sparc64: Move generic PCR support code to seperate file.
[linux-2.6/kvm.git] / drivers / net / cxgb3 / cxgb3_offload.c
blob2d7f69aff1d949a47e952997932800593444338e
1 /*
2 * Copyright (c) 2006-2008 Chelsio, Inc. All rights reserved.
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
33 #include <linux/list.h>
34 #include <net/neighbour.h>
35 #include <linux/notifier.h>
36 #include <asm/atomic.h>
37 #include <linux/proc_fs.h>
38 #include <linux/if_vlan.h>
39 #include <net/netevent.h>
40 #include <linux/highmem.h>
41 #include <linux/vmalloc.h>
43 #include "common.h"
44 #include "regs.h"
45 #include "cxgb3_ioctl.h"
46 #include "cxgb3_ctl_defs.h"
47 #include "cxgb3_defs.h"
48 #include "l2t.h"
49 #include "firmware_exports.h"
50 #include "cxgb3_offload.h"
52 static LIST_HEAD(client_list);
53 static LIST_HEAD(ofld_dev_list);
54 static DEFINE_MUTEX(cxgb3_db_lock);
56 static DEFINE_RWLOCK(adapter_list_lock);
57 static LIST_HEAD(adapter_list);
59 static const unsigned int MAX_ATIDS = 64 * 1024;
60 static const unsigned int ATID_BASE = 0x10000;
62 static inline int offload_activated(struct t3cdev *tdev)
64 const struct adapter *adapter = tdev2adap(tdev);
66 return (test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map));
69 /**
70 * cxgb3_register_client - register an offload client
71 * @client: the client
73 * Add the client to the client list,
74 * and call backs the client for each activated offload device
76 void cxgb3_register_client(struct cxgb3_client *client)
78 struct t3cdev *tdev;
80 mutex_lock(&cxgb3_db_lock);
81 list_add_tail(&client->client_list, &client_list);
83 if (client->add) {
84 list_for_each_entry(tdev, &ofld_dev_list, ofld_dev_list) {
85 if (offload_activated(tdev))
86 client->add(tdev);
89 mutex_unlock(&cxgb3_db_lock);
92 EXPORT_SYMBOL(cxgb3_register_client);
94 /**
95 * cxgb3_unregister_client - unregister an offload client
96 * @client: the client
98 * Remove the client to the client list,
99 * and call backs the client for each activated offload device.
101 void cxgb3_unregister_client(struct cxgb3_client *client)
103 struct t3cdev *tdev;
105 mutex_lock(&cxgb3_db_lock);
106 list_del(&client->client_list);
108 if (client->remove) {
109 list_for_each_entry(tdev, &ofld_dev_list, ofld_dev_list) {
110 if (offload_activated(tdev))
111 client->remove(tdev);
114 mutex_unlock(&cxgb3_db_lock);
117 EXPORT_SYMBOL(cxgb3_unregister_client);
120 * cxgb3_add_clients - activate registered clients for an offload device
121 * @tdev: the offload device
123 * Call backs all registered clients once a offload device is activated
125 void cxgb3_add_clients(struct t3cdev *tdev)
127 struct cxgb3_client *client;
129 mutex_lock(&cxgb3_db_lock);
130 list_for_each_entry(client, &client_list, client_list) {
131 if (client->add)
132 client->add(tdev);
134 mutex_unlock(&cxgb3_db_lock);
138 * cxgb3_remove_clients - deactivates registered clients
139 * for an offload device
140 * @tdev: the offload device
142 * Call backs all registered clients once a offload device is deactivated
144 void cxgb3_remove_clients(struct t3cdev *tdev)
146 struct cxgb3_client *client;
148 mutex_lock(&cxgb3_db_lock);
149 list_for_each_entry(client, &client_list, client_list) {
150 if (client->remove)
151 client->remove(tdev);
153 mutex_unlock(&cxgb3_db_lock);
156 static struct net_device *get_iff_from_mac(struct adapter *adapter,
157 const unsigned char *mac,
158 unsigned int vlan)
160 int i;
162 for_each_port(adapter, i) {
163 struct vlan_group *grp;
164 struct net_device *dev = adapter->port[i];
165 const struct port_info *p = netdev_priv(dev);
167 if (!memcmp(dev->dev_addr, mac, ETH_ALEN)) {
168 if (vlan && vlan != VLAN_VID_MASK) {
169 grp = p->vlan_grp;
170 dev = NULL;
171 if (grp)
172 dev = vlan_group_get_device(grp, vlan);
173 } else
174 while (dev->master)
175 dev = dev->master;
176 return dev;
179 return NULL;
182 static int cxgb_ulp_iscsi_ctl(struct adapter *adapter, unsigned int req,
183 void *data)
185 int i;
186 int ret = 0;
187 unsigned int val = 0;
188 struct ulp_iscsi_info *uiip = data;
190 switch (req) {
191 case ULP_ISCSI_GET_PARAMS:
192 uiip->pdev = adapter->pdev;
193 uiip->llimit = t3_read_reg(adapter, A_ULPRX_ISCSI_LLIMIT);
194 uiip->ulimit = t3_read_reg(adapter, A_ULPRX_ISCSI_ULIMIT);
195 uiip->tagmask = t3_read_reg(adapter, A_ULPRX_ISCSI_TAGMASK);
197 val = t3_read_reg(adapter, A_ULPRX_ISCSI_PSZ);
198 for (i = 0; i < 4; i++, val >>= 8)
199 uiip->pgsz_factor[i] = val & 0xFF;
201 val = t3_read_reg(adapter, A_TP_PARA_REG7);
202 uiip->max_txsz =
203 uiip->max_rxsz = min((val >> S_PMMAXXFERLEN0)&M_PMMAXXFERLEN0,
204 (val >> S_PMMAXXFERLEN1)&M_PMMAXXFERLEN1);
206 * On tx, the iscsi pdu has to be <= tx page size and has to
207 * fit into the Tx PM FIFO.
209 val = min(adapter->params.tp.tx_pg_size,
210 t3_read_reg(adapter, A_PM1_TX_CFG) >> 17);
211 uiip->max_txsz = min(val, uiip->max_txsz);
213 /* set MaxRxData to 16224 */
214 val = t3_read_reg(adapter, A_TP_PARA_REG2);
215 if ((val >> S_MAXRXDATA) != 0x3f60) {
216 val &= (M_RXCOALESCESIZE << S_RXCOALESCESIZE);
217 val |= V_MAXRXDATA(0x3f60);
218 printk(KERN_INFO
219 "%s, iscsi set MaxRxData to 16224 (0x%x).\n",
220 adapter->name, val);
221 t3_write_reg(adapter, A_TP_PARA_REG2, val);
225 * on rx, the iscsi pdu has to be < rx page size and the
226 * the max rx data length programmed in TP
228 val = min(adapter->params.tp.rx_pg_size,
229 ((t3_read_reg(adapter, A_TP_PARA_REG2)) >>
230 S_MAXRXDATA) & M_MAXRXDATA);
231 uiip->max_rxsz = min(val, uiip->max_rxsz);
232 break;
233 case ULP_ISCSI_SET_PARAMS:
234 t3_write_reg(adapter, A_ULPRX_ISCSI_TAGMASK, uiip->tagmask);
235 /* program the ddp page sizes */
236 for (i = 0; i < 4; i++)
237 val |= (uiip->pgsz_factor[i] & 0xF) << (8 * i);
238 if (val && (val != t3_read_reg(adapter, A_ULPRX_ISCSI_PSZ))) {
239 printk(KERN_INFO
240 "%s, setting iscsi pgsz 0x%x, %u,%u,%u,%u.\n",
241 adapter->name, val, uiip->pgsz_factor[0],
242 uiip->pgsz_factor[1], uiip->pgsz_factor[2],
243 uiip->pgsz_factor[3]);
244 t3_write_reg(adapter, A_ULPRX_ISCSI_PSZ, val);
246 break;
247 default:
248 ret = -EOPNOTSUPP;
250 return ret;
253 /* Response queue used for RDMA events. */
254 #define ASYNC_NOTIF_RSPQ 0
256 static int cxgb_rdma_ctl(struct adapter *adapter, unsigned int req, void *data)
258 int ret = 0;
260 switch (req) {
261 case RDMA_GET_PARAMS: {
262 struct rdma_info *rdma = data;
263 struct pci_dev *pdev = adapter->pdev;
265 rdma->udbell_physbase = pci_resource_start(pdev, 2);
266 rdma->udbell_len = pci_resource_len(pdev, 2);
267 rdma->tpt_base =
268 t3_read_reg(adapter, A_ULPTX_TPT_LLIMIT);
269 rdma->tpt_top = t3_read_reg(adapter, A_ULPTX_TPT_ULIMIT);
270 rdma->pbl_base =
271 t3_read_reg(adapter, A_ULPTX_PBL_LLIMIT);
272 rdma->pbl_top = t3_read_reg(adapter, A_ULPTX_PBL_ULIMIT);
273 rdma->rqt_base = t3_read_reg(adapter, A_ULPRX_RQ_LLIMIT);
274 rdma->rqt_top = t3_read_reg(adapter, A_ULPRX_RQ_ULIMIT);
275 rdma->kdb_addr = adapter->regs + A_SG_KDOORBELL;
276 rdma->pdev = pdev;
277 break;
279 case RDMA_CQ_OP:{
280 unsigned long flags;
281 struct rdma_cq_op *rdma = data;
283 /* may be called in any context */
284 spin_lock_irqsave(&adapter->sge.reg_lock, flags);
285 ret = t3_sge_cqcntxt_op(adapter, rdma->id, rdma->op,
286 rdma->credits);
287 spin_unlock_irqrestore(&adapter->sge.reg_lock, flags);
288 break;
290 case RDMA_GET_MEM:{
291 struct ch_mem_range *t = data;
292 struct mc7 *mem;
294 if ((t->addr & 7) || (t->len & 7))
295 return -EINVAL;
296 if (t->mem_id == MEM_CM)
297 mem = &adapter->cm;
298 else if (t->mem_id == MEM_PMRX)
299 mem = &adapter->pmrx;
300 else if (t->mem_id == MEM_PMTX)
301 mem = &adapter->pmtx;
302 else
303 return -EINVAL;
305 ret =
306 t3_mc7_bd_read(mem, t->addr / 8, t->len / 8,
307 (u64 *) t->buf);
308 if (ret)
309 return ret;
310 break;
312 case RDMA_CQ_SETUP:{
313 struct rdma_cq_setup *rdma = data;
315 spin_lock_irq(&adapter->sge.reg_lock);
316 ret =
317 t3_sge_init_cqcntxt(adapter, rdma->id,
318 rdma->base_addr, rdma->size,
319 ASYNC_NOTIF_RSPQ,
320 rdma->ovfl_mode, rdma->credits,
321 rdma->credit_thres);
322 spin_unlock_irq(&adapter->sge.reg_lock);
323 break;
325 case RDMA_CQ_DISABLE:
326 spin_lock_irq(&adapter->sge.reg_lock);
327 ret = t3_sge_disable_cqcntxt(adapter, *(unsigned int *)data);
328 spin_unlock_irq(&adapter->sge.reg_lock);
329 break;
330 case RDMA_CTRL_QP_SETUP:{
331 struct rdma_ctrlqp_setup *rdma = data;
333 spin_lock_irq(&adapter->sge.reg_lock);
334 ret = t3_sge_init_ecntxt(adapter, FW_RI_SGEEC_START, 0,
335 SGE_CNTXT_RDMA,
336 ASYNC_NOTIF_RSPQ,
337 rdma->base_addr, rdma->size,
338 FW_RI_TID_START, 1, 0);
339 spin_unlock_irq(&adapter->sge.reg_lock);
340 break;
342 case RDMA_GET_MIB: {
343 spin_lock(&adapter->stats_lock);
344 t3_tp_get_mib_stats(adapter, (struct tp_mib_stats *)data);
345 spin_unlock(&adapter->stats_lock);
346 break;
348 default:
349 ret = -EOPNOTSUPP;
351 return ret;
354 static int cxgb_offload_ctl(struct t3cdev *tdev, unsigned int req, void *data)
356 struct adapter *adapter = tdev2adap(tdev);
357 struct tid_range *tid;
358 struct mtutab *mtup;
359 struct iff_mac *iffmacp;
360 struct ddp_params *ddpp;
361 struct adap_ports *ports;
362 struct ofld_page_info *rx_page_info;
363 struct tp_params *tp = &adapter->params.tp;
364 int i;
366 switch (req) {
367 case GET_MAX_OUTSTANDING_WR:
368 *(unsigned int *)data = FW_WR_NUM;
369 break;
370 case GET_WR_LEN:
371 *(unsigned int *)data = WR_FLITS;
372 break;
373 case GET_TX_MAX_CHUNK:
374 *(unsigned int *)data = 1 << 20; /* 1MB */
375 break;
376 case GET_TID_RANGE:
377 tid = data;
378 tid->num = t3_mc5_size(&adapter->mc5) -
379 adapter->params.mc5.nroutes -
380 adapter->params.mc5.nfilters - adapter->params.mc5.nservers;
381 tid->base = 0;
382 break;
383 case GET_STID_RANGE:
384 tid = data;
385 tid->num = adapter->params.mc5.nservers;
386 tid->base = t3_mc5_size(&adapter->mc5) - tid->num -
387 adapter->params.mc5.nfilters - adapter->params.mc5.nroutes;
388 break;
389 case GET_L2T_CAPACITY:
390 *(unsigned int *)data = 2048;
391 break;
392 case GET_MTUS:
393 mtup = data;
394 mtup->size = NMTUS;
395 mtup->mtus = adapter->params.mtus;
396 break;
397 case GET_IFF_FROM_MAC:
398 iffmacp = data;
399 iffmacp->dev = get_iff_from_mac(adapter, iffmacp->mac_addr,
400 iffmacp->vlan_tag &
401 VLAN_VID_MASK);
402 break;
403 case GET_DDP_PARAMS:
404 ddpp = data;
405 ddpp->llimit = t3_read_reg(adapter, A_ULPRX_TDDP_LLIMIT);
406 ddpp->ulimit = t3_read_reg(adapter, A_ULPRX_TDDP_ULIMIT);
407 ddpp->tag_mask = t3_read_reg(adapter, A_ULPRX_TDDP_TAGMASK);
408 break;
409 case GET_PORTS:
410 ports = data;
411 ports->nports = adapter->params.nports;
412 for_each_port(adapter, i)
413 ports->lldevs[i] = adapter->port[i];
414 break;
415 case ULP_ISCSI_GET_PARAMS:
416 case ULP_ISCSI_SET_PARAMS:
417 if (!offload_running(adapter))
418 return -EAGAIN;
419 return cxgb_ulp_iscsi_ctl(adapter, req, data);
420 case RDMA_GET_PARAMS:
421 case RDMA_CQ_OP:
422 case RDMA_CQ_SETUP:
423 case RDMA_CQ_DISABLE:
424 case RDMA_CTRL_QP_SETUP:
425 case RDMA_GET_MEM:
426 case RDMA_GET_MIB:
427 if (!offload_running(adapter))
428 return -EAGAIN;
429 return cxgb_rdma_ctl(adapter, req, data);
430 case GET_RX_PAGE_INFO:
431 rx_page_info = data;
432 rx_page_info->page_size = tp->rx_pg_size;
433 rx_page_info->num = tp->rx_num_pgs;
434 break;
435 case GET_ISCSI_IPV4ADDR: {
436 struct iscsi_ipv4addr *p = data;
437 struct port_info *pi = netdev_priv(p->dev);
438 p->ipv4addr = pi->iscsi_ipv4addr;
439 break;
441 case GET_EMBEDDED_INFO: {
442 struct ch_embedded_info *e = data;
444 spin_lock(&adapter->stats_lock);
445 t3_get_fw_version(adapter, &e->fw_vers);
446 t3_get_tp_version(adapter, &e->tp_vers);
447 spin_unlock(&adapter->stats_lock);
448 break;
450 default:
451 return -EOPNOTSUPP;
453 return 0;
457 * Dummy handler for Rx offload packets in case we get an offload packet before
458 * proper processing is setup. This complains and drops the packet as it isn't
459 * normal to get offload packets at this stage.
461 static int rx_offload_blackhole(struct t3cdev *dev, struct sk_buff **skbs,
462 int n)
464 while (n--)
465 dev_kfree_skb_any(skbs[n]);
466 return 0;
469 static void dummy_neigh_update(struct t3cdev *dev, struct neighbour *neigh)
473 void cxgb3_set_dummy_ops(struct t3cdev *dev)
475 dev->recv = rx_offload_blackhole;
476 dev->neigh_update = dummy_neigh_update;
480 * Free an active-open TID.
482 void *cxgb3_free_atid(struct t3cdev *tdev, int atid)
484 struct tid_info *t = &(T3C_DATA(tdev))->tid_maps;
485 union active_open_entry *p = atid2entry(t, atid);
486 void *ctx = p->t3c_tid.ctx;
488 spin_lock_bh(&t->atid_lock);
489 p->next = t->afree;
490 t->afree = p;
491 t->atids_in_use--;
492 spin_unlock_bh(&t->atid_lock);
494 return ctx;
497 EXPORT_SYMBOL(cxgb3_free_atid);
500 * Free a server TID and return it to the free pool.
502 void cxgb3_free_stid(struct t3cdev *tdev, int stid)
504 struct tid_info *t = &(T3C_DATA(tdev))->tid_maps;
505 union listen_entry *p = stid2entry(t, stid);
507 spin_lock_bh(&t->stid_lock);
508 p->next = t->sfree;
509 t->sfree = p;
510 t->stids_in_use--;
511 spin_unlock_bh(&t->stid_lock);
514 EXPORT_SYMBOL(cxgb3_free_stid);
516 void cxgb3_insert_tid(struct t3cdev *tdev, struct cxgb3_client *client,
517 void *ctx, unsigned int tid)
519 struct tid_info *t = &(T3C_DATA(tdev))->tid_maps;
521 t->tid_tab[tid].client = client;
522 t->tid_tab[tid].ctx = ctx;
523 atomic_inc(&t->tids_in_use);
526 EXPORT_SYMBOL(cxgb3_insert_tid);
529 * Populate a TID_RELEASE WR. The skb must be already propely sized.
531 static inline void mk_tid_release(struct sk_buff *skb, unsigned int tid)
533 struct cpl_tid_release *req;
535 skb->priority = CPL_PRIORITY_SETUP;
536 req = (struct cpl_tid_release *)__skb_put(skb, sizeof(*req));
537 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
538 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
541 static void t3_process_tid_release_list(struct work_struct *work)
543 struct t3c_data *td = container_of(work, struct t3c_data,
544 tid_release_task);
545 struct sk_buff *skb;
546 struct t3cdev *tdev = td->dev;
549 spin_lock_bh(&td->tid_release_lock);
550 while (td->tid_release_list) {
551 struct t3c_tid_entry *p = td->tid_release_list;
553 td->tid_release_list = (struct t3c_tid_entry *)p->ctx;
554 spin_unlock_bh(&td->tid_release_lock);
556 skb = alloc_skb(sizeof(struct cpl_tid_release),
557 GFP_KERNEL | __GFP_NOFAIL);
558 mk_tid_release(skb, p - td->tid_maps.tid_tab);
559 cxgb3_ofld_send(tdev, skb);
560 p->ctx = NULL;
561 spin_lock_bh(&td->tid_release_lock);
563 spin_unlock_bh(&td->tid_release_lock);
566 /* use ctx as a next pointer in the tid release list */
567 void cxgb3_queue_tid_release(struct t3cdev *tdev, unsigned int tid)
569 struct t3c_data *td = T3C_DATA(tdev);
570 struct t3c_tid_entry *p = &td->tid_maps.tid_tab[tid];
572 spin_lock_bh(&td->tid_release_lock);
573 p->ctx = (void *)td->tid_release_list;
574 p->client = NULL;
575 td->tid_release_list = p;
576 if (!p->ctx)
577 schedule_work(&td->tid_release_task);
578 spin_unlock_bh(&td->tid_release_lock);
581 EXPORT_SYMBOL(cxgb3_queue_tid_release);
584 * Remove a tid from the TID table. A client may defer processing its last
585 * CPL message if it is locked at the time it arrives, and while the message
586 * sits in the client's backlog the TID may be reused for another connection.
587 * To handle this we atomically switch the TID association if it still points
588 * to the original client context.
590 void cxgb3_remove_tid(struct t3cdev *tdev, void *ctx, unsigned int tid)
592 struct tid_info *t = &(T3C_DATA(tdev))->tid_maps;
594 BUG_ON(tid >= t->ntids);
595 if (tdev->type == T3A)
596 (void)cmpxchg(&t->tid_tab[tid].ctx, ctx, NULL);
597 else {
598 struct sk_buff *skb;
600 skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
601 if (likely(skb)) {
602 mk_tid_release(skb, tid);
603 cxgb3_ofld_send(tdev, skb);
604 t->tid_tab[tid].ctx = NULL;
605 } else
606 cxgb3_queue_tid_release(tdev, tid);
608 atomic_dec(&t->tids_in_use);
611 EXPORT_SYMBOL(cxgb3_remove_tid);
613 int cxgb3_alloc_atid(struct t3cdev *tdev, struct cxgb3_client *client,
614 void *ctx)
616 int atid = -1;
617 struct tid_info *t = &(T3C_DATA(tdev))->tid_maps;
619 spin_lock_bh(&t->atid_lock);
620 if (t->afree &&
621 t->atids_in_use + atomic_read(&t->tids_in_use) + MC5_MIN_TIDS <=
622 t->ntids) {
623 union active_open_entry *p = t->afree;
625 atid = (p - t->atid_tab) + t->atid_base;
626 t->afree = p->next;
627 p->t3c_tid.ctx = ctx;
628 p->t3c_tid.client = client;
629 t->atids_in_use++;
631 spin_unlock_bh(&t->atid_lock);
632 return atid;
635 EXPORT_SYMBOL(cxgb3_alloc_atid);
637 int cxgb3_alloc_stid(struct t3cdev *tdev, struct cxgb3_client *client,
638 void *ctx)
640 int stid = -1;
641 struct tid_info *t = &(T3C_DATA(tdev))->tid_maps;
643 spin_lock_bh(&t->stid_lock);
644 if (t->sfree) {
645 union listen_entry *p = t->sfree;
647 stid = (p - t->stid_tab) + t->stid_base;
648 t->sfree = p->next;
649 p->t3c_tid.ctx = ctx;
650 p->t3c_tid.client = client;
651 t->stids_in_use++;
653 spin_unlock_bh(&t->stid_lock);
654 return stid;
657 EXPORT_SYMBOL(cxgb3_alloc_stid);
659 /* Get the t3cdev associated with a net_device */
660 struct t3cdev *dev2t3cdev(struct net_device *dev)
662 const struct port_info *pi = netdev_priv(dev);
664 return (struct t3cdev *)pi->adapter;
667 EXPORT_SYMBOL(dev2t3cdev);
669 static int do_smt_write_rpl(struct t3cdev *dev, struct sk_buff *skb)
671 struct cpl_smt_write_rpl *rpl = cplhdr(skb);
673 if (rpl->status != CPL_ERR_NONE)
674 printk(KERN_ERR
675 "Unexpected SMT_WRITE_RPL status %u for entry %u\n",
676 rpl->status, GET_TID(rpl));
678 return CPL_RET_BUF_DONE;
681 static int do_l2t_write_rpl(struct t3cdev *dev, struct sk_buff *skb)
683 struct cpl_l2t_write_rpl *rpl = cplhdr(skb);
685 if (rpl->status != CPL_ERR_NONE)
686 printk(KERN_ERR
687 "Unexpected L2T_WRITE_RPL status %u for entry %u\n",
688 rpl->status, GET_TID(rpl));
690 return CPL_RET_BUF_DONE;
693 static int do_rte_write_rpl(struct t3cdev *dev, struct sk_buff *skb)
695 struct cpl_rte_write_rpl *rpl = cplhdr(skb);
697 if (rpl->status != CPL_ERR_NONE)
698 printk(KERN_ERR
699 "Unexpected RTE_WRITE_RPL status %u for entry %u\n",
700 rpl->status, GET_TID(rpl));
702 return CPL_RET_BUF_DONE;
705 static int do_act_open_rpl(struct t3cdev *dev, struct sk_buff *skb)
707 struct cpl_act_open_rpl *rpl = cplhdr(skb);
708 unsigned int atid = G_TID(ntohl(rpl->atid));
709 struct t3c_tid_entry *t3c_tid;
711 t3c_tid = lookup_atid(&(T3C_DATA(dev))->tid_maps, atid);
712 if (t3c_tid && t3c_tid->ctx && t3c_tid->client &&
713 t3c_tid->client->handlers &&
714 t3c_tid->client->handlers[CPL_ACT_OPEN_RPL]) {
715 return t3c_tid->client->handlers[CPL_ACT_OPEN_RPL] (dev, skb,
716 t3c_tid->
717 ctx);
718 } else {
719 printk(KERN_ERR "%s: received clientless CPL command 0x%x\n",
720 dev->name, CPL_ACT_OPEN_RPL);
721 return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
725 static int do_stid_rpl(struct t3cdev *dev, struct sk_buff *skb)
727 union opcode_tid *p = cplhdr(skb);
728 unsigned int stid = G_TID(ntohl(p->opcode_tid));
729 struct t3c_tid_entry *t3c_tid;
731 t3c_tid = lookup_stid(&(T3C_DATA(dev))->tid_maps, stid);
732 if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers &&
733 t3c_tid->client->handlers[p->opcode]) {
734 return t3c_tid->client->handlers[p->opcode] (dev, skb,
735 t3c_tid->ctx);
736 } else {
737 printk(KERN_ERR "%s: received clientless CPL command 0x%x\n",
738 dev->name, p->opcode);
739 return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
743 static int do_hwtid_rpl(struct t3cdev *dev, struct sk_buff *skb)
745 union opcode_tid *p = cplhdr(skb);
746 unsigned int hwtid = G_TID(ntohl(p->opcode_tid));
747 struct t3c_tid_entry *t3c_tid;
749 t3c_tid = lookup_tid(&(T3C_DATA(dev))->tid_maps, hwtid);
750 if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers &&
751 t3c_tid->client->handlers[p->opcode]) {
752 return t3c_tid->client->handlers[p->opcode]
753 (dev, skb, t3c_tid->ctx);
754 } else {
755 printk(KERN_ERR "%s: received clientless CPL command 0x%x\n",
756 dev->name, p->opcode);
757 return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
761 static int do_cr(struct t3cdev *dev, struct sk_buff *skb)
763 struct cpl_pass_accept_req *req = cplhdr(skb);
764 unsigned int stid = G_PASS_OPEN_TID(ntohl(req->tos_tid));
765 struct tid_info *t = &(T3C_DATA(dev))->tid_maps;
766 struct t3c_tid_entry *t3c_tid;
767 unsigned int tid = GET_TID(req);
769 if (unlikely(tid >= t->ntids)) {
770 printk("%s: passive open TID %u too large\n",
771 dev->name, tid);
772 t3_fatal_err(tdev2adap(dev));
773 return CPL_RET_BUF_DONE;
776 t3c_tid = lookup_stid(t, stid);
777 if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers &&
778 t3c_tid->client->handlers[CPL_PASS_ACCEPT_REQ]) {
779 return t3c_tid->client->handlers[CPL_PASS_ACCEPT_REQ]
780 (dev, skb, t3c_tid->ctx);
781 } else {
782 printk(KERN_ERR "%s: received clientless CPL command 0x%x\n",
783 dev->name, CPL_PASS_ACCEPT_REQ);
784 return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
789 * Returns an sk_buff for a reply CPL message of size len. If the input
790 * sk_buff has no other users it is trimmed and reused, otherwise a new buffer
791 * is allocated. The input skb must be of size at least len. Note that this
792 * operation does not destroy the original skb data even if it decides to reuse
793 * the buffer.
795 static struct sk_buff *cxgb3_get_cpl_reply_skb(struct sk_buff *skb, size_t len,
796 gfp_t gfp)
798 if (likely(!skb_cloned(skb))) {
799 BUG_ON(skb->len < len);
800 __skb_trim(skb, len);
801 skb_get(skb);
802 } else {
803 skb = alloc_skb(len, gfp);
804 if (skb)
805 __skb_put(skb, len);
807 return skb;
810 static int do_abort_req_rss(struct t3cdev *dev, struct sk_buff *skb)
812 union opcode_tid *p = cplhdr(skb);
813 unsigned int hwtid = G_TID(ntohl(p->opcode_tid));
814 struct t3c_tid_entry *t3c_tid;
816 t3c_tid = lookup_tid(&(T3C_DATA(dev))->tid_maps, hwtid);
817 if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers &&
818 t3c_tid->client->handlers[p->opcode]) {
819 return t3c_tid->client->handlers[p->opcode]
820 (dev, skb, t3c_tid->ctx);
821 } else {
822 struct cpl_abort_req_rss *req = cplhdr(skb);
823 struct cpl_abort_rpl *rpl;
824 struct sk_buff *reply_skb;
825 unsigned int tid = GET_TID(req);
826 u8 cmd = req->status;
828 if (req->status == CPL_ERR_RTX_NEG_ADVICE ||
829 req->status == CPL_ERR_PERSIST_NEG_ADVICE)
830 goto out;
832 reply_skb = cxgb3_get_cpl_reply_skb(skb,
833 sizeof(struct
834 cpl_abort_rpl),
835 GFP_ATOMIC);
837 if (!reply_skb) {
838 printk("do_abort_req_rss: couldn't get skb!\n");
839 goto out;
841 reply_skb->priority = CPL_PRIORITY_DATA;
842 __skb_put(reply_skb, sizeof(struct cpl_abort_rpl));
843 rpl = cplhdr(reply_skb);
844 rpl->wr.wr_hi =
845 htonl(V_WR_OP(FW_WROPCODE_OFLD_HOST_ABORT_CON_RPL));
846 rpl->wr.wr_lo = htonl(V_WR_TID(tid));
847 OPCODE_TID(rpl) = htonl(MK_OPCODE_TID(CPL_ABORT_RPL, tid));
848 rpl->cmd = cmd;
849 cxgb3_ofld_send(dev, reply_skb);
850 out:
851 return CPL_RET_BUF_DONE;
855 static int do_act_establish(struct t3cdev *dev, struct sk_buff *skb)
857 struct cpl_act_establish *req = cplhdr(skb);
858 unsigned int atid = G_PASS_OPEN_TID(ntohl(req->tos_tid));
859 struct tid_info *t = &(T3C_DATA(dev))->tid_maps;
860 struct t3c_tid_entry *t3c_tid;
861 unsigned int tid = GET_TID(req);
863 if (unlikely(tid >= t->ntids)) {
864 printk("%s: active establish TID %u too large\n",
865 dev->name, tid);
866 t3_fatal_err(tdev2adap(dev));
867 return CPL_RET_BUF_DONE;
870 t3c_tid = lookup_atid(t, atid);
871 if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers &&
872 t3c_tid->client->handlers[CPL_ACT_ESTABLISH]) {
873 return t3c_tid->client->handlers[CPL_ACT_ESTABLISH]
874 (dev, skb, t3c_tid->ctx);
875 } else {
876 printk(KERN_ERR "%s: received clientless CPL command 0x%x\n",
877 dev->name, CPL_ACT_ESTABLISH);
878 return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
882 static int do_trace(struct t3cdev *dev, struct sk_buff *skb)
884 struct cpl_trace_pkt *p = cplhdr(skb);
886 skb->protocol = htons(0xffff);
887 skb->dev = dev->lldev;
888 skb_pull(skb, sizeof(*p));
889 skb_reset_mac_header(skb);
890 netif_receive_skb(skb);
891 return 0;
895 * That skb would better have come from process_responses() where we abuse
896 * ->priority and ->csum to carry our data. NB: if we get to per-arch
897 * ->csum, the things might get really interesting here.
900 static inline u32 get_hwtid(struct sk_buff *skb)
902 return ntohl((__force __be32)skb->priority) >> 8 & 0xfffff;
905 static inline u32 get_opcode(struct sk_buff *skb)
907 return G_OPCODE(ntohl((__force __be32)skb->csum));
910 static int do_term(struct t3cdev *dev, struct sk_buff *skb)
912 unsigned int hwtid = get_hwtid(skb);
913 unsigned int opcode = get_opcode(skb);
914 struct t3c_tid_entry *t3c_tid;
916 t3c_tid = lookup_tid(&(T3C_DATA(dev))->tid_maps, hwtid);
917 if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers &&
918 t3c_tid->client->handlers[opcode]) {
919 return t3c_tid->client->handlers[opcode] (dev, skb,
920 t3c_tid->ctx);
921 } else {
922 printk(KERN_ERR "%s: received clientless CPL command 0x%x\n",
923 dev->name, opcode);
924 return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
928 static int nb_callback(struct notifier_block *self, unsigned long event,
929 void *ctx)
931 switch (event) {
932 case (NETEVENT_NEIGH_UPDATE):{
933 cxgb_neigh_update((struct neighbour *)ctx);
934 break;
936 case (NETEVENT_PMTU_UPDATE):
937 break;
938 case (NETEVENT_REDIRECT):{
939 struct netevent_redirect *nr = ctx;
940 cxgb_redirect(nr->old, nr->new);
941 cxgb_neigh_update(nr->new->neighbour);
942 break;
944 default:
945 break;
947 return 0;
950 static struct notifier_block nb = {
951 .notifier_call = nb_callback
955 * Process a received packet with an unknown/unexpected CPL opcode.
957 static int do_bad_cpl(struct t3cdev *dev, struct sk_buff *skb)
959 printk(KERN_ERR "%s: received bad CPL command 0x%x\n", dev->name,
960 *skb->data);
961 return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
965 * Handlers for each CPL opcode
967 static cpl_handler_func cpl_handlers[NUM_CPL_CMDS];
970 * Add a new handler to the CPL dispatch table. A NULL handler may be supplied
971 * to unregister an existing handler.
973 void t3_register_cpl_handler(unsigned int opcode, cpl_handler_func h)
975 if (opcode < NUM_CPL_CMDS)
976 cpl_handlers[opcode] = h ? h : do_bad_cpl;
977 else
978 printk(KERN_ERR "T3C: handler registration for "
979 "opcode %x failed\n", opcode);
982 EXPORT_SYMBOL(t3_register_cpl_handler);
985 * T3CDEV's receive method.
987 int process_rx(struct t3cdev *dev, struct sk_buff **skbs, int n)
989 while (n--) {
990 struct sk_buff *skb = *skbs++;
991 unsigned int opcode = get_opcode(skb);
992 int ret = cpl_handlers[opcode] (dev, skb);
994 #if VALIDATE_TID
995 if (ret & CPL_RET_UNKNOWN_TID) {
996 union opcode_tid *p = cplhdr(skb);
998 printk(KERN_ERR "%s: CPL message (opcode %u) had "
999 "unknown TID %u\n", dev->name, opcode,
1000 G_TID(ntohl(p->opcode_tid)));
1002 #endif
1003 if (ret & CPL_RET_BUF_DONE)
1004 kfree_skb(skb);
1006 return 0;
1010 * Sends an sk_buff to a T3C driver after dealing with any active network taps.
1012 int cxgb3_ofld_send(struct t3cdev *dev, struct sk_buff *skb)
1014 int r;
1016 local_bh_disable();
1017 r = dev->send(dev, skb);
1018 local_bh_enable();
1019 return r;
1022 EXPORT_SYMBOL(cxgb3_ofld_send);
1024 static int is_offloading(struct net_device *dev)
1026 struct adapter *adapter;
1027 int i;
1029 read_lock_bh(&adapter_list_lock);
1030 list_for_each_entry(adapter, &adapter_list, adapter_list) {
1031 for_each_port(adapter, i) {
1032 if (dev == adapter->port[i]) {
1033 read_unlock_bh(&adapter_list_lock);
1034 return 1;
1038 read_unlock_bh(&adapter_list_lock);
1039 return 0;
1042 void cxgb_neigh_update(struct neighbour *neigh)
1044 struct net_device *dev = neigh->dev;
1046 if (dev && (is_offloading(dev))) {
1047 struct t3cdev *tdev = dev2t3cdev(dev);
1049 BUG_ON(!tdev);
1050 t3_l2t_update(tdev, neigh);
1054 static void set_l2t_ix(struct t3cdev *tdev, u32 tid, struct l2t_entry *e)
1056 struct sk_buff *skb;
1057 struct cpl_set_tcb_field *req;
1059 skb = alloc_skb(sizeof(*req), GFP_ATOMIC);
1060 if (!skb) {
1061 printk(KERN_ERR "%s: cannot allocate skb!\n", __func__);
1062 return;
1064 skb->priority = CPL_PRIORITY_CONTROL;
1065 req = (struct cpl_set_tcb_field *)skb_put(skb, sizeof(*req));
1066 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
1067 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_SET_TCB_FIELD, tid));
1068 req->reply = 0;
1069 req->cpu_idx = 0;
1070 req->word = htons(W_TCB_L2T_IX);
1071 req->mask = cpu_to_be64(V_TCB_L2T_IX(M_TCB_L2T_IX));
1072 req->val = cpu_to_be64(V_TCB_L2T_IX(e->idx));
1073 tdev->send(tdev, skb);
1076 void cxgb_redirect(struct dst_entry *old, struct dst_entry *new)
1078 struct net_device *olddev, *newdev;
1079 struct tid_info *ti;
1080 struct t3cdev *tdev;
1081 u32 tid;
1082 int update_tcb;
1083 struct l2t_entry *e;
1084 struct t3c_tid_entry *te;
1086 olddev = old->neighbour->dev;
1087 newdev = new->neighbour->dev;
1088 if (!is_offloading(olddev))
1089 return;
1090 if (!is_offloading(newdev)) {
1091 printk(KERN_WARNING "%s: Redirect to non-offload "
1092 "device ignored.\n", __func__);
1093 return;
1095 tdev = dev2t3cdev(olddev);
1096 BUG_ON(!tdev);
1097 if (tdev != dev2t3cdev(newdev)) {
1098 printk(KERN_WARNING "%s: Redirect to different "
1099 "offload device ignored.\n", __func__);
1100 return;
1103 /* Add new L2T entry */
1104 e = t3_l2t_get(tdev, new->neighbour, newdev);
1105 if (!e) {
1106 printk(KERN_ERR "%s: couldn't allocate new l2t entry!\n",
1107 __func__);
1108 return;
1111 /* Walk tid table and notify clients of dst change. */
1112 ti = &(T3C_DATA(tdev))->tid_maps;
1113 for (tid = 0; tid < ti->ntids; tid++) {
1114 te = lookup_tid(ti, tid);
1115 BUG_ON(!te);
1116 if (te && te->ctx && te->client && te->client->redirect) {
1117 update_tcb = te->client->redirect(te->ctx, old, new, e);
1118 if (update_tcb) {
1119 l2t_hold(L2DATA(tdev), e);
1120 set_l2t_ix(tdev, tid, e);
1124 l2t_release(L2DATA(tdev), e);
1128 * Allocate a chunk of memory using kmalloc or, if that fails, vmalloc.
1129 * The allocated memory is cleared.
1131 void *cxgb_alloc_mem(unsigned long size)
1133 void *p = kmalloc(size, GFP_KERNEL);
1135 if (!p)
1136 p = vmalloc(size);
1137 if (p)
1138 memset(p, 0, size);
1139 return p;
1143 * Free memory allocated through t3_alloc_mem().
1145 void cxgb_free_mem(void *addr)
1147 if (is_vmalloc_addr(addr))
1148 vfree(addr);
1149 else
1150 kfree(addr);
1154 * Allocate and initialize the TID tables. Returns 0 on success.
1156 static int init_tid_tabs(struct tid_info *t, unsigned int ntids,
1157 unsigned int natids, unsigned int nstids,
1158 unsigned int atid_base, unsigned int stid_base)
1160 unsigned long size = ntids * sizeof(*t->tid_tab) +
1161 natids * sizeof(*t->atid_tab) + nstids * sizeof(*t->stid_tab);
1163 t->tid_tab = cxgb_alloc_mem(size);
1164 if (!t->tid_tab)
1165 return -ENOMEM;
1167 t->stid_tab = (union listen_entry *)&t->tid_tab[ntids];
1168 t->atid_tab = (union active_open_entry *)&t->stid_tab[nstids];
1169 t->ntids = ntids;
1170 t->nstids = nstids;
1171 t->stid_base = stid_base;
1172 t->sfree = NULL;
1173 t->natids = natids;
1174 t->atid_base = atid_base;
1175 t->afree = NULL;
1176 t->stids_in_use = t->atids_in_use = 0;
1177 atomic_set(&t->tids_in_use, 0);
1178 spin_lock_init(&t->stid_lock);
1179 spin_lock_init(&t->atid_lock);
1182 * Setup the free lists for stid_tab and atid_tab.
1184 if (nstids) {
1185 while (--nstids)
1186 t->stid_tab[nstids - 1].next = &t->stid_tab[nstids];
1187 t->sfree = t->stid_tab;
1189 if (natids) {
1190 while (--natids)
1191 t->atid_tab[natids - 1].next = &t->atid_tab[natids];
1192 t->afree = t->atid_tab;
1194 return 0;
1197 static void free_tid_maps(struct tid_info *t)
1199 cxgb_free_mem(t->tid_tab);
1202 static inline void add_adapter(struct adapter *adap)
1204 write_lock_bh(&adapter_list_lock);
1205 list_add_tail(&adap->adapter_list, &adapter_list);
1206 write_unlock_bh(&adapter_list_lock);
1209 static inline void remove_adapter(struct adapter *adap)
1211 write_lock_bh(&adapter_list_lock);
1212 list_del(&adap->adapter_list);
1213 write_unlock_bh(&adapter_list_lock);
1216 int cxgb3_offload_activate(struct adapter *adapter)
1218 struct t3cdev *dev = &adapter->tdev;
1219 int natids, err;
1220 struct t3c_data *t;
1221 struct tid_range stid_range, tid_range;
1222 struct mtutab mtutab;
1223 unsigned int l2t_capacity;
1225 t = kcalloc(1, sizeof(*t), GFP_KERNEL);
1226 if (!t)
1227 return -ENOMEM;
1229 err = -EOPNOTSUPP;
1230 if (dev->ctl(dev, GET_TX_MAX_CHUNK, &t->tx_max_chunk) < 0 ||
1231 dev->ctl(dev, GET_MAX_OUTSTANDING_WR, &t->max_wrs) < 0 ||
1232 dev->ctl(dev, GET_L2T_CAPACITY, &l2t_capacity) < 0 ||
1233 dev->ctl(dev, GET_MTUS, &mtutab) < 0 ||
1234 dev->ctl(dev, GET_TID_RANGE, &tid_range) < 0 ||
1235 dev->ctl(dev, GET_STID_RANGE, &stid_range) < 0)
1236 goto out_free;
1238 err = -ENOMEM;
1239 L2DATA(dev) = t3_init_l2t(l2t_capacity);
1240 if (!L2DATA(dev))
1241 goto out_free;
1243 natids = min(tid_range.num / 2, MAX_ATIDS);
1244 err = init_tid_tabs(&t->tid_maps, tid_range.num, natids,
1245 stid_range.num, ATID_BASE, stid_range.base);
1246 if (err)
1247 goto out_free_l2t;
1249 t->mtus = mtutab.mtus;
1250 t->nmtus = mtutab.size;
1252 INIT_WORK(&t->tid_release_task, t3_process_tid_release_list);
1253 spin_lock_init(&t->tid_release_lock);
1254 INIT_LIST_HEAD(&t->list_node);
1255 t->dev = dev;
1257 T3C_DATA(dev) = t;
1258 dev->recv = process_rx;
1259 dev->neigh_update = t3_l2t_update;
1261 /* Register netevent handler once */
1262 if (list_empty(&adapter_list))
1263 register_netevent_notifier(&nb);
1265 add_adapter(adapter);
1266 return 0;
1268 out_free_l2t:
1269 t3_free_l2t(L2DATA(dev));
1270 L2DATA(dev) = NULL;
1271 out_free:
1272 kfree(t);
1273 return err;
1276 void cxgb3_offload_deactivate(struct adapter *adapter)
1278 struct t3cdev *tdev = &adapter->tdev;
1279 struct t3c_data *t = T3C_DATA(tdev);
1281 remove_adapter(adapter);
1282 if (list_empty(&adapter_list))
1283 unregister_netevent_notifier(&nb);
1285 free_tid_maps(&t->tid_maps);
1286 T3C_DATA(tdev) = NULL;
1287 t3_free_l2t(L2DATA(tdev));
1288 L2DATA(tdev) = NULL;
1289 kfree(t);
1292 static inline void register_tdev(struct t3cdev *tdev)
1294 static int unit;
1296 mutex_lock(&cxgb3_db_lock);
1297 snprintf(tdev->name, sizeof(tdev->name), "ofld_dev%d", unit++);
1298 list_add_tail(&tdev->ofld_dev_list, &ofld_dev_list);
1299 mutex_unlock(&cxgb3_db_lock);
1302 static inline void unregister_tdev(struct t3cdev *tdev)
1304 mutex_lock(&cxgb3_db_lock);
1305 list_del(&tdev->ofld_dev_list);
1306 mutex_unlock(&cxgb3_db_lock);
1309 static inline int adap2type(struct adapter *adapter)
1311 int type = 0;
1313 switch (adapter->params.rev) {
1314 case T3_REV_A:
1315 type = T3A;
1316 break;
1317 case T3_REV_B:
1318 case T3_REV_B2:
1319 type = T3B;
1320 break;
1321 case T3_REV_C:
1322 type = T3C;
1323 break;
1325 return type;
1328 void __devinit cxgb3_adapter_ofld(struct adapter *adapter)
1330 struct t3cdev *tdev = &adapter->tdev;
1332 INIT_LIST_HEAD(&tdev->ofld_dev_list);
1334 cxgb3_set_dummy_ops(tdev);
1335 tdev->send = t3_offload_tx;
1336 tdev->ctl = cxgb_offload_ctl;
1337 tdev->type = adap2type(adapter);
1339 register_tdev(tdev);
1342 void __devexit cxgb3_adapter_unofld(struct adapter *adapter)
1344 struct t3cdev *tdev = &adapter->tdev;
1346 tdev->recv = NULL;
1347 tdev->neigh_update = NULL;
1349 unregister_tdev(tdev);
1352 void __init cxgb3_offload_init(void)
1354 int i;
1356 for (i = 0; i < NUM_CPL_CMDS; ++i)
1357 cpl_handlers[i] = do_bad_cpl;
1359 t3_register_cpl_handler(CPL_SMT_WRITE_RPL, do_smt_write_rpl);
1360 t3_register_cpl_handler(CPL_L2T_WRITE_RPL, do_l2t_write_rpl);
1361 t3_register_cpl_handler(CPL_RTE_WRITE_RPL, do_rte_write_rpl);
1362 t3_register_cpl_handler(CPL_PASS_OPEN_RPL, do_stid_rpl);
1363 t3_register_cpl_handler(CPL_CLOSE_LISTSRV_RPL, do_stid_rpl);
1364 t3_register_cpl_handler(CPL_PASS_ACCEPT_REQ, do_cr);
1365 t3_register_cpl_handler(CPL_PASS_ESTABLISH, do_hwtid_rpl);
1366 t3_register_cpl_handler(CPL_ABORT_RPL_RSS, do_hwtid_rpl);
1367 t3_register_cpl_handler(CPL_ABORT_RPL, do_hwtid_rpl);
1368 t3_register_cpl_handler(CPL_RX_URG_NOTIFY, do_hwtid_rpl);
1369 t3_register_cpl_handler(CPL_RX_DATA, do_hwtid_rpl);
1370 t3_register_cpl_handler(CPL_TX_DATA_ACK, do_hwtid_rpl);
1371 t3_register_cpl_handler(CPL_TX_DMA_ACK, do_hwtid_rpl);
1372 t3_register_cpl_handler(CPL_ACT_OPEN_RPL, do_act_open_rpl);
1373 t3_register_cpl_handler(CPL_PEER_CLOSE, do_hwtid_rpl);
1374 t3_register_cpl_handler(CPL_CLOSE_CON_RPL, do_hwtid_rpl);
1375 t3_register_cpl_handler(CPL_ABORT_REQ_RSS, do_abort_req_rss);
1376 t3_register_cpl_handler(CPL_ACT_ESTABLISH, do_act_establish);
1377 t3_register_cpl_handler(CPL_SET_TCB_RPL, do_hwtid_rpl);
1378 t3_register_cpl_handler(CPL_GET_TCB_RPL, do_hwtid_rpl);
1379 t3_register_cpl_handler(CPL_RDMA_TERMINATE, do_term);
1380 t3_register_cpl_handler(CPL_RDMA_EC_STATUS, do_hwtid_rpl);
1381 t3_register_cpl_handler(CPL_TRACE_PKT, do_trace);
1382 t3_register_cpl_handler(CPL_RX_DATA_DDP, do_hwtid_rpl);
1383 t3_register_cpl_handler(CPL_RX_DDP_COMPLETE, do_hwtid_rpl);
1384 t3_register_cpl_handler(CPL_ISCSI_HDR, do_hwtid_rpl);