_cgroup_cancel_attach(struct cgroup_subsys
*ss
,
5058 struct cgroup
*cgroup
,
5059 struct task_struct
*p
,
5063 static void mem_cgroup_move_task(struct cgroup_subsys
*ss
,
5064 struct cgroup
*cont
,
5065 struct cgroup
*old_cont
,
5066 struct task_struct
*p
,
5072 struct cgroup_subsys mem_cgroup_subsys
= {
5074 .subsys_id
= mem_cgroup_subsys_id
,
5075 .create
= mem_cgroup_create
,
5076 .pre_destroy
= mem_cgroup_pre_destroy
,
5077 .destroy
= mem_cgroup_destroy
,
5078 .populate
= mem_cgroup_populate
,
5079 .can_attach
= mem_cgroup_can_attach
,
5080 .cancel_attach
= mem_cgroup_cancel_attach
,
5081 .attach
= mem_cgroup_move_task
,
5086 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5087 static int __init
enable_swap_account(char *s
)
5089 /* consider enabled if no parameter or 1 is given */
5090 if (!(*s
) || !strcmp(s
, "=1"))
5091 really_do_swap_account
= 1;
5092 else if (!strcmp(s
, "=0"))
5093 really_do_swap_account
= 0;
5096 __setup("swapaccount", enable_swap_account
);
5098 static int __init
disable_swap_account(char *s
)
5100 printk_once("noswapaccount is deprecated and will be removed in 2.6.40. Use swapaccount=0 instead\n");
5101 enable_swap_account("=0");
5104 __setup("noswapaccount", disable_swap_account
);