[PATCH] console: Fix buffer copy on vc resize
[linux-2.6/kvm.git] / net / ipv4 / tcp_input.c
blob29222b964951ce4d2d505a3d3d9bed0ca762e025
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
8 * Version: $Id: tcp_input.c,v 1.243 2002/02/01 22:01:04 davem Exp $
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Florian La Roche, <flla@stud.uni-sb.de>
15 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16 * Linus Torvalds, <torvalds@cs.helsinki.fi>
17 * Alan Cox, <gw4pts@gw4pts.ampr.org>
18 * Matthew Dillon, <dillon@apollo.west.oic.com>
19 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20 * Jorge Cwik, <jorge@laser.satlink.net>
24 * Changes:
25 * Pedro Roque : Fast Retransmit/Recovery.
26 * Two receive queues.
27 * Retransmit queue handled by TCP.
28 * Better retransmit timer handling.
29 * New congestion avoidance.
30 * Header prediction.
31 * Variable renaming.
33 * Eric : Fast Retransmit.
34 * Randy Scott : MSS option defines.
35 * Eric Schenk : Fixes to slow start algorithm.
36 * Eric Schenk : Yet another double ACK bug.
37 * Eric Schenk : Delayed ACK bug fixes.
38 * Eric Schenk : Floyd style fast retrans war avoidance.
39 * David S. Miller : Don't allow zero congestion window.
40 * Eric Schenk : Fix retransmitter so that it sends
41 * next packet on ack of previous packet.
42 * Andi Kleen : Moved open_request checking here
43 * and process RSTs for open_requests.
44 * Andi Kleen : Better prune_queue, and other fixes.
45 * Andrey Savochkin: Fix RTT measurements in the presnce of
46 * timestamps.
47 * Andrey Savochkin: Check sequence numbers correctly when
48 * removing SACKs due to in sequence incoming
49 * data segments.
50 * Andi Kleen: Make sure we never ack data there is not
51 * enough room for. Also make this condition
52 * a fatal error if it might still happen.
53 * Andi Kleen: Add tcp_measure_rcv_mss to make
54 * connections with MSS<min(MTU,ann. MSS)
55 * work without delayed acks.
56 * Andi Kleen: Process packets with PSH set in the
57 * fast path.
58 * J Hadi Salim: ECN support
59 * Andrei Gurtov,
60 * Pasi Sarolahti,
61 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
62 * engine. Lots of bugs are found.
63 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
66 #include <linux/config.h>
67 #include <linux/mm.h>
68 #include <linux/module.h>
69 #include <linux/sysctl.h>
70 #include <net/tcp.h>
71 #include <net/inet_common.h>
72 #include <linux/ipsec.h>
73 #include <asm/unaligned.h>
75 int sysctl_tcp_timestamps = 1;
76 int sysctl_tcp_window_scaling = 1;
77 int sysctl_tcp_sack = 1;
78 int sysctl_tcp_fack = 1;
79 int sysctl_tcp_reordering = TCP_FASTRETRANS_THRESH;
80 int sysctl_tcp_ecn;
81 int sysctl_tcp_dsack = 1;
82 int sysctl_tcp_app_win = 31;
83 int sysctl_tcp_adv_win_scale = 2;
85 int sysctl_tcp_stdurg;
86 int sysctl_tcp_rfc1337;
87 int sysctl_tcp_max_orphans = NR_FILE;
88 int sysctl_tcp_frto;
89 int sysctl_tcp_nometrics_save;
91 int sysctl_tcp_moderate_rcvbuf = 1;
93 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
94 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
95 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
96 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
97 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
98 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
99 #define FLAG_ECE 0x40 /* ECE in this ACK */
100 #define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */
101 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
103 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
104 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
105 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
106 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
108 #define IsReno(tp) ((tp)->rx_opt.sack_ok == 0)
109 #define IsFack(tp) ((tp)->rx_opt.sack_ok & 2)
110 #define IsDSack(tp) ((tp)->rx_opt.sack_ok & 4)
112 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
114 /* Adapt the MSS value used to make delayed ack decision to the
115 * real world.
117 static inline void tcp_measure_rcv_mss(struct sock *sk,
118 const struct sk_buff *skb)
120 struct inet_connection_sock *icsk = inet_csk(sk);
121 const unsigned int lss = icsk->icsk_ack.last_seg_size;
122 unsigned int len;
124 icsk->icsk_ack.last_seg_size = 0;
126 /* skb->len may jitter because of SACKs, even if peer
127 * sends good full-sized frames.
129 len = skb->len;
130 if (len >= icsk->icsk_ack.rcv_mss) {
131 icsk->icsk_ack.rcv_mss = len;
132 } else {
133 /* Otherwise, we make more careful check taking into account,
134 * that SACKs block is variable.
136 * "len" is invariant segment length, including TCP header.
138 len += skb->data - skb->h.raw;
139 if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
140 /* If PSH is not set, packet should be
141 * full sized, provided peer TCP is not badly broken.
142 * This observation (if it is correct 8)) allows
143 * to handle super-low mtu links fairly.
145 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
146 !(tcp_flag_word(skb->h.th)&TCP_REMNANT))) {
147 /* Subtract also invariant (if peer is RFC compliant),
148 * tcp header plus fixed timestamp option length.
149 * Resulting "len" is MSS free of SACK jitter.
151 len -= tcp_sk(sk)->tcp_header_len;
152 icsk->icsk_ack.last_seg_size = len;
153 if (len == lss) {
154 icsk->icsk_ack.rcv_mss = len;
155 return;
158 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
162 static void tcp_incr_quickack(struct sock *sk)
164 struct inet_connection_sock *icsk = inet_csk(sk);
165 unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
167 if (quickacks==0)
168 quickacks=2;
169 if (quickacks > icsk->icsk_ack.quick)
170 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
173 void tcp_enter_quickack_mode(struct sock *sk)
175 struct inet_connection_sock *icsk = inet_csk(sk);
176 tcp_incr_quickack(sk);
177 icsk->icsk_ack.pingpong = 0;
178 icsk->icsk_ack.ato = TCP_ATO_MIN;
181 /* Send ACKs quickly, if "quick" count is not exhausted
182 * and the session is not interactive.
185 static inline int tcp_in_quickack_mode(const struct sock *sk)
187 const struct inet_connection_sock *icsk = inet_csk(sk);
188 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
191 /* Buffer size and advertised window tuning.
193 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
196 static void tcp_fixup_sndbuf(struct sock *sk)
198 int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
199 sizeof(struct sk_buff);
201 if (sk->sk_sndbuf < 3 * sndmem)
202 sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
205 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
207 * All tcp_full_space() is split to two parts: "network" buffer, allocated
208 * forward and advertised in receiver window (tp->rcv_wnd) and
209 * "application buffer", required to isolate scheduling/application
210 * latencies from network.
211 * window_clamp is maximal advertised window. It can be less than
212 * tcp_full_space(), in this case tcp_full_space() - window_clamp
213 * is reserved for "application" buffer. The less window_clamp is
214 * the smoother our behaviour from viewpoint of network, but the lower
215 * throughput and the higher sensitivity of the connection to losses. 8)
217 * rcv_ssthresh is more strict window_clamp used at "slow start"
218 * phase to predict further behaviour of this connection.
219 * It is used for two goals:
220 * - to enforce header prediction at sender, even when application
221 * requires some significant "application buffer". It is check #1.
222 * - to prevent pruning of receive queue because of misprediction
223 * of receiver window. Check #2.
225 * The scheme does not work when sender sends good segments opening
226 * window and then starts to feed us spagetti. But it should work
227 * in common situations. Otherwise, we have to rely on queue collapsing.
230 /* Slow part of check#2. */
231 static int __tcp_grow_window(const struct sock *sk, struct tcp_sock *tp,
232 const struct sk_buff *skb)
234 /* Optimize this! */
235 int truesize = tcp_win_from_space(skb->truesize)/2;
236 int window = tcp_full_space(sk)/2;
238 while (tp->rcv_ssthresh <= window) {
239 if (truesize <= skb->len)
240 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
242 truesize >>= 1;
243 window >>= 1;
245 return 0;
248 static inline void tcp_grow_window(struct sock *sk, struct tcp_sock *tp,
249 struct sk_buff *skb)
251 /* Check #1 */
252 if (tp->rcv_ssthresh < tp->window_clamp &&
253 (int)tp->rcv_ssthresh < tcp_space(sk) &&
254 !tcp_memory_pressure) {
255 int incr;
257 /* Check #2. Increase window, if skb with such overhead
258 * will fit to rcvbuf in future.
260 if (tcp_win_from_space(skb->truesize) <= skb->len)
261 incr = 2*tp->advmss;
262 else
263 incr = __tcp_grow_window(sk, tp, skb);
265 if (incr) {
266 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, tp->window_clamp);
267 inet_csk(sk)->icsk_ack.quick |= 1;
272 /* 3. Tuning rcvbuf, when connection enters established state. */
274 static void tcp_fixup_rcvbuf(struct sock *sk)
276 struct tcp_sock *tp = tcp_sk(sk);
277 int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
279 /* Try to select rcvbuf so that 4 mss-sized segments
280 * will fit to window and correspoding skbs will fit to our rcvbuf.
281 * (was 3; 4 is minimum to allow fast retransmit to work.)
283 while (tcp_win_from_space(rcvmem) < tp->advmss)
284 rcvmem += 128;
285 if (sk->sk_rcvbuf < 4 * rcvmem)
286 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
289 /* 4. Try to fixup all. It is made iimediately after connection enters
290 * established state.
292 static void tcp_init_buffer_space(struct sock *sk)
294 struct tcp_sock *tp = tcp_sk(sk);
295 int maxwin;
297 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
298 tcp_fixup_rcvbuf(sk);
299 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
300 tcp_fixup_sndbuf(sk);
302 tp->rcvq_space.space = tp->rcv_wnd;
304 maxwin = tcp_full_space(sk);
306 if (tp->window_clamp >= maxwin) {
307 tp->window_clamp = maxwin;
309 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
310 tp->window_clamp = max(maxwin -
311 (maxwin >> sysctl_tcp_app_win),
312 4 * tp->advmss);
315 /* Force reservation of one segment. */
316 if (sysctl_tcp_app_win &&
317 tp->window_clamp > 2 * tp->advmss &&
318 tp->window_clamp + tp->advmss > maxwin)
319 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
321 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
322 tp->snd_cwnd_stamp = tcp_time_stamp;
325 /* 5. Recalculate window clamp after socket hit its memory bounds. */
326 static void tcp_clamp_window(struct sock *sk, struct tcp_sock *tp)
328 struct inet_connection_sock *icsk = inet_csk(sk);
329 struct sk_buff *skb;
330 unsigned int app_win = tp->rcv_nxt - tp->copied_seq;
331 int ofo_win = 0;
333 icsk->icsk_ack.quick = 0;
335 skb_queue_walk(&tp->out_of_order_queue, skb) {
336 ofo_win += skb->len;
339 /* If overcommit is due to out of order segments,
340 * do not clamp window. Try to expand rcvbuf instead.
342 if (ofo_win) {
343 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
344 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
345 !tcp_memory_pressure &&
346 atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0])
347 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
348 sysctl_tcp_rmem[2]);
350 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf) {
351 app_win += ofo_win;
352 if (atomic_read(&sk->sk_rmem_alloc) >= 2 * sk->sk_rcvbuf)
353 app_win >>= 1;
354 if (app_win > icsk->icsk_ack.rcv_mss)
355 app_win -= icsk->icsk_ack.rcv_mss;
356 app_win = max(app_win, 2U*tp->advmss);
358 if (!ofo_win)
359 tp->window_clamp = min(tp->window_clamp, app_win);
360 tp->rcv_ssthresh = min(tp->window_clamp, 2U*tp->advmss);
364 /* Receiver "autotuning" code.
366 * The algorithm for RTT estimation w/o timestamps is based on
367 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
368 * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
370 * More detail on this code can be found at
371 * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
372 * though this reference is out of date. A new paper
373 * is pending.
375 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
377 u32 new_sample = tp->rcv_rtt_est.rtt;
378 long m = sample;
380 if (m == 0)
381 m = 1;
383 if (new_sample != 0) {
384 /* If we sample in larger samples in the non-timestamp
385 * case, we could grossly overestimate the RTT especially
386 * with chatty applications or bulk transfer apps which
387 * are stalled on filesystem I/O.
389 * Also, since we are only going for a minimum in the
390 * non-timestamp case, we do not smoothe things out
391 * else with timestamps disabled convergance takes too
392 * long.
394 if (!win_dep) {
395 m -= (new_sample >> 3);
396 new_sample += m;
397 } else if (m < new_sample)
398 new_sample = m << 3;
399 } else {
400 /* No previous mesaure. */
401 new_sample = m << 3;
404 if (tp->rcv_rtt_est.rtt != new_sample)
405 tp->rcv_rtt_est.rtt = new_sample;
408 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
410 if (tp->rcv_rtt_est.time == 0)
411 goto new_measure;
412 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
413 return;
414 tcp_rcv_rtt_update(tp,
415 jiffies - tp->rcv_rtt_est.time,
418 new_measure:
419 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
420 tp->rcv_rtt_est.time = tcp_time_stamp;
423 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, const struct sk_buff *skb)
425 struct tcp_sock *tp = tcp_sk(sk);
426 if (tp->rx_opt.rcv_tsecr &&
427 (TCP_SKB_CB(skb)->end_seq -
428 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
429 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
433 * This function should be called every time data is copied to user space.
434 * It calculates the appropriate TCP receive buffer space.
436 void tcp_rcv_space_adjust(struct sock *sk)
438 struct tcp_sock *tp = tcp_sk(sk);
439 int time;
440 int space;
442 if (tp->rcvq_space.time == 0)
443 goto new_measure;
445 time = tcp_time_stamp - tp->rcvq_space.time;
446 if (time < (tp->rcv_rtt_est.rtt >> 3) ||
447 tp->rcv_rtt_est.rtt == 0)
448 return;
450 space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
452 space = max(tp->rcvq_space.space, space);
454 if (tp->rcvq_space.space != space) {
455 int rcvmem;
457 tp->rcvq_space.space = space;
459 if (sysctl_tcp_moderate_rcvbuf) {
460 int new_clamp = space;
462 /* Receive space grows, normalize in order to
463 * take into account packet headers and sk_buff
464 * structure overhead.
466 space /= tp->advmss;
467 if (!space)
468 space = 1;
469 rcvmem = (tp->advmss + MAX_TCP_HEADER +
470 16 + sizeof(struct sk_buff));
471 while (tcp_win_from_space(rcvmem) < tp->advmss)
472 rcvmem += 128;
473 space *= rcvmem;
474 space = min(space, sysctl_tcp_rmem[2]);
475 if (space > sk->sk_rcvbuf) {
476 sk->sk_rcvbuf = space;
478 /* Make the window clamp follow along. */
479 tp->window_clamp = new_clamp;
484 new_measure:
485 tp->rcvq_space.seq = tp->copied_seq;
486 tp->rcvq_space.time = tcp_time_stamp;
489 /* There is something which you must keep in mind when you analyze the
490 * behavior of the tp->ato delayed ack timeout interval. When a
491 * connection starts up, we want to ack as quickly as possible. The
492 * problem is that "good" TCP's do slow start at the beginning of data
493 * transmission. The means that until we send the first few ACK's the
494 * sender will sit on his end and only queue most of his data, because
495 * he can only send snd_cwnd unacked packets at any given time. For
496 * each ACK we send, he increments snd_cwnd and transmits more of his
497 * queue. -DaveM
499 static void tcp_event_data_recv(struct sock *sk, struct tcp_sock *tp, struct sk_buff *skb)
501 struct inet_connection_sock *icsk = inet_csk(sk);
502 u32 now;
504 inet_csk_schedule_ack(sk);
506 tcp_measure_rcv_mss(sk, skb);
508 tcp_rcv_rtt_measure(tp);
510 now = tcp_time_stamp;
512 if (!icsk->icsk_ack.ato) {
513 /* The _first_ data packet received, initialize
514 * delayed ACK engine.
516 tcp_incr_quickack(sk);
517 icsk->icsk_ack.ato = TCP_ATO_MIN;
518 } else {
519 int m = now - icsk->icsk_ack.lrcvtime;
521 if (m <= TCP_ATO_MIN/2) {
522 /* The fastest case is the first. */
523 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
524 } else if (m < icsk->icsk_ack.ato) {
525 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
526 if (icsk->icsk_ack.ato > icsk->icsk_rto)
527 icsk->icsk_ack.ato = icsk->icsk_rto;
528 } else if (m > icsk->icsk_rto) {
529 /* Too long gap. Apparently sender falled to
530 * restart window, so that we send ACKs quickly.
532 tcp_incr_quickack(sk);
533 sk_stream_mem_reclaim(sk);
536 icsk->icsk_ack.lrcvtime = now;
538 TCP_ECN_check_ce(tp, skb);
540 if (skb->len >= 128)
541 tcp_grow_window(sk, tp, skb);
544 /* Called to compute a smoothed rtt estimate. The data fed to this
545 * routine either comes from timestamps, or from segments that were
546 * known _not_ to have been retransmitted [see Karn/Partridge
547 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
548 * piece by Van Jacobson.
549 * NOTE: the next three routines used to be one big routine.
550 * To save cycles in the RFC 1323 implementation it was better to break
551 * it up into three procedures. -- erics
553 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt, u32 *usrtt)
555 struct tcp_sock *tp = tcp_sk(sk);
556 const struct inet_connection_sock *icsk = inet_csk(sk);
557 long m = mrtt; /* RTT */
559 /* The following amusing code comes from Jacobson's
560 * article in SIGCOMM '88. Note that rtt and mdev
561 * are scaled versions of rtt and mean deviation.
562 * This is designed to be as fast as possible
563 * m stands for "measurement".
565 * On a 1990 paper the rto value is changed to:
566 * RTO = rtt + 4 * mdev
568 * Funny. This algorithm seems to be very broken.
569 * These formulae increase RTO, when it should be decreased, increase
570 * too slowly, when it should be incresed fastly, decrease too fastly
571 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
572 * does not matter how to _calculate_ it. Seems, it was trap
573 * that VJ failed to avoid. 8)
575 if(m == 0)
576 m = 1;
577 if (tp->srtt != 0) {
578 m -= (tp->srtt >> 3); /* m is now error in rtt est */
579 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
580 if (m < 0) {
581 m = -m; /* m is now abs(error) */
582 m -= (tp->mdev >> 2); /* similar update on mdev */
583 /* This is similar to one of Eifel findings.
584 * Eifel blocks mdev updates when rtt decreases.
585 * This solution is a bit different: we use finer gain
586 * for mdev in this case (alpha*beta).
587 * Like Eifel it also prevents growth of rto,
588 * but also it limits too fast rto decreases,
589 * happening in pure Eifel.
591 if (m > 0)
592 m >>= 3;
593 } else {
594 m -= (tp->mdev >> 2); /* similar update on mdev */
596 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
597 if (tp->mdev > tp->mdev_max) {
598 tp->mdev_max = tp->mdev;
599 if (tp->mdev_max > tp->rttvar)
600 tp->rttvar = tp->mdev_max;
602 if (after(tp->snd_una, tp->rtt_seq)) {
603 if (tp->mdev_max < tp->rttvar)
604 tp->rttvar -= (tp->rttvar-tp->mdev_max)>>2;
605 tp->rtt_seq = tp->snd_nxt;
606 tp->mdev_max = TCP_RTO_MIN;
608 } else {
609 /* no previous measure. */
610 tp->srtt = m<<3; /* take the measured time to be rtt */
611 tp->mdev = m<<1; /* make sure rto = 3*rtt */
612 tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN);
613 tp->rtt_seq = tp->snd_nxt;
616 if (icsk->icsk_ca_ops->rtt_sample)
617 icsk->icsk_ca_ops->rtt_sample(sk, *usrtt);
620 /* Calculate rto without backoff. This is the second half of Van Jacobson's
621 * routine referred to above.
623 static inline void tcp_set_rto(struct sock *sk)
625 const struct tcp_sock *tp = tcp_sk(sk);
626 /* Old crap is replaced with new one. 8)
628 * More seriously:
629 * 1. If rtt variance happened to be less 50msec, it is hallucination.
630 * It cannot be less due to utterly erratic ACK generation made
631 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
632 * to do with delayed acks, because at cwnd>2 true delack timeout
633 * is invisible. Actually, Linux-2.4 also generates erratic
634 * ACKs in some curcumstances.
636 inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
638 /* 2. Fixups made earlier cannot be right.
639 * If we do not estimate RTO correctly without them,
640 * all the algo is pure shit and should be replaced
641 * with correct one. It is exaclty, which we pretend to do.
645 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
646 * guarantees that rto is higher.
648 static inline void tcp_bound_rto(struct sock *sk)
650 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
651 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
654 /* Save metrics learned by this TCP session.
655 This function is called only, when TCP finishes successfully
656 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
658 void tcp_update_metrics(struct sock *sk)
660 struct tcp_sock *tp = tcp_sk(sk);
661 struct dst_entry *dst = __sk_dst_get(sk);
663 if (sysctl_tcp_nometrics_save)
664 return;
666 dst_confirm(dst);
668 if (dst && (dst->flags&DST_HOST)) {
669 const struct inet_connection_sock *icsk = inet_csk(sk);
670 int m;
672 if (icsk->icsk_backoff || !tp->srtt) {
673 /* This session failed to estimate rtt. Why?
674 * Probably, no packets returned in time.
675 * Reset our results.
677 if (!(dst_metric_locked(dst, RTAX_RTT)))
678 dst->metrics[RTAX_RTT-1] = 0;
679 return;
682 m = dst_metric(dst, RTAX_RTT) - tp->srtt;
684 /* If newly calculated rtt larger than stored one,
685 * store new one. Otherwise, use EWMA. Remember,
686 * rtt overestimation is always better than underestimation.
688 if (!(dst_metric_locked(dst, RTAX_RTT))) {
689 if (m <= 0)
690 dst->metrics[RTAX_RTT-1] = tp->srtt;
691 else
692 dst->metrics[RTAX_RTT-1] -= (m>>3);
695 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
696 if (m < 0)
697 m = -m;
699 /* Scale deviation to rttvar fixed point */
700 m >>= 1;
701 if (m < tp->mdev)
702 m = tp->mdev;
704 if (m >= dst_metric(dst, RTAX_RTTVAR))
705 dst->metrics[RTAX_RTTVAR-1] = m;
706 else
707 dst->metrics[RTAX_RTTVAR-1] -=
708 (dst->metrics[RTAX_RTTVAR-1] - m)>>2;
711 if (tp->snd_ssthresh >= 0xFFFF) {
712 /* Slow start still did not finish. */
713 if (dst_metric(dst, RTAX_SSTHRESH) &&
714 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
715 (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
716 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
717 if (!dst_metric_locked(dst, RTAX_CWND) &&
718 tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
719 dst->metrics[RTAX_CWND-1] = tp->snd_cwnd;
720 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
721 icsk->icsk_ca_state == TCP_CA_Open) {
722 /* Cong. avoidance phase, cwnd is reliable. */
723 if (!dst_metric_locked(dst, RTAX_SSTHRESH))
724 dst->metrics[RTAX_SSTHRESH-1] =
725 max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
726 if (!dst_metric_locked(dst, RTAX_CWND))
727 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_cwnd) >> 1;
728 } else {
729 /* Else slow start did not finish, cwnd is non-sense,
730 ssthresh may be also invalid.
732 if (!dst_metric_locked(dst, RTAX_CWND))
733 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_ssthresh) >> 1;
734 if (dst->metrics[RTAX_SSTHRESH-1] &&
735 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
736 tp->snd_ssthresh > dst->metrics[RTAX_SSTHRESH-1])
737 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
740 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
741 if (dst->metrics[RTAX_REORDERING-1] < tp->reordering &&
742 tp->reordering != sysctl_tcp_reordering)
743 dst->metrics[RTAX_REORDERING-1] = tp->reordering;
748 /* Numbers are taken from RFC2414. */
749 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
751 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
753 if (!cwnd) {
754 if (tp->mss_cache > 1460)
755 cwnd = 2;
756 else
757 cwnd = (tp->mss_cache > 1095) ? 3 : 4;
759 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
762 /* Initialize metrics on socket. */
764 static void tcp_init_metrics(struct sock *sk)
766 struct tcp_sock *tp = tcp_sk(sk);
767 struct dst_entry *dst = __sk_dst_get(sk);
769 if (dst == NULL)
770 goto reset;
772 dst_confirm(dst);
774 if (dst_metric_locked(dst, RTAX_CWND))
775 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
776 if (dst_metric(dst, RTAX_SSTHRESH)) {
777 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
778 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
779 tp->snd_ssthresh = tp->snd_cwnd_clamp;
781 if (dst_metric(dst, RTAX_REORDERING) &&
782 tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
783 tp->rx_opt.sack_ok &= ~2;
784 tp->reordering = dst_metric(dst, RTAX_REORDERING);
787 if (dst_metric(dst, RTAX_RTT) == 0)
788 goto reset;
790 if (!tp->srtt && dst_metric(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
791 goto reset;
793 /* Initial rtt is determined from SYN,SYN-ACK.
794 * The segment is small and rtt may appear much
795 * less than real one. Use per-dst memory
796 * to make it more realistic.
798 * A bit of theory. RTT is time passed after "normal" sized packet
799 * is sent until it is ACKed. In normal curcumstances sending small
800 * packets force peer to delay ACKs and calculation is correct too.
801 * The algorithm is adaptive and, provided we follow specs, it
802 * NEVER underestimate RTT. BUT! If peer tries to make some clever
803 * tricks sort of "quick acks" for time long enough to decrease RTT
804 * to low value, and then abruptly stops to do it and starts to delay
805 * ACKs, wait for troubles.
807 if (dst_metric(dst, RTAX_RTT) > tp->srtt) {
808 tp->srtt = dst_metric(dst, RTAX_RTT);
809 tp->rtt_seq = tp->snd_nxt;
811 if (dst_metric(dst, RTAX_RTTVAR) > tp->mdev) {
812 tp->mdev = dst_metric(dst, RTAX_RTTVAR);
813 tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN);
815 tcp_set_rto(sk);
816 tcp_bound_rto(sk);
817 if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
818 goto reset;
819 tp->snd_cwnd = tcp_init_cwnd(tp, dst);
820 tp->snd_cwnd_stamp = tcp_time_stamp;
821 return;
823 reset:
824 /* Play conservative. If timestamps are not
825 * supported, TCP will fail to recalculate correct
826 * rtt, if initial rto is too small. FORGET ALL AND RESET!
828 if (!tp->rx_opt.saw_tstamp && tp->srtt) {
829 tp->srtt = 0;
830 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
831 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
835 static void tcp_update_reordering(struct sock *sk, const int metric,
836 const int ts)
838 struct tcp_sock *tp = tcp_sk(sk);
839 if (metric > tp->reordering) {
840 tp->reordering = min(TCP_MAX_REORDERING, metric);
842 /* This exciting event is worth to be remembered. 8) */
843 if (ts)
844 NET_INC_STATS_BH(LINUX_MIB_TCPTSREORDER);
845 else if (IsReno(tp))
846 NET_INC_STATS_BH(LINUX_MIB_TCPRENOREORDER);
847 else if (IsFack(tp))
848 NET_INC_STATS_BH(LINUX_MIB_TCPFACKREORDER);
849 else
850 NET_INC_STATS_BH(LINUX_MIB_TCPSACKREORDER);
851 #if FASTRETRANS_DEBUG > 1
852 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
853 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
854 tp->reordering,
855 tp->fackets_out,
856 tp->sacked_out,
857 tp->undo_marker ? tp->undo_retrans : 0);
858 #endif
859 /* Disable FACK yet. */
860 tp->rx_opt.sack_ok &= ~2;
864 /* This procedure tags the retransmission queue when SACKs arrive.
866 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
867 * Packets in queue with these bits set are counted in variables
868 * sacked_out, retrans_out and lost_out, correspondingly.
870 * Valid combinations are:
871 * Tag InFlight Description
872 * 0 1 - orig segment is in flight.
873 * S 0 - nothing flies, orig reached receiver.
874 * L 0 - nothing flies, orig lost by net.
875 * R 2 - both orig and retransmit are in flight.
876 * L|R 1 - orig is lost, retransmit is in flight.
877 * S|R 1 - orig reached receiver, retrans is still in flight.
878 * (L|S|R is logically valid, it could occur when L|R is sacked,
879 * but it is equivalent to plain S and code short-curcuits it to S.
880 * L|S is logically invalid, it would mean -1 packet in flight 8))
882 * These 6 states form finite state machine, controlled by the following events:
883 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
884 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
885 * 3. Loss detection event of one of three flavors:
886 * A. Scoreboard estimator decided the packet is lost.
887 * A'. Reno "three dupacks" marks head of queue lost.
888 * A''. Its FACK modfication, head until snd.fack is lost.
889 * B. SACK arrives sacking data transmitted after never retransmitted
890 * hole was sent out.
891 * C. SACK arrives sacking SND.NXT at the moment, when the
892 * segment was retransmitted.
893 * 4. D-SACK added new rule: D-SACK changes any tag to S.
895 * It is pleasant to note, that state diagram turns out to be commutative,
896 * so that we are allowed not to be bothered by order of our actions,
897 * when multiple events arrive simultaneously. (see the function below).
899 * Reordering detection.
900 * --------------------
901 * Reordering metric is maximal distance, which a packet can be displaced
902 * in packet stream. With SACKs we can estimate it:
904 * 1. SACK fills old hole and the corresponding segment was not
905 * ever retransmitted -> reordering. Alas, we cannot use it
906 * when segment was retransmitted.
907 * 2. The last flaw is solved with D-SACK. D-SACK arrives
908 * for retransmitted and already SACKed segment -> reordering..
909 * Both of these heuristics are not used in Loss state, when we cannot
910 * account for retransmits accurately.
912 static int
913 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb, u32 prior_snd_una)
915 const struct inet_connection_sock *icsk = inet_csk(sk);
916 struct tcp_sock *tp = tcp_sk(sk);
917 unsigned char *ptr = ack_skb->h.raw + TCP_SKB_CB(ack_skb)->sacked;
918 struct tcp_sack_block *sp = (struct tcp_sack_block *)(ptr+2);
919 int num_sacks = (ptr[1] - TCPOLEN_SACK_BASE)>>3;
920 int reord = tp->packets_out;
921 int prior_fackets;
922 u32 lost_retrans = 0;
923 int flag = 0;
924 int i;
926 if (!tp->sacked_out)
927 tp->fackets_out = 0;
928 prior_fackets = tp->fackets_out;
930 for (i=0; i<num_sacks; i++, sp++) {
931 struct sk_buff *skb;
932 __u32 start_seq = ntohl(sp->start_seq);
933 __u32 end_seq = ntohl(sp->end_seq);
934 int fack_count = 0;
935 int dup_sack = 0;
937 /* Check for D-SACK. */
938 if (i == 0) {
939 u32 ack = TCP_SKB_CB(ack_skb)->ack_seq;
941 if (before(start_seq, ack)) {
942 dup_sack = 1;
943 tp->rx_opt.sack_ok |= 4;
944 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKRECV);
945 } else if (num_sacks > 1 &&
946 !after(end_seq, ntohl(sp[1].end_seq)) &&
947 !before(start_seq, ntohl(sp[1].start_seq))) {
948 dup_sack = 1;
949 tp->rx_opt.sack_ok |= 4;
950 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFORECV);
953 /* D-SACK for already forgotten data...
954 * Do dumb counting. */
955 if (dup_sack &&
956 !after(end_seq, prior_snd_una) &&
957 after(end_seq, tp->undo_marker))
958 tp->undo_retrans--;
960 /* Eliminate too old ACKs, but take into
961 * account more or less fresh ones, they can
962 * contain valid SACK info.
964 if (before(ack, prior_snd_una - tp->max_window))
965 return 0;
968 /* Event "B" in the comment above. */
969 if (after(end_seq, tp->high_seq))
970 flag |= FLAG_DATA_LOST;
972 sk_stream_for_retrans_queue(skb, sk) {
973 int in_sack, pcount;
974 u8 sacked;
976 /* The retransmission queue is always in order, so
977 * we can short-circuit the walk early.
979 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
980 break;
982 pcount = tcp_skb_pcount(skb);
984 if (pcount > 1 &&
985 (after(start_seq, TCP_SKB_CB(skb)->seq) ||
986 before(end_seq, TCP_SKB_CB(skb)->end_seq))) {
987 unsigned int pkt_len;
989 if (after(start_seq, TCP_SKB_CB(skb)->seq))
990 pkt_len = (start_seq -
991 TCP_SKB_CB(skb)->seq);
992 else
993 pkt_len = (end_seq -
994 TCP_SKB_CB(skb)->seq);
995 if (tcp_fragment(sk, skb, pkt_len, skb_shinfo(skb)->tso_size))
996 break;
997 pcount = tcp_skb_pcount(skb);
1000 fack_count += pcount;
1002 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1003 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1005 sacked = TCP_SKB_CB(skb)->sacked;
1007 /* Account D-SACK for retransmitted packet. */
1008 if ((dup_sack && in_sack) &&
1009 (sacked & TCPCB_RETRANS) &&
1010 after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1011 tp->undo_retrans--;
1013 /* The frame is ACKed. */
1014 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) {
1015 if (sacked&TCPCB_RETRANS) {
1016 if ((dup_sack && in_sack) &&
1017 (sacked&TCPCB_SACKED_ACKED))
1018 reord = min(fack_count, reord);
1019 } else {
1020 /* If it was in a hole, we detected reordering. */
1021 if (fack_count < prior_fackets &&
1022 !(sacked&TCPCB_SACKED_ACKED))
1023 reord = min(fack_count, reord);
1026 /* Nothing to do; acked frame is about to be dropped. */
1027 continue;
1030 if ((sacked&TCPCB_SACKED_RETRANS) &&
1031 after(end_seq, TCP_SKB_CB(skb)->ack_seq) &&
1032 (!lost_retrans || after(end_seq, lost_retrans)))
1033 lost_retrans = end_seq;
1035 if (!in_sack)
1036 continue;
1038 if (!(sacked&TCPCB_SACKED_ACKED)) {
1039 if (sacked & TCPCB_SACKED_RETRANS) {
1040 /* If the segment is not tagged as lost,
1041 * we do not clear RETRANS, believing
1042 * that retransmission is still in flight.
1044 if (sacked & TCPCB_LOST) {
1045 TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1046 tp->lost_out -= tcp_skb_pcount(skb);
1047 tp->retrans_out -= tcp_skb_pcount(skb);
1049 } else {
1050 /* New sack for not retransmitted frame,
1051 * which was in hole. It is reordering.
1053 if (!(sacked & TCPCB_RETRANS) &&
1054 fack_count < prior_fackets)
1055 reord = min(fack_count, reord);
1057 if (sacked & TCPCB_LOST) {
1058 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1059 tp->lost_out -= tcp_skb_pcount(skb);
1063 TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED;
1064 flag |= FLAG_DATA_SACKED;
1065 tp->sacked_out += tcp_skb_pcount(skb);
1067 if (fack_count > tp->fackets_out)
1068 tp->fackets_out = fack_count;
1069 } else {
1070 if (dup_sack && (sacked&TCPCB_RETRANS))
1071 reord = min(fack_count, reord);
1074 /* D-SACK. We can detect redundant retransmission
1075 * in S|R and plain R frames and clear it.
1076 * undo_retrans is decreased above, L|R frames
1077 * are accounted above as well.
1079 if (dup_sack &&
1080 (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS)) {
1081 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1082 tp->retrans_out -= tcp_skb_pcount(skb);
1087 /* Check for lost retransmit. This superb idea is
1088 * borrowed from "ratehalving". Event "C".
1089 * Later note: FACK people cheated me again 8),
1090 * we have to account for reordering! Ugly,
1091 * but should help.
1093 if (lost_retrans && icsk->icsk_ca_state == TCP_CA_Recovery) {
1094 struct sk_buff *skb;
1096 sk_stream_for_retrans_queue(skb, sk) {
1097 if (after(TCP_SKB_CB(skb)->seq, lost_retrans))
1098 break;
1099 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1100 continue;
1101 if ((TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS) &&
1102 after(lost_retrans, TCP_SKB_CB(skb)->ack_seq) &&
1103 (IsFack(tp) ||
1104 !before(lost_retrans,
1105 TCP_SKB_CB(skb)->ack_seq + tp->reordering *
1106 tp->mss_cache))) {
1107 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1108 tp->retrans_out -= tcp_skb_pcount(skb);
1110 if (!(TCP_SKB_CB(skb)->sacked&(TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1111 tp->lost_out += tcp_skb_pcount(skb);
1112 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1113 flag |= FLAG_DATA_SACKED;
1114 NET_INC_STATS_BH(LINUX_MIB_TCPLOSTRETRANSMIT);
1120 tp->left_out = tp->sacked_out + tp->lost_out;
1122 if ((reord < tp->fackets_out) && icsk->icsk_ca_state != TCP_CA_Loss)
1123 tcp_update_reordering(sk, ((tp->fackets_out + 1) - reord), 0);
1125 #if FASTRETRANS_DEBUG > 0
1126 BUG_TRAP((int)tp->sacked_out >= 0);
1127 BUG_TRAP((int)tp->lost_out >= 0);
1128 BUG_TRAP((int)tp->retrans_out >= 0);
1129 BUG_TRAP((int)tcp_packets_in_flight(tp) >= 0);
1130 #endif
1131 return flag;
1134 /* RTO occurred, but do not yet enter loss state. Instead, transmit two new
1135 * segments to see from the next ACKs whether any data was really missing.
1136 * If the RTO was spurious, new ACKs should arrive.
1138 void tcp_enter_frto(struct sock *sk)
1140 const struct inet_connection_sock *icsk = inet_csk(sk);
1141 struct tcp_sock *tp = tcp_sk(sk);
1142 struct sk_buff *skb;
1144 tp->frto_counter = 1;
1146 if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1147 tp->snd_una == tp->high_seq ||
1148 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1149 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1150 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1151 tcp_ca_event(sk, CA_EVENT_FRTO);
1154 /* Have to clear retransmission markers here to keep the bookkeeping
1155 * in shape, even though we are not yet in Loss state.
1156 * If something was really lost, it is eventually caught up
1157 * in tcp_enter_frto_loss.
1159 tp->retrans_out = 0;
1160 tp->undo_marker = tp->snd_una;
1161 tp->undo_retrans = 0;
1163 sk_stream_for_retrans_queue(skb, sk) {
1164 TCP_SKB_CB(skb)->sacked &= ~TCPCB_RETRANS;
1166 tcp_sync_left_out(tp);
1168 tcp_set_ca_state(sk, TCP_CA_Open);
1169 tp->frto_highmark = tp->snd_nxt;
1172 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
1173 * which indicates that we should follow the traditional RTO recovery,
1174 * i.e. mark everything lost and do go-back-N retransmission.
1176 static void tcp_enter_frto_loss(struct sock *sk)
1178 struct tcp_sock *tp = tcp_sk(sk);
1179 struct sk_buff *skb;
1180 int cnt = 0;
1182 tp->sacked_out = 0;
1183 tp->lost_out = 0;
1184 tp->fackets_out = 0;
1186 sk_stream_for_retrans_queue(skb, sk) {
1187 cnt += tcp_skb_pcount(skb);
1188 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1189 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED)) {
1191 /* Do not mark those segments lost that were
1192 * forward transmitted after RTO
1194 if (!after(TCP_SKB_CB(skb)->end_seq,
1195 tp->frto_highmark)) {
1196 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1197 tp->lost_out += tcp_skb_pcount(skb);
1199 } else {
1200 tp->sacked_out += tcp_skb_pcount(skb);
1201 tp->fackets_out = cnt;
1204 tcp_sync_left_out(tp);
1206 tp->snd_cwnd = tp->frto_counter + tcp_packets_in_flight(tp)+1;
1207 tp->snd_cwnd_cnt = 0;
1208 tp->snd_cwnd_stamp = tcp_time_stamp;
1209 tp->undo_marker = 0;
1210 tp->frto_counter = 0;
1212 tp->reordering = min_t(unsigned int, tp->reordering,
1213 sysctl_tcp_reordering);
1214 tcp_set_ca_state(sk, TCP_CA_Loss);
1215 tp->high_seq = tp->frto_highmark;
1216 TCP_ECN_queue_cwr(tp);
1219 void tcp_clear_retrans(struct tcp_sock *tp)
1221 tp->left_out = 0;
1222 tp->retrans_out = 0;
1224 tp->fackets_out = 0;
1225 tp->sacked_out = 0;
1226 tp->lost_out = 0;
1228 tp->undo_marker = 0;
1229 tp->undo_retrans = 0;
1232 /* Enter Loss state. If "how" is not zero, forget all SACK information
1233 * and reset tags completely, otherwise preserve SACKs. If receiver
1234 * dropped its ofo queue, we will know this due to reneging detection.
1236 void tcp_enter_loss(struct sock *sk, int how)
1238 const struct inet_connection_sock *icsk = inet_csk(sk);
1239 struct tcp_sock *tp = tcp_sk(sk);
1240 struct sk_buff *skb;
1241 int cnt = 0;
1243 /* Reduce ssthresh if it has not yet been made inside this window. */
1244 if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
1245 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1246 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1247 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1248 tcp_ca_event(sk, CA_EVENT_LOSS);
1250 tp->snd_cwnd = 1;
1251 tp->snd_cwnd_cnt = 0;
1252 tp->snd_cwnd_stamp = tcp_time_stamp;
1254 tcp_clear_retrans(tp);
1256 /* Push undo marker, if it was plain RTO and nothing
1257 * was retransmitted. */
1258 if (!how)
1259 tp->undo_marker = tp->snd_una;
1261 sk_stream_for_retrans_queue(skb, sk) {
1262 cnt += tcp_skb_pcount(skb);
1263 if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1264 tp->undo_marker = 0;
1265 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1266 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1267 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1268 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1269 tp->lost_out += tcp_skb_pcount(skb);
1270 } else {
1271 tp->sacked_out += tcp_skb_pcount(skb);
1272 tp->fackets_out = cnt;
1275 tcp_sync_left_out(tp);
1277 tp->reordering = min_t(unsigned int, tp->reordering,
1278 sysctl_tcp_reordering);
1279 tcp_set_ca_state(sk, TCP_CA_Loss);
1280 tp->high_seq = tp->snd_nxt;
1281 TCP_ECN_queue_cwr(tp);
1284 static int tcp_check_sack_reneging(struct sock *sk)
1286 struct sk_buff *skb;
1288 /* If ACK arrived pointing to a remembered SACK,
1289 * it means that our remembered SACKs do not reflect
1290 * real state of receiver i.e.
1291 * receiver _host_ is heavily congested (or buggy).
1292 * Do processing similar to RTO timeout.
1294 if ((skb = skb_peek(&sk->sk_write_queue)) != NULL &&
1295 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
1296 struct inet_connection_sock *icsk = inet_csk(sk);
1297 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRENEGING);
1299 tcp_enter_loss(sk, 1);
1300 icsk->icsk_retransmits++;
1301 tcp_retransmit_skb(sk, skb_peek(&sk->sk_write_queue));
1302 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1303 icsk->icsk_rto, TCP_RTO_MAX);
1304 return 1;
1306 return 0;
1309 static inline int tcp_fackets_out(struct tcp_sock *tp)
1311 return IsReno(tp) ? tp->sacked_out+1 : tp->fackets_out;
1314 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
1316 return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
1319 static inline int tcp_head_timedout(struct sock *sk, struct tcp_sock *tp)
1321 return tp->packets_out &&
1322 tcp_skb_timedout(sk, skb_peek(&sk->sk_write_queue));
1325 /* Linux NewReno/SACK/FACK/ECN state machine.
1326 * --------------------------------------
1328 * "Open" Normal state, no dubious events, fast path.
1329 * "Disorder" In all the respects it is "Open",
1330 * but requires a bit more attention. It is entered when
1331 * we see some SACKs or dupacks. It is split of "Open"
1332 * mainly to move some processing from fast path to slow one.
1333 * "CWR" CWND was reduced due to some Congestion Notification event.
1334 * It can be ECN, ICMP source quench, local device congestion.
1335 * "Recovery" CWND was reduced, we are fast-retransmitting.
1336 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
1338 * tcp_fastretrans_alert() is entered:
1339 * - each incoming ACK, if state is not "Open"
1340 * - when arrived ACK is unusual, namely:
1341 * * SACK
1342 * * Duplicate ACK.
1343 * * ECN ECE.
1345 * Counting packets in flight is pretty simple.
1347 * in_flight = packets_out - left_out + retrans_out
1349 * packets_out is SND.NXT-SND.UNA counted in packets.
1351 * retrans_out is number of retransmitted segments.
1353 * left_out is number of segments left network, but not ACKed yet.
1355 * left_out = sacked_out + lost_out
1357 * sacked_out: Packets, which arrived to receiver out of order
1358 * and hence not ACKed. With SACKs this number is simply
1359 * amount of SACKed data. Even without SACKs
1360 * it is easy to give pretty reliable estimate of this number,
1361 * counting duplicate ACKs.
1363 * lost_out: Packets lost by network. TCP has no explicit
1364 * "loss notification" feedback from network (for now).
1365 * It means that this number can be only _guessed_.
1366 * Actually, it is the heuristics to predict lossage that
1367 * distinguishes different algorithms.
1369 * F.e. after RTO, when all the queue is considered as lost,
1370 * lost_out = packets_out and in_flight = retrans_out.
1372 * Essentially, we have now two algorithms counting
1373 * lost packets.
1375 * FACK: It is the simplest heuristics. As soon as we decided
1376 * that something is lost, we decide that _all_ not SACKed
1377 * packets until the most forward SACK are lost. I.e.
1378 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
1379 * It is absolutely correct estimate, if network does not reorder
1380 * packets. And it loses any connection to reality when reordering
1381 * takes place. We use FACK by default until reordering
1382 * is suspected on the path to this destination.
1384 * NewReno: when Recovery is entered, we assume that one segment
1385 * is lost (classic Reno). While we are in Recovery and
1386 * a partial ACK arrives, we assume that one more packet
1387 * is lost (NewReno). This heuristics are the same in NewReno
1388 * and SACK.
1390 * Imagine, that's all! Forget about all this shamanism about CWND inflation
1391 * deflation etc. CWND is real congestion window, never inflated, changes
1392 * only according to classic VJ rules.
1394 * Really tricky (and requiring careful tuning) part of algorithm
1395 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
1396 * The first determines the moment _when_ we should reduce CWND and,
1397 * hence, slow down forward transmission. In fact, it determines the moment
1398 * when we decide that hole is caused by loss, rather than by a reorder.
1400 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
1401 * holes, caused by lost packets.
1403 * And the most logically complicated part of algorithm is undo
1404 * heuristics. We detect false retransmits due to both too early
1405 * fast retransmit (reordering) and underestimated RTO, analyzing
1406 * timestamps and D-SACKs. When we detect that some segments were
1407 * retransmitted by mistake and CWND reduction was wrong, we undo
1408 * window reduction and abort recovery phase. This logic is hidden
1409 * inside several functions named tcp_try_undo_<something>.
1412 /* This function decides, when we should leave Disordered state
1413 * and enter Recovery phase, reducing congestion window.
1415 * Main question: may we further continue forward transmission
1416 * with the same cwnd?
1418 static int tcp_time_to_recover(struct sock *sk, struct tcp_sock *tp)
1420 __u32 packets_out;
1422 /* Trick#1: The loss is proven. */
1423 if (tp->lost_out)
1424 return 1;
1426 /* Not-A-Trick#2 : Classic rule... */
1427 if (tcp_fackets_out(tp) > tp->reordering)
1428 return 1;
1430 /* Trick#3 : when we use RFC2988 timer restart, fast
1431 * retransmit can be triggered by timeout of queue head.
1433 if (tcp_head_timedout(sk, tp))
1434 return 1;
1436 /* Trick#4: It is still not OK... But will it be useful to delay
1437 * recovery more?
1439 packets_out = tp->packets_out;
1440 if (packets_out <= tp->reordering &&
1441 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
1442 !tcp_may_send_now(sk, tp)) {
1443 /* We have nothing to send. This connection is limited
1444 * either by receiver window or by application.
1446 return 1;
1449 return 0;
1452 /* If we receive more dupacks than we expected counting segments
1453 * in assumption of absent reordering, interpret this as reordering.
1454 * The only another reason could be bug in receiver TCP.
1456 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1458 struct tcp_sock *tp = tcp_sk(sk);
1459 u32 holes;
1461 holes = max(tp->lost_out, 1U);
1462 holes = min(holes, tp->packets_out);
1464 if ((tp->sacked_out + holes) > tp->packets_out) {
1465 tp->sacked_out = tp->packets_out - holes;
1466 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1470 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1472 static void tcp_add_reno_sack(struct sock *sk)
1474 struct tcp_sock *tp = tcp_sk(sk);
1475 tp->sacked_out++;
1476 tcp_check_reno_reordering(sk, 0);
1477 tcp_sync_left_out(tp);
1480 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1482 static void tcp_remove_reno_sacks(struct sock *sk, struct tcp_sock *tp, int acked)
1484 if (acked > 0) {
1485 /* One ACK acked hole. The rest eat duplicate ACKs. */
1486 if (acked-1 >= tp->sacked_out)
1487 tp->sacked_out = 0;
1488 else
1489 tp->sacked_out -= acked-1;
1491 tcp_check_reno_reordering(sk, acked);
1492 tcp_sync_left_out(tp);
1495 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1497 tp->sacked_out = 0;
1498 tp->left_out = tp->lost_out;
1501 /* Mark head of queue up as lost. */
1502 static void tcp_mark_head_lost(struct sock *sk, struct tcp_sock *tp,
1503 int packets, u32 high_seq)
1505 struct sk_buff *skb;
1506 int cnt = packets;
1508 BUG_TRAP(cnt <= tp->packets_out);
1510 sk_stream_for_retrans_queue(skb, sk) {
1511 cnt -= tcp_skb_pcount(skb);
1512 if (cnt < 0 || after(TCP_SKB_CB(skb)->end_seq, high_seq))
1513 break;
1514 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
1515 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1516 tp->lost_out += tcp_skb_pcount(skb);
1519 tcp_sync_left_out(tp);
1522 /* Account newly detected lost packet(s) */
1524 static void tcp_update_scoreboard(struct sock *sk, struct tcp_sock *tp)
1526 if (IsFack(tp)) {
1527 int lost = tp->fackets_out - tp->reordering;
1528 if (lost <= 0)
1529 lost = 1;
1530 tcp_mark_head_lost(sk, tp, lost, tp->high_seq);
1531 } else {
1532 tcp_mark_head_lost(sk, tp, 1, tp->high_seq);
1535 /* New heuristics: it is possible only after we switched
1536 * to restart timer each time when something is ACKed.
1537 * Hence, we can detect timed out packets during fast
1538 * retransmit without falling to slow start.
1540 if (tcp_head_timedout(sk, tp)) {
1541 struct sk_buff *skb;
1543 sk_stream_for_retrans_queue(skb, sk) {
1544 if (tcp_skb_timedout(sk, skb) &&
1545 !(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
1546 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1547 tp->lost_out += tcp_skb_pcount(skb);
1550 tcp_sync_left_out(tp);
1554 /* CWND moderation, preventing bursts due to too big ACKs
1555 * in dubious situations.
1557 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
1559 tp->snd_cwnd = min(tp->snd_cwnd,
1560 tcp_packets_in_flight(tp)+tcp_max_burst(tp));
1561 tp->snd_cwnd_stamp = tcp_time_stamp;
1564 /* Decrease cwnd each second ack. */
1565 static void tcp_cwnd_down(struct sock *sk)
1567 const struct inet_connection_sock *icsk = inet_csk(sk);
1568 struct tcp_sock *tp = tcp_sk(sk);
1569 int decr = tp->snd_cwnd_cnt + 1;
1571 tp->snd_cwnd_cnt = decr&1;
1572 decr >>= 1;
1574 if (decr && tp->snd_cwnd > icsk->icsk_ca_ops->min_cwnd(sk))
1575 tp->snd_cwnd -= decr;
1577 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp)+1);
1578 tp->snd_cwnd_stamp = tcp_time_stamp;
1581 /* Nothing was retransmitted or returned timestamp is less
1582 * than timestamp of the first retransmission.
1584 static inline int tcp_packet_delayed(struct tcp_sock *tp)
1586 return !tp->retrans_stamp ||
1587 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
1588 (__s32)(tp->rx_opt.rcv_tsecr - tp->retrans_stamp) < 0);
1591 /* Undo procedures. */
1593 #if FASTRETRANS_DEBUG > 1
1594 static void DBGUNDO(struct sock *sk, struct tcp_sock *tp, const char *msg)
1596 struct inet_sock *inet = inet_sk(sk);
1597 printk(KERN_DEBUG "Undo %s %u.%u.%u.%u/%u c%u l%u ss%u/%u p%u\n",
1598 msg,
1599 NIPQUAD(inet->daddr), ntohs(inet->dport),
1600 tp->snd_cwnd, tp->left_out,
1601 tp->snd_ssthresh, tp->prior_ssthresh,
1602 tp->packets_out);
1604 #else
1605 #define DBGUNDO(x...) do { } while (0)
1606 #endif
1608 static void tcp_undo_cwr(struct sock *sk, const int undo)
1610 struct tcp_sock *tp = tcp_sk(sk);
1612 if (tp->prior_ssthresh) {
1613 const struct inet_connection_sock *icsk = inet_csk(sk);
1615 if (icsk->icsk_ca_ops->undo_cwnd)
1616 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
1617 else
1618 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh<<1);
1620 if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
1621 tp->snd_ssthresh = tp->prior_ssthresh;
1622 TCP_ECN_withdraw_cwr(tp);
1624 } else {
1625 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
1627 tcp_moderate_cwnd(tp);
1628 tp->snd_cwnd_stamp = tcp_time_stamp;
1631 static inline int tcp_may_undo(struct tcp_sock *tp)
1633 return tp->undo_marker &&
1634 (!tp->undo_retrans || tcp_packet_delayed(tp));
1637 /* People celebrate: "We love our President!" */
1638 static int tcp_try_undo_recovery(struct sock *sk, struct tcp_sock *tp)
1640 if (tcp_may_undo(tp)) {
1641 /* Happy end! We did not retransmit anything
1642 * or our original transmission succeeded.
1644 DBGUNDO(sk, tp, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
1645 tcp_undo_cwr(sk, 1);
1646 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
1647 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
1648 else
1649 NET_INC_STATS_BH(LINUX_MIB_TCPFULLUNDO);
1650 tp->undo_marker = 0;
1652 if (tp->snd_una == tp->high_seq && IsReno(tp)) {
1653 /* Hold old state until something *above* high_seq
1654 * is ACKed. For Reno it is MUST to prevent false
1655 * fast retransmits (RFC2582). SACK TCP is safe. */
1656 tcp_moderate_cwnd(tp);
1657 return 1;
1659 tcp_set_ca_state(sk, TCP_CA_Open);
1660 return 0;
1663 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
1664 static void tcp_try_undo_dsack(struct sock *sk, struct tcp_sock *tp)
1666 if (tp->undo_marker && !tp->undo_retrans) {
1667 DBGUNDO(sk, tp, "D-SACK");
1668 tcp_undo_cwr(sk, 1);
1669 tp->undo_marker = 0;
1670 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKUNDO);
1674 /* Undo during fast recovery after partial ACK. */
1676 static int tcp_try_undo_partial(struct sock *sk, struct tcp_sock *tp,
1677 int acked)
1679 /* Partial ACK arrived. Force Hoe's retransmit. */
1680 int failed = IsReno(tp) || tp->fackets_out>tp->reordering;
1682 if (tcp_may_undo(tp)) {
1683 /* Plain luck! Hole if filled with delayed
1684 * packet, rather than with a retransmit.
1686 if (tp->retrans_out == 0)
1687 tp->retrans_stamp = 0;
1689 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
1691 DBGUNDO(sk, tp, "Hoe");
1692 tcp_undo_cwr(sk, 0);
1693 NET_INC_STATS_BH(LINUX_MIB_TCPPARTIALUNDO);
1695 /* So... Do not make Hoe's retransmit yet.
1696 * If the first packet was delayed, the rest
1697 * ones are most probably delayed as well.
1699 failed = 0;
1701 return failed;
1704 /* Undo during loss recovery after partial ACK. */
1705 static int tcp_try_undo_loss(struct sock *sk, struct tcp_sock *tp)
1707 if (tcp_may_undo(tp)) {
1708 struct sk_buff *skb;
1709 sk_stream_for_retrans_queue(skb, sk) {
1710 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1712 DBGUNDO(sk, tp, "partial loss");
1713 tp->lost_out = 0;
1714 tp->left_out = tp->sacked_out;
1715 tcp_undo_cwr(sk, 1);
1716 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
1717 inet_csk(sk)->icsk_retransmits = 0;
1718 tp->undo_marker = 0;
1719 if (!IsReno(tp))
1720 tcp_set_ca_state(sk, TCP_CA_Open);
1721 return 1;
1723 return 0;
1726 static inline void tcp_complete_cwr(struct sock *sk)
1728 struct tcp_sock *tp = tcp_sk(sk);
1729 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
1730 tp->snd_cwnd_stamp = tcp_time_stamp;
1731 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
1734 static void tcp_try_to_open(struct sock *sk, struct tcp_sock *tp, int flag)
1736 tp->left_out = tp->sacked_out;
1738 if (tp->retrans_out == 0)
1739 tp->retrans_stamp = 0;
1741 if (flag&FLAG_ECE)
1742 tcp_enter_cwr(sk);
1744 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
1745 int state = TCP_CA_Open;
1747 if (tp->left_out || tp->retrans_out || tp->undo_marker)
1748 state = TCP_CA_Disorder;
1750 if (inet_csk(sk)->icsk_ca_state != state) {
1751 tcp_set_ca_state(sk, state);
1752 tp->high_seq = tp->snd_nxt;
1754 tcp_moderate_cwnd(tp);
1755 } else {
1756 tcp_cwnd_down(sk);
1760 /* Process an event, which can update packets-in-flight not trivially.
1761 * Main goal of this function is to calculate new estimate for left_out,
1762 * taking into account both packets sitting in receiver's buffer and
1763 * packets lost by network.
1765 * Besides that it does CWND reduction, when packet loss is detected
1766 * and changes state of machine.
1768 * It does _not_ decide what to send, it is made in function
1769 * tcp_xmit_retransmit_queue().
1771 static void
1772 tcp_fastretrans_alert(struct sock *sk, u32 prior_snd_una,
1773 int prior_packets, int flag)
1775 struct inet_connection_sock *icsk = inet_csk(sk);
1776 struct tcp_sock *tp = tcp_sk(sk);
1777 int is_dupack = (tp->snd_una == prior_snd_una && !(flag&FLAG_NOT_DUP));
1779 /* Some technical things:
1780 * 1. Reno does not count dupacks (sacked_out) automatically. */
1781 if (!tp->packets_out)
1782 tp->sacked_out = 0;
1783 /* 2. SACK counts snd_fack in packets inaccurately. */
1784 if (tp->sacked_out == 0)
1785 tp->fackets_out = 0;
1787 /* Now state machine starts.
1788 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
1789 if (flag&FLAG_ECE)
1790 tp->prior_ssthresh = 0;
1792 /* B. In all the states check for reneging SACKs. */
1793 if (tp->sacked_out && tcp_check_sack_reneging(sk))
1794 return;
1796 /* C. Process data loss notification, provided it is valid. */
1797 if ((flag&FLAG_DATA_LOST) &&
1798 before(tp->snd_una, tp->high_seq) &&
1799 icsk->icsk_ca_state != TCP_CA_Open &&
1800 tp->fackets_out > tp->reordering) {
1801 tcp_mark_head_lost(sk, tp, tp->fackets_out-tp->reordering, tp->high_seq);
1802 NET_INC_STATS_BH(LINUX_MIB_TCPLOSS);
1805 /* D. Synchronize left_out to current state. */
1806 tcp_sync_left_out(tp);
1808 /* E. Check state exit conditions. State can be terminated
1809 * when high_seq is ACKed. */
1810 if (icsk->icsk_ca_state == TCP_CA_Open) {
1811 if (!sysctl_tcp_frto)
1812 BUG_TRAP(tp->retrans_out == 0);
1813 tp->retrans_stamp = 0;
1814 } else if (!before(tp->snd_una, tp->high_seq)) {
1815 switch (icsk->icsk_ca_state) {
1816 case TCP_CA_Loss:
1817 icsk->icsk_retransmits = 0;
1818 if (tcp_try_undo_recovery(sk, tp))
1819 return;
1820 break;
1822 case TCP_CA_CWR:
1823 /* CWR is to be held something *above* high_seq
1824 * is ACKed for CWR bit to reach receiver. */
1825 if (tp->snd_una != tp->high_seq) {
1826 tcp_complete_cwr(sk);
1827 tcp_set_ca_state(sk, TCP_CA_Open);
1829 break;
1831 case TCP_CA_Disorder:
1832 tcp_try_undo_dsack(sk, tp);
1833 if (!tp->undo_marker ||
1834 /* For SACK case do not Open to allow to undo
1835 * catching for all duplicate ACKs. */
1836 IsReno(tp) || tp->snd_una != tp->high_seq) {
1837 tp->undo_marker = 0;
1838 tcp_set_ca_state(sk, TCP_CA_Open);
1840 break;
1842 case TCP_CA_Recovery:
1843 if (IsReno(tp))
1844 tcp_reset_reno_sack(tp);
1845 if (tcp_try_undo_recovery(sk, tp))
1846 return;
1847 tcp_complete_cwr(sk);
1848 break;
1852 /* F. Process state. */
1853 switch (icsk->icsk_ca_state) {
1854 case TCP_CA_Recovery:
1855 if (prior_snd_una == tp->snd_una) {
1856 if (IsReno(tp) && is_dupack)
1857 tcp_add_reno_sack(sk);
1858 } else {
1859 int acked = prior_packets - tp->packets_out;
1860 if (IsReno(tp))
1861 tcp_remove_reno_sacks(sk, tp, acked);
1862 is_dupack = tcp_try_undo_partial(sk, tp, acked);
1864 break;
1865 case TCP_CA_Loss:
1866 if (flag&FLAG_DATA_ACKED)
1867 icsk->icsk_retransmits = 0;
1868 if (!tcp_try_undo_loss(sk, tp)) {
1869 tcp_moderate_cwnd(tp);
1870 tcp_xmit_retransmit_queue(sk);
1871 return;
1873 if (icsk->icsk_ca_state != TCP_CA_Open)
1874 return;
1875 /* Loss is undone; fall through to processing in Open state. */
1876 default:
1877 if (IsReno(tp)) {
1878 if (tp->snd_una != prior_snd_una)
1879 tcp_reset_reno_sack(tp);
1880 if (is_dupack)
1881 tcp_add_reno_sack(sk);
1884 if (icsk->icsk_ca_state == TCP_CA_Disorder)
1885 tcp_try_undo_dsack(sk, tp);
1887 if (!tcp_time_to_recover(sk, tp)) {
1888 tcp_try_to_open(sk, tp, flag);
1889 return;
1892 /* Otherwise enter Recovery state */
1894 if (IsReno(tp))
1895 NET_INC_STATS_BH(LINUX_MIB_TCPRENORECOVERY);
1896 else
1897 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRECOVERY);
1899 tp->high_seq = tp->snd_nxt;
1900 tp->prior_ssthresh = 0;
1901 tp->undo_marker = tp->snd_una;
1902 tp->undo_retrans = tp->retrans_out;
1904 if (icsk->icsk_ca_state < TCP_CA_CWR) {
1905 if (!(flag&FLAG_ECE))
1906 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1907 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1908 TCP_ECN_queue_cwr(tp);
1911 tp->snd_cwnd_cnt = 0;
1912 tcp_set_ca_state(sk, TCP_CA_Recovery);
1915 if (is_dupack || tcp_head_timedout(sk, tp))
1916 tcp_update_scoreboard(sk, tp);
1917 tcp_cwnd_down(sk);
1918 tcp_xmit_retransmit_queue(sk);
1921 /* Read draft-ietf-tcplw-high-performance before mucking
1922 * with this code. (Superceeds RFC1323)
1924 static void tcp_ack_saw_tstamp(struct sock *sk, u32 *usrtt, int flag)
1926 /* RTTM Rule: A TSecr value received in a segment is used to
1927 * update the averaged RTT measurement only if the segment
1928 * acknowledges some new data, i.e., only if it advances the
1929 * left edge of the send window.
1931 * See draft-ietf-tcplw-high-performance-00, section 3.3.
1932 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
1934 * Changed: reset backoff as soon as we see the first valid sample.
1935 * If we do not, we get strongly overstimated rto. With timestamps
1936 * samples are accepted even from very old segments: f.e., when rtt=1
1937 * increases to 8, we retransmit 5 times and after 8 seconds delayed
1938 * answer arrives rto becomes 120 seconds! If at least one of segments
1939 * in window is lost... Voila. --ANK (010210)
1941 struct tcp_sock *tp = tcp_sk(sk);
1942 const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
1943 tcp_rtt_estimator(sk, seq_rtt, usrtt);
1944 tcp_set_rto(sk);
1945 inet_csk(sk)->icsk_backoff = 0;
1946 tcp_bound_rto(sk);
1949 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, u32 *usrtt, int flag)
1951 /* We don't have a timestamp. Can only use
1952 * packets that are not retransmitted to determine
1953 * rtt estimates. Also, we must not reset the
1954 * backoff for rto until we get a non-retransmitted
1955 * packet. This allows us to deal with a situation
1956 * where the network delay has increased suddenly.
1957 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
1960 if (flag & FLAG_RETRANS_DATA_ACKED)
1961 return;
1963 tcp_rtt_estimator(sk, seq_rtt, usrtt);
1964 tcp_set_rto(sk);
1965 inet_csk(sk)->icsk_backoff = 0;
1966 tcp_bound_rto(sk);
1969 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
1970 const s32 seq_rtt, u32 *usrtt)
1972 const struct tcp_sock *tp = tcp_sk(sk);
1973 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
1974 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
1975 tcp_ack_saw_tstamp(sk, usrtt, flag);
1976 else if (seq_rtt >= 0)
1977 tcp_ack_no_tstamp(sk, seq_rtt, usrtt, flag);
1980 static inline void tcp_cong_avoid(struct sock *sk, u32 ack, u32 rtt,
1981 u32 in_flight, int good)
1983 const struct inet_connection_sock *icsk = inet_csk(sk);
1984 icsk->icsk_ca_ops->cong_avoid(sk, ack, rtt, in_flight, good);
1985 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
1988 /* Restart timer after forward progress on connection.
1989 * RFC2988 recommends to restart timer to now+rto.
1992 static inline void tcp_ack_packets_out(struct sock *sk, struct tcp_sock *tp)
1994 if (!tp->packets_out) {
1995 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
1996 } else {
1997 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
2001 static int tcp_tso_acked(struct sock *sk, struct sk_buff *skb,
2002 __u32 now, __s32 *seq_rtt)
2004 struct tcp_sock *tp = tcp_sk(sk);
2005 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2006 __u32 seq = tp->snd_una;
2007 __u32 packets_acked;
2008 int acked = 0;
2010 /* If we get here, the whole TSO packet has not been
2011 * acked.
2013 BUG_ON(!after(scb->end_seq, seq));
2015 packets_acked = tcp_skb_pcount(skb);
2016 if (tcp_trim_head(sk, skb, seq - scb->seq))
2017 return 0;
2018 packets_acked -= tcp_skb_pcount(skb);
2020 if (packets_acked) {
2021 __u8 sacked = scb->sacked;
2023 acked |= FLAG_DATA_ACKED;
2024 if (sacked) {
2025 if (sacked & TCPCB_RETRANS) {
2026 if (sacked & TCPCB_SACKED_RETRANS)
2027 tp->retrans_out -= packets_acked;
2028 acked |= FLAG_RETRANS_DATA_ACKED;
2029 *seq_rtt = -1;
2030 } else if (*seq_rtt < 0)
2031 *seq_rtt = now - scb->when;
2032 if (sacked & TCPCB_SACKED_ACKED)
2033 tp->sacked_out -= packets_acked;
2034 if (sacked & TCPCB_LOST)
2035 tp->lost_out -= packets_acked;
2036 if (sacked & TCPCB_URG) {
2037 if (tp->urg_mode &&
2038 !before(seq, tp->snd_up))
2039 tp->urg_mode = 0;
2041 } else if (*seq_rtt < 0)
2042 *seq_rtt = now - scb->when;
2044 if (tp->fackets_out) {
2045 __u32 dval = min(tp->fackets_out, packets_acked);
2046 tp->fackets_out -= dval;
2048 tp->packets_out -= packets_acked;
2050 BUG_ON(tcp_skb_pcount(skb) == 0);
2051 BUG_ON(!before(scb->seq, scb->end_seq));
2054 return acked;
2058 /* Remove acknowledged frames from the retransmission queue. */
2059 static int tcp_clean_rtx_queue(struct sock *sk, __s32 *seq_rtt_p, s32 *seq_usrtt)
2061 struct tcp_sock *tp = tcp_sk(sk);
2062 struct sk_buff *skb;
2063 __u32 now = tcp_time_stamp;
2064 int acked = 0;
2065 __s32 seq_rtt = -1;
2066 struct timeval usnow;
2067 u32 pkts_acked = 0;
2069 if (seq_usrtt)
2070 do_gettimeofday(&usnow);
2072 while ((skb = skb_peek(&sk->sk_write_queue)) &&
2073 skb != sk->sk_send_head) {
2074 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2075 __u8 sacked = scb->sacked;
2077 /* If our packet is before the ack sequence we can
2078 * discard it as it's confirmed to have arrived at
2079 * the other end.
2081 if (after(scb->end_seq, tp->snd_una)) {
2082 if (tcp_skb_pcount(skb) > 1 &&
2083 after(tp->snd_una, scb->seq))
2084 acked |= tcp_tso_acked(sk, skb,
2085 now, &seq_rtt);
2086 break;
2089 /* Initial outgoing SYN's get put onto the write_queue
2090 * just like anything else we transmit. It is not
2091 * true data, and if we misinform our callers that
2092 * this ACK acks real data, we will erroneously exit
2093 * connection startup slow start one packet too
2094 * quickly. This is severely frowned upon behavior.
2096 if (!(scb->flags & TCPCB_FLAG_SYN)) {
2097 acked |= FLAG_DATA_ACKED;
2098 ++pkts_acked;
2099 } else {
2100 acked |= FLAG_SYN_ACKED;
2101 tp->retrans_stamp = 0;
2104 if (sacked) {
2105 if (sacked & TCPCB_RETRANS) {
2106 if(sacked & TCPCB_SACKED_RETRANS)
2107 tp->retrans_out -= tcp_skb_pcount(skb);
2108 acked |= FLAG_RETRANS_DATA_ACKED;
2109 seq_rtt = -1;
2110 } else if (seq_rtt < 0)
2111 seq_rtt = now - scb->when;
2112 if (seq_usrtt) {
2113 struct timeval tv;
2115 skb_get_timestamp(skb, &tv);
2116 *seq_usrtt = (usnow.tv_sec - tv.tv_sec) * 1000000
2117 + (usnow.tv_usec - tv.tv_usec);
2120 if (sacked & TCPCB_SACKED_ACKED)
2121 tp->sacked_out -= tcp_skb_pcount(skb);
2122 if (sacked & TCPCB_LOST)
2123 tp->lost_out -= tcp_skb_pcount(skb);
2124 if (sacked & TCPCB_URG) {
2125 if (tp->urg_mode &&
2126 !before(scb->end_seq, tp->snd_up))
2127 tp->urg_mode = 0;
2129 } else if (seq_rtt < 0)
2130 seq_rtt = now - scb->when;
2131 tcp_dec_pcount_approx(&tp->fackets_out, skb);
2132 tcp_packets_out_dec(tp, skb);
2133 __skb_unlink(skb, &sk->sk_write_queue);
2134 sk_stream_free_skb(sk, skb);
2137 if (acked&FLAG_ACKED) {
2138 const struct inet_connection_sock *icsk = inet_csk(sk);
2139 tcp_ack_update_rtt(sk, acked, seq_rtt, seq_usrtt);
2140 tcp_ack_packets_out(sk, tp);
2142 if (icsk->icsk_ca_ops->pkts_acked)
2143 icsk->icsk_ca_ops->pkts_acked(sk, pkts_acked);
2146 #if FASTRETRANS_DEBUG > 0
2147 BUG_TRAP((int)tp->sacked_out >= 0);
2148 BUG_TRAP((int)tp->lost_out >= 0);
2149 BUG_TRAP((int)tp->retrans_out >= 0);
2150 if (!tp->packets_out && tp->rx_opt.sack_ok) {
2151 const struct inet_connection_sock *icsk = inet_csk(sk);
2152 if (tp->lost_out) {
2153 printk(KERN_DEBUG "Leak l=%u %d\n",
2154 tp->lost_out, icsk->icsk_ca_state);
2155 tp->lost_out = 0;
2157 if (tp->sacked_out) {
2158 printk(KERN_DEBUG "Leak s=%u %d\n",
2159 tp->sacked_out, icsk->icsk_ca_state);
2160 tp->sacked_out = 0;
2162 if (tp->retrans_out) {
2163 printk(KERN_DEBUG "Leak r=%u %d\n",
2164 tp->retrans_out, icsk->icsk_ca_state);
2165 tp->retrans_out = 0;
2168 #endif
2169 *seq_rtt_p = seq_rtt;
2170 return acked;
2173 static void tcp_ack_probe(struct sock *sk)
2175 const struct tcp_sock *tp = tcp_sk(sk);
2176 struct inet_connection_sock *icsk = inet_csk(sk);
2178 /* Was it a usable window open? */
2180 if (!after(TCP_SKB_CB(sk->sk_send_head)->end_seq,
2181 tp->snd_una + tp->snd_wnd)) {
2182 icsk->icsk_backoff = 0;
2183 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
2184 /* Socket must be waked up by subsequent tcp_data_snd_check().
2185 * This function is not for random using!
2187 } else {
2188 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
2189 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
2190 TCP_RTO_MAX);
2194 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
2196 return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
2197 inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
2200 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
2202 const struct tcp_sock *tp = tcp_sk(sk);
2203 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
2204 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
2207 /* Check that window update is acceptable.
2208 * The function assumes that snd_una<=ack<=snd_next.
2210 static inline int tcp_may_update_window(const struct tcp_sock *tp, const u32 ack,
2211 const u32 ack_seq, const u32 nwin)
2213 return (after(ack, tp->snd_una) ||
2214 after(ack_seq, tp->snd_wl1) ||
2215 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
2218 /* Update our send window.
2220 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
2221 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
2223 static int tcp_ack_update_window(struct sock *sk, struct tcp_sock *tp,
2224 struct sk_buff *skb, u32 ack, u32 ack_seq)
2226 int flag = 0;
2227 u32 nwin = ntohs(skb->h.th->window);
2229 if (likely(!skb->h.th->syn))
2230 nwin <<= tp->rx_opt.snd_wscale;
2232 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
2233 flag |= FLAG_WIN_UPDATE;
2234 tcp_update_wl(tp, ack, ack_seq);
2236 if (tp->snd_wnd != nwin) {
2237 tp->snd_wnd = nwin;
2239 /* Note, it is the only place, where
2240 * fast path is recovered for sending TCP.
2242 tcp_fast_path_check(sk, tp);
2244 if (nwin > tp->max_window) {
2245 tp->max_window = nwin;
2246 tcp_sync_mss(sk, tp->pmtu_cookie);
2251 tp->snd_una = ack;
2253 return flag;
2256 static void tcp_process_frto(struct sock *sk, u32 prior_snd_una)
2258 struct tcp_sock *tp = tcp_sk(sk);
2260 tcp_sync_left_out(tp);
2262 if (tp->snd_una == prior_snd_una ||
2263 !before(tp->snd_una, tp->frto_highmark)) {
2264 /* RTO was caused by loss, start retransmitting in
2265 * go-back-N slow start
2267 tcp_enter_frto_loss(sk);
2268 return;
2271 if (tp->frto_counter == 1) {
2272 /* First ACK after RTO advances the window: allow two new
2273 * segments out.
2275 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
2276 } else {
2277 /* Also the second ACK after RTO advances the window.
2278 * The RTO was likely spurious. Reduce cwnd and continue
2279 * in congestion avoidance
2281 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2282 tcp_moderate_cwnd(tp);
2285 /* F-RTO affects on two new ACKs following RTO.
2286 * At latest on third ACK the TCP behavor is back to normal.
2288 tp->frto_counter = (tp->frto_counter + 1) % 3;
2291 /* This routine deals with incoming acks, but not outgoing ones. */
2292 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
2294 struct inet_connection_sock *icsk = inet_csk(sk);
2295 struct tcp_sock *tp = tcp_sk(sk);
2296 u32 prior_snd_una = tp->snd_una;
2297 u32 ack_seq = TCP_SKB_CB(skb)->seq;
2298 u32 ack = TCP_SKB_CB(skb)->ack_seq;
2299 u32 prior_in_flight;
2300 s32 seq_rtt;
2301 s32 seq_usrtt = 0;
2302 int prior_packets;
2304 /* If the ack is newer than sent or older than previous acks
2305 * then we can probably ignore it.
2307 if (after(ack, tp->snd_nxt))
2308 goto uninteresting_ack;
2310 if (before(ack, prior_snd_una))
2311 goto old_ack;
2313 if (!(flag&FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
2314 /* Window is constant, pure forward advance.
2315 * No more checks are required.
2316 * Note, we use the fact that SND.UNA>=SND.WL2.
2318 tcp_update_wl(tp, ack, ack_seq);
2319 tp->snd_una = ack;
2320 flag |= FLAG_WIN_UPDATE;
2322 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
2324 NET_INC_STATS_BH(LINUX_MIB_TCPHPACKS);
2325 } else {
2326 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
2327 flag |= FLAG_DATA;
2328 else
2329 NET_INC_STATS_BH(LINUX_MIB_TCPPUREACKS);
2331 flag |= tcp_ack_update_window(sk, tp, skb, ack, ack_seq);
2333 if (TCP_SKB_CB(skb)->sacked)
2334 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
2336 if (TCP_ECN_rcv_ecn_echo(tp, skb->h.th))
2337 flag |= FLAG_ECE;
2339 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
2342 /* We passed data and got it acked, remove any soft error
2343 * log. Something worked...
2345 sk->sk_err_soft = 0;
2346 tp->rcv_tstamp = tcp_time_stamp;
2347 prior_packets = tp->packets_out;
2348 if (!prior_packets)
2349 goto no_queue;
2351 prior_in_flight = tcp_packets_in_flight(tp);
2353 /* See if we can take anything off of the retransmit queue. */
2354 flag |= tcp_clean_rtx_queue(sk, &seq_rtt,
2355 icsk->icsk_ca_ops->rtt_sample ? &seq_usrtt : NULL);
2357 if (tp->frto_counter)
2358 tcp_process_frto(sk, prior_snd_una);
2360 if (tcp_ack_is_dubious(sk, flag)) {
2361 /* Advanve CWND, if state allows this. */
2362 if ((flag & FLAG_DATA_ACKED) && tcp_may_raise_cwnd(sk, flag))
2363 tcp_cong_avoid(sk, ack, seq_rtt, prior_in_flight, 0);
2364 tcp_fastretrans_alert(sk, prior_snd_una, prior_packets, flag);
2365 } else {
2366 if ((flag & FLAG_DATA_ACKED))
2367 tcp_cong_avoid(sk, ack, seq_rtt, prior_in_flight, 1);
2370 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag&FLAG_NOT_DUP))
2371 dst_confirm(sk->sk_dst_cache);
2373 return 1;
2375 no_queue:
2376 icsk->icsk_probes_out = 0;
2378 /* If this ack opens up a zero window, clear backoff. It was
2379 * being used to time the probes, and is probably far higher than
2380 * it needs to be for normal retransmission.
2382 if (sk->sk_send_head)
2383 tcp_ack_probe(sk);
2384 return 1;
2386 old_ack:
2387 if (TCP_SKB_CB(skb)->sacked)
2388 tcp_sacktag_write_queue(sk, skb, prior_snd_una);
2390 uninteresting_ack:
2391 SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
2392 return 0;
2396 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
2397 * But, this can also be called on packets in the established flow when
2398 * the fast version below fails.
2400 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx, int estab)
2402 unsigned char *ptr;
2403 struct tcphdr *th = skb->h.th;
2404 int length=(th->doff*4)-sizeof(struct tcphdr);
2406 ptr = (unsigned char *)(th + 1);
2407 opt_rx->saw_tstamp = 0;
2409 while(length>0) {
2410 int opcode=*ptr++;
2411 int opsize;
2413 switch (opcode) {
2414 case TCPOPT_EOL:
2415 return;
2416 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
2417 length--;
2418 continue;
2419 default:
2420 opsize=*ptr++;
2421 if (opsize < 2) /* "silly options" */
2422 return;
2423 if (opsize > length)
2424 return; /* don't parse partial options */
2425 switch(opcode) {
2426 case TCPOPT_MSS:
2427 if(opsize==TCPOLEN_MSS && th->syn && !estab) {
2428 u16 in_mss = ntohs(get_unaligned((__u16 *)ptr));
2429 if (in_mss) {
2430 if (opt_rx->user_mss && opt_rx->user_mss < in_mss)
2431 in_mss = opt_rx->user_mss;
2432 opt_rx->mss_clamp = in_mss;
2435 break;
2436 case TCPOPT_WINDOW:
2437 if(opsize==TCPOLEN_WINDOW && th->syn && !estab)
2438 if (sysctl_tcp_window_scaling) {
2439 __u8 snd_wscale = *(__u8 *) ptr;
2440 opt_rx->wscale_ok = 1;
2441 if (snd_wscale > 14) {
2442 if(net_ratelimit())
2443 printk(KERN_INFO "tcp_parse_options: Illegal window "
2444 "scaling value %d >14 received.\n",
2445 snd_wscale);
2446 snd_wscale = 14;
2448 opt_rx->snd_wscale = snd_wscale;
2450 break;
2451 case TCPOPT_TIMESTAMP:
2452 if(opsize==TCPOLEN_TIMESTAMP) {
2453 if ((estab && opt_rx->tstamp_ok) ||
2454 (!estab && sysctl_tcp_timestamps)) {
2455 opt_rx->saw_tstamp = 1;
2456 opt_rx->rcv_tsval = ntohl(get_unaligned((__u32 *)ptr));
2457 opt_rx->rcv_tsecr = ntohl(get_unaligned((__u32 *)(ptr+4)));
2460 break;
2461 case TCPOPT_SACK_PERM:
2462 if(opsize==TCPOLEN_SACK_PERM && th->syn && !estab) {
2463 if (sysctl_tcp_sack) {
2464 opt_rx->sack_ok = 1;
2465 tcp_sack_reset(opt_rx);
2468 break;
2470 case TCPOPT_SACK:
2471 if((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
2472 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
2473 opt_rx->sack_ok) {
2474 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
2477 ptr+=opsize-2;
2478 length-=opsize;
2483 /* Fast parse options. This hopes to only see timestamps.
2484 * If it is wrong it falls back on tcp_parse_options().
2486 static inline int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
2487 struct tcp_sock *tp)
2489 if (th->doff == sizeof(struct tcphdr)>>2) {
2490 tp->rx_opt.saw_tstamp = 0;
2491 return 0;
2492 } else if (tp->rx_opt.tstamp_ok &&
2493 th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
2494 __u32 *ptr = (__u32 *)(th + 1);
2495 if (*ptr == ntohl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
2496 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
2497 tp->rx_opt.saw_tstamp = 1;
2498 ++ptr;
2499 tp->rx_opt.rcv_tsval = ntohl(*ptr);
2500 ++ptr;
2501 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
2502 return 1;
2505 tcp_parse_options(skb, &tp->rx_opt, 1);
2506 return 1;
2509 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
2511 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
2512 tp->rx_opt.ts_recent_stamp = xtime.tv_sec;
2515 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
2517 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
2518 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
2519 * extra check below makes sure this can only happen
2520 * for pure ACK frames. -DaveM
2522 * Not only, also it occurs for expired timestamps.
2525 if((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 ||
2526 xtime.tv_sec >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS)
2527 tcp_store_ts_recent(tp);
2531 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
2533 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
2534 * it can pass through stack. So, the following predicate verifies that
2535 * this segment is not used for anything but congestion avoidance or
2536 * fast retransmit. Moreover, we even are able to eliminate most of such
2537 * second order effects, if we apply some small "replay" window (~RTO)
2538 * to timestamp space.
2540 * All these measures still do not guarantee that we reject wrapped ACKs
2541 * on networks with high bandwidth, when sequence space is recycled fastly,
2542 * but it guarantees that such events will be very rare and do not affect
2543 * connection seriously. This doesn't look nice, but alas, PAWS is really
2544 * buggy extension.
2546 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
2547 * states that events when retransmit arrives after original data are rare.
2548 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
2549 * the biggest problem on large power networks even with minor reordering.
2550 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
2551 * up to bandwidth of 18Gigabit/sec. 8) ]
2554 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
2556 struct tcp_sock *tp = tcp_sk(sk);
2557 struct tcphdr *th = skb->h.th;
2558 u32 seq = TCP_SKB_CB(skb)->seq;
2559 u32 ack = TCP_SKB_CB(skb)->ack_seq;
2561 return (/* 1. Pure ACK with correct sequence number. */
2562 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
2564 /* 2. ... and duplicate ACK. */
2565 ack == tp->snd_una &&
2567 /* 3. ... and does not update window. */
2568 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
2570 /* 4. ... and sits in replay window. */
2571 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
2574 static inline int tcp_paws_discard(const struct sock *sk, const struct sk_buff *skb)
2576 const struct tcp_sock *tp = tcp_sk(sk);
2577 return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW &&
2578 xtime.tv_sec < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS &&
2579 !tcp_disordered_ack(sk, skb));
2582 /* Check segment sequence number for validity.
2584 * Segment controls are considered valid, if the segment
2585 * fits to the window after truncation to the window. Acceptability
2586 * of data (and SYN, FIN, of course) is checked separately.
2587 * See tcp_data_queue(), for example.
2589 * Also, controls (RST is main one) are accepted using RCV.WUP instead
2590 * of RCV.NXT. Peer still did not advance his SND.UNA when we
2591 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
2592 * (borrowed from freebsd)
2595 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
2597 return !before(end_seq, tp->rcv_wup) &&
2598 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
2601 /* When we get a reset we do this. */
2602 static void tcp_reset(struct sock *sk)
2604 /* We want the right error as BSD sees it (and indeed as we do). */
2605 switch (sk->sk_state) {
2606 case TCP_SYN_SENT:
2607 sk->sk_err = ECONNREFUSED;
2608 break;
2609 case TCP_CLOSE_WAIT:
2610 sk->sk_err = EPIPE;
2611 break;
2612 case TCP_CLOSE:
2613 return;
2614 default:
2615 sk->sk_err = ECONNRESET;
2618 if (!sock_flag(sk, SOCK_DEAD))
2619 sk->sk_error_report(sk);
2621 tcp_done(sk);
2625 * Process the FIN bit. This now behaves as it is supposed to work
2626 * and the FIN takes effect when it is validly part of sequence
2627 * space. Not before when we get holes.
2629 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
2630 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
2631 * TIME-WAIT)
2633 * If we are in FINWAIT-1, a received FIN indicates simultaneous
2634 * close and we go into CLOSING (and later onto TIME-WAIT)
2636 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
2638 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
2640 struct tcp_sock *tp = tcp_sk(sk);
2642 inet_csk_schedule_ack(sk);
2644 sk->sk_shutdown |= RCV_SHUTDOWN;
2645 sock_set_flag(sk, SOCK_DONE);
2647 switch (sk->sk_state) {
2648 case TCP_SYN_RECV:
2649 case TCP_ESTABLISHED:
2650 /* Move to CLOSE_WAIT */
2651 tcp_set_state(sk, TCP_CLOSE_WAIT);
2652 inet_csk(sk)->icsk_ack.pingpong = 1;
2653 break;
2655 case TCP_CLOSE_WAIT:
2656 case TCP_CLOSING:
2657 /* Received a retransmission of the FIN, do
2658 * nothing.
2660 break;
2661 case TCP_LAST_ACK:
2662 /* RFC793: Remain in the LAST-ACK state. */
2663 break;
2665 case TCP_FIN_WAIT1:
2666 /* This case occurs when a simultaneous close
2667 * happens, we must ack the received FIN and
2668 * enter the CLOSING state.
2670 tcp_send_ack(sk);
2671 tcp_set_state(sk, TCP_CLOSING);
2672 break;
2673 case TCP_FIN_WAIT2:
2674 /* Received a FIN -- send ACK and enter TIME_WAIT. */
2675 tcp_send_ack(sk);
2676 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
2677 break;
2678 default:
2679 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
2680 * cases we should never reach this piece of code.
2682 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
2683 __FUNCTION__, sk->sk_state);
2684 break;
2687 /* It _is_ possible, that we have something out-of-order _after_ FIN.
2688 * Probably, we should reset in this case. For now drop them.
2690 __skb_queue_purge(&tp->out_of_order_queue);
2691 if (tp->rx_opt.sack_ok)
2692 tcp_sack_reset(&tp->rx_opt);
2693 sk_stream_mem_reclaim(sk);
2695 if (!sock_flag(sk, SOCK_DEAD)) {
2696 sk->sk_state_change(sk);
2698 /* Do not send POLL_HUP for half duplex close. */
2699 if (sk->sk_shutdown == SHUTDOWN_MASK ||
2700 sk->sk_state == TCP_CLOSE)
2701 sk_wake_async(sk, 1, POLL_HUP);
2702 else
2703 sk_wake_async(sk, 1, POLL_IN);
2707 static __inline__ int
2708 tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, u32 end_seq)
2710 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
2711 if (before(seq, sp->start_seq))
2712 sp->start_seq = seq;
2713 if (after(end_seq, sp->end_seq))
2714 sp->end_seq = end_seq;
2715 return 1;
2717 return 0;
2720 static inline void tcp_dsack_set(struct tcp_sock *tp, u32 seq, u32 end_seq)
2722 if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) {
2723 if (before(seq, tp->rcv_nxt))
2724 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOLDSENT);
2725 else
2726 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFOSENT);
2728 tp->rx_opt.dsack = 1;
2729 tp->duplicate_sack[0].start_seq = seq;
2730 tp->duplicate_sack[0].end_seq = end_seq;
2731 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + 1, 4 - tp->rx_opt.tstamp_ok);
2735 static inline void tcp_dsack_extend(struct tcp_sock *tp, u32 seq, u32 end_seq)
2737 if (!tp->rx_opt.dsack)
2738 tcp_dsack_set(tp, seq, end_seq);
2739 else
2740 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
2743 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
2745 struct tcp_sock *tp = tcp_sk(sk);
2747 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
2748 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
2749 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
2750 tcp_enter_quickack_mode(sk);
2752 if (tp->rx_opt.sack_ok && sysctl_tcp_dsack) {
2753 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
2755 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
2756 end_seq = tp->rcv_nxt;
2757 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, end_seq);
2761 tcp_send_ack(sk);
2764 /* These routines update the SACK block as out-of-order packets arrive or
2765 * in-order packets close up the sequence space.
2767 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
2769 int this_sack;
2770 struct tcp_sack_block *sp = &tp->selective_acks[0];
2771 struct tcp_sack_block *swalk = sp+1;
2773 /* See if the recent change to the first SACK eats into
2774 * or hits the sequence space of other SACK blocks, if so coalesce.
2776 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; ) {
2777 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
2778 int i;
2780 /* Zap SWALK, by moving every further SACK up by one slot.
2781 * Decrease num_sacks.
2783 tp->rx_opt.num_sacks--;
2784 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
2785 for(i=this_sack; i < tp->rx_opt.num_sacks; i++)
2786 sp[i] = sp[i+1];
2787 continue;
2789 this_sack++, swalk++;
2793 static __inline__ void tcp_sack_swap(struct tcp_sack_block *sack1, struct tcp_sack_block *sack2)
2795 __u32 tmp;
2797 tmp = sack1->start_seq;
2798 sack1->start_seq = sack2->start_seq;
2799 sack2->start_seq = tmp;
2801 tmp = sack1->end_seq;
2802 sack1->end_seq = sack2->end_seq;
2803 sack2->end_seq = tmp;
2806 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
2808 struct tcp_sock *tp = tcp_sk(sk);
2809 struct tcp_sack_block *sp = &tp->selective_acks[0];
2810 int cur_sacks = tp->rx_opt.num_sacks;
2811 int this_sack;
2813 if (!cur_sacks)
2814 goto new_sack;
2816 for (this_sack=0; this_sack<cur_sacks; this_sack++, sp++) {
2817 if (tcp_sack_extend(sp, seq, end_seq)) {
2818 /* Rotate this_sack to the first one. */
2819 for (; this_sack>0; this_sack--, sp--)
2820 tcp_sack_swap(sp, sp-1);
2821 if (cur_sacks > 1)
2822 tcp_sack_maybe_coalesce(tp);
2823 return;
2827 /* Could not find an adjacent existing SACK, build a new one,
2828 * put it at the front, and shift everyone else down. We
2829 * always know there is at least one SACK present already here.
2831 * If the sack array is full, forget about the last one.
2833 if (this_sack >= 4) {
2834 this_sack--;
2835 tp->rx_opt.num_sacks--;
2836 sp--;
2838 for(; this_sack > 0; this_sack--, sp--)
2839 *sp = *(sp-1);
2841 new_sack:
2842 /* Build the new head SACK, and we're done. */
2843 sp->start_seq = seq;
2844 sp->end_seq = end_seq;
2845 tp->rx_opt.num_sacks++;
2846 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
2849 /* RCV.NXT advances, some SACKs should be eaten. */
2851 static void tcp_sack_remove(struct tcp_sock *tp)
2853 struct tcp_sack_block *sp = &tp->selective_acks[0];
2854 int num_sacks = tp->rx_opt.num_sacks;
2855 int this_sack;
2857 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
2858 if (skb_queue_empty(&tp->out_of_order_queue)) {
2859 tp->rx_opt.num_sacks = 0;
2860 tp->rx_opt.eff_sacks = tp->rx_opt.dsack;
2861 return;
2864 for(this_sack = 0; this_sack < num_sacks; ) {
2865 /* Check if the start of the sack is covered by RCV.NXT. */
2866 if (!before(tp->rcv_nxt, sp->start_seq)) {
2867 int i;
2869 /* RCV.NXT must cover all the block! */
2870 BUG_TRAP(!before(tp->rcv_nxt, sp->end_seq));
2872 /* Zap this SACK, by moving forward any other SACKS. */
2873 for (i=this_sack+1; i < num_sacks; i++)
2874 tp->selective_acks[i-1] = tp->selective_acks[i];
2875 num_sacks--;
2876 continue;
2878 this_sack++;
2879 sp++;
2881 if (num_sacks != tp->rx_opt.num_sacks) {
2882 tp->rx_opt.num_sacks = num_sacks;
2883 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
2887 /* This one checks to see if we can put data from the
2888 * out_of_order queue into the receive_queue.
2890 static void tcp_ofo_queue(struct sock *sk)
2892 struct tcp_sock *tp = tcp_sk(sk);
2893 __u32 dsack_high = tp->rcv_nxt;
2894 struct sk_buff *skb;
2896 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
2897 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
2898 break;
2900 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
2901 __u32 dsack = dsack_high;
2902 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
2903 dsack_high = TCP_SKB_CB(skb)->end_seq;
2904 tcp_dsack_extend(tp, TCP_SKB_CB(skb)->seq, dsack);
2907 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
2908 SOCK_DEBUG(sk, "ofo packet was already received \n");
2909 __skb_unlink(skb, &tp->out_of_order_queue);
2910 __kfree_skb(skb);
2911 continue;
2913 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
2914 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
2915 TCP_SKB_CB(skb)->end_seq);
2917 __skb_unlink(skb, &tp->out_of_order_queue);
2918 __skb_queue_tail(&sk->sk_receive_queue, skb);
2919 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
2920 if(skb->h.th->fin)
2921 tcp_fin(skb, sk, skb->h.th);
2925 static int tcp_prune_queue(struct sock *sk);
2927 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
2929 struct tcphdr *th = skb->h.th;
2930 struct tcp_sock *tp = tcp_sk(sk);
2931 int eaten = -1;
2933 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
2934 goto drop;
2936 __skb_pull(skb, th->doff*4);
2938 TCP_ECN_accept_cwr(tp, skb);
2940 if (tp->rx_opt.dsack) {
2941 tp->rx_opt.dsack = 0;
2942 tp->rx_opt.eff_sacks = min_t(unsigned int, tp->rx_opt.num_sacks,
2943 4 - tp->rx_opt.tstamp_ok);
2946 /* Queue data for delivery to the user.
2947 * Packets in sequence go to the receive queue.
2948 * Out of sequence packets to the out_of_order_queue.
2950 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
2951 if (tcp_receive_window(tp) == 0)
2952 goto out_of_window;
2954 /* Ok. In sequence. In window. */
2955 if (tp->ucopy.task == current &&
2956 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
2957 sock_owned_by_user(sk) && !tp->urg_data) {
2958 int chunk = min_t(unsigned int, skb->len,
2959 tp->ucopy.len);
2961 __set_current_state(TASK_RUNNING);
2963 local_bh_enable();
2964 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
2965 tp->ucopy.len -= chunk;
2966 tp->copied_seq += chunk;
2967 eaten = (chunk == skb->len && !th->fin);
2968 tcp_rcv_space_adjust(sk);
2970 local_bh_disable();
2973 if (eaten <= 0) {
2974 queue_and_out:
2975 if (eaten < 0 &&
2976 (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
2977 !sk_stream_rmem_schedule(sk, skb))) {
2978 if (tcp_prune_queue(sk) < 0 ||
2979 !sk_stream_rmem_schedule(sk, skb))
2980 goto drop;
2982 sk_stream_set_owner_r(skb, sk);
2983 __skb_queue_tail(&sk->sk_receive_queue, skb);
2985 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
2986 if(skb->len)
2987 tcp_event_data_recv(sk, tp, skb);
2988 if(th->fin)
2989 tcp_fin(skb, sk, th);
2991 if (!skb_queue_empty(&tp->out_of_order_queue)) {
2992 tcp_ofo_queue(sk);
2994 /* RFC2581. 4.2. SHOULD send immediate ACK, when
2995 * gap in queue is filled.
2997 if (skb_queue_empty(&tp->out_of_order_queue))
2998 inet_csk(sk)->icsk_ack.pingpong = 0;
3001 if (tp->rx_opt.num_sacks)
3002 tcp_sack_remove(tp);
3004 tcp_fast_path_check(sk, tp);
3006 if (eaten > 0)
3007 __kfree_skb(skb);
3008 else if (!sock_flag(sk, SOCK_DEAD))
3009 sk->sk_data_ready(sk, 0);
3010 return;
3013 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3014 /* A retransmit, 2nd most common case. Force an immediate ack. */
3015 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3016 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3018 out_of_window:
3019 tcp_enter_quickack_mode(sk);
3020 inet_csk_schedule_ack(sk);
3021 drop:
3022 __kfree_skb(skb);
3023 return;
3026 /* Out of window. F.e. zero window probe. */
3027 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
3028 goto out_of_window;
3030 tcp_enter_quickack_mode(sk);
3032 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3033 /* Partial packet, seq < rcv_next < end_seq */
3034 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
3035 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3036 TCP_SKB_CB(skb)->end_seq);
3038 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
3040 /* If window is closed, drop tail of packet. But after
3041 * remembering D-SACK for its head made in previous line.
3043 if (!tcp_receive_window(tp))
3044 goto out_of_window;
3045 goto queue_and_out;
3048 TCP_ECN_check_ce(tp, skb);
3050 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3051 !sk_stream_rmem_schedule(sk, skb)) {
3052 if (tcp_prune_queue(sk) < 0 ||
3053 !sk_stream_rmem_schedule(sk, skb))
3054 goto drop;
3057 /* Disable header prediction. */
3058 tp->pred_flags = 0;
3059 inet_csk_schedule_ack(sk);
3061 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
3062 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3064 sk_stream_set_owner_r(skb, sk);
3066 if (!skb_peek(&tp->out_of_order_queue)) {
3067 /* Initial out of order segment, build 1 SACK. */
3068 if (tp->rx_opt.sack_ok) {
3069 tp->rx_opt.num_sacks = 1;
3070 tp->rx_opt.dsack = 0;
3071 tp->rx_opt.eff_sacks = 1;
3072 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
3073 tp->selective_acks[0].end_seq =
3074 TCP_SKB_CB(skb)->end_seq;
3076 __skb_queue_head(&tp->out_of_order_queue,skb);
3077 } else {
3078 struct sk_buff *skb1 = tp->out_of_order_queue.prev;
3079 u32 seq = TCP_SKB_CB(skb)->seq;
3080 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3082 if (seq == TCP_SKB_CB(skb1)->end_seq) {
3083 __skb_append(skb1, skb, &tp->out_of_order_queue);
3085 if (!tp->rx_opt.num_sacks ||
3086 tp->selective_acks[0].end_seq != seq)
3087 goto add_sack;
3089 /* Common case: data arrive in order after hole. */
3090 tp->selective_acks[0].end_seq = end_seq;
3091 return;
3094 /* Find place to insert this segment. */
3095 do {
3096 if (!after(TCP_SKB_CB(skb1)->seq, seq))
3097 break;
3098 } while ((skb1 = skb1->prev) !=
3099 (struct sk_buff*)&tp->out_of_order_queue);
3101 /* Do skb overlap to previous one? */
3102 if (skb1 != (struct sk_buff*)&tp->out_of_order_queue &&
3103 before(seq, TCP_SKB_CB(skb1)->end_seq)) {
3104 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3105 /* All the bits are present. Drop. */
3106 __kfree_skb(skb);
3107 tcp_dsack_set(tp, seq, end_seq);
3108 goto add_sack;
3110 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
3111 /* Partial overlap. */
3112 tcp_dsack_set(tp, seq, TCP_SKB_CB(skb1)->end_seq);
3113 } else {
3114 skb1 = skb1->prev;
3117 __skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue);
3119 /* And clean segments covered by new one as whole. */
3120 while ((skb1 = skb->next) !=
3121 (struct sk_buff*)&tp->out_of_order_queue &&
3122 after(end_seq, TCP_SKB_CB(skb1)->seq)) {
3123 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3124 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, end_seq);
3125 break;
3127 __skb_unlink(skb1, &tp->out_of_order_queue);
3128 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, TCP_SKB_CB(skb1)->end_seq);
3129 __kfree_skb(skb1);
3132 add_sack:
3133 if (tp->rx_opt.sack_ok)
3134 tcp_sack_new_ofo_skb(sk, seq, end_seq);
3138 /* Collapse contiguous sequence of skbs head..tail with
3139 * sequence numbers start..end.
3140 * Segments with FIN/SYN are not collapsed (only because this
3141 * simplifies code)
3143 static void
3144 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
3145 struct sk_buff *head, struct sk_buff *tail,
3146 u32 start, u32 end)
3148 struct sk_buff *skb;
3150 /* First, check that queue is collapsable and find
3151 * the point where collapsing can be useful. */
3152 for (skb = head; skb != tail; ) {
3153 /* No new bits? It is possible on ofo queue. */
3154 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3155 struct sk_buff *next = skb->next;
3156 __skb_unlink(skb, list);
3157 __kfree_skb(skb);
3158 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3159 skb = next;
3160 continue;
3163 /* The first skb to collapse is:
3164 * - not SYN/FIN and
3165 * - bloated or contains data before "start" or
3166 * overlaps to the next one.
3168 if (!skb->h.th->syn && !skb->h.th->fin &&
3169 (tcp_win_from_space(skb->truesize) > skb->len ||
3170 before(TCP_SKB_CB(skb)->seq, start) ||
3171 (skb->next != tail &&
3172 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
3173 break;
3175 /* Decided to skip this, advance start seq. */
3176 start = TCP_SKB_CB(skb)->end_seq;
3177 skb = skb->next;
3179 if (skb == tail || skb->h.th->syn || skb->h.th->fin)
3180 return;
3182 while (before(start, end)) {
3183 struct sk_buff *nskb;
3184 int header = skb_headroom(skb);
3185 int copy = SKB_MAX_ORDER(header, 0);
3187 /* Too big header? This can happen with IPv6. */
3188 if (copy < 0)
3189 return;
3190 if (end-start < copy)
3191 copy = end-start;
3192 nskb = alloc_skb(copy+header, GFP_ATOMIC);
3193 if (!nskb)
3194 return;
3195 skb_reserve(nskb, header);
3196 memcpy(nskb->head, skb->head, header);
3197 nskb->nh.raw = nskb->head + (skb->nh.raw-skb->head);
3198 nskb->h.raw = nskb->head + (skb->h.raw-skb->head);
3199 nskb->mac.raw = nskb->head + (skb->mac.raw-skb->head);
3200 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
3201 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
3202 __skb_insert(nskb, skb->prev, skb, list);
3203 sk_stream_set_owner_r(nskb, sk);
3205 /* Copy data, releasing collapsed skbs. */
3206 while (copy > 0) {
3207 int offset = start - TCP_SKB_CB(skb)->seq;
3208 int size = TCP_SKB_CB(skb)->end_seq - start;
3210 if (offset < 0) BUG();
3211 if (size > 0) {
3212 size = min(copy, size);
3213 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
3214 BUG();
3215 TCP_SKB_CB(nskb)->end_seq += size;
3216 copy -= size;
3217 start += size;
3219 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3220 struct sk_buff *next = skb->next;
3221 __skb_unlink(skb, list);
3222 __kfree_skb(skb);
3223 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3224 skb = next;
3225 if (skb == tail || skb->h.th->syn || skb->h.th->fin)
3226 return;
3232 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
3233 * and tcp_collapse() them until all the queue is collapsed.
3235 static void tcp_collapse_ofo_queue(struct sock *sk)
3237 struct tcp_sock *tp = tcp_sk(sk);
3238 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
3239 struct sk_buff *head;
3240 u32 start, end;
3242 if (skb == NULL)
3243 return;
3245 start = TCP_SKB_CB(skb)->seq;
3246 end = TCP_SKB_CB(skb)->end_seq;
3247 head = skb;
3249 for (;;) {
3250 skb = skb->next;
3252 /* Segment is terminated when we see gap or when
3253 * we are at the end of all the queue. */
3254 if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
3255 after(TCP_SKB_CB(skb)->seq, end) ||
3256 before(TCP_SKB_CB(skb)->end_seq, start)) {
3257 tcp_collapse(sk, &tp->out_of_order_queue,
3258 head, skb, start, end);
3259 head = skb;
3260 if (skb == (struct sk_buff *)&tp->out_of_order_queue)
3261 break;
3262 /* Start new segment */
3263 start = TCP_SKB_CB(skb)->seq;
3264 end = TCP_SKB_CB(skb)->end_seq;
3265 } else {
3266 if (before(TCP_SKB_CB(skb)->seq, start))
3267 start = TCP_SKB_CB(skb)->seq;
3268 if (after(TCP_SKB_CB(skb)->end_seq, end))
3269 end = TCP_SKB_CB(skb)->end_seq;
3274 /* Reduce allocated memory if we can, trying to get
3275 * the socket within its memory limits again.
3277 * Return less than zero if we should start dropping frames
3278 * until the socket owning process reads some of the data
3279 * to stabilize the situation.
3281 static int tcp_prune_queue(struct sock *sk)
3283 struct tcp_sock *tp = tcp_sk(sk);
3285 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
3287 NET_INC_STATS_BH(LINUX_MIB_PRUNECALLED);
3289 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
3290 tcp_clamp_window(sk, tp);
3291 else if (tcp_memory_pressure)
3292 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
3294 tcp_collapse_ofo_queue(sk);
3295 tcp_collapse(sk, &sk->sk_receive_queue,
3296 sk->sk_receive_queue.next,
3297 (struct sk_buff*)&sk->sk_receive_queue,
3298 tp->copied_seq, tp->rcv_nxt);
3299 sk_stream_mem_reclaim(sk);
3301 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
3302 return 0;
3304 /* Collapsing did not help, destructive actions follow.
3305 * This must not ever occur. */
3307 /* First, purge the out_of_order queue. */
3308 if (!skb_queue_empty(&tp->out_of_order_queue)) {
3309 NET_INC_STATS_BH(LINUX_MIB_OFOPRUNED);
3310 __skb_queue_purge(&tp->out_of_order_queue);
3312 /* Reset SACK state. A conforming SACK implementation will
3313 * do the same at a timeout based retransmit. When a connection
3314 * is in a sad state like this, we care only about integrity
3315 * of the connection not performance.
3317 if (tp->rx_opt.sack_ok)
3318 tcp_sack_reset(&tp->rx_opt);
3319 sk_stream_mem_reclaim(sk);
3322 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
3323 return 0;
3325 /* If we are really being abused, tell the caller to silently
3326 * drop receive data on the floor. It will get retransmitted
3327 * and hopefully then we'll have sufficient space.
3329 NET_INC_STATS_BH(LINUX_MIB_RCVPRUNED);
3331 /* Massive buffer overcommit. */
3332 tp->pred_flags = 0;
3333 return -1;
3337 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
3338 * As additional protections, we do not touch cwnd in retransmission phases,
3339 * and if application hit its sndbuf limit recently.
3341 void tcp_cwnd_application_limited(struct sock *sk)
3343 struct tcp_sock *tp = tcp_sk(sk);
3345 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
3346 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
3347 /* Limited by application or receiver window. */
3348 u32 win_used = max(tp->snd_cwnd_used, 2U);
3349 if (win_used < tp->snd_cwnd) {
3350 tp->snd_ssthresh = tcp_current_ssthresh(sk);
3351 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
3353 tp->snd_cwnd_used = 0;
3355 tp->snd_cwnd_stamp = tcp_time_stamp;
3358 static inline int tcp_should_expand_sndbuf(struct sock *sk, struct tcp_sock *tp)
3360 /* If the user specified a specific send buffer setting, do
3361 * not modify it.
3363 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
3364 return 0;
3366 /* If we are under global TCP memory pressure, do not expand. */
3367 if (tcp_memory_pressure)
3368 return 0;
3370 /* If we are under soft global TCP memory pressure, do not expand. */
3371 if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
3372 return 0;
3374 /* If we filled the congestion window, do not expand. */
3375 if (tp->packets_out >= tp->snd_cwnd)
3376 return 0;
3378 return 1;
3381 /* When incoming ACK allowed to free some skb from write_queue,
3382 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
3383 * on the exit from tcp input handler.
3385 * PROBLEM: sndbuf expansion does not work well with largesend.
3387 static void tcp_new_space(struct sock *sk)
3389 struct tcp_sock *tp = tcp_sk(sk);
3391 if (tcp_should_expand_sndbuf(sk, tp)) {
3392 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
3393 MAX_TCP_HEADER + 16 + sizeof(struct sk_buff),
3394 demanded = max_t(unsigned int, tp->snd_cwnd,
3395 tp->reordering + 1);
3396 sndmem *= 2*demanded;
3397 if (sndmem > sk->sk_sndbuf)
3398 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
3399 tp->snd_cwnd_stamp = tcp_time_stamp;
3402 sk->sk_write_space(sk);
3405 static inline void tcp_check_space(struct sock *sk)
3407 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
3408 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
3409 if (sk->sk_socket &&
3410 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
3411 tcp_new_space(sk);
3415 static __inline__ void tcp_data_snd_check(struct sock *sk, struct tcp_sock *tp)
3417 tcp_push_pending_frames(sk, tp);
3418 tcp_check_space(sk);
3422 * Check if sending an ack is needed.
3424 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
3426 struct tcp_sock *tp = tcp_sk(sk);
3428 /* More than one full frame received... */
3429 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
3430 /* ... and right edge of window advances far enough.
3431 * (tcp_recvmsg() will send ACK otherwise). Or...
3433 && __tcp_select_window(sk) >= tp->rcv_wnd) ||
3434 /* We ACK each frame or... */
3435 tcp_in_quickack_mode(sk) ||
3436 /* We have out of order data. */
3437 (ofo_possible &&
3438 skb_peek(&tp->out_of_order_queue))) {
3439 /* Then ack it now */
3440 tcp_send_ack(sk);
3441 } else {
3442 /* Else, send delayed ack. */
3443 tcp_send_delayed_ack(sk);
3447 static __inline__ void tcp_ack_snd_check(struct sock *sk)
3449 if (!inet_csk_ack_scheduled(sk)) {
3450 /* We sent a data segment already. */
3451 return;
3453 __tcp_ack_snd_check(sk, 1);
3457 * This routine is only called when we have urgent data
3458 * signalled. Its the 'slow' part of tcp_urg. It could be
3459 * moved inline now as tcp_urg is only called from one
3460 * place. We handle URGent data wrong. We have to - as
3461 * BSD still doesn't use the correction from RFC961.
3462 * For 1003.1g we should support a new option TCP_STDURG to permit
3463 * either form (or just set the sysctl tcp_stdurg).
3466 static void tcp_check_urg(struct sock * sk, struct tcphdr * th)
3468 struct tcp_sock *tp = tcp_sk(sk);
3469 u32 ptr = ntohs(th->urg_ptr);
3471 if (ptr && !sysctl_tcp_stdurg)
3472 ptr--;
3473 ptr += ntohl(th->seq);
3475 /* Ignore urgent data that we've already seen and read. */
3476 if (after(tp->copied_seq, ptr))
3477 return;
3479 /* Do not replay urg ptr.
3481 * NOTE: interesting situation not covered by specs.
3482 * Misbehaving sender may send urg ptr, pointing to segment,
3483 * which we already have in ofo queue. We are not able to fetch
3484 * such data and will stay in TCP_URG_NOTYET until will be eaten
3485 * by recvmsg(). Seems, we are not obliged to handle such wicked
3486 * situations. But it is worth to think about possibility of some
3487 * DoSes using some hypothetical application level deadlock.
3489 if (before(ptr, tp->rcv_nxt))
3490 return;
3492 /* Do we already have a newer (or duplicate) urgent pointer? */
3493 if (tp->urg_data && !after(ptr, tp->urg_seq))
3494 return;
3496 /* Tell the world about our new urgent pointer. */
3497 sk_send_sigurg(sk);
3499 /* We may be adding urgent data when the last byte read was
3500 * urgent. To do this requires some care. We cannot just ignore
3501 * tp->copied_seq since we would read the last urgent byte again
3502 * as data, nor can we alter copied_seq until this data arrives
3503 * or we break the sematics of SIOCATMARK (and thus sockatmark())
3505 * NOTE. Double Dutch. Rendering to plain English: author of comment
3506 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
3507 * and expect that both A and B disappear from stream. This is _wrong_.
3508 * Though this happens in BSD with high probability, this is occasional.
3509 * Any application relying on this is buggy. Note also, that fix "works"
3510 * only in this artificial test. Insert some normal data between A and B and we will
3511 * decline of BSD again. Verdict: it is better to remove to trap
3512 * buggy users.
3514 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
3515 !sock_flag(sk, SOCK_URGINLINE) &&
3516 tp->copied_seq != tp->rcv_nxt) {
3517 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
3518 tp->copied_seq++;
3519 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
3520 __skb_unlink(skb, &sk->sk_receive_queue);
3521 __kfree_skb(skb);
3525 tp->urg_data = TCP_URG_NOTYET;
3526 tp->urg_seq = ptr;
3528 /* Disable header prediction. */
3529 tp->pred_flags = 0;
3532 /* This is the 'fast' part of urgent handling. */
3533 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
3535 struct tcp_sock *tp = tcp_sk(sk);
3537 /* Check if we get a new urgent pointer - normally not. */
3538 if (th->urg)
3539 tcp_check_urg(sk,th);
3541 /* Do we wait for any urgent data? - normally not... */
3542 if (tp->urg_data == TCP_URG_NOTYET) {
3543 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
3544 th->syn;
3546 /* Is the urgent pointer pointing into this packet? */
3547 if (ptr < skb->len) {
3548 u8 tmp;
3549 if (skb_copy_bits(skb, ptr, &tmp, 1))
3550 BUG();
3551 tp->urg_data = TCP_URG_VALID | tmp;
3552 if (!sock_flag(sk, SOCK_DEAD))
3553 sk->sk_data_ready(sk, 0);
3558 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
3560 struct tcp_sock *tp = tcp_sk(sk);
3561 int chunk = skb->len - hlen;
3562 int err;
3564 local_bh_enable();
3565 if (skb->ip_summed==CHECKSUM_UNNECESSARY)
3566 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
3567 else
3568 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
3569 tp->ucopy.iov);
3571 if (!err) {
3572 tp->ucopy.len -= chunk;
3573 tp->copied_seq += chunk;
3574 tcp_rcv_space_adjust(sk);
3577 local_bh_disable();
3578 return err;
3581 static int __tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
3583 int result;
3585 if (sock_owned_by_user(sk)) {
3586 local_bh_enable();
3587 result = __tcp_checksum_complete(skb);
3588 local_bh_disable();
3589 } else {
3590 result = __tcp_checksum_complete(skb);
3592 return result;
3595 static __inline__ int
3596 tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
3598 return skb->ip_summed != CHECKSUM_UNNECESSARY &&
3599 __tcp_checksum_complete_user(sk, skb);
3603 * TCP receive function for the ESTABLISHED state.
3605 * It is split into a fast path and a slow path. The fast path is
3606 * disabled when:
3607 * - A zero window was announced from us - zero window probing
3608 * is only handled properly in the slow path.
3609 * - Out of order segments arrived.
3610 * - Urgent data is expected.
3611 * - There is no buffer space left
3612 * - Unexpected TCP flags/window values/header lengths are received
3613 * (detected by checking the TCP header against pred_flags)
3614 * - Data is sent in both directions. Fast path only supports pure senders
3615 * or pure receivers (this means either the sequence number or the ack
3616 * value must stay constant)
3617 * - Unexpected TCP option.
3619 * When these conditions are not satisfied it drops into a standard
3620 * receive procedure patterned after RFC793 to handle all cases.
3621 * The first three cases are guaranteed by proper pred_flags setting,
3622 * the rest is checked inline. Fast processing is turned on in
3623 * tcp_data_queue when everything is OK.
3625 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
3626 struct tcphdr *th, unsigned len)
3628 struct tcp_sock *tp = tcp_sk(sk);
3631 * Header prediction.
3632 * The code loosely follows the one in the famous
3633 * "30 instruction TCP receive" Van Jacobson mail.
3635 * Van's trick is to deposit buffers into socket queue
3636 * on a device interrupt, to call tcp_recv function
3637 * on the receive process context and checksum and copy
3638 * the buffer to user space. smart...
3640 * Our current scheme is not silly either but we take the
3641 * extra cost of the net_bh soft interrupt processing...
3642 * We do checksum and copy also but from device to kernel.
3645 tp->rx_opt.saw_tstamp = 0;
3647 /* pred_flags is 0xS?10 << 16 + snd_wnd
3648 * if header_predition is to be made
3649 * 'S' will always be tp->tcp_header_len >> 2
3650 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
3651 * turn it off (when there are holes in the receive
3652 * space for instance)
3653 * PSH flag is ignored.
3656 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
3657 TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
3658 int tcp_header_len = tp->tcp_header_len;
3660 /* Timestamp header prediction: tcp_header_len
3661 * is automatically equal to th->doff*4 due to pred_flags
3662 * match.
3665 /* Check timestamp */
3666 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
3667 __u32 *ptr = (__u32 *)(th + 1);
3669 /* No? Slow path! */
3670 if (*ptr != ntohl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3671 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP))
3672 goto slow_path;
3674 tp->rx_opt.saw_tstamp = 1;
3675 ++ptr;
3676 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3677 ++ptr;
3678 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3680 /* If PAWS failed, check it more carefully in slow path */
3681 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
3682 goto slow_path;
3684 /* DO NOT update ts_recent here, if checksum fails
3685 * and timestamp was corrupted part, it will result
3686 * in a hung connection since we will drop all
3687 * future packets due to the PAWS test.
3691 if (len <= tcp_header_len) {
3692 /* Bulk data transfer: sender */
3693 if (len == tcp_header_len) {
3694 /* Predicted packet is in window by definition.
3695 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
3696 * Hence, check seq<=rcv_wup reduces to:
3698 if (tcp_header_len ==
3699 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
3700 tp->rcv_nxt == tp->rcv_wup)
3701 tcp_store_ts_recent(tp);
3703 tcp_rcv_rtt_measure_ts(sk, skb);
3705 /* We know that such packets are checksummed
3706 * on entry.
3708 tcp_ack(sk, skb, 0);
3709 __kfree_skb(skb);
3710 tcp_data_snd_check(sk, tp);
3711 return 0;
3712 } else { /* Header too small */
3713 TCP_INC_STATS_BH(TCP_MIB_INERRS);
3714 goto discard;
3716 } else {
3717 int eaten = 0;
3719 if (tp->ucopy.task == current &&
3720 tp->copied_seq == tp->rcv_nxt &&
3721 len - tcp_header_len <= tp->ucopy.len &&
3722 sock_owned_by_user(sk)) {
3723 __set_current_state(TASK_RUNNING);
3725 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) {
3726 /* Predicted packet is in window by definition.
3727 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
3728 * Hence, check seq<=rcv_wup reduces to:
3730 if (tcp_header_len ==
3731 (sizeof(struct tcphdr) +
3732 TCPOLEN_TSTAMP_ALIGNED) &&
3733 tp->rcv_nxt == tp->rcv_wup)
3734 tcp_store_ts_recent(tp);
3736 tcp_rcv_rtt_measure_ts(sk, skb);
3738 __skb_pull(skb, tcp_header_len);
3739 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3740 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITSTOUSER);
3741 eaten = 1;
3744 if (!eaten) {
3745 if (tcp_checksum_complete_user(sk, skb))
3746 goto csum_error;
3748 /* Predicted packet is in window by definition.
3749 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
3750 * Hence, check seq<=rcv_wup reduces to:
3752 if (tcp_header_len ==
3753 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
3754 tp->rcv_nxt == tp->rcv_wup)
3755 tcp_store_ts_recent(tp);
3757 tcp_rcv_rtt_measure_ts(sk, skb);
3759 if ((int)skb->truesize > sk->sk_forward_alloc)
3760 goto step5;
3762 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITS);
3764 /* Bulk data transfer: receiver */
3765 __skb_pull(skb,tcp_header_len);
3766 __skb_queue_tail(&sk->sk_receive_queue, skb);
3767 sk_stream_set_owner_r(skb, sk);
3768 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
3771 tcp_event_data_recv(sk, tp, skb);
3773 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
3774 /* Well, only one small jumplet in fast path... */
3775 tcp_ack(sk, skb, FLAG_DATA);
3776 tcp_data_snd_check(sk, tp);
3777 if (!inet_csk_ack_scheduled(sk))
3778 goto no_ack;
3781 __tcp_ack_snd_check(sk, 0);
3782 no_ack:
3783 if (eaten)
3784 __kfree_skb(skb);
3785 else
3786 sk->sk_data_ready(sk, 0);
3787 return 0;
3791 slow_path:
3792 if (len < (th->doff<<2) || tcp_checksum_complete_user(sk, skb))
3793 goto csum_error;
3796 * RFC1323: H1. Apply PAWS check first.
3798 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
3799 tcp_paws_discard(sk, skb)) {
3800 if (!th->rst) {
3801 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
3802 tcp_send_dupack(sk, skb);
3803 goto discard;
3805 /* Resets are accepted even if PAWS failed.
3807 ts_recent update must be made after we are sure
3808 that the packet is in window.
3813 * Standard slow path.
3816 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
3817 /* RFC793, page 37: "In all states except SYN-SENT, all reset
3818 * (RST) segments are validated by checking their SEQ-fields."
3819 * And page 69: "If an incoming segment is not acceptable,
3820 * an acknowledgment should be sent in reply (unless the RST bit
3821 * is set, if so drop the segment and return)".
3823 if (!th->rst)
3824 tcp_send_dupack(sk, skb);
3825 goto discard;
3828 if(th->rst) {
3829 tcp_reset(sk);
3830 goto discard;
3833 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3835 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3836 TCP_INC_STATS_BH(TCP_MIB_INERRS);
3837 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
3838 tcp_reset(sk);
3839 return 1;
3842 step5:
3843 if(th->ack)
3844 tcp_ack(sk, skb, FLAG_SLOWPATH);
3846 tcp_rcv_rtt_measure_ts(sk, skb);
3848 /* Process urgent data. */
3849 tcp_urg(sk, skb, th);
3851 /* step 7: process the segment text */
3852 tcp_data_queue(sk, skb);
3854 tcp_data_snd_check(sk, tp);
3855 tcp_ack_snd_check(sk);
3856 return 0;
3858 csum_error:
3859 TCP_INC_STATS_BH(TCP_MIB_INERRS);
3861 discard:
3862 __kfree_skb(skb);
3863 return 0;
3866 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
3867 struct tcphdr *th, unsigned len)
3869 struct tcp_sock *tp = tcp_sk(sk);
3870 int saved_clamp = tp->rx_opt.mss_clamp;
3872 tcp_parse_options(skb, &tp->rx_opt, 0);
3874 if (th->ack) {
3875 struct inet_connection_sock *icsk;
3876 /* rfc793:
3877 * "If the state is SYN-SENT then
3878 * first check the ACK bit
3879 * If the ACK bit is set
3880 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
3881 * a reset (unless the RST bit is set, if so drop
3882 * the segment and return)"
3884 * We do not send data with SYN, so that RFC-correct
3885 * test reduces to:
3887 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
3888 goto reset_and_undo;
3890 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
3891 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
3892 tcp_time_stamp)) {
3893 NET_INC_STATS_BH(LINUX_MIB_PAWSACTIVEREJECTED);
3894 goto reset_and_undo;
3897 /* Now ACK is acceptable.
3899 * "If the RST bit is set
3900 * If the ACK was acceptable then signal the user "error:
3901 * connection reset", drop the segment, enter CLOSED state,
3902 * delete TCB, and return."
3905 if (th->rst) {
3906 tcp_reset(sk);
3907 goto discard;
3910 /* rfc793:
3911 * "fifth, if neither of the SYN or RST bits is set then
3912 * drop the segment and return."
3914 * See note below!
3915 * --ANK(990513)
3917 if (!th->syn)
3918 goto discard_and_undo;
3920 /* rfc793:
3921 * "If the SYN bit is on ...
3922 * are acceptable then ...
3923 * (our SYN has been ACKed), change the connection
3924 * state to ESTABLISHED..."
3927 TCP_ECN_rcv_synack(tp, th);
3928 if (tp->ecn_flags&TCP_ECN_OK)
3929 sock_set_flag(sk, SOCK_NO_LARGESEND);
3931 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
3932 tcp_ack(sk, skb, FLAG_SLOWPATH);
3934 /* Ok.. it's good. Set up sequence numbers and
3935 * move to established.
3937 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
3938 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
3940 /* RFC1323: The window in SYN & SYN/ACK segments is
3941 * never scaled.
3943 tp->snd_wnd = ntohs(th->window);
3944 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
3946 if (!tp->rx_opt.wscale_ok) {
3947 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
3948 tp->window_clamp = min(tp->window_clamp, 65535U);
3951 if (tp->rx_opt.saw_tstamp) {
3952 tp->rx_opt.tstamp_ok = 1;
3953 tp->tcp_header_len =
3954 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
3955 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
3956 tcp_store_ts_recent(tp);
3957 } else {
3958 tp->tcp_header_len = sizeof(struct tcphdr);
3961 if (tp->rx_opt.sack_ok && sysctl_tcp_fack)
3962 tp->rx_opt.sack_ok |= 2;
3964 tcp_sync_mss(sk, tp->pmtu_cookie);
3965 tcp_initialize_rcv_mss(sk);
3967 /* Remember, tcp_poll() does not lock socket!
3968 * Change state from SYN-SENT only after copied_seq
3969 * is initialized. */
3970 tp->copied_seq = tp->rcv_nxt;
3971 mb();
3972 tcp_set_state(sk, TCP_ESTABLISHED);
3974 /* Make sure socket is routed, for correct metrics. */
3975 tp->af_specific->rebuild_header(sk);
3977 tcp_init_metrics(sk);
3979 tcp_init_congestion_control(sk);
3981 /* Prevent spurious tcp_cwnd_restart() on first data
3982 * packet.
3984 tp->lsndtime = tcp_time_stamp;
3986 tcp_init_buffer_space(sk);
3988 if (sock_flag(sk, SOCK_KEEPOPEN))
3989 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
3991 if (!tp->rx_opt.snd_wscale)
3992 __tcp_fast_path_on(tp, tp->snd_wnd);
3993 else
3994 tp->pred_flags = 0;
3996 if (!sock_flag(sk, SOCK_DEAD)) {
3997 sk->sk_state_change(sk);
3998 sk_wake_async(sk, 0, POLL_OUT);
4001 icsk = inet_csk(sk);
4003 if (sk->sk_write_pending ||
4004 icsk->icsk_accept_queue.rskq_defer_accept ||
4005 icsk->icsk_ack.pingpong) {
4006 /* Save one ACK. Data will be ready after
4007 * several ticks, if write_pending is set.
4009 * It may be deleted, but with this feature tcpdumps
4010 * look so _wonderfully_ clever, that I was not able
4011 * to stand against the temptation 8) --ANK
4013 inet_csk_schedule_ack(sk);
4014 icsk->icsk_ack.lrcvtime = tcp_time_stamp;
4015 icsk->icsk_ack.ato = TCP_ATO_MIN;
4016 tcp_incr_quickack(sk);
4017 tcp_enter_quickack_mode(sk);
4018 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
4019 TCP_DELACK_MAX, TCP_RTO_MAX);
4021 discard:
4022 __kfree_skb(skb);
4023 return 0;
4024 } else {
4025 tcp_send_ack(sk);
4027 return -1;
4030 /* No ACK in the segment */
4032 if (th->rst) {
4033 /* rfc793:
4034 * "If the RST bit is set
4036 * Otherwise (no ACK) drop the segment and return."
4039 goto discard_and_undo;
4042 /* PAWS check. */
4043 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && tcp_paws_check(&tp->rx_opt, 0))
4044 goto discard_and_undo;
4046 if (th->syn) {
4047 /* We see SYN without ACK. It is attempt of
4048 * simultaneous connect with crossed SYNs.
4049 * Particularly, it can be connect to self.
4051 tcp_set_state(sk, TCP_SYN_RECV);
4053 if (tp->rx_opt.saw_tstamp) {
4054 tp->rx_opt.tstamp_ok = 1;
4055 tcp_store_ts_recent(tp);
4056 tp->tcp_header_len =
4057 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4058 } else {
4059 tp->tcp_header_len = sizeof(struct tcphdr);
4062 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4063 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4065 /* RFC1323: The window in SYN & SYN/ACK segments is
4066 * never scaled.
4068 tp->snd_wnd = ntohs(th->window);
4069 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
4070 tp->max_window = tp->snd_wnd;
4072 TCP_ECN_rcv_syn(tp, th);
4073 if (tp->ecn_flags&TCP_ECN_OK)
4074 sock_set_flag(sk, SOCK_NO_LARGESEND);
4076 tcp_sync_mss(sk, tp->pmtu_cookie);
4077 tcp_initialize_rcv_mss(sk);
4080 tcp_send_synack(sk);
4081 #if 0
4082 /* Note, we could accept data and URG from this segment.
4083 * There are no obstacles to make this.
4085 * However, if we ignore data in ACKless segments sometimes,
4086 * we have no reasons to accept it sometimes.
4087 * Also, seems the code doing it in step6 of tcp_rcv_state_process
4088 * is not flawless. So, discard packet for sanity.
4089 * Uncomment this return to process the data.
4091 return -1;
4092 #else
4093 goto discard;
4094 #endif
4096 /* "fifth, if neither of the SYN or RST bits is set then
4097 * drop the segment and return."
4100 discard_and_undo:
4101 tcp_clear_options(&tp->rx_opt);
4102 tp->rx_opt.mss_clamp = saved_clamp;
4103 goto discard;
4105 reset_and_undo:
4106 tcp_clear_options(&tp->rx_opt);
4107 tp->rx_opt.mss_clamp = saved_clamp;
4108 return 1;
4113 * This function implements the receiving procedure of RFC 793 for
4114 * all states except ESTABLISHED and TIME_WAIT.
4115 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
4116 * address independent.
4119 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
4120 struct tcphdr *th, unsigned len)
4122 struct tcp_sock *tp = tcp_sk(sk);
4123 int queued = 0;
4125 tp->rx_opt.saw_tstamp = 0;
4127 switch (sk->sk_state) {
4128 case TCP_CLOSE:
4129 goto discard;
4131 case TCP_LISTEN:
4132 if(th->ack)
4133 return 1;
4135 if(th->rst)
4136 goto discard;
4138 if(th->syn) {
4139 if(tp->af_specific->conn_request(sk, skb) < 0)
4140 return 1;
4142 /* Now we have several options: In theory there is
4143 * nothing else in the frame. KA9Q has an option to
4144 * send data with the syn, BSD accepts data with the
4145 * syn up to the [to be] advertised window and
4146 * Solaris 2.1 gives you a protocol error. For now
4147 * we just ignore it, that fits the spec precisely
4148 * and avoids incompatibilities. It would be nice in
4149 * future to drop through and process the data.
4151 * Now that TTCP is starting to be used we ought to
4152 * queue this data.
4153 * But, this leaves one open to an easy denial of
4154 * service attack, and SYN cookies can't defend
4155 * against this problem. So, we drop the data
4156 * in the interest of security over speed.
4158 goto discard;
4160 goto discard;
4162 case TCP_SYN_SENT:
4163 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
4164 if (queued >= 0)
4165 return queued;
4167 /* Do step6 onward by hand. */
4168 tcp_urg(sk, skb, th);
4169 __kfree_skb(skb);
4170 tcp_data_snd_check(sk, tp);
4171 return 0;
4174 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
4175 tcp_paws_discard(sk, skb)) {
4176 if (!th->rst) {
4177 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4178 tcp_send_dupack(sk, skb);
4179 goto discard;
4181 /* Reset is accepted even if it did not pass PAWS. */
4184 /* step 1: check sequence number */
4185 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4186 if (!th->rst)
4187 tcp_send_dupack(sk, skb);
4188 goto discard;
4191 /* step 2: check RST bit */
4192 if(th->rst) {
4193 tcp_reset(sk);
4194 goto discard;
4197 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4199 /* step 3: check security and precedence [ignored] */
4201 /* step 4:
4203 * Check for a SYN in window.
4205 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4206 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4207 tcp_reset(sk);
4208 return 1;
4211 /* step 5: check the ACK field */
4212 if (th->ack) {
4213 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
4215 switch(sk->sk_state) {
4216 case TCP_SYN_RECV:
4217 if (acceptable) {
4218 tp->copied_seq = tp->rcv_nxt;
4219 mb();
4220 tcp_set_state(sk, TCP_ESTABLISHED);
4221 sk->sk_state_change(sk);
4223 /* Note, that this wakeup is only for marginal
4224 * crossed SYN case. Passively open sockets
4225 * are not waked up, because sk->sk_sleep ==
4226 * NULL and sk->sk_socket == NULL.
4228 if (sk->sk_socket) {
4229 sk_wake_async(sk,0,POLL_OUT);
4232 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
4233 tp->snd_wnd = ntohs(th->window) <<
4234 tp->rx_opt.snd_wscale;
4235 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq,
4236 TCP_SKB_CB(skb)->seq);
4238 /* tcp_ack considers this ACK as duplicate
4239 * and does not calculate rtt.
4240 * Fix it at least with timestamps.
4242 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4243 !tp->srtt)
4244 tcp_ack_saw_tstamp(sk, NULL, 0);
4246 if (tp->rx_opt.tstamp_ok)
4247 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
4249 /* Make sure socket is routed, for
4250 * correct metrics.
4252 tp->af_specific->rebuild_header(sk);
4254 tcp_init_metrics(sk);
4256 tcp_init_congestion_control(sk);
4258 /* Prevent spurious tcp_cwnd_restart() on
4259 * first data packet.
4261 tp->lsndtime = tcp_time_stamp;
4263 tcp_initialize_rcv_mss(sk);
4264 tcp_init_buffer_space(sk);
4265 tcp_fast_path_on(tp);
4266 } else {
4267 return 1;
4269 break;
4271 case TCP_FIN_WAIT1:
4272 if (tp->snd_una == tp->write_seq) {
4273 tcp_set_state(sk, TCP_FIN_WAIT2);
4274 sk->sk_shutdown |= SEND_SHUTDOWN;
4275 dst_confirm(sk->sk_dst_cache);
4277 if (!sock_flag(sk, SOCK_DEAD))
4278 /* Wake up lingering close() */
4279 sk->sk_state_change(sk);
4280 else {
4281 int tmo;
4283 if (tp->linger2 < 0 ||
4284 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4285 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
4286 tcp_done(sk);
4287 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
4288 return 1;
4291 tmo = tcp_fin_time(sk);
4292 if (tmo > TCP_TIMEWAIT_LEN) {
4293 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
4294 } else if (th->fin || sock_owned_by_user(sk)) {
4295 /* Bad case. We could lose such FIN otherwise.
4296 * It is not a big problem, but it looks confusing
4297 * and not so rare event. We still can lose it now,
4298 * if it spins in bh_lock_sock(), but it is really
4299 * marginal case.
4301 inet_csk_reset_keepalive_timer(sk, tmo);
4302 } else {
4303 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
4304 goto discard;
4308 break;
4310 case TCP_CLOSING:
4311 if (tp->snd_una == tp->write_seq) {
4312 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4313 goto discard;
4315 break;
4317 case TCP_LAST_ACK:
4318 if (tp->snd_una == tp->write_seq) {
4319 tcp_update_metrics(sk);
4320 tcp_done(sk);
4321 goto discard;
4323 break;
4325 } else
4326 goto discard;
4328 /* step 6: check the URG bit */
4329 tcp_urg(sk, skb, th);
4331 /* step 7: process the segment text */
4332 switch (sk->sk_state) {
4333 case TCP_CLOSE_WAIT:
4334 case TCP_CLOSING:
4335 case TCP_LAST_ACK:
4336 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4337 break;
4338 case TCP_FIN_WAIT1:
4339 case TCP_FIN_WAIT2:
4340 /* RFC 793 says to queue data in these states,
4341 * RFC 1122 says we MUST send a reset.
4342 * BSD 4.4 also does reset.
4344 if (sk->sk_shutdown & RCV_SHUTDOWN) {
4345 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4346 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
4347 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
4348 tcp_reset(sk);
4349 return 1;
4352 /* Fall through */
4353 case TCP_ESTABLISHED:
4354 tcp_data_queue(sk, skb);
4355 queued = 1;
4356 break;
4359 /* tcp_data could move socket to TIME-WAIT */
4360 if (sk->sk_state != TCP_CLOSE) {
4361 tcp_data_snd_check(sk, tp);
4362 tcp_ack_snd_check(sk);
4365 if (!queued) {
4366 discard:
4367 __kfree_skb(skb);
4369 return 0;
4372 EXPORT_SYMBOL(sysctl_tcp_ecn);
4373 EXPORT_SYMBOL(sysctl_tcp_reordering);
4374 EXPORT_SYMBOL(tcp_parse_options);
4375 EXPORT_SYMBOL(tcp_rcv_established);
4376 EXPORT_SYMBOL(tcp_rcv_state_process);