sparc64: Move generic PCR support code to seperate file.
[linux-2.6/kvm.git] / drivers / net / ixgbe / ixgbe_common.c
blobf67c68404bb382462662ea664749b080a280ab6a
1 /*******************************************************************************
3 Intel 10 Gigabit PCI Express Linux driver
4 Copyright(c) 1999 - 2008 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 *******************************************************************************/
28 #include <linux/pci.h>
29 #include <linux/delay.h>
30 #include <linux/sched.h>
32 #include "ixgbe_common.h"
33 #include "ixgbe_phy.h"
35 static s32 ixgbe_poll_eeprom_eerd_done(struct ixgbe_hw *hw);
36 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
37 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
38 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
39 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
40 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
41 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
42 u16 count);
43 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
44 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
45 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
46 static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
47 static u16 ixgbe_calc_eeprom_checksum(struct ixgbe_hw *hw);
49 static void ixgbe_enable_rar(struct ixgbe_hw *hw, u32 index);
50 static void ixgbe_disable_rar(struct ixgbe_hw *hw, u32 index);
51 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
52 static void ixgbe_add_mc_addr(struct ixgbe_hw *hw, u8 *mc_addr);
53 static void ixgbe_add_uc_addr(struct ixgbe_hw *hw, u8 *addr, u32 vmdq);
55 /**
56 * ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
57 * @hw: pointer to hardware structure
59 * Starts the hardware by filling the bus info structure and media type, clears
60 * all on chip counters, initializes receive address registers, multicast
61 * table, VLAN filter table, calls routine to set up link and flow control
62 * settings, and leaves transmit and receive units disabled and uninitialized
63 **/
64 s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
66 u32 ctrl_ext;
68 /* Set the media type */
69 hw->phy.media_type = hw->mac.ops.get_media_type(hw);
71 /* Identify the PHY */
72 hw->phy.ops.identify(hw);
75 * Store MAC address from RAR0, clear receive address registers, and
76 * clear the multicast table
78 hw->mac.ops.init_rx_addrs(hw);
80 /* Clear the VLAN filter table */
81 hw->mac.ops.clear_vfta(hw);
83 /* Set up link */
84 hw->mac.ops.setup_link(hw);
86 /* Clear statistics registers */
87 hw->mac.ops.clear_hw_cntrs(hw);
89 /* Set No Snoop Disable */
90 ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
91 ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
92 IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
93 IXGBE_WRITE_FLUSH(hw);
95 /* Clear adapter stopped flag */
96 hw->adapter_stopped = false;
98 return 0;
102 * ixgbe_init_hw_generic - Generic hardware initialization
103 * @hw: pointer to hardware structure
105 * Initialize the hardware by resetting the hardware, filling the bus info
106 * structure and media type, clears all on chip counters, initializes receive
107 * address registers, multicast table, VLAN filter table, calls routine to set
108 * up link and flow control settings, and leaves transmit and receive units
109 * disabled and uninitialized
111 s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
113 /* Reset the hardware */
114 hw->mac.ops.reset_hw(hw);
116 /* Start the HW */
117 hw->mac.ops.start_hw(hw);
119 return 0;
123 * ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
124 * @hw: pointer to hardware structure
126 * Clears all hardware statistics counters by reading them from the hardware
127 * Statistics counters are clear on read.
129 s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
131 u16 i = 0;
133 IXGBE_READ_REG(hw, IXGBE_CRCERRS);
134 IXGBE_READ_REG(hw, IXGBE_ILLERRC);
135 IXGBE_READ_REG(hw, IXGBE_ERRBC);
136 IXGBE_READ_REG(hw, IXGBE_MSPDC);
137 for (i = 0; i < 8; i++)
138 IXGBE_READ_REG(hw, IXGBE_MPC(i));
140 IXGBE_READ_REG(hw, IXGBE_MLFC);
141 IXGBE_READ_REG(hw, IXGBE_MRFC);
142 IXGBE_READ_REG(hw, IXGBE_RLEC);
143 IXGBE_READ_REG(hw, IXGBE_LXONTXC);
144 IXGBE_READ_REG(hw, IXGBE_LXONRXC);
145 IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
146 IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
148 for (i = 0; i < 8; i++) {
149 IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
150 IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
151 IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
152 IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
155 IXGBE_READ_REG(hw, IXGBE_PRC64);
156 IXGBE_READ_REG(hw, IXGBE_PRC127);
157 IXGBE_READ_REG(hw, IXGBE_PRC255);
158 IXGBE_READ_REG(hw, IXGBE_PRC511);
159 IXGBE_READ_REG(hw, IXGBE_PRC1023);
160 IXGBE_READ_REG(hw, IXGBE_PRC1522);
161 IXGBE_READ_REG(hw, IXGBE_GPRC);
162 IXGBE_READ_REG(hw, IXGBE_BPRC);
163 IXGBE_READ_REG(hw, IXGBE_MPRC);
164 IXGBE_READ_REG(hw, IXGBE_GPTC);
165 IXGBE_READ_REG(hw, IXGBE_GORCL);
166 IXGBE_READ_REG(hw, IXGBE_GORCH);
167 IXGBE_READ_REG(hw, IXGBE_GOTCL);
168 IXGBE_READ_REG(hw, IXGBE_GOTCH);
169 for (i = 0; i < 8; i++)
170 IXGBE_READ_REG(hw, IXGBE_RNBC(i));
171 IXGBE_READ_REG(hw, IXGBE_RUC);
172 IXGBE_READ_REG(hw, IXGBE_RFC);
173 IXGBE_READ_REG(hw, IXGBE_ROC);
174 IXGBE_READ_REG(hw, IXGBE_RJC);
175 IXGBE_READ_REG(hw, IXGBE_MNGPRC);
176 IXGBE_READ_REG(hw, IXGBE_MNGPDC);
177 IXGBE_READ_REG(hw, IXGBE_MNGPTC);
178 IXGBE_READ_REG(hw, IXGBE_TORL);
179 IXGBE_READ_REG(hw, IXGBE_TORH);
180 IXGBE_READ_REG(hw, IXGBE_TPR);
181 IXGBE_READ_REG(hw, IXGBE_TPT);
182 IXGBE_READ_REG(hw, IXGBE_PTC64);
183 IXGBE_READ_REG(hw, IXGBE_PTC127);
184 IXGBE_READ_REG(hw, IXGBE_PTC255);
185 IXGBE_READ_REG(hw, IXGBE_PTC511);
186 IXGBE_READ_REG(hw, IXGBE_PTC1023);
187 IXGBE_READ_REG(hw, IXGBE_PTC1522);
188 IXGBE_READ_REG(hw, IXGBE_MPTC);
189 IXGBE_READ_REG(hw, IXGBE_BPTC);
190 for (i = 0; i < 16; i++) {
191 IXGBE_READ_REG(hw, IXGBE_QPRC(i));
192 IXGBE_READ_REG(hw, IXGBE_QBRC(i));
193 IXGBE_READ_REG(hw, IXGBE_QPTC(i));
194 IXGBE_READ_REG(hw, IXGBE_QBTC(i));
197 return 0;
201 * ixgbe_read_pba_num_generic - Reads part number from EEPROM
202 * @hw: pointer to hardware structure
203 * @pba_num: stores the part number from the EEPROM
205 * Reads the part number from the EEPROM.
207 s32 ixgbe_read_pba_num_generic(struct ixgbe_hw *hw, u32 *pba_num)
209 s32 ret_val;
210 u16 data;
212 ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
213 if (ret_val) {
214 hw_dbg(hw, "NVM Read Error\n");
215 return ret_val;
217 *pba_num = (u32)(data << 16);
219 ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &data);
220 if (ret_val) {
221 hw_dbg(hw, "NVM Read Error\n");
222 return ret_val;
224 *pba_num |= data;
226 return 0;
230 * ixgbe_get_mac_addr_generic - Generic get MAC address
231 * @hw: pointer to hardware structure
232 * @mac_addr: Adapter MAC address
234 * Reads the adapter's MAC address from first Receive Address Register (RAR0)
235 * A reset of the adapter must be performed prior to calling this function
236 * in order for the MAC address to have been loaded from the EEPROM into RAR0
238 s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
240 u32 rar_high;
241 u32 rar_low;
242 u16 i;
244 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
245 rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
247 for (i = 0; i < 4; i++)
248 mac_addr[i] = (u8)(rar_low >> (i*8));
250 for (i = 0; i < 2; i++)
251 mac_addr[i+4] = (u8)(rar_high >> (i*8));
253 return 0;
257 * ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
258 * @hw: pointer to hardware structure
260 * Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
261 * disables transmit and receive units. The adapter_stopped flag is used by
262 * the shared code and drivers to determine if the adapter is in a stopped
263 * state and should not touch the hardware.
265 s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
267 u32 number_of_queues;
268 u32 reg_val;
269 u16 i;
272 * Set the adapter_stopped flag so other driver functions stop touching
273 * the hardware
275 hw->adapter_stopped = true;
277 /* Disable the receive unit */
278 reg_val = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
279 reg_val &= ~(IXGBE_RXCTRL_RXEN);
280 IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, reg_val);
281 IXGBE_WRITE_FLUSH(hw);
282 msleep(2);
284 /* Clear interrupt mask to stop from interrupts being generated */
285 IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
287 /* Clear any pending interrupts */
288 IXGBE_READ_REG(hw, IXGBE_EICR);
290 /* Disable the transmit unit. Each queue must be disabled. */
291 number_of_queues = hw->mac.max_tx_queues;
292 for (i = 0; i < number_of_queues; i++) {
293 reg_val = IXGBE_READ_REG(hw, IXGBE_TXDCTL(i));
294 if (reg_val & IXGBE_TXDCTL_ENABLE) {
295 reg_val &= ~IXGBE_TXDCTL_ENABLE;
296 IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), reg_val);
301 * Prevent the PCI-E bus from from hanging by disabling PCI-E master
302 * access and verify no pending requests
304 if (ixgbe_disable_pcie_master(hw) != 0)
305 hw_dbg(hw, "PCI-E Master disable polling has failed.\n");
307 return 0;
311 * ixgbe_led_on_generic - Turns on the software controllable LEDs.
312 * @hw: pointer to hardware structure
313 * @index: led number to turn on
315 s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
317 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
319 /* To turn on the LED, set mode to ON. */
320 led_reg &= ~IXGBE_LED_MODE_MASK(index);
321 led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
322 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
323 IXGBE_WRITE_FLUSH(hw);
325 return 0;
329 * ixgbe_led_off_generic - Turns off the software controllable LEDs.
330 * @hw: pointer to hardware structure
331 * @index: led number to turn off
333 s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
335 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
337 /* To turn off the LED, set mode to OFF. */
338 led_reg &= ~IXGBE_LED_MODE_MASK(index);
339 led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
340 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
341 IXGBE_WRITE_FLUSH(hw);
343 return 0;
347 * ixgbe_init_eeprom_params_generic - Initialize EEPROM params
348 * @hw: pointer to hardware structure
350 * Initializes the EEPROM parameters ixgbe_eeprom_info within the
351 * ixgbe_hw struct in order to set up EEPROM access.
353 s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
355 struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
356 u32 eec;
357 u16 eeprom_size;
359 if (eeprom->type == ixgbe_eeprom_uninitialized) {
360 eeprom->type = ixgbe_eeprom_none;
361 /* Set default semaphore delay to 10ms which is a well
362 * tested value */
363 eeprom->semaphore_delay = 10;
366 * Check for EEPROM present first.
367 * If not present leave as none
369 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
370 if (eec & IXGBE_EEC_PRES) {
371 eeprom->type = ixgbe_eeprom_spi;
374 * SPI EEPROM is assumed here. This code would need to
375 * change if a future EEPROM is not SPI.
377 eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
378 IXGBE_EEC_SIZE_SHIFT);
379 eeprom->word_size = 1 << (eeprom_size +
380 IXGBE_EEPROM_WORD_SIZE_SHIFT);
383 if (eec & IXGBE_EEC_ADDR_SIZE)
384 eeprom->address_bits = 16;
385 else
386 eeprom->address_bits = 8;
387 hw_dbg(hw, "Eeprom params: type = %d, size = %d, address bits: "
388 "%d\n", eeprom->type, eeprom->word_size,
389 eeprom->address_bits);
392 return 0;
396 * ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
397 * @hw: pointer to hardware structure
398 * @offset: offset within the EEPROM to be read
399 * @data: read 16 bit value from EEPROM
401 * Reads 16 bit value from EEPROM through bit-bang method
403 s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
404 u16 *data)
406 s32 status;
407 u16 word_in;
408 u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
410 hw->eeprom.ops.init_params(hw);
412 if (offset >= hw->eeprom.word_size) {
413 status = IXGBE_ERR_EEPROM;
414 goto out;
417 /* Prepare the EEPROM for reading */
418 status = ixgbe_acquire_eeprom(hw);
420 if (status == 0) {
421 if (ixgbe_ready_eeprom(hw) != 0) {
422 ixgbe_release_eeprom(hw);
423 status = IXGBE_ERR_EEPROM;
427 if (status == 0) {
428 ixgbe_standby_eeprom(hw);
431 * Some SPI eeproms use the 8th address bit embedded in the
432 * opcode
434 if ((hw->eeprom.address_bits == 8) && (offset >= 128))
435 read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
437 /* Send the READ command (opcode + addr) */
438 ixgbe_shift_out_eeprom_bits(hw, read_opcode,
439 IXGBE_EEPROM_OPCODE_BITS);
440 ixgbe_shift_out_eeprom_bits(hw, (u16)(offset*2),
441 hw->eeprom.address_bits);
443 /* Read the data. */
444 word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
445 *data = (word_in >> 8) | (word_in << 8);
447 /* End this read operation */
448 ixgbe_release_eeprom(hw);
451 out:
452 return status;
456 * ixgbe_read_eeprom_generic - Read EEPROM word using EERD
457 * @hw: pointer to hardware structure
458 * @offset: offset of word in the EEPROM to read
459 * @data: word read from the EEPROM
461 * Reads a 16 bit word from the EEPROM using the EERD register.
463 s32 ixgbe_read_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
465 u32 eerd;
466 s32 status;
468 hw->eeprom.ops.init_params(hw);
470 if (offset >= hw->eeprom.word_size) {
471 status = IXGBE_ERR_EEPROM;
472 goto out;
475 eerd = (offset << IXGBE_EEPROM_READ_ADDR_SHIFT) +
476 IXGBE_EEPROM_READ_REG_START;
478 IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
479 status = ixgbe_poll_eeprom_eerd_done(hw);
481 if (status == 0)
482 *data = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
483 IXGBE_EEPROM_READ_REG_DATA);
484 else
485 hw_dbg(hw, "Eeprom read timed out\n");
487 out:
488 return status;
492 * ixgbe_poll_eeprom_eerd_done - Poll EERD status
493 * @hw: pointer to hardware structure
495 * Polls the status bit (bit 1) of the EERD to determine when the read is done.
497 static s32 ixgbe_poll_eeprom_eerd_done(struct ixgbe_hw *hw)
499 u32 i;
500 u32 reg;
501 s32 status = IXGBE_ERR_EEPROM;
503 for (i = 0; i < IXGBE_EERD_ATTEMPTS; i++) {
504 reg = IXGBE_READ_REG(hw, IXGBE_EERD);
505 if (reg & IXGBE_EEPROM_READ_REG_DONE) {
506 status = 0;
507 break;
509 udelay(5);
511 return status;
515 * ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
516 * @hw: pointer to hardware structure
518 * Prepares EEPROM for access using bit-bang method. This function should
519 * be called before issuing a command to the EEPROM.
521 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
523 s32 status = 0;
524 u32 eec;
525 u32 i;
527 if (ixgbe_acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM) != 0)
528 status = IXGBE_ERR_SWFW_SYNC;
530 if (status == 0) {
531 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
533 /* Request EEPROM Access */
534 eec |= IXGBE_EEC_REQ;
535 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
537 for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
538 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
539 if (eec & IXGBE_EEC_GNT)
540 break;
541 udelay(5);
544 /* Release if grant not acquired */
545 if (!(eec & IXGBE_EEC_GNT)) {
546 eec &= ~IXGBE_EEC_REQ;
547 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
548 hw_dbg(hw, "Could not acquire EEPROM grant\n");
550 ixgbe_release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
551 status = IXGBE_ERR_EEPROM;
555 /* Setup EEPROM for Read/Write */
556 if (status == 0) {
557 /* Clear CS and SK */
558 eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
559 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
560 IXGBE_WRITE_FLUSH(hw);
561 udelay(1);
563 return status;
567 * ixgbe_get_eeprom_semaphore - Get hardware semaphore
568 * @hw: pointer to hardware structure
570 * Sets the hardware semaphores so EEPROM access can occur for bit-bang method
572 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
574 s32 status = IXGBE_ERR_EEPROM;
575 u32 timeout;
576 u32 i;
577 u32 swsm;
579 /* Set timeout value based on size of EEPROM */
580 timeout = hw->eeprom.word_size + 1;
582 /* Get SMBI software semaphore between device drivers first */
583 for (i = 0; i < timeout; i++) {
585 * If the SMBI bit is 0 when we read it, then the bit will be
586 * set and we have the semaphore
588 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
589 if (!(swsm & IXGBE_SWSM_SMBI)) {
590 status = 0;
591 break;
593 msleep(1);
596 /* Now get the semaphore between SW/FW through the SWESMBI bit */
597 if (status == 0) {
598 for (i = 0; i < timeout; i++) {
599 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
601 /* Set the SW EEPROM semaphore bit to request access */
602 swsm |= IXGBE_SWSM_SWESMBI;
603 IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
606 * If we set the bit successfully then we got the
607 * semaphore.
609 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
610 if (swsm & IXGBE_SWSM_SWESMBI)
611 break;
613 udelay(50);
617 * Release semaphores and return error if SW EEPROM semaphore
618 * was not granted because we don't have access to the EEPROM
620 if (i >= timeout) {
621 hw_dbg(hw, "Driver can't access the Eeprom - Semaphore "
622 "not granted.\n");
623 ixgbe_release_eeprom_semaphore(hw);
624 status = IXGBE_ERR_EEPROM;
628 return status;
632 * ixgbe_release_eeprom_semaphore - Release hardware semaphore
633 * @hw: pointer to hardware structure
635 * This function clears hardware semaphore bits.
637 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
639 u32 swsm;
641 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
643 /* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
644 swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
645 IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
646 IXGBE_WRITE_FLUSH(hw);
650 * ixgbe_ready_eeprom - Polls for EEPROM ready
651 * @hw: pointer to hardware structure
653 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
655 s32 status = 0;
656 u16 i;
657 u8 spi_stat_reg;
660 * Read "Status Register" repeatedly until the LSB is cleared. The
661 * EEPROM will signal that the command has been completed by clearing
662 * bit 0 of the internal status register. If it's not cleared within
663 * 5 milliseconds, then error out.
665 for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
666 ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
667 IXGBE_EEPROM_OPCODE_BITS);
668 spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
669 if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
670 break;
672 udelay(5);
673 ixgbe_standby_eeprom(hw);
677 * On some parts, SPI write time could vary from 0-20mSec on 3.3V
678 * devices (and only 0-5mSec on 5V devices)
680 if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
681 hw_dbg(hw, "SPI EEPROM Status error\n");
682 status = IXGBE_ERR_EEPROM;
685 return status;
689 * ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
690 * @hw: pointer to hardware structure
692 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
694 u32 eec;
696 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
698 /* Toggle CS to flush commands */
699 eec |= IXGBE_EEC_CS;
700 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
701 IXGBE_WRITE_FLUSH(hw);
702 udelay(1);
703 eec &= ~IXGBE_EEC_CS;
704 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
705 IXGBE_WRITE_FLUSH(hw);
706 udelay(1);
710 * ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
711 * @hw: pointer to hardware structure
712 * @data: data to send to the EEPROM
713 * @count: number of bits to shift out
715 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
716 u16 count)
718 u32 eec;
719 u32 mask;
720 u32 i;
722 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
725 * Mask is used to shift "count" bits of "data" out to the EEPROM
726 * one bit at a time. Determine the starting bit based on count
728 mask = 0x01 << (count - 1);
730 for (i = 0; i < count; i++) {
732 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
733 * "1", and then raising and then lowering the clock (the SK
734 * bit controls the clock input to the EEPROM). A "0" is
735 * shifted out to the EEPROM by setting "DI" to "0" and then
736 * raising and then lowering the clock.
738 if (data & mask)
739 eec |= IXGBE_EEC_DI;
740 else
741 eec &= ~IXGBE_EEC_DI;
743 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
744 IXGBE_WRITE_FLUSH(hw);
746 udelay(1);
748 ixgbe_raise_eeprom_clk(hw, &eec);
749 ixgbe_lower_eeprom_clk(hw, &eec);
752 * Shift mask to signify next bit of data to shift in to the
753 * EEPROM
755 mask = mask >> 1;
758 /* We leave the "DI" bit set to "0" when we leave this routine. */
759 eec &= ~IXGBE_EEC_DI;
760 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
761 IXGBE_WRITE_FLUSH(hw);
765 * ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
766 * @hw: pointer to hardware structure
768 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
770 u32 eec;
771 u32 i;
772 u16 data = 0;
775 * In order to read a register from the EEPROM, we need to shift
776 * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
777 * the clock input to the EEPROM (setting the SK bit), and then reading
778 * the value of the "DO" bit. During this "shifting in" process the
779 * "DI" bit should always be clear.
781 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
783 eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
785 for (i = 0; i < count; i++) {
786 data = data << 1;
787 ixgbe_raise_eeprom_clk(hw, &eec);
789 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
791 eec &= ~(IXGBE_EEC_DI);
792 if (eec & IXGBE_EEC_DO)
793 data |= 1;
795 ixgbe_lower_eeprom_clk(hw, &eec);
798 return data;
802 * ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
803 * @hw: pointer to hardware structure
804 * @eec: EEC register's current value
806 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
809 * Raise the clock input to the EEPROM
810 * (setting the SK bit), then delay
812 *eec = *eec | IXGBE_EEC_SK;
813 IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
814 IXGBE_WRITE_FLUSH(hw);
815 udelay(1);
819 * ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
820 * @hw: pointer to hardware structure
821 * @eecd: EECD's current value
823 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
826 * Lower the clock input to the EEPROM (clearing the SK bit), then
827 * delay
829 *eec = *eec & ~IXGBE_EEC_SK;
830 IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
831 IXGBE_WRITE_FLUSH(hw);
832 udelay(1);
836 * ixgbe_release_eeprom - Release EEPROM, release semaphores
837 * @hw: pointer to hardware structure
839 static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
841 u32 eec;
843 eec = IXGBE_READ_REG(hw, IXGBE_EEC);
845 eec |= IXGBE_EEC_CS; /* Pull CS high */
846 eec &= ~IXGBE_EEC_SK; /* Lower SCK */
848 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
849 IXGBE_WRITE_FLUSH(hw);
851 udelay(1);
853 /* Stop requesting EEPROM access */
854 eec &= ~IXGBE_EEC_REQ;
855 IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
857 ixgbe_release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
861 * ixgbe_calc_eeprom_checksum - Calculates and returns the checksum
862 * @hw: pointer to hardware structure
864 static u16 ixgbe_calc_eeprom_checksum(struct ixgbe_hw *hw)
866 u16 i;
867 u16 j;
868 u16 checksum = 0;
869 u16 length = 0;
870 u16 pointer = 0;
871 u16 word = 0;
873 /* Include 0x0-0x3F in the checksum */
874 for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
875 if (hw->eeprom.ops.read(hw, i, &word) != 0) {
876 hw_dbg(hw, "EEPROM read failed\n");
877 break;
879 checksum += word;
882 /* Include all data from pointers except for the fw pointer */
883 for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
884 hw->eeprom.ops.read(hw, i, &pointer);
886 /* Make sure the pointer seems valid */
887 if (pointer != 0xFFFF && pointer != 0) {
888 hw->eeprom.ops.read(hw, pointer, &length);
890 if (length != 0xFFFF && length != 0) {
891 for (j = pointer+1; j <= pointer+length; j++) {
892 hw->eeprom.ops.read(hw, j, &word);
893 checksum += word;
899 checksum = (u16)IXGBE_EEPROM_SUM - checksum;
901 return checksum;
905 * ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
906 * @hw: pointer to hardware structure
907 * @checksum_val: calculated checksum
909 * Performs checksum calculation and validates the EEPROM checksum. If the
910 * caller does not need checksum_val, the value can be NULL.
912 s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
913 u16 *checksum_val)
915 s32 status;
916 u16 checksum;
917 u16 read_checksum = 0;
920 * Read the first word from the EEPROM. If this times out or fails, do
921 * not continue or we could be in for a very long wait while every
922 * EEPROM read fails
924 status = hw->eeprom.ops.read(hw, 0, &checksum);
926 if (status == 0) {
927 checksum = ixgbe_calc_eeprom_checksum(hw);
929 hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
932 * Verify read checksum from EEPROM is the same as
933 * calculated checksum
935 if (read_checksum != checksum)
936 status = IXGBE_ERR_EEPROM_CHECKSUM;
938 /* If the user cares, return the calculated checksum */
939 if (checksum_val)
940 *checksum_val = checksum;
941 } else {
942 hw_dbg(hw, "EEPROM read failed\n");
945 return status;
949 * ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
950 * @hw: pointer to hardware structure
952 s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
954 s32 status;
955 u16 checksum;
958 * Read the first word from the EEPROM. If this times out or fails, do
959 * not continue or we could be in for a very long wait while every
960 * EEPROM read fails
962 status = hw->eeprom.ops.read(hw, 0, &checksum);
964 if (status == 0) {
965 checksum = ixgbe_calc_eeprom_checksum(hw);
966 status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM,
967 checksum);
968 } else {
969 hw_dbg(hw, "EEPROM read failed\n");
972 return status;
976 * ixgbe_validate_mac_addr - Validate MAC address
977 * @mac_addr: pointer to MAC address.
979 * Tests a MAC address to ensure it is a valid Individual Address
981 s32 ixgbe_validate_mac_addr(u8 *mac_addr)
983 s32 status = 0;
985 /* Make sure it is not a multicast address */
986 if (IXGBE_IS_MULTICAST(mac_addr))
987 status = IXGBE_ERR_INVALID_MAC_ADDR;
988 /* Not a broadcast address */
989 else if (IXGBE_IS_BROADCAST(mac_addr))
990 status = IXGBE_ERR_INVALID_MAC_ADDR;
991 /* Reject the zero address */
992 else if (mac_addr[0] == 0 && mac_addr[1] == 0 && mac_addr[2] == 0 &&
993 mac_addr[3] == 0 && mac_addr[4] == 0 && mac_addr[5] == 0)
994 status = IXGBE_ERR_INVALID_MAC_ADDR;
996 return status;
1000 * ixgbe_set_rar_generic - Set Rx address register
1001 * @hw: pointer to hardware structure
1002 * @index: Receive address register to write
1003 * @addr: Address to put into receive address register
1004 * @vmdq: VMDq "set" or "pool" index
1005 * @enable_addr: set flag that address is active
1007 * Puts an ethernet address into a receive address register.
1009 s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
1010 u32 enable_addr)
1012 u32 rar_low, rar_high;
1013 u32 rar_entries = hw->mac.num_rar_entries;
1015 /* setup VMDq pool selection before this RAR gets enabled */
1016 hw->mac.ops.set_vmdq(hw, index, vmdq);
1018 /* Make sure we are using a valid rar index range */
1019 if (index < rar_entries) {
1021 * HW expects these in little endian so we reverse the byte
1022 * order from network order (big endian) to little endian
1024 rar_low = ((u32)addr[0] |
1025 ((u32)addr[1] << 8) |
1026 ((u32)addr[2] << 16) |
1027 ((u32)addr[3] << 24));
1029 * Some parts put the VMDq setting in the extra RAH bits,
1030 * so save everything except the lower 16 bits that hold part
1031 * of the address and the address valid bit.
1033 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1034 rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1035 rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
1037 if (enable_addr != 0)
1038 rar_high |= IXGBE_RAH_AV;
1040 IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
1041 IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1042 } else {
1043 hw_dbg(hw, "RAR index %d is out of range.\n", index);
1046 return 0;
1050 * ixgbe_clear_rar_generic - Remove Rx address register
1051 * @hw: pointer to hardware structure
1052 * @index: Receive address register to write
1054 * Clears an ethernet address from a receive address register.
1056 s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
1058 u32 rar_high;
1059 u32 rar_entries = hw->mac.num_rar_entries;
1061 /* Make sure we are using a valid rar index range */
1062 if (index < rar_entries) {
1064 * Some parts put the VMDq setting in the extra RAH bits,
1065 * so save everything except the lower 16 bits that hold part
1066 * of the address and the address valid bit.
1068 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1069 rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1071 IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
1072 IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1073 } else {
1074 hw_dbg(hw, "RAR index %d is out of range.\n", index);
1077 /* clear VMDq pool/queue selection for this RAR */
1078 hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
1080 return 0;
1084 * ixgbe_enable_rar - Enable Rx address register
1085 * @hw: pointer to hardware structure
1086 * @index: index into the RAR table
1088 * Enables the select receive address register.
1090 static void ixgbe_enable_rar(struct ixgbe_hw *hw, u32 index)
1092 u32 rar_high;
1094 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1095 rar_high |= IXGBE_RAH_AV;
1096 IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1100 * ixgbe_disable_rar - Disable Rx address register
1101 * @hw: pointer to hardware structure
1102 * @index: index into the RAR table
1104 * Disables the select receive address register.
1106 static void ixgbe_disable_rar(struct ixgbe_hw *hw, u32 index)
1108 u32 rar_high;
1110 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1111 rar_high &= (~IXGBE_RAH_AV);
1112 IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1116 * ixgbe_init_rx_addrs_generic - Initializes receive address filters.
1117 * @hw: pointer to hardware structure
1119 * Places the MAC address in receive address register 0 and clears the rest
1120 * of the receive address registers. Clears the multicast table. Assumes
1121 * the receiver is in reset when the routine is called.
1123 s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
1125 u32 i;
1126 u32 rar_entries = hw->mac.num_rar_entries;
1129 * If the current mac address is valid, assume it is a software override
1130 * to the permanent address.
1131 * Otherwise, use the permanent address from the eeprom.
1133 if (ixgbe_validate_mac_addr(hw->mac.addr) ==
1134 IXGBE_ERR_INVALID_MAC_ADDR) {
1135 /* Get the MAC address from the RAR0 for later reference */
1136 hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
1138 hw_dbg(hw, " Keeping Current RAR0 Addr =%.2X %.2X %.2X ",
1139 hw->mac.addr[0], hw->mac.addr[1],
1140 hw->mac.addr[2]);
1141 hw_dbg(hw, "%.2X %.2X %.2X\n", hw->mac.addr[3],
1142 hw->mac.addr[4], hw->mac.addr[5]);
1143 } else {
1144 /* Setup the receive address. */
1145 hw_dbg(hw, "Overriding MAC Address in RAR[0]\n");
1146 hw_dbg(hw, " New MAC Addr =%.2X %.2X %.2X ",
1147 hw->mac.addr[0], hw->mac.addr[1],
1148 hw->mac.addr[2]);
1149 hw_dbg(hw, "%.2X %.2X %.2X\n", hw->mac.addr[3],
1150 hw->mac.addr[4], hw->mac.addr[5]);
1152 hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
1154 hw->addr_ctrl.overflow_promisc = 0;
1156 hw->addr_ctrl.rar_used_count = 1;
1158 /* Zero out the other receive addresses. */
1159 hw_dbg(hw, "Clearing RAR[1-%d]\n", rar_entries - 1);
1160 for (i = 1; i < rar_entries; i++) {
1161 IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
1162 IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
1165 /* Clear the MTA */
1166 hw->addr_ctrl.mc_addr_in_rar_count = 0;
1167 hw->addr_ctrl.mta_in_use = 0;
1168 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
1170 hw_dbg(hw, " Clearing MTA\n");
1171 for (i = 0; i < hw->mac.mcft_size; i++)
1172 IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
1174 if (hw->mac.ops.init_uta_tables)
1175 hw->mac.ops.init_uta_tables(hw);
1177 return 0;
1181 * ixgbe_add_uc_addr - Adds a secondary unicast address.
1182 * @hw: pointer to hardware structure
1183 * @addr: new address
1185 * Adds it to unused receive address register or goes into promiscuous mode.
1187 static void ixgbe_add_uc_addr(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
1189 u32 rar_entries = hw->mac.num_rar_entries;
1190 u32 rar;
1192 hw_dbg(hw, " UC Addr = %.2X %.2X %.2X %.2X %.2X %.2X\n",
1193 addr[0], addr[1], addr[2], addr[3], addr[4], addr[5]);
1196 * Place this address in the RAR if there is room,
1197 * else put the controller into promiscuous mode
1199 if (hw->addr_ctrl.rar_used_count < rar_entries) {
1200 rar = hw->addr_ctrl.rar_used_count -
1201 hw->addr_ctrl.mc_addr_in_rar_count;
1202 hw->mac.ops.set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
1203 hw_dbg(hw, "Added a secondary address to RAR[%d]\n", rar);
1204 hw->addr_ctrl.rar_used_count++;
1205 } else {
1206 hw->addr_ctrl.overflow_promisc++;
1209 hw_dbg(hw, "ixgbe_add_uc_addr Complete\n");
1213 * ixgbe_update_uc_addr_list_generic - Updates MAC list of secondary addresses
1214 * @hw: pointer to hardware structure
1215 * @addr_list: the list of new addresses
1216 * @addr_count: number of addresses
1217 * @next: iterator function to walk the address list
1219 * The given list replaces any existing list. Clears the secondary addrs from
1220 * receive address registers. Uses unused receive address registers for the
1221 * first secondary addresses, and falls back to promiscuous mode as needed.
1223 * Drivers using secondary unicast addresses must set user_set_promisc when
1224 * manually putting the device into promiscuous mode.
1226 s32 ixgbe_update_uc_addr_list_generic(struct ixgbe_hw *hw, u8 *addr_list,
1227 u32 addr_count, ixgbe_mc_addr_itr next)
1229 u8 *addr;
1230 u32 i;
1231 u32 old_promisc_setting = hw->addr_ctrl.overflow_promisc;
1232 u32 uc_addr_in_use;
1233 u32 fctrl;
1234 u32 vmdq;
1237 * Clear accounting of old secondary address list,
1238 * don't count RAR[0]
1240 uc_addr_in_use = hw->addr_ctrl.rar_used_count -
1241 hw->addr_ctrl.mc_addr_in_rar_count - 1;
1242 hw->addr_ctrl.rar_used_count -= uc_addr_in_use;
1243 hw->addr_ctrl.overflow_promisc = 0;
1245 /* Zero out the other receive addresses */
1246 hw_dbg(hw, "Clearing RAR[1-%d]\n", uc_addr_in_use);
1247 for (i = 1; i <= uc_addr_in_use; i++) {
1248 IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
1249 IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
1252 /* Add the new addresses */
1253 for (i = 0; i < addr_count; i++) {
1254 hw_dbg(hw, " Adding the secondary addresses:\n");
1255 addr = next(hw, &addr_list, &vmdq);
1256 ixgbe_add_uc_addr(hw, addr, vmdq);
1259 if (hw->addr_ctrl.overflow_promisc) {
1260 /* enable promisc if not already in overflow or set by user */
1261 if (!old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
1262 hw_dbg(hw, " Entering address overflow promisc mode\n");
1263 fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
1264 fctrl |= IXGBE_FCTRL_UPE;
1265 IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
1267 } else {
1268 /* only disable if set by overflow, not by user */
1269 if (old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
1270 hw_dbg(hw, " Leaving address overflow promisc mode\n");
1271 fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
1272 fctrl &= ~IXGBE_FCTRL_UPE;
1273 IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
1277 hw_dbg(hw, "ixgbe_update_uc_addr_list_generic Complete\n");
1278 return 0;
1282 * ixgbe_mta_vector - Determines bit-vector in multicast table to set
1283 * @hw: pointer to hardware structure
1284 * @mc_addr: the multicast address
1286 * Extracts the 12 bits, from a multicast address, to determine which
1287 * bit-vector to set in the multicast table. The hardware uses 12 bits, from
1288 * incoming rx multicast addresses, to determine the bit-vector to check in
1289 * the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
1290 * by the MO field of the MCSTCTRL. The MO field is set during initialization
1291 * to mc_filter_type.
1293 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
1295 u32 vector = 0;
1297 switch (hw->mac.mc_filter_type) {
1298 case 0: /* use bits [47:36] of the address */
1299 vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
1300 break;
1301 case 1: /* use bits [46:35] of the address */
1302 vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
1303 break;
1304 case 2: /* use bits [45:34] of the address */
1305 vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
1306 break;
1307 case 3: /* use bits [43:32] of the address */
1308 vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
1309 break;
1310 default: /* Invalid mc_filter_type */
1311 hw_dbg(hw, "MC filter type param set incorrectly\n");
1312 break;
1315 /* vector can only be 12-bits or boundary will be exceeded */
1316 vector &= 0xFFF;
1317 return vector;
1321 * ixgbe_set_mta - Set bit-vector in multicast table
1322 * @hw: pointer to hardware structure
1323 * @hash_value: Multicast address hash value
1325 * Sets the bit-vector in the multicast table.
1327 static void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
1329 u32 vector;
1330 u32 vector_bit;
1331 u32 vector_reg;
1332 u32 mta_reg;
1334 hw->addr_ctrl.mta_in_use++;
1336 vector = ixgbe_mta_vector(hw, mc_addr);
1337 hw_dbg(hw, " bit-vector = 0x%03X\n", vector);
1340 * The MTA is a register array of 128 32-bit registers. It is treated
1341 * like an array of 4096 bits. We want to set bit
1342 * BitArray[vector_value]. So we figure out what register the bit is
1343 * in, read it, OR in the new bit, then write back the new value. The
1344 * register is determined by the upper 7 bits of the vector value and
1345 * the bit within that register are determined by the lower 5 bits of
1346 * the value.
1348 vector_reg = (vector >> 5) & 0x7F;
1349 vector_bit = vector & 0x1F;
1350 mta_reg = IXGBE_READ_REG(hw, IXGBE_MTA(vector_reg));
1351 mta_reg |= (1 << vector_bit);
1352 IXGBE_WRITE_REG(hw, IXGBE_MTA(vector_reg), mta_reg);
1356 * ixgbe_add_mc_addr - Adds a multicast address.
1357 * @hw: pointer to hardware structure
1358 * @mc_addr: new multicast address
1360 * Adds it to unused receive address register or to the multicast table.
1362 static void ixgbe_add_mc_addr(struct ixgbe_hw *hw, u8 *mc_addr)
1364 u32 rar_entries = hw->mac.num_rar_entries;
1365 u32 rar;
1367 hw_dbg(hw, " MC Addr =%.2X %.2X %.2X %.2X %.2X %.2X\n",
1368 mc_addr[0], mc_addr[1], mc_addr[2],
1369 mc_addr[3], mc_addr[4], mc_addr[5]);
1372 * Place this multicast address in the RAR if there is room,
1373 * else put it in the MTA
1375 if (hw->addr_ctrl.rar_used_count < rar_entries) {
1376 /* use RAR from the end up for multicast */
1377 rar = rar_entries - hw->addr_ctrl.mc_addr_in_rar_count - 1;
1378 hw->mac.ops.set_rar(hw, rar, mc_addr, 0, IXGBE_RAH_AV);
1379 hw_dbg(hw, "Added a multicast address to RAR[%d]\n", rar);
1380 hw->addr_ctrl.rar_used_count++;
1381 hw->addr_ctrl.mc_addr_in_rar_count++;
1382 } else {
1383 ixgbe_set_mta(hw, mc_addr);
1386 hw_dbg(hw, "ixgbe_add_mc_addr Complete\n");
1390 * ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
1391 * @hw: pointer to hardware structure
1392 * @mc_addr_list: the list of new multicast addresses
1393 * @mc_addr_count: number of addresses
1394 * @next: iterator function to walk the multicast address list
1396 * The given list replaces any existing list. Clears the MC addrs from receive
1397 * address registers and the multicast table. Uses unused receive address
1398 * registers for the first multicast addresses, and hashes the rest into the
1399 * multicast table.
1401 s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw, u8 *mc_addr_list,
1402 u32 mc_addr_count, ixgbe_mc_addr_itr next)
1404 u32 i;
1405 u32 rar_entries = hw->mac.num_rar_entries;
1406 u32 vmdq;
1409 * Set the new number of MC addresses that we are being requested to
1410 * use.
1412 hw->addr_ctrl.num_mc_addrs = mc_addr_count;
1413 hw->addr_ctrl.rar_used_count -= hw->addr_ctrl.mc_addr_in_rar_count;
1414 hw->addr_ctrl.mc_addr_in_rar_count = 0;
1415 hw->addr_ctrl.mta_in_use = 0;
1417 /* Zero out the other receive addresses. */
1418 hw_dbg(hw, "Clearing RAR[%d-%d]\n", hw->addr_ctrl.rar_used_count,
1419 rar_entries - 1);
1420 for (i = hw->addr_ctrl.rar_used_count; i < rar_entries; i++) {
1421 IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
1422 IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
1425 /* Clear the MTA */
1426 hw_dbg(hw, " Clearing MTA\n");
1427 for (i = 0; i < hw->mac.mcft_size; i++)
1428 IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
1430 /* Add the new addresses */
1431 for (i = 0; i < mc_addr_count; i++) {
1432 hw_dbg(hw, " Adding the multicast addresses:\n");
1433 ixgbe_add_mc_addr(hw, next(hw, &mc_addr_list, &vmdq));
1436 /* Enable mta */
1437 if (hw->addr_ctrl.mta_in_use > 0)
1438 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
1439 IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
1441 hw_dbg(hw, "ixgbe_update_mc_addr_list_generic Complete\n");
1442 return 0;
1446 * ixgbe_enable_mc_generic - Enable multicast address in RAR
1447 * @hw: pointer to hardware structure
1449 * Enables multicast address in RAR and the use of the multicast hash table.
1451 s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
1453 u32 i;
1454 u32 rar_entries = hw->mac.num_rar_entries;
1455 struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
1457 if (a->mc_addr_in_rar_count > 0)
1458 for (i = (rar_entries - a->mc_addr_in_rar_count);
1459 i < rar_entries; i++)
1460 ixgbe_enable_rar(hw, i);
1462 if (a->mta_in_use > 0)
1463 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
1464 hw->mac.mc_filter_type);
1466 return 0;
1470 * ixgbe_disable_mc_generic - Disable multicast address in RAR
1471 * @hw: pointer to hardware structure
1473 * Disables multicast address in RAR and the use of the multicast hash table.
1475 s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
1477 u32 i;
1478 u32 rar_entries = hw->mac.num_rar_entries;
1479 struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
1481 if (a->mc_addr_in_rar_count > 0)
1482 for (i = (rar_entries - a->mc_addr_in_rar_count);
1483 i < rar_entries; i++)
1484 ixgbe_disable_rar(hw, i);
1486 if (a->mta_in_use > 0)
1487 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
1489 return 0;
1493 * ixgbe_disable_pcie_master - Disable PCI-express master access
1494 * @hw: pointer to hardware structure
1496 * Disables PCI-Express master access and verifies there are no pending
1497 * requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
1498 * bit hasn't caused the master requests to be disabled, else 0
1499 * is returned signifying master requests disabled.
1501 s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
1503 u32 i;
1504 u32 reg_val;
1505 u32 number_of_queues;
1506 s32 status = IXGBE_ERR_MASTER_REQUESTS_PENDING;
1508 /* Disable the receive unit by stopping each queue */
1509 number_of_queues = hw->mac.max_rx_queues;
1510 for (i = 0; i < number_of_queues; i++) {
1511 reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
1512 if (reg_val & IXGBE_RXDCTL_ENABLE) {
1513 reg_val &= ~IXGBE_RXDCTL_ENABLE;
1514 IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
1518 reg_val = IXGBE_READ_REG(hw, IXGBE_CTRL);
1519 reg_val |= IXGBE_CTRL_GIO_DIS;
1520 IXGBE_WRITE_REG(hw, IXGBE_CTRL, reg_val);
1522 for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
1523 if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO)) {
1524 status = 0;
1525 break;
1527 udelay(100);
1530 return status;
1535 * ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
1536 * @hw: pointer to hardware structure
1537 * @mask: Mask to specify which semaphore to acquire
1539 * Acquires the SWFW semaphore thought the GSSR register for the specified
1540 * function (CSR, PHY0, PHY1, EEPROM, Flash)
1542 s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u16 mask)
1544 u32 gssr;
1545 u32 swmask = mask;
1546 u32 fwmask = mask << 5;
1547 s32 timeout = 200;
1549 while (timeout) {
1550 if (ixgbe_get_eeprom_semaphore(hw))
1551 return -IXGBE_ERR_SWFW_SYNC;
1553 gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
1554 if (!(gssr & (fwmask | swmask)))
1555 break;
1558 * Firmware currently using resource (fwmask) or other software
1559 * thread currently using resource (swmask)
1561 ixgbe_release_eeprom_semaphore(hw);
1562 msleep(5);
1563 timeout--;
1566 if (!timeout) {
1567 hw_dbg(hw, "Driver can't access resource, GSSR timeout.\n");
1568 return -IXGBE_ERR_SWFW_SYNC;
1571 gssr |= swmask;
1572 IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
1574 ixgbe_release_eeprom_semaphore(hw);
1575 return 0;
1579 * ixgbe_release_swfw_sync - Release SWFW semaphore
1580 * @hw: pointer to hardware structure
1581 * @mask: Mask to specify which semaphore to release
1583 * Releases the SWFW semaphore thought the GSSR register for the specified
1584 * function (CSR, PHY0, PHY1, EEPROM, Flash)
1586 void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u16 mask)
1588 u32 gssr;
1589 u32 swmask = mask;
1591 ixgbe_get_eeprom_semaphore(hw);
1593 gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
1594 gssr &= ~swmask;
1595 IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
1597 ixgbe_release_eeprom_semaphore(hw);