ext4: fix deadlock in ext4_remount() and orphan list handling
[linux-2.6/kvm.git] / mm / page_alloc.c
blobf9e4e647d7e8de6cb136a99232495d5fec2fcf98
1 /*
2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/bootmem.h>
23 #include <linux/compiler.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/suspend.h>
27 #include <linux/pagevec.h>
28 #include <linux/blkdev.h>
29 #include <linux/slab.h>
30 #include <linux/notifier.h>
31 #include <linux/topology.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/memory_hotplug.h>
36 #include <linux/nodemask.h>
37 #include <linux/vmalloc.h>
38 #include <linux/mempolicy.h>
39 #include <linux/stop_machine.h>
40 #include <linux/sort.h>
41 #include <linux/pfn.h>
42 #include <linux/backing-dev.h>
43 #include <linux/fault-inject.h>
45 #include <asm/tlbflush.h>
46 #include <asm/div64.h>
47 #include "internal.h"
50 * MCD - HACK: Find somewhere to initialize this EARLY, or make this
51 * initializer cleaner
53 nodemask_t node_online_map __read_mostly = { { [0] = 1UL } };
54 EXPORT_SYMBOL(node_online_map);
55 nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL;
56 EXPORT_SYMBOL(node_possible_map);
57 unsigned long totalram_pages __read_mostly;
58 unsigned long totalreserve_pages __read_mostly;
59 long nr_swap_pages;
60 int percpu_pagelist_fraction;
62 static void __free_pages_ok(struct page *page, unsigned int order);
65 * results with 256, 32 in the lowmem_reserve sysctl:
66 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
67 * 1G machine -> (16M dma, 784M normal, 224M high)
68 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
69 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
70 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
72 * TBD: should special case ZONE_DMA32 machines here - in those we normally
73 * don't need any ZONE_NORMAL reservation
75 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
76 #ifdef CONFIG_ZONE_DMA
77 256,
78 #endif
79 #ifdef CONFIG_ZONE_DMA32
80 256,
81 #endif
82 #ifdef CONFIG_HIGHMEM
84 #endif
87 EXPORT_SYMBOL(totalram_pages);
89 static char * const zone_names[MAX_NR_ZONES] = {
90 #ifdef CONFIG_ZONE_DMA
91 "DMA",
92 #endif
93 #ifdef CONFIG_ZONE_DMA32
94 "DMA32",
95 #endif
96 "Normal",
97 #ifdef CONFIG_HIGHMEM
98 "HighMem"
99 #endif
102 int min_free_kbytes = 1024;
104 unsigned long __meminitdata nr_kernel_pages;
105 unsigned long __meminitdata nr_all_pages;
106 static unsigned long __meminitdata dma_reserve;
108 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
110 * MAX_ACTIVE_REGIONS determines the maxmimum number of distinct
111 * ranges of memory (RAM) that may be registered with add_active_range().
112 * Ranges passed to add_active_range() will be merged if possible
113 * so the number of times add_active_range() can be called is
114 * related to the number of nodes and the number of holes
116 #ifdef CONFIG_MAX_ACTIVE_REGIONS
117 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
118 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
119 #else
120 #if MAX_NUMNODES >= 32
121 /* If there can be many nodes, allow up to 50 holes per node */
122 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
123 #else
124 /* By default, allow up to 256 distinct regions */
125 #define MAX_ACTIVE_REGIONS 256
126 #endif
127 #endif
129 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
130 static int __meminitdata nr_nodemap_entries;
131 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
132 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
133 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
134 static unsigned long __meminitdata node_boundary_start_pfn[MAX_NUMNODES];
135 static unsigned long __meminitdata node_boundary_end_pfn[MAX_NUMNODES];
136 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
137 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
139 #if MAX_NUMNODES > 1
140 int nr_node_ids __read_mostly = MAX_NUMNODES;
141 EXPORT_SYMBOL(nr_node_ids);
142 #endif
144 #ifdef CONFIG_DEBUG_VM
145 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
147 int ret = 0;
148 unsigned seq;
149 unsigned long pfn = page_to_pfn(page);
151 do {
152 seq = zone_span_seqbegin(zone);
153 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
154 ret = 1;
155 else if (pfn < zone->zone_start_pfn)
156 ret = 1;
157 } while (zone_span_seqretry(zone, seq));
159 return ret;
162 static int page_is_consistent(struct zone *zone, struct page *page)
164 if (!pfn_valid_within(page_to_pfn(page)))
165 return 0;
166 if (zone != page_zone(page))
167 return 0;
169 return 1;
172 * Temporary debugging check for pages not lying within a given zone.
174 static int bad_range(struct zone *zone, struct page *page)
176 if (page_outside_zone_boundaries(zone, page))
177 return 1;
178 if (!page_is_consistent(zone, page))
179 return 1;
181 return 0;
183 #else
184 static inline int bad_range(struct zone *zone, struct page *page)
186 return 0;
188 #endif
190 static void bad_page(struct page *page)
192 printk(KERN_EMERG "Bad page state in process '%s'\n"
193 KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
194 KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
195 KERN_EMERG "Backtrace:\n",
196 current->comm, page, (int)(2*sizeof(unsigned long)),
197 (unsigned long)page->flags, page->mapping,
198 page_mapcount(page), page_count(page));
199 dump_stack();
200 page->flags &= ~(1 << PG_lru |
201 1 << PG_private |
202 1 << PG_locked |
203 1 << PG_active |
204 1 << PG_dirty |
205 1 << PG_reclaim |
206 1 << PG_slab |
207 1 << PG_swapcache |
208 1 << PG_writeback |
209 1 << PG_buddy );
210 set_page_count(page, 0);
211 reset_page_mapcount(page);
212 page->mapping = NULL;
213 add_taint(TAINT_BAD_PAGE);
217 * Higher-order pages are called "compound pages". They are structured thusly:
219 * The first PAGE_SIZE page is called the "head page".
221 * The remaining PAGE_SIZE pages are called "tail pages".
223 * All pages have PG_compound set. All pages have their ->private pointing at
224 * the head page (even the head page has this).
226 * The first tail page's ->lru.next holds the address of the compound page's
227 * put_page() function. Its ->lru.prev holds the order of allocation.
228 * This usage means that zero-order pages may not be compound.
231 static void free_compound_page(struct page *page)
233 __free_pages_ok(page, compound_order(page));
236 static void prep_compound_page(struct page *page, unsigned long order)
238 int i;
239 int nr_pages = 1 << order;
241 set_compound_page_dtor(page, free_compound_page);
242 set_compound_order(page, order);
243 __SetPageHead(page);
244 for (i = 1; i < nr_pages; i++) {
245 struct page *p = page + i;
247 __SetPageTail(p);
248 p->first_page = page;
252 static void destroy_compound_page(struct page *page, unsigned long order)
254 int i;
255 int nr_pages = 1 << order;
257 if (unlikely(compound_order(page) != order))
258 bad_page(page);
260 if (unlikely(!PageHead(page)))
261 bad_page(page);
262 __ClearPageHead(page);
263 for (i = 1; i < nr_pages; i++) {
264 struct page *p = page + i;
266 if (unlikely(!PageTail(p) |
267 (p->first_page != page)))
268 bad_page(page);
269 __ClearPageTail(p);
273 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
275 int i;
277 VM_BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
279 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
280 * and __GFP_HIGHMEM from hard or soft interrupt context.
282 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
283 for (i = 0; i < (1 << order); i++)
284 clear_highpage(page + i);
288 * function for dealing with page's order in buddy system.
289 * zone->lock is already acquired when we use these.
290 * So, we don't need atomic page->flags operations here.
292 static inline unsigned long page_order(struct page *page)
294 return page_private(page);
297 static inline void set_page_order(struct page *page, int order)
299 set_page_private(page, order);
300 __SetPageBuddy(page);
303 static inline void rmv_page_order(struct page *page)
305 __ClearPageBuddy(page);
306 set_page_private(page, 0);
310 * Locate the struct page for both the matching buddy in our
311 * pair (buddy1) and the combined O(n+1) page they form (page).
313 * 1) Any buddy B1 will have an order O twin B2 which satisfies
314 * the following equation:
315 * B2 = B1 ^ (1 << O)
316 * For example, if the starting buddy (buddy2) is #8 its order
317 * 1 buddy is #10:
318 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
320 * 2) Any buddy B will have an order O+1 parent P which
321 * satisfies the following equation:
322 * P = B & ~(1 << O)
324 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
326 static inline struct page *
327 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
329 unsigned long buddy_idx = page_idx ^ (1 << order);
331 return page + (buddy_idx - page_idx);
334 static inline unsigned long
335 __find_combined_index(unsigned long page_idx, unsigned int order)
337 return (page_idx & ~(1 << order));
341 * This function checks whether a page is free && is the buddy
342 * we can do coalesce a page and its buddy if
343 * (a) the buddy is not in a hole &&
344 * (b) the buddy is in the buddy system &&
345 * (c) a page and its buddy have the same order &&
346 * (d) a page and its buddy are in the same zone.
348 * For recording whether a page is in the buddy system, we use PG_buddy.
349 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
351 * For recording page's order, we use page_private(page).
353 static inline int page_is_buddy(struct page *page, struct page *buddy,
354 int order)
356 if (!pfn_valid_within(page_to_pfn(buddy)))
357 return 0;
359 if (page_zone_id(page) != page_zone_id(buddy))
360 return 0;
362 if (PageBuddy(buddy) && page_order(buddy) == order) {
363 BUG_ON(page_count(buddy) != 0);
364 return 1;
366 return 0;
370 * Freeing function for a buddy system allocator.
372 * The concept of a buddy system is to maintain direct-mapped table
373 * (containing bit values) for memory blocks of various "orders".
374 * The bottom level table contains the map for the smallest allocatable
375 * units of memory (here, pages), and each level above it describes
376 * pairs of units from the levels below, hence, "buddies".
377 * At a high level, all that happens here is marking the table entry
378 * at the bottom level available, and propagating the changes upward
379 * as necessary, plus some accounting needed to play nicely with other
380 * parts of the VM system.
381 * At each level, we keep a list of pages, which are heads of continuous
382 * free pages of length of (1 << order) and marked with PG_buddy. Page's
383 * order is recorded in page_private(page) field.
384 * So when we are allocating or freeing one, we can derive the state of the
385 * other. That is, if we allocate a small block, and both were
386 * free, the remainder of the region must be split into blocks.
387 * If a block is freed, and its buddy is also free, then this
388 * triggers coalescing into a block of larger size.
390 * -- wli
393 static inline void __free_one_page(struct page *page,
394 struct zone *zone, unsigned int order)
396 unsigned long page_idx;
397 int order_size = 1 << order;
399 if (unlikely(PageCompound(page)))
400 destroy_compound_page(page, order);
402 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
404 VM_BUG_ON(page_idx & (order_size - 1));
405 VM_BUG_ON(bad_range(zone, page));
407 __mod_zone_page_state(zone, NR_FREE_PAGES, order_size);
408 while (order < MAX_ORDER-1) {
409 unsigned long combined_idx;
410 struct free_area *area;
411 struct page *buddy;
413 buddy = __page_find_buddy(page, page_idx, order);
414 if (!page_is_buddy(page, buddy, order))
415 break; /* Move the buddy up one level. */
417 list_del(&buddy->lru);
418 area = zone->free_area + order;
419 area->nr_free--;
420 rmv_page_order(buddy);
421 combined_idx = __find_combined_index(page_idx, order);
422 page = page + (combined_idx - page_idx);
423 page_idx = combined_idx;
424 order++;
426 set_page_order(page, order);
427 list_add(&page->lru, &zone->free_area[order].free_list);
428 zone->free_area[order].nr_free++;
431 static inline int free_pages_check(struct page *page)
433 if (unlikely(page_mapcount(page) |
434 (page->mapping != NULL) |
435 (page_count(page) != 0) |
436 (page->flags & (
437 1 << PG_lru |
438 1 << PG_private |
439 1 << PG_locked |
440 1 << PG_active |
441 1 << PG_slab |
442 1 << PG_swapcache |
443 1 << PG_writeback |
444 1 << PG_reserved |
445 1 << PG_buddy ))))
446 bad_page(page);
448 * PageReclaim == PageTail. It is only an error
449 * for PageReclaim to be set if PageCompound is clear.
451 if (unlikely(!PageCompound(page) && PageReclaim(page)))
452 bad_page(page);
453 if (PageDirty(page))
454 __ClearPageDirty(page);
456 * For now, we report if PG_reserved was found set, but do not
457 * clear it, and do not free the page. But we shall soon need
458 * to do more, for when the ZERO_PAGE count wraps negative.
460 return PageReserved(page);
464 * Frees a list of pages.
465 * Assumes all pages on list are in same zone, and of same order.
466 * count is the number of pages to free.
468 * If the zone was previously in an "all pages pinned" state then look to
469 * see if this freeing clears that state.
471 * And clear the zone's pages_scanned counter, to hold off the "all pages are
472 * pinned" detection logic.
474 static void free_pages_bulk(struct zone *zone, int count,
475 struct list_head *list, int order)
477 spin_lock(&zone->lock);
478 zone->all_unreclaimable = 0;
479 zone->pages_scanned = 0;
480 while (count--) {
481 struct page *page;
483 VM_BUG_ON(list_empty(list));
484 page = list_entry(list->prev, struct page, lru);
485 /* have to delete it as __free_one_page list manipulates */
486 list_del(&page->lru);
487 __free_one_page(page, zone, order);
489 spin_unlock(&zone->lock);
492 static void free_one_page(struct zone *zone, struct page *page, int order)
494 spin_lock(&zone->lock);
495 zone->all_unreclaimable = 0;
496 zone->pages_scanned = 0;
497 __free_one_page(page, zone, order);
498 spin_unlock(&zone->lock);
501 static void __free_pages_ok(struct page *page, unsigned int order)
503 unsigned long flags;
504 int i;
505 int reserved = 0;
507 for (i = 0 ; i < (1 << order) ; ++i)
508 reserved += free_pages_check(page + i);
509 if (reserved)
510 return;
512 if (!PageHighMem(page))
513 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
514 arch_free_page(page, order);
515 kernel_map_pages(page, 1 << order, 0);
517 local_irq_save(flags);
518 __count_vm_events(PGFREE, 1 << order);
519 free_one_page(page_zone(page), page, order);
520 local_irq_restore(flags);
524 * permit the bootmem allocator to evade page validation on high-order frees
526 void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order)
528 if (order == 0) {
529 __ClearPageReserved(page);
530 set_page_count(page, 0);
531 set_page_refcounted(page);
532 __free_page(page);
533 } else {
534 int loop;
536 prefetchw(page);
537 for (loop = 0; loop < BITS_PER_LONG; loop++) {
538 struct page *p = &page[loop];
540 if (loop + 1 < BITS_PER_LONG)
541 prefetchw(p + 1);
542 __ClearPageReserved(p);
543 set_page_count(p, 0);
546 set_page_refcounted(page);
547 __free_pages(page, order);
553 * The order of subdivision here is critical for the IO subsystem.
554 * Please do not alter this order without good reasons and regression
555 * testing. Specifically, as large blocks of memory are subdivided,
556 * the order in which smaller blocks are delivered depends on the order
557 * they're subdivided in this function. This is the primary factor
558 * influencing the order in which pages are delivered to the IO
559 * subsystem according to empirical testing, and this is also justified
560 * by considering the behavior of a buddy system containing a single
561 * large block of memory acted on by a series of small allocations.
562 * This behavior is a critical factor in sglist merging's success.
564 * -- wli
566 static inline void expand(struct zone *zone, struct page *page,
567 int low, int high, struct free_area *area)
569 unsigned long size = 1 << high;
571 while (high > low) {
572 area--;
573 high--;
574 size >>= 1;
575 VM_BUG_ON(bad_range(zone, &page[size]));
576 list_add(&page[size].lru, &area->free_list);
577 area->nr_free++;
578 set_page_order(&page[size], high);
583 * This page is about to be returned from the page allocator
585 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
587 if (unlikely(page_mapcount(page) |
588 (page->mapping != NULL) |
589 (page_count(page) != 0) |
590 (page->flags & (
591 1 << PG_lru |
592 1 << PG_private |
593 1 << PG_locked |
594 1 << PG_active |
595 1 << PG_dirty |
596 1 << PG_reclaim |
597 1 << PG_slab |
598 1 << PG_swapcache |
599 1 << PG_writeback |
600 1 << PG_reserved |
601 1 << PG_buddy ))))
602 bad_page(page);
605 * For now, we report if PG_reserved was found set, but do not
606 * clear it, and do not allocate the page: as a safety net.
608 if (PageReserved(page))
609 return 1;
611 page->flags &= ~(1 << PG_uptodate | 1 << PG_error |
612 1 << PG_referenced | 1 << PG_arch_1 |
613 1 << PG_owner_priv_1 | 1 << PG_mappedtodisk);
614 set_page_private(page, 0);
615 set_page_refcounted(page);
617 arch_alloc_page(page, order);
618 kernel_map_pages(page, 1 << order, 1);
620 if (gfp_flags & __GFP_ZERO)
621 prep_zero_page(page, order, gfp_flags);
623 if (order && (gfp_flags & __GFP_COMP))
624 prep_compound_page(page, order);
626 return 0;
630 * Do the hard work of removing an element from the buddy allocator.
631 * Call me with the zone->lock already held.
633 static struct page *__rmqueue(struct zone *zone, unsigned int order)
635 struct free_area * area;
636 unsigned int current_order;
637 struct page *page;
639 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
640 area = zone->free_area + current_order;
641 if (list_empty(&area->free_list))
642 continue;
644 page = list_entry(area->free_list.next, struct page, lru);
645 list_del(&page->lru);
646 rmv_page_order(page);
647 area->nr_free--;
648 __mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order));
649 expand(zone, page, order, current_order, area);
650 return page;
653 return NULL;
657 * Obtain a specified number of elements from the buddy allocator, all under
658 * a single hold of the lock, for efficiency. Add them to the supplied list.
659 * Returns the number of new pages which were placed at *list.
661 static int rmqueue_bulk(struct zone *zone, unsigned int order,
662 unsigned long count, struct list_head *list)
664 int i;
666 spin_lock(&zone->lock);
667 for (i = 0; i < count; ++i) {
668 struct page *page = __rmqueue(zone, order);
669 if (unlikely(page == NULL))
670 break;
671 list_add_tail(&page->lru, list);
673 spin_unlock(&zone->lock);
674 return i;
677 #ifdef CONFIG_NUMA
679 * Called from the vmstat counter updater to drain pagesets of this
680 * currently executing processor on remote nodes after they have
681 * expired.
683 * Note that this function must be called with the thread pinned to
684 * a single processor.
686 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
688 unsigned long flags;
689 int to_drain;
691 local_irq_save(flags);
692 if (pcp->count >= pcp->batch)
693 to_drain = pcp->batch;
694 else
695 to_drain = pcp->count;
696 free_pages_bulk(zone, to_drain, &pcp->list, 0);
697 pcp->count -= to_drain;
698 local_irq_restore(flags);
700 #endif
702 static void __drain_pages(unsigned int cpu)
704 unsigned long flags;
705 struct zone *zone;
706 int i;
708 for_each_zone(zone) {
709 struct per_cpu_pageset *pset;
711 if (!populated_zone(zone))
712 continue;
714 pset = zone_pcp(zone, cpu);
715 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
716 struct per_cpu_pages *pcp;
718 pcp = &pset->pcp[i];
719 local_irq_save(flags);
720 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
721 pcp->count = 0;
722 local_irq_restore(flags);
727 #ifdef CONFIG_PM
729 void mark_free_pages(struct zone *zone)
731 unsigned long pfn, max_zone_pfn;
732 unsigned long flags;
733 int order;
734 struct list_head *curr;
736 if (!zone->spanned_pages)
737 return;
739 spin_lock_irqsave(&zone->lock, flags);
741 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
742 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
743 if (pfn_valid(pfn)) {
744 struct page *page = pfn_to_page(pfn);
746 if (!swsusp_page_is_forbidden(page))
747 swsusp_unset_page_free(page);
750 for (order = MAX_ORDER - 1; order >= 0; --order)
751 list_for_each(curr, &zone->free_area[order].free_list) {
752 unsigned long i;
754 pfn = page_to_pfn(list_entry(curr, struct page, lru));
755 for (i = 0; i < (1UL << order); i++)
756 swsusp_set_page_free(pfn_to_page(pfn + i));
759 spin_unlock_irqrestore(&zone->lock, flags);
763 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
765 void drain_local_pages(void)
767 unsigned long flags;
769 local_irq_save(flags);
770 __drain_pages(smp_processor_id());
771 local_irq_restore(flags);
773 #endif /* CONFIG_PM */
776 * Free a 0-order page
778 static void fastcall free_hot_cold_page(struct page *page, int cold)
780 struct zone *zone = page_zone(page);
781 struct per_cpu_pages *pcp;
782 unsigned long flags;
784 if (PageAnon(page))
785 page->mapping = NULL;
786 if (free_pages_check(page))
787 return;
789 if (!PageHighMem(page))
790 debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
791 arch_free_page(page, 0);
792 kernel_map_pages(page, 1, 0);
794 pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
795 local_irq_save(flags);
796 __count_vm_event(PGFREE);
797 list_add(&page->lru, &pcp->list);
798 pcp->count++;
799 if (pcp->count >= pcp->high) {
800 free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
801 pcp->count -= pcp->batch;
803 local_irq_restore(flags);
804 put_cpu();
807 void fastcall free_hot_page(struct page *page)
809 free_hot_cold_page(page, 0);
812 void fastcall free_cold_page(struct page *page)
814 free_hot_cold_page(page, 1);
818 * split_page takes a non-compound higher-order page, and splits it into
819 * n (1<<order) sub-pages: page[0..n]
820 * Each sub-page must be freed individually.
822 * Note: this is probably too low level an operation for use in drivers.
823 * Please consult with lkml before using this in your driver.
825 void split_page(struct page *page, unsigned int order)
827 int i;
829 VM_BUG_ON(PageCompound(page));
830 VM_BUG_ON(!page_count(page));
831 for (i = 1; i < (1 << order); i++)
832 set_page_refcounted(page + i);
836 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
837 * we cheat by calling it from here, in the order > 0 path. Saves a branch
838 * or two.
840 static struct page *buffered_rmqueue(struct zonelist *zonelist,
841 struct zone *zone, int order, gfp_t gfp_flags)
843 unsigned long flags;
844 struct page *page;
845 int cold = !!(gfp_flags & __GFP_COLD);
846 int cpu;
848 again:
849 cpu = get_cpu();
850 if (likely(order == 0)) {
851 struct per_cpu_pages *pcp;
853 pcp = &zone_pcp(zone, cpu)->pcp[cold];
854 local_irq_save(flags);
855 if (!pcp->count) {
856 pcp->count = rmqueue_bulk(zone, 0,
857 pcp->batch, &pcp->list);
858 if (unlikely(!pcp->count))
859 goto failed;
861 page = list_entry(pcp->list.next, struct page, lru);
862 list_del(&page->lru);
863 pcp->count--;
864 } else {
865 spin_lock_irqsave(&zone->lock, flags);
866 page = __rmqueue(zone, order);
867 spin_unlock(&zone->lock);
868 if (!page)
869 goto failed;
872 __count_zone_vm_events(PGALLOC, zone, 1 << order);
873 zone_statistics(zonelist, zone);
874 local_irq_restore(flags);
875 put_cpu();
877 VM_BUG_ON(bad_range(zone, page));
878 if (prep_new_page(page, order, gfp_flags))
879 goto again;
880 return page;
882 failed:
883 local_irq_restore(flags);
884 put_cpu();
885 return NULL;
888 #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
889 #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
890 #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
891 #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
892 #define ALLOC_HARDER 0x10 /* try to alloc harder */
893 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
894 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
896 #ifdef CONFIG_FAIL_PAGE_ALLOC
898 static struct fail_page_alloc_attr {
899 struct fault_attr attr;
901 u32 ignore_gfp_highmem;
902 u32 ignore_gfp_wait;
903 u32 min_order;
905 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
907 struct dentry *ignore_gfp_highmem_file;
908 struct dentry *ignore_gfp_wait_file;
909 struct dentry *min_order_file;
911 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
913 } fail_page_alloc = {
914 .attr = FAULT_ATTR_INITIALIZER,
915 .ignore_gfp_wait = 1,
916 .ignore_gfp_highmem = 1,
917 .min_order = 1,
920 static int __init setup_fail_page_alloc(char *str)
922 return setup_fault_attr(&fail_page_alloc.attr, str);
924 __setup("fail_page_alloc=", setup_fail_page_alloc);
926 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
928 if (order < fail_page_alloc.min_order)
929 return 0;
930 if (gfp_mask & __GFP_NOFAIL)
931 return 0;
932 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
933 return 0;
934 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
935 return 0;
937 return should_fail(&fail_page_alloc.attr, 1 << order);
940 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
942 static int __init fail_page_alloc_debugfs(void)
944 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
945 struct dentry *dir;
946 int err;
948 err = init_fault_attr_dentries(&fail_page_alloc.attr,
949 "fail_page_alloc");
950 if (err)
951 return err;
952 dir = fail_page_alloc.attr.dentries.dir;
954 fail_page_alloc.ignore_gfp_wait_file =
955 debugfs_create_bool("ignore-gfp-wait", mode, dir,
956 &fail_page_alloc.ignore_gfp_wait);
958 fail_page_alloc.ignore_gfp_highmem_file =
959 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
960 &fail_page_alloc.ignore_gfp_highmem);
961 fail_page_alloc.min_order_file =
962 debugfs_create_u32("min-order", mode, dir,
963 &fail_page_alloc.min_order);
965 if (!fail_page_alloc.ignore_gfp_wait_file ||
966 !fail_page_alloc.ignore_gfp_highmem_file ||
967 !fail_page_alloc.min_order_file) {
968 err = -ENOMEM;
969 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
970 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
971 debugfs_remove(fail_page_alloc.min_order_file);
972 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
975 return err;
978 late_initcall(fail_page_alloc_debugfs);
980 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
982 #else /* CONFIG_FAIL_PAGE_ALLOC */
984 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
986 return 0;
989 #endif /* CONFIG_FAIL_PAGE_ALLOC */
992 * Return 1 if free pages are above 'mark'. This takes into account the order
993 * of the allocation.
995 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
996 int classzone_idx, int alloc_flags)
998 /* free_pages my go negative - that's OK */
999 long min = mark;
1000 long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1001 int o;
1003 if (alloc_flags & ALLOC_HIGH)
1004 min -= min / 2;
1005 if (alloc_flags & ALLOC_HARDER)
1006 min -= min / 4;
1008 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1009 return 0;
1010 for (o = 0; o < order; o++) {
1011 /* At the next order, this order's pages become unavailable */
1012 free_pages -= z->free_area[o].nr_free << o;
1014 /* Require fewer higher order pages to be free */
1015 min >>= 1;
1017 if (free_pages <= min)
1018 return 0;
1020 return 1;
1023 #ifdef CONFIG_NUMA
1025 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1026 * skip over zones that are not allowed by the cpuset, or that have
1027 * been recently (in last second) found to be nearly full. See further
1028 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1029 * that have to skip over alot of full or unallowed zones.
1031 * If the zonelist cache is present in the passed in zonelist, then
1032 * returns a pointer to the allowed node mask (either the current
1033 * tasks mems_allowed, or node_online_map.)
1035 * If the zonelist cache is not available for this zonelist, does
1036 * nothing and returns NULL.
1038 * If the fullzones BITMAP in the zonelist cache is stale (more than
1039 * a second since last zap'd) then we zap it out (clear its bits.)
1041 * We hold off even calling zlc_setup, until after we've checked the
1042 * first zone in the zonelist, on the theory that most allocations will
1043 * be satisfied from that first zone, so best to examine that zone as
1044 * quickly as we can.
1046 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1048 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1049 nodemask_t *allowednodes; /* zonelist_cache approximation */
1051 zlc = zonelist->zlcache_ptr;
1052 if (!zlc)
1053 return NULL;
1055 if (jiffies - zlc->last_full_zap > 1 * HZ) {
1056 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1057 zlc->last_full_zap = jiffies;
1060 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1061 &cpuset_current_mems_allowed :
1062 &node_online_map;
1063 return allowednodes;
1067 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1068 * if it is worth looking at further for free memory:
1069 * 1) Check that the zone isn't thought to be full (doesn't have its
1070 * bit set in the zonelist_cache fullzones BITMAP).
1071 * 2) Check that the zones node (obtained from the zonelist_cache
1072 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1073 * Return true (non-zero) if zone is worth looking at further, or
1074 * else return false (zero) if it is not.
1076 * This check -ignores- the distinction between various watermarks,
1077 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1078 * found to be full for any variation of these watermarks, it will
1079 * be considered full for up to one second by all requests, unless
1080 * we are so low on memory on all allowed nodes that we are forced
1081 * into the second scan of the zonelist.
1083 * In the second scan we ignore this zonelist cache and exactly
1084 * apply the watermarks to all zones, even it is slower to do so.
1085 * We are low on memory in the second scan, and should leave no stone
1086 * unturned looking for a free page.
1088 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
1089 nodemask_t *allowednodes)
1091 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1092 int i; /* index of *z in zonelist zones */
1093 int n; /* node that zone *z is on */
1095 zlc = zonelist->zlcache_ptr;
1096 if (!zlc)
1097 return 1;
1099 i = z - zonelist->zones;
1100 n = zlc->z_to_n[i];
1102 /* This zone is worth trying if it is allowed but not full */
1103 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1107 * Given 'z' scanning a zonelist, set the corresponding bit in
1108 * zlc->fullzones, so that subsequent attempts to allocate a page
1109 * from that zone don't waste time re-examining it.
1111 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
1113 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1114 int i; /* index of *z in zonelist zones */
1116 zlc = zonelist->zlcache_ptr;
1117 if (!zlc)
1118 return;
1120 i = z - zonelist->zones;
1122 set_bit(i, zlc->fullzones);
1125 #else /* CONFIG_NUMA */
1127 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1129 return NULL;
1132 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
1133 nodemask_t *allowednodes)
1135 return 1;
1138 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
1141 #endif /* CONFIG_NUMA */
1144 * get_page_from_freelist goes through the zonelist trying to allocate
1145 * a page.
1147 static struct page *
1148 get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
1149 struct zonelist *zonelist, int alloc_flags)
1151 struct zone **z;
1152 struct page *page = NULL;
1153 int classzone_idx = zone_idx(zonelist->zones[0]);
1154 struct zone *zone;
1155 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1156 int zlc_active = 0; /* set if using zonelist_cache */
1157 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1159 zonelist_scan:
1161 * Scan zonelist, looking for a zone with enough free.
1162 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1164 z = zonelist->zones;
1166 do {
1167 if (NUMA_BUILD && zlc_active &&
1168 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1169 continue;
1170 zone = *z;
1171 if (unlikely(NUMA_BUILD && (gfp_mask & __GFP_THISNODE) &&
1172 zone->zone_pgdat != zonelist->zones[0]->zone_pgdat))
1173 break;
1174 if ((alloc_flags & ALLOC_CPUSET) &&
1175 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1176 goto try_next_zone;
1178 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1179 unsigned long mark;
1180 if (alloc_flags & ALLOC_WMARK_MIN)
1181 mark = zone->pages_min;
1182 else if (alloc_flags & ALLOC_WMARK_LOW)
1183 mark = zone->pages_low;
1184 else
1185 mark = zone->pages_high;
1186 if (!zone_watermark_ok(zone, order, mark,
1187 classzone_idx, alloc_flags)) {
1188 if (!zone_reclaim_mode ||
1189 !zone_reclaim(zone, gfp_mask, order))
1190 goto this_zone_full;
1194 page = buffered_rmqueue(zonelist, zone, order, gfp_mask);
1195 if (page)
1196 break;
1197 this_zone_full:
1198 if (NUMA_BUILD)
1199 zlc_mark_zone_full(zonelist, z);
1200 try_next_zone:
1201 if (NUMA_BUILD && !did_zlc_setup) {
1202 /* we do zlc_setup after the first zone is tried */
1203 allowednodes = zlc_setup(zonelist, alloc_flags);
1204 zlc_active = 1;
1205 did_zlc_setup = 1;
1207 } while (*(++z) != NULL);
1209 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1210 /* Disable zlc cache for second zonelist scan */
1211 zlc_active = 0;
1212 goto zonelist_scan;
1214 return page;
1218 * This is the 'heart' of the zoned buddy allocator.
1220 struct page * fastcall
1221 __alloc_pages(gfp_t gfp_mask, unsigned int order,
1222 struct zonelist *zonelist)
1224 const gfp_t wait = gfp_mask & __GFP_WAIT;
1225 struct zone **z;
1226 struct page *page;
1227 struct reclaim_state reclaim_state;
1228 struct task_struct *p = current;
1229 int do_retry;
1230 int alloc_flags;
1231 int did_some_progress;
1233 might_sleep_if(wait);
1235 if (should_fail_alloc_page(gfp_mask, order))
1236 return NULL;
1238 restart:
1239 z = zonelist->zones; /* the list of zones suitable for gfp_mask */
1241 if (unlikely(*z == NULL)) {
1242 /* Should this ever happen?? */
1243 return NULL;
1246 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
1247 zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
1248 if (page)
1249 goto got_pg;
1252 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1253 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1254 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1255 * using a larger set of nodes after it has established that the
1256 * allowed per node queues are empty and that nodes are
1257 * over allocated.
1259 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1260 goto nopage;
1262 for (z = zonelist->zones; *z; z++)
1263 wakeup_kswapd(*z, order);
1266 * OK, we're below the kswapd watermark and have kicked background
1267 * reclaim. Now things get more complex, so set up alloc_flags according
1268 * to how we want to proceed.
1270 * The caller may dip into page reserves a bit more if the caller
1271 * cannot run direct reclaim, or if the caller has realtime scheduling
1272 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1273 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1275 alloc_flags = ALLOC_WMARK_MIN;
1276 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
1277 alloc_flags |= ALLOC_HARDER;
1278 if (gfp_mask & __GFP_HIGH)
1279 alloc_flags |= ALLOC_HIGH;
1280 if (wait)
1281 alloc_flags |= ALLOC_CPUSET;
1284 * Go through the zonelist again. Let __GFP_HIGH and allocations
1285 * coming from realtime tasks go deeper into reserves.
1287 * This is the last chance, in general, before the goto nopage.
1288 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1289 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1291 page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
1292 if (page)
1293 goto got_pg;
1295 /* This allocation should allow future memory freeing. */
1297 rebalance:
1298 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
1299 && !in_interrupt()) {
1300 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
1301 nofail_alloc:
1302 /* go through the zonelist yet again, ignoring mins */
1303 page = get_page_from_freelist(gfp_mask, order,
1304 zonelist, ALLOC_NO_WATERMARKS);
1305 if (page)
1306 goto got_pg;
1307 if (gfp_mask & __GFP_NOFAIL) {
1308 congestion_wait(WRITE, HZ/50);
1309 goto nofail_alloc;
1312 goto nopage;
1315 /* Atomic allocations - we can't balance anything */
1316 if (!wait)
1317 goto nopage;
1319 cond_resched();
1321 /* We now go into synchronous reclaim */
1322 cpuset_memory_pressure_bump();
1323 p->flags |= PF_MEMALLOC;
1324 reclaim_state.reclaimed_slab = 0;
1325 p->reclaim_state = &reclaim_state;
1327 did_some_progress = try_to_free_pages(zonelist->zones, gfp_mask);
1329 p->reclaim_state = NULL;
1330 p->flags &= ~PF_MEMALLOC;
1332 cond_resched();
1334 if (likely(did_some_progress)) {
1335 page = get_page_from_freelist(gfp_mask, order,
1336 zonelist, alloc_flags);
1337 if (page)
1338 goto got_pg;
1339 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1341 * Go through the zonelist yet one more time, keep
1342 * very high watermark here, this is only to catch
1343 * a parallel oom killing, we must fail if we're still
1344 * under heavy pressure.
1346 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
1347 zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
1348 if (page)
1349 goto got_pg;
1351 out_of_memory(zonelist, gfp_mask, order);
1352 goto restart;
1356 * Don't let big-order allocations loop unless the caller explicitly
1357 * requests that. Wait for some write requests to complete then retry.
1359 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
1360 * <= 3, but that may not be true in other implementations.
1362 do_retry = 0;
1363 if (!(gfp_mask & __GFP_NORETRY)) {
1364 if ((order <= 3) || (gfp_mask & __GFP_REPEAT))
1365 do_retry = 1;
1366 if (gfp_mask & __GFP_NOFAIL)
1367 do_retry = 1;
1369 if (do_retry) {
1370 congestion_wait(WRITE, HZ/50);
1371 goto rebalance;
1374 nopage:
1375 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1376 printk(KERN_WARNING "%s: page allocation failure."
1377 " order:%d, mode:0x%x\n",
1378 p->comm, order, gfp_mask);
1379 dump_stack();
1380 show_mem();
1382 got_pg:
1383 return page;
1386 EXPORT_SYMBOL(__alloc_pages);
1389 * Common helper functions.
1391 fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1393 struct page * page;
1394 page = alloc_pages(gfp_mask, order);
1395 if (!page)
1396 return 0;
1397 return (unsigned long) page_address(page);
1400 EXPORT_SYMBOL(__get_free_pages);
1402 fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
1404 struct page * page;
1407 * get_zeroed_page() returns a 32-bit address, which cannot represent
1408 * a highmem page
1410 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1412 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1413 if (page)
1414 return (unsigned long) page_address(page);
1415 return 0;
1418 EXPORT_SYMBOL(get_zeroed_page);
1420 void __pagevec_free(struct pagevec *pvec)
1422 int i = pagevec_count(pvec);
1424 while (--i >= 0)
1425 free_hot_cold_page(pvec->pages[i], pvec->cold);
1428 fastcall void __free_pages(struct page *page, unsigned int order)
1430 if (put_page_testzero(page)) {
1431 if (order == 0)
1432 free_hot_page(page);
1433 else
1434 __free_pages_ok(page, order);
1438 EXPORT_SYMBOL(__free_pages);
1440 fastcall void free_pages(unsigned long addr, unsigned int order)
1442 if (addr != 0) {
1443 VM_BUG_ON(!virt_addr_valid((void *)addr));
1444 __free_pages(virt_to_page((void *)addr), order);
1448 EXPORT_SYMBOL(free_pages);
1450 static unsigned int nr_free_zone_pages(int offset)
1452 /* Just pick one node, since fallback list is circular */
1453 pg_data_t *pgdat = NODE_DATA(numa_node_id());
1454 unsigned int sum = 0;
1456 struct zonelist *zonelist = pgdat->node_zonelists + offset;
1457 struct zone **zonep = zonelist->zones;
1458 struct zone *zone;
1460 for (zone = *zonep++; zone; zone = *zonep++) {
1461 unsigned long size = zone->present_pages;
1462 unsigned long high = zone->pages_high;
1463 if (size > high)
1464 sum += size - high;
1467 return sum;
1471 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1473 unsigned int nr_free_buffer_pages(void)
1475 return nr_free_zone_pages(gfp_zone(GFP_USER));
1479 * Amount of free RAM allocatable within all zones
1481 unsigned int nr_free_pagecache_pages(void)
1483 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER));
1486 static inline void show_node(struct zone *zone)
1488 if (NUMA_BUILD)
1489 printk("Node %d ", zone_to_nid(zone));
1492 void si_meminfo(struct sysinfo *val)
1494 val->totalram = totalram_pages;
1495 val->sharedram = 0;
1496 val->freeram = global_page_state(NR_FREE_PAGES);
1497 val->bufferram = nr_blockdev_pages();
1498 val->totalhigh = totalhigh_pages;
1499 val->freehigh = nr_free_highpages();
1500 val->mem_unit = PAGE_SIZE;
1503 EXPORT_SYMBOL(si_meminfo);
1505 #ifdef CONFIG_NUMA
1506 void si_meminfo_node(struct sysinfo *val, int nid)
1508 pg_data_t *pgdat = NODE_DATA(nid);
1510 val->totalram = pgdat->node_present_pages;
1511 val->freeram = node_page_state(nid, NR_FREE_PAGES);
1512 #ifdef CONFIG_HIGHMEM
1513 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1514 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
1515 NR_FREE_PAGES);
1516 #else
1517 val->totalhigh = 0;
1518 val->freehigh = 0;
1519 #endif
1520 val->mem_unit = PAGE_SIZE;
1522 #endif
1524 #define K(x) ((x) << (PAGE_SHIFT-10))
1527 * Show free area list (used inside shift_scroll-lock stuff)
1528 * We also calculate the percentage fragmentation. We do this by counting the
1529 * memory on each free list with the exception of the first item on the list.
1531 void show_free_areas(void)
1533 int cpu;
1534 struct zone *zone;
1536 for_each_zone(zone) {
1537 if (!populated_zone(zone))
1538 continue;
1540 show_node(zone);
1541 printk("%s per-cpu:\n", zone->name);
1543 for_each_online_cpu(cpu) {
1544 struct per_cpu_pageset *pageset;
1546 pageset = zone_pcp(zone, cpu);
1548 printk("CPU %4d: Hot: hi:%5d, btch:%4d usd:%4d "
1549 "Cold: hi:%5d, btch:%4d usd:%4d\n",
1550 cpu, pageset->pcp[0].high,
1551 pageset->pcp[0].batch, pageset->pcp[0].count,
1552 pageset->pcp[1].high, pageset->pcp[1].batch,
1553 pageset->pcp[1].count);
1557 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu unstable:%lu\n"
1558 " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
1559 global_page_state(NR_ACTIVE),
1560 global_page_state(NR_INACTIVE),
1561 global_page_state(NR_FILE_DIRTY),
1562 global_page_state(NR_WRITEBACK),
1563 global_page_state(NR_UNSTABLE_NFS),
1564 global_page_state(NR_FREE_PAGES),
1565 global_page_state(NR_SLAB_RECLAIMABLE) +
1566 global_page_state(NR_SLAB_UNRECLAIMABLE),
1567 global_page_state(NR_FILE_MAPPED),
1568 global_page_state(NR_PAGETABLE),
1569 global_page_state(NR_BOUNCE));
1571 for_each_zone(zone) {
1572 int i;
1574 if (!populated_zone(zone))
1575 continue;
1577 show_node(zone);
1578 printk("%s"
1579 " free:%lukB"
1580 " min:%lukB"
1581 " low:%lukB"
1582 " high:%lukB"
1583 " active:%lukB"
1584 " inactive:%lukB"
1585 " present:%lukB"
1586 " pages_scanned:%lu"
1587 " all_unreclaimable? %s"
1588 "\n",
1589 zone->name,
1590 K(zone_page_state(zone, NR_FREE_PAGES)),
1591 K(zone->pages_min),
1592 K(zone->pages_low),
1593 K(zone->pages_high),
1594 K(zone_page_state(zone, NR_ACTIVE)),
1595 K(zone_page_state(zone, NR_INACTIVE)),
1596 K(zone->present_pages),
1597 zone->pages_scanned,
1598 (zone->all_unreclaimable ? "yes" : "no")
1600 printk("lowmem_reserve[]:");
1601 for (i = 0; i < MAX_NR_ZONES; i++)
1602 printk(" %lu", zone->lowmem_reserve[i]);
1603 printk("\n");
1606 for_each_zone(zone) {
1607 unsigned long nr[MAX_ORDER], flags, order, total = 0;
1609 if (!populated_zone(zone))
1610 continue;
1612 show_node(zone);
1613 printk("%s: ", zone->name);
1615 spin_lock_irqsave(&zone->lock, flags);
1616 for (order = 0; order < MAX_ORDER; order++) {
1617 nr[order] = zone->free_area[order].nr_free;
1618 total += nr[order] << order;
1620 spin_unlock_irqrestore(&zone->lock, flags);
1621 for (order = 0; order < MAX_ORDER; order++)
1622 printk("%lu*%lukB ", nr[order], K(1UL) << order);
1623 printk("= %lukB\n", K(total));
1626 show_swap_cache_info();
1630 * Builds allocation fallback zone lists.
1632 * Add all populated zones of a node to the zonelist.
1634 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
1635 int nr_zones, enum zone_type zone_type)
1637 struct zone *zone;
1639 BUG_ON(zone_type >= MAX_NR_ZONES);
1640 zone_type++;
1642 do {
1643 zone_type--;
1644 zone = pgdat->node_zones + zone_type;
1645 if (populated_zone(zone)) {
1646 zonelist->zones[nr_zones++] = zone;
1647 check_highest_zone(zone_type);
1650 } while (zone_type);
1651 return nr_zones;
1656 * zonelist_order:
1657 * 0 = automatic detection of better ordering.
1658 * 1 = order by ([node] distance, -zonetype)
1659 * 2 = order by (-zonetype, [node] distance)
1661 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
1662 * the same zonelist. So only NUMA can configure this param.
1664 #define ZONELIST_ORDER_DEFAULT 0
1665 #define ZONELIST_ORDER_NODE 1
1666 #define ZONELIST_ORDER_ZONE 2
1668 /* zonelist order in the kernel.
1669 * set_zonelist_order() will set this to NODE or ZONE.
1671 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
1672 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
1675 #ifdef CONFIG_NUMA
1676 /* The value user specified ....changed by config */
1677 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
1678 /* string for sysctl */
1679 #define NUMA_ZONELIST_ORDER_LEN 16
1680 char numa_zonelist_order[16] = "default";
1683 * interface for configure zonelist ordering.
1684 * command line option "numa_zonelist_order"
1685 * = "[dD]efault - default, automatic configuration.
1686 * = "[nN]ode - order by node locality, then by zone within node
1687 * = "[zZ]one - order by zone, then by locality within zone
1690 static int __parse_numa_zonelist_order(char *s)
1692 if (*s == 'd' || *s == 'D') {
1693 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
1694 } else if (*s == 'n' || *s == 'N') {
1695 user_zonelist_order = ZONELIST_ORDER_NODE;
1696 } else if (*s == 'z' || *s == 'Z') {
1697 user_zonelist_order = ZONELIST_ORDER_ZONE;
1698 } else {
1699 printk(KERN_WARNING
1700 "Ignoring invalid numa_zonelist_order value: "
1701 "%s\n", s);
1702 return -EINVAL;
1704 return 0;
1707 static __init int setup_numa_zonelist_order(char *s)
1709 if (s)
1710 return __parse_numa_zonelist_order(s);
1711 return 0;
1713 early_param("numa_zonelist_order", setup_numa_zonelist_order);
1716 * sysctl handler for numa_zonelist_order
1718 int numa_zonelist_order_handler(ctl_table *table, int write,
1719 struct file *file, void __user *buffer, size_t *length,
1720 loff_t *ppos)
1722 char saved_string[NUMA_ZONELIST_ORDER_LEN];
1723 int ret;
1725 if (write)
1726 strncpy(saved_string, (char*)table->data,
1727 NUMA_ZONELIST_ORDER_LEN);
1728 ret = proc_dostring(table, write, file, buffer, length, ppos);
1729 if (ret)
1730 return ret;
1731 if (write) {
1732 int oldval = user_zonelist_order;
1733 if (__parse_numa_zonelist_order((char*)table->data)) {
1735 * bogus value. restore saved string
1737 strncpy((char*)table->data, saved_string,
1738 NUMA_ZONELIST_ORDER_LEN);
1739 user_zonelist_order = oldval;
1740 } else if (oldval != user_zonelist_order)
1741 build_all_zonelists();
1743 return 0;
1747 #define MAX_NODE_LOAD (num_online_nodes())
1748 static int node_load[MAX_NUMNODES];
1751 * find_next_best_node - find the next node that should appear in a given node's fallback list
1752 * @node: node whose fallback list we're appending
1753 * @used_node_mask: nodemask_t of already used nodes
1755 * We use a number of factors to determine which is the next node that should
1756 * appear on a given node's fallback list. The node should not have appeared
1757 * already in @node's fallback list, and it should be the next closest node
1758 * according to the distance array (which contains arbitrary distance values
1759 * from each node to each node in the system), and should also prefer nodes
1760 * with no CPUs, since presumably they'll have very little allocation pressure
1761 * on them otherwise.
1762 * It returns -1 if no node is found.
1764 static int find_next_best_node(int node, nodemask_t *used_node_mask)
1766 int n, val;
1767 int min_val = INT_MAX;
1768 int best_node = -1;
1770 /* Use the local node if we haven't already */
1771 if (!node_isset(node, *used_node_mask)) {
1772 node_set(node, *used_node_mask);
1773 return node;
1776 for_each_online_node(n) {
1777 cpumask_t tmp;
1779 /* Don't want a node to appear more than once */
1780 if (node_isset(n, *used_node_mask))
1781 continue;
1783 /* Use the distance array to find the distance */
1784 val = node_distance(node, n);
1786 /* Penalize nodes under us ("prefer the next node") */
1787 val += (n < node);
1789 /* Give preference to headless and unused nodes */
1790 tmp = node_to_cpumask(n);
1791 if (!cpus_empty(tmp))
1792 val += PENALTY_FOR_NODE_WITH_CPUS;
1794 /* Slight preference for less loaded node */
1795 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
1796 val += node_load[n];
1798 if (val < min_val) {
1799 min_val = val;
1800 best_node = n;
1804 if (best_node >= 0)
1805 node_set(best_node, *used_node_mask);
1807 return best_node;
1812 * Build zonelists ordered by node and zones within node.
1813 * This results in maximum locality--normal zone overflows into local
1814 * DMA zone, if any--but risks exhausting DMA zone.
1816 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1818 enum zone_type i;
1819 int j;
1820 struct zonelist *zonelist;
1822 for (i = 0; i < MAX_NR_ZONES; i++) {
1823 zonelist = pgdat->node_zonelists + i;
1824 for (j = 0; zonelist->zones[j] != NULL; j++)
1826 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
1827 zonelist->zones[j] = NULL;
1832 * Build zonelists ordered by zone and nodes within zones.
1833 * This results in conserving DMA zone[s] until all Normal memory is
1834 * exhausted, but results in overflowing to remote node while memory
1835 * may still exist in local DMA zone.
1837 static int node_order[MAX_NUMNODES];
1839 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
1841 enum zone_type i;
1842 int pos, j, node;
1843 int zone_type; /* needs to be signed */
1844 struct zone *z;
1845 struct zonelist *zonelist;
1847 for (i = 0; i < MAX_NR_ZONES; i++) {
1848 zonelist = pgdat->node_zonelists + i;
1849 pos = 0;
1850 for (zone_type = i; zone_type >= 0; zone_type--) {
1851 for (j = 0; j < nr_nodes; j++) {
1852 node = node_order[j];
1853 z = &NODE_DATA(node)->node_zones[zone_type];
1854 if (populated_zone(z)) {
1855 zonelist->zones[pos++] = z;
1856 check_highest_zone(zone_type);
1860 zonelist->zones[pos] = NULL;
1864 static int default_zonelist_order(void)
1866 int nid, zone_type;
1867 unsigned long low_kmem_size,total_size;
1868 struct zone *z;
1869 int average_size;
1871 * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
1872 * If they are really small and used heavily, the system can fall
1873 * into OOM very easily.
1874 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
1876 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
1877 low_kmem_size = 0;
1878 total_size = 0;
1879 for_each_online_node(nid) {
1880 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
1881 z = &NODE_DATA(nid)->node_zones[zone_type];
1882 if (populated_zone(z)) {
1883 if (zone_type < ZONE_NORMAL)
1884 low_kmem_size += z->present_pages;
1885 total_size += z->present_pages;
1889 if (!low_kmem_size || /* there are no DMA area. */
1890 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
1891 return ZONELIST_ORDER_NODE;
1893 * look into each node's config.
1894 * If there is a node whose DMA/DMA32 memory is very big area on
1895 * local memory, NODE_ORDER may be suitable.
1897 average_size = total_size / (num_online_nodes() + 1);
1898 for_each_online_node(nid) {
1899 low_kmem_size = 0;
1900 total_size = 0;
1901 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
1902 z = &NODE_DATA(nid)->node_zones[zone_type];
1903 if (populated_zone(z)) {
1904 if (zone_type < ZONE_NORMAL)
1905 low_kmem_size += z->present_pages;
1906 total_size += z->present_pages;
1909 if (low_kmem_size &&
1910 total_size > average_size && /* ignore small node */
1911 low_kmem_size > total_size * 70/100)
1912 return ZONELIST_ORDER_NODE;
1914 return ZONELIST_ORDER_ZONE;
1917 static void set_zonelist_order(void)
1919 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
1920 current_zonelist_order = default_zonelist_order();
1921 else
1922 current_zonelist_order = user_zonelist_order;
1925 static void build_zonelists(pg_data_t *pgdat)
1927 int j, node, load;
1928 enum zone_type i;
1929 nodemask_t used_mask;
1930 int local_node, prev_node;
1931 struct zonelist *zonelist;
1932 int order = current_zonelist_order;
1934 /* initialize zonelists */
1935 for (i = 0; i < MAX_NR_ZONES; i++) {
1936 zonelist = pgdat->node_zonelists + i;
1937 zonelist->zones[0] = NULL;
1940 /* NUMA-aware ordering of nodes */
1941 local_node = pgdat->node_id;
1942 load = num_online_nodes();
1943 prev_node = local_node;
1944 nodes_clear(used_mask);
1946 memset(node_load, 0, sizeof(node_load));
1947 memset(node_order, 0, sizeof(node_order));
1948 j = 0;
1950 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
1951 int distance = node_distance(local_node, node);
1954 * If another node is sufficiently far away then it is better
1955 * to reclaim pages in a zone before going off node.
1957 if (distance > RECLAIM_DISTANCE)
1958 zone_reclaim_mode = 1;
1961 * We don't want to pressure a particular node.
1962 * So adding penalty to the first node in same
1963 * distance group to make it round-robin.
1965 if (distance != node_distance(local_node, prev_node))
1966 node_load[node] = load;
1968 prev_node = node;
1969 load--;
1970 if (order == ZONELIST_ORDER_NODE)
1971 build_zonelists_in_node_order(pgdat, node);
1972 else
1973 node_order[j++] = node; /* remember order */
1976 if (order == ZONELIST_ORDER_ZONE) {
1977 /* calculate node order -- i.e., DMA last! */
1978 build_zonelists_in_zone_order(pgdat, j);
1982 /* Construct the zonelist performance cache - see further mmzone.h */
1983 static void build_zonelist_cache(pg_data_t *pgdat)
1985 int i;
1987 for (i = 0; i < MAX_NR_ZONES; i++) {
1988 struct zonelist *zonelist;
1989 struct zonelist_cache *zlc;
1990 struct zone **z;
1992 zonelist = pgdat->node_zonelists + i;
1993 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
1994 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1995 for (z = zonelist->zones; *z; z++)
1996 zlc->z_to_n[z - zonelist->zones] = zone_to_nid(*z);
2001 #else /* CONFIG_NUMA */
2003 static void set_zonelist_order(void)
2005 current_zonelist_order = ZONELIST_ORDER_ZONE;
2008 static void build_zonelists(pg_data_t *pgdat)
2010 int node, local_node;
2011 enum zone_type i,j;
2013 local_node = pgdat->node_id;
2014 for (i = 0; i < MAX_NR_ZONES; i++) {
2015 struct zonelist *zonelist;
2017 zonelist = pgdat->node_zonelists + i;
2019 j = build_zonelists_node(pgdat, zonelist, 0, i);
2021 * Now we build the zonelist so that it contains the zones
2022 * of all the other nodes.
2023 * We don't want to pressure a particular node, so when
2024 * building the zones for node N, we make sure that the
2025 * zones coming right after the local ones are those from
2026 * node N+1 (modulo N)
2028 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2029 if (!node_online(node))
2030 continue;
2031 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
2033 for (node = 0; node < local_node; node++) {
2034 if (!node_online(node))
2035 continue;
2036 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
2039 zonelist->zones[j] = NULL;
2043 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2044 static void build_zonelist_cache(pg_data_t *pgdat)
2046 int i;
2048 for (i = 0; i < MAX_NR_ZONES; i++)
2049 pgdat->node_zonelists[i].zlcache_ptr = NULL;
2052 #endif /* CONFIG_NUMA */
2054 /* return values int ....just for stop_machine_run() */
2055 static int __build_all_zonelists(void *dummy)
2057 int nid;
2059 for_each_online_node(nid) {
2060 build_zonelists(NODE_DATA(nid));
2061 build_zonelist_cache(NODE_DATA(nid));
2063 return 0;
2066 void build_all_zonelists(void)
2068 set_zonelist_order();
2070 if (system_state == SYSTEM_BOOTING) {
2071 __build_all_zonelists(NULL);
2072 cpuset_init_current_mems_allowed();
2073 } else {
2074 /* we have to stop all cpus to guaranntee there is no user
2075 of zonelist */
2076 stop_machine_run(__build_all_zonelists, NULL, NR_CPUS);
2077 /* cpuset refresh routine should be here */
2079 vm_total_pages = nr_free_pagecache_pages();
2080 printk("Built %i zonelists in %s order. Total pages: %ld\n",
2081 num_online_nodes(),
2082 zonelist_order_name[current_zonelist_order],
2083 vm_total_pages);
2084 #ifdef CONFIG_NUMA
2085 printk("Policy zone: %s\n", zone_names[policy_zone]);
2086 #endif
2090 * Helper functions to size the waitqueue hash table.
2091 * Essentially these want to choose hash table sizes sufficiently
2092 * large so that collisions trying to wait on pages are rare.
2093 * But in fact, the number of active page waitqueues on typical
2094 * systems is ridiculously low, less than 200. So this is even
2095 * conservative, even though it seems large.
2097 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2098 * waitqueues, i.e. the size of the waitq table given the number of pages.
2100 #define PAGES_PER_WAITQUEUE 256
2102 #ifndef CONFIG_MEMORY_HOTPLUG
2103 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2105 unsigned long size = 1;
2107 pages /= PAGES_PER_WAITQUEUE;
2109 while (size < pages)
2110 size <<= 1;
2113 * Once we have dozens or even hundreds of threads sleeping
2114 * on IO we've got bigger problems than wait queue collision.
2115 * Limit the size of the wait table to a reasonable size.
2117 size = min(size, 4096UL);
2119 return max(size, 4UL);
2121 #else
2123 * A zone's size might be changed by hot-add, so it is not possible to determine
2124 * a suitable size for its wait_table. So we use the maximum size now.
2126 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
2128 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
2129 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2130 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
2132 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2133 * or more by the traditional way. (See above). It equals:
2135 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
2136 * ia64(16K page size) : = ( 8G + 4M)byte.
2137 * powerpc (64K page size) : = (32G +16M)byte.
2139 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2141 return 4096UL;
2143 #endif
2146 * This is an integer logarithm so that shifts can be used later
2147 * to extract the more random high bits from the multiplicative
2148 * hash function before the remainder is taken.
2150 static inline unsigned long wait_table_bits(unsigned long size)
2152 return ffz(~size);
2155 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2158 * Initially all pages are reserved - free ones are freed
2159 * up by free_all_bootmem() once the early boot process is
2160 * done. Non-atomic initialization, single-pass.
2162 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
2163 unsigned long start_pfn, enum memmap_context context)
2165 struct page *page;
2166 unsigned long end_pfn = start_pfn + size;
2167 unsigned long pfn;
2169 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
2171 * There can be holes in boot-time mem_map[]s
2172 * handed to this function. They do not
2173 * exist on hotplugged memory.
2175 if (context == MEMMAP_EARLY) {
2176 if (!early_pfn_valid(pfn))
2177 continue;
2178 if (!early_pfn_in_nid(pfn, nid))
2179 continue;
2181 page = pfn_to_page(pfn);
2182 set_page_links(page, zone, nid, pfn);
2183 init_page_count(page);
2184 reset_page_mapcount(page);
2185 SetPageReserved(page);
2186 INIT_LIST_HEAD(&page->lru);
2187 #ifdef WANT_PAGE_VIRTUAL
2188 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
2189 if (!is_highmem_idx(zone))
2190 set_page_address(page, __va(pfn << PAGE_SHIFT));
2191 #endif
2195 static void __meminit zone_init_free_lists(struct pglist_data *pgdat,
2196 struct zone *zone, unsigned long size)
2198 int order;
2199 for (order = 0; order < MAX_ORDER ; order++) {
2200 INIT_LIST_HEAD(&zone->free_area[order].free_list);
2201 zone->free_area[order].nr_free = 0;
2205 #ifndef __HAVE_ARCH_MEMMAP_INIT
2206 #define memmap_init(size, nid, zone, start_pfn) \
2207 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
2208 #endif
2210 static int __devinit zone_batchsize(struct zone *zone)
2212 int batch;
2215 * The per-cpu-pages pools are set to around 1000th of the
2216 * size of the zone. But no more than 1/2 of a meg.
2218 * OK, so we don't know how big the cache is. So guess.
2220 batch = zone->present_pages / 1024;
2221 if (batch * PAGE_SIZE > 512 * 1024)
2222 batch = (512 * 1024) / PAGE_SIZE;
2223 batch /= 4; /* We effectively *= 4 below */
2224 if (batch < 1)
2225 batch = 1;
2228 * Clamp the batch to a 2^n - 1 value. Having a power
2229 * of 2 value was found to be more likely to have
2230 * suboptimal cache aliasing properties in some cases.
2232 * For example if 2 tasks are alternately allocating
2233 * batches of pages, one task can end up with a lot
2234 * of pages of one half of the possible page colors
2235 * and the other with pages of the other colors.
2237 batch = (1 << (fls(batch + batch/2)-1)) - 1;
2239 return batch;
2242 inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2244 struct per_cpu_pages *pcp;
2246 memset(p, 0, sizeof(*p));
2248 pcp = &p->pcp[0]; /* hot */
2249 pcp->count = 0;
2250 pcp->high = 6 * batch;
2251 pcp->batch = max(1UL, 1 * batch);
2252 INIT_LIST_HEAD(&pcp->list);
2254 pcp = &p->pcp[1]; /* cold*/
2255 pcp->count = 0;
2256 pcp->high = 2 * batch;
2257 pcp->batch = max(1UL, batch/2);
2258 INIT_LIST_HEAD(&pcp->list);
2262 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2263 * to the value high for the pageset p.
2266 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
2267 unsigned long high)
2269 struct per_cpu_pages *pcp;
2271 pcp = &p->pcp[0]; /* hot list */
2272 pcp->high = high;
2273 pcp->batch = max(1UL, high/4);
2274 if ((high/4) > (PAGE_SHIFT * 8))
2275 pcp->batch = PAGE_SHIFT * 8;
2279 #ifdef CONFIG_NUMA
2281 * Boot pageset table. One per cpu which is going to be used for all
2282 * zones and all nodes. The parameters will be set in such a way
2283 * that an item put on a list will immediately be handed over to
2284 * the buddy list. This is safe since pageset manipulation is done
2285 * with interrupts disabled.
2287 * Some NUMA counter updates may also be caught by the boot pagesets.
2289 * The boot_pagesets must be kept even after bootup is complete for
2290 * unused processors and/or zones. They do play a role for bootstrapping
2291 * hotplugged processors.
2293 * zoneinfo_show() and maybe other functions do
2294 * not check if the processor is online before following the pageset pointer.
2295 * Other parts of the kernel may not check if the zone is available.
2297 static struct per_cpu_pageset boot_pageset[NR_CPUS];
2300 * Dynamically allocate memory for the
2301 * per cpu pageset array in struct zone.
2303 static int __cpuinit process_zones(int cpu)
2305 struct zone *zone, *dzone;
2307 for_each_zone(zone) {
2309 if (!populated_zone(zone))
2310 continue;
2312 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
2313 GFP_KERNEL, cpu_to_node(cpu));
2314 if (!zone_pcp(zone, cpu))
2315 goto bad;
2317 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
2319 if (percpu_pagelist_fraction)
2320 setup_pagelist_highmark(zone_pcp(zone, cpu),
2321 (zone->present_pages / percpu_pagelist_fraction));
2324 return 0;
2325 bad:
2326 for_each_zone(dzone) {
2327 if (dzone == zone)
2328 break;
2329 kfree(zone_pcp(dzone, cpu));
2330 zone_pcp(dzone, cpu) = NULL;
2332 return -ENOMEM;
2335 static inline void free_zone_pagesets(int cpu)
2337 struct zone *zone;
2339 for_each_zone(zone) {
2340 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
2342 /* Free per_cpu_pageset if it is slab allocated */
2343 if (pset != &boot_pageset[cpu])
2344 kfree(pset);
2345 zone_pcp(zone, cpu) = NULL;
2349 static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
2350 unsigned long action,
2351 void *hcpu)
2353 int cpu = (long)hcpu;
2354 int ret = NOTIFY_OK;
2356 switch (action) {
2357 case CPU_UP_PREPARE:
2358 case CPU_UP_PREPARE_FROZEN:
2359 if (process_zones(cpu))
2360 ret = NOTIFY_BAD;
2361 break;
2362 case CPU_UP_CANCELED:
2363 case CPU_UP_CANCELED_FROZEN:
2364 case CPU_DEAD:
2365 case CPU_DEAD_FROZEN:
2366 free_zone_pagesets(cpu);
2367 break;
2368 default:
2369 break;
2371 return ret;
2374 static struct notifier_block __cpuinitdata pageset_notifier =
2375 { &pageset_cpuup_callback, NULL, 0 };
2377 void __init setup_per_cpu_pageset(void)
2379 int err;
2381 /* Initialize per_cpu_pageset for cpu 0.
2382 * A cpuup callback will do this for every cpu
2383 * as it comes online
2385 err = process_zones(smp_processor_id());
2386 BUG_ON(err);
2387 register_cpu_notifier(&pageset_notifier);
2390 #endif
2392 static noinline __init_refok
2393 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
2395 int i;
2396 struct pglist_data *pgdat = zone->zone_pgdat;
2397 size_t alloc_size;
2400 * The per-page waitqueue mechanism uses hashed waitqueues
2401 * per zone.
2403 zone->wait_table_hash_nr_entries =
2404 wait_table_hash_nr_entries(zone_size_pages);
2405 zone->wait_table_bits =
2406 wait_table_bits(zone->wait_table_hash_nr_entries);
2407 alloc_size = zone->wait_table_hash_nr_entries
2408 * sizeof(wait_queue_head_t);
2410 if (system_state == SYSTEM_BOOTING) {
2411 zone->wait_table = (wait_queue_head_t *)
2412 alloc_bootmem_node(pgdat, alloc_size);
2413 } else {
2415 * This case means that a zone whose size was 0 gets new memory
2416 * via memory hot-add.
2417 * But it may be the case that a new node was hot-added. In
2418 * this case vmalloc() will not be able to use this new node's
2419 * memory - this wait_table must be initialized to use this new
2420 * node itself as well.
2421 * To use this new node's memory, further consideration will be
2422 * necessary.
2424 zone->wait_table = (wait_queue_head_t *)vmalloc(alloc_size);
2426 if (!zone->wait_table)
2427 return -ENOMEM;
2429 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
2430 init_waitqueue_head(zone->wait_table + i);
2432 return 0;
2435 static __meminit void zone_pcp_init(struct zone *zone)
2437 int cpu;
2438 unsigned long batch = zone_batchsize(zone);
2440 for (cpu = 0; cpu < NR_CPUS; cpu++) {
2441 #ifdef CONFIG_NUMA
2442 /* Early boot. Slab allocator not functional yet */
2443 zone_pcp(zone, cpu) = &boot_pageset[cpu];
2444 setup_pageset(&boot_pageset[cpu],0);
2445 #else
2446 setup_pageset(zone_pcp(zone,cpu), batch);
2447 #endif
2449 if (zone->present_pages)
2450 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
2451 zone->name, zone->present_pages, batch);
2454 __meminit int init_currently_empty_zone(struct zone *zone,
2455 unsigned long zone_start_pfn,
2456 unsigned long size,
2457 enum memmap_context context)
2459 struct pglist_data *pgdat = zone->zone_pgdat;
2460 int ret;
2461 ret = zone_wait_table_init(zone, size);
2462 if (ret)
2463 return ret;
2464 pgdat->nr_zones = zone_idx(zone) + 1;
2466 zone->zone_start_pfn = zone_start_pfn;
2468 memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
2470 zone_init_free_lists(pgdat, zone, zone->spanned_pages);
2472 return 0;
2475 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2477 * Basic iterator support. Return the first range of PFNs for a node
2478 * Note: nid == MAX_NUMNODES returns first region regardless of node
2480 static int __meminit first_active_region_index_in_nid(int nid)
2482 int i;
2484 for (i = 0; i < nr_nodemap_entries; i++)
2485 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
2486 return i;
2488 return -1;
2492 * Basic iterator support. Return the next active range of PFNs for a node
2493 * Note: nid == MAX_NUMNODES returns next region regardles of node
2495 static int __meminit next_active_region_index_in_nid(int index, int nid)
2497 for (index = index + 1; index < nr_nodemap_entries; index++)
2498 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
2499 return index;
2501 return -1;
2504 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
2506 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
2507 * Architectures may implement their own version but if add_active_range()
2508 * was used and there are no special requirements, this is a convenient
2509 * alternative
2511 int __meminit early_pfn_to_nid(unsigned long pfn)
2513 int i;
2515 for (i = 0; i < nr_nodemap_entries; i++) {
2516 unsigned long start_pfn = early_node_map[i].start_pfn;
2517 unsigned long end_pfn = early_node_map[i].end_pfn;
2519 if (start_pfn <= pfn && pfn < end_pfn)
2520 return early_node_map[i].nid;
2523 return 0;
2525 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
2527 /* Basic iterator support to walk early_node_map[] */
2528 #define for_each_active_range_index_in_nid(i, nid) \
2529 for (i = first_active_region_index_in_nid(nid); i != -1; \
2530 i = next_active_region_index_in_nid(i, nid))
2533 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
2534 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
2535 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
2537 * If an architecture guarantees that all ranges registered with
2538 * add_active_ranges() contain no holes and may be freed, this
2539 * this function may be used instead of calling free_bootmem() manually.
2541 void __init free_bootmem_with_active_regions(int nid,
2542 unsigned long max_low_pfn)
2544 int i;
2546 for_each_active_range_index_in_nid(i, nid) {
2547 unsigned long size_pages = 0;
2548 unsigned long end_pfn = early_node_map[i].end_pfn;
2550 if (early_node_map[i].start_pfn >= max_low_pfn)
2551 continue;
2553 if (end_pfn > max_low_pfn)
2554 end_pfn = max_low_pfn;
2556 size_pages = end_pfn - early_node_map[i].start_pfn;
2557 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
2558 PFN_PHYS(early_node_map[i].start_pfn),
2559 size_pages << PAGE_SHIFT);
2564 * sparse_memory_present_with_active_regions - Call memory_present for each active range
2565 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
2567 * If an architecture guarantees that all ranges registered with
2568 * add_active_ranges() contain no holes and may be freed, this
2569 * function may be used instead of calling memory_present() manually.
2571 void __init sparse_memory_present_with_active_regions(int nid)
2573 int i;
2575 for_each_active_range_index_in_nid(i, nid)
2576 memory_present(early_node_map[i].nid,
2577 early_node_map[i].start_pfn,
2578 early_node_map[i].end_pfn);
2582 * push_node_boundaries - Push node boundaries to at least the requested boundary
2583 * @nid: The nid of the node to push the boundary for
2584 * @start_pfn: The start pfn of the node
2585 * @end_pfn: The end pfn of the node
2587 * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
2588 * time. Specifically, on x86_64, SRAT will report ranges that can potentially
2589 * be hotplugged even though no physical memory exists. This function allows
2590 * an arch to push out the node boundaries so mem_map is allocated that can
2591 * be used later.
2593 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
2594 void __init push_node_boundaries(unsigned int nid,
2595 unsigned long start_pfn, unsigned long end_pfn)
2597 printk(KERN_DEBUG "Entering push_node_boundaries(%u, %lu, %lu)\n",
2598 nid, start_pfn, end_pfn);
2600 /* Initialise the boundary for this node if necessary */
2601 if (node_boundary_end_pfn[nid] == 0)
2602 node_boundary_start_pfn[nid] = -1UL;
2604 /* Update the boundaries */
2605 if (node_boundary_start_pfn[nid] > start_pfn)
2606 node_boundary_start_pfn[nid] = start_pfn;
2607 if (node_boundary_end_pfn[nid] < end_pfn)
2608 node_boundary_end_pfn[nid] = end_pfn;
2611 /* If necessary, push the node boundary out for reserve hotadd */
2612 static void __meminit account_node_boundary(unsigned int nid,
2613 unsigned long *start_pfn, unsigned long *end_pfn)
2615 printk(KERN_DEBUG "Entering account_node_boundary(%u, %lu, %lu)\n",
2616 nid, *start_pfn, *end_pfn);
2618 /* Return if boundary information has not been provided */
2619 if (node_boundary_end_pfn[nid] == 0)
2620 return;
2622 /* Check the boundaries and update if necessary */
2623 if (node_boundary_start_pfn[nid] < *start_pfn)
2624 *start_pfn = node_boundary_start_pfn[nid];
2625 if (node_boundary_end_pfn[nid] > *end_pfn)
2626 *end_pfn = node_boundary_end_pfn[nid];
2628 #else
2629 void __init push_node_boundaries(unsigned int nid,
2630 unsigned long start_pfn, unsigned long end_pfn) {}
2632 static void __meminit account_node_boundary(unsigned int nid,
2633 unsigned long *start_pfn, unsigned long *end_pfn) {}
2634 #endif
2638 * get_pfn_range_for_nid - Return the start and end page frames for a node
2639 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
2640 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
2641 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
2643 * It returns the start and end page frame of a node based on information
2644 * provided by an arch calling add_active_range(). If called for a node
2645 * with no available memory, a warning is printed and the start and end
2646 * PFNs will be 0.
2648 void __meminit get_pfn_range_for_nid(unsigned int nid,
2649 unsigned long *start_pfn, unsigned long *end_pfn)
2651 int i;
2652 *start_pfn = -1UL;
2653 *end_pfn = 0;
2655 for_each_active_range_index_in_nid(i, nid) {
2656 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
2657 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
2660 if (*start_pfn == -1UL) {
2661 printk(KERN_WARNING "Node %u active with no memory\n", nid);
2662 *start_pfn = 0;
2665 /* Push the node boundaries out if requested */
2666 account_node_boundary(nid, start_pfn, end_pfn);
2670 * Return the number of pages a zone spans in a node, including holes
2671 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
2673 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
2674 unsigned long zone_type,
2675 unsigned long *ignored)
2677 unsigned long node_start_pfn, node_end_pfn;
2678 unsigned long zone_start_pfn, zone_end_pfn;
2680 /* Get the start and end of the node and zone */
2681 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
2682 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
2683 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2685 /* Check that this node has pages within the zone's required range */
2686 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
2687 return 0;
2689 /* Move the zone boundaries inside the node if necessary */
2690 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
2691 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
2693 /* Return the spanned pages */
2694 return zone_end_pfn - zone_start_pfn;
2698 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
2699 * then all holes in the requested range will be accounted for.
2701 unsigned long __meminit __absent_pages_in_range(int nid,
2702 unsigned long range_start_pfn,
2703 unsigned long range_end_pfn)
2705 int i = 0;
2706 unsigned long prev_end_pfn = 0, hole_pages = 0;
2707 unsigned long start_pfn;
2709 /* Find the end_pfn of the first active range of pfns in the node */
2710 i = first_active_region_index_in_nid(nid);
2711 if (i == -1)
2712 return 0;
2714 /* Account for ranges before physical memory on this node */
2715 if (early_node_map[i].start_pfn > range_start_pfn)
2716 hole_pages = early_node_map[i].start_pfn - range_start_pfn;
2718 prev_end_pfn = early_node_map[i].start_pfn;
2720 /* Find all holes for the zone within the node */
2721 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
2723 /* No need to continue if prev_end_pfn is outside the zone */
2724 if (prev_end_pfn >= range_end_pfn)
2725 break;
2727 /* Make sure the end of the zone is not within the hole */
2728 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
2729 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
2731 /* Update the hole size cound and move on */
2732 if (start_pfn > range_start_pfn) {
2733 BUG_ON(prev_end_pfn > start_pfn);
2734 hole_pages += start_pfn - prev_end_pfn;
2736 prev_end_pfn = early_node_map[i].end_pfn;
2739 /* Account for ranges past physical memory on this node */
2740 if (range_end_pfn > prev_end_pfn)
2741 hole_pages += range_end_pfn -
2742 max(range_start_pfn, prev_end_pfn);
2744 return hole_pages;
2748 * absent_pages_in_range - Return number of page frames in holes within a range
2749 * @start_pfn: The start PFN to start searching for holes
2750 * @end_pfn: The end PFN to stop searching for holes
2752 * It returns the number of pages frames in memory holes within a range.
2754 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
2755 unsigned long end_pfn)
2757 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
2760 /* Return the number of page frames in holes in a zone on a node */
2761 static unsigned long __meminit zone_absent_pages_in_node(int nid,
2762 unsigned long zone_type,
2763 unsigned long *ignored)
2765 unsigned long node_start_pfn, node_end_pfn;
2766 unsigned long zone_start_pfn, zone_end_pfn;
2768 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
2769 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
2770 node_start_pfn);
2771 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
2772 node_end_pfn);
2774 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
2777 #else
2778 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
2779 unsigned long zone_type,
2780 unsigned long *zones_size)
2782 return zones_size[zone_type];
2785 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
2786 unsigned long zone_type,
2787 unsigned long *zholes_size)
2789 if (!zholes_size)
2790 return 0;
2792 return zholes_size[zone_type];
2795 #endif
2797 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
2798 unsigned long *zones_size, unsigned long *zholes_size)
2800 unsigned long realtotalpages, totalpages = 0;
2801 enum zone_type i;
2803 for (i = 0; i < MAX_NR_ZONES; i++)
2804 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
2805 zones_size);
2806 pgdat->node_spanned_pages = totalpages;
2808 realtotalpages = totalpages;
2809 for (i = 0; i < MAX_NR_ZONES; i++)
2810 realtotalpages -=
2811 zone_absent_pages_in_node(pgdat->node_id, i,
2812 zholes_size);
2813 pgdat->node_present_pages = realtotalpages;
2814 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
2815 realtotalpages);
2819 * Set up the zone data structures:
2820 * - mark all pages reserved
2821 * - mark all memory queues empty
2822 * - clear the memory bitmaps
2824 static void __meminit free_area_init_core(struct pglist_data *pgdat,
2825 unsigned long *zones_size, unsigned long *zholes_size)
2827 enum zone_type j;
2828 int nid = pgdat->node_id;
2829 unsigned long zone_start_pfn = pgdat->node_start_pfn;
2830 int ret;
2832 pgdat_resize_init(pgdat);
2833 pgdat->nr_zones = 0;
2834 init_waitqueue_head(&pgdat->kswapd_wait);
2835 pgdat->kswapd_max_order = 0;
2837 for (j = 0; j < MAX_NR_ZONES; j++) {
2838 struct zone *zone = pgdat->node_zones + j;
2839 unsigned long size, realsize, memmap_pages;
2841 size = zone_spanned_pages_in_node(nid, j, zones_size);
2842 realsize = size - zone_absent_pages_in_node(nid, j,
2843 zholes_size);
2846 * Adjust realsize so that it accounts for how much memory
2847 * is used by this zone for memmap. This affects the watermark
2848 * and per-cpu initialisations
2850 memmap_pages = (size * sizeof(struct page)) >> PAGE_SHIFT;
2851 if (realsize >= memmap_pages) {
2852 realsize -= memmap_pages;
2853 printk(KERN_DEBUG
2854 " %s zone: %lu pages used for memmap\n",
2855 zone_names[j], memmap_pages);
2856 } else
2857 printk(KERN_WARNING
2858 " %s zone: %lu pages exceeds realsize %lu\n",
2859 zone_names[j], memmap_pages, realsize);
2861 /* Account for reserved pages */
2862 if (j == 0 && realsize > dma_reserve) {
2863 realsize -= dma_reserve;
2864 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
2865 zone_names[0], dma_reserve);
2868 if (!is_highmem_idx(j))
2869 nr_kernel_pages += realsize;
2870 nr_all_pages += realsize;
2872 zone->spanned_pages = size;
2873 zone->present_pages = realsize;
2874 #ifdef CONFIG_NUMA
2875 zone->node = nid;
2876 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
2877 / 100;
2878 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
2879 #endif
2880 zone->name = zone_names[j];
2881 spin_lock_init(&zone->lock);
2882 spin_lock_init(&zone->lru_lock);
2883 zone_seqlock_init(zone);
2884 zone->zone_pgdat = pgdat;
2886 zone->prev_priority = DEF_PRIORITY;
2888 zone_pcp_init(zone);
2889 INIT_LIST_HEAD(&zone->active_list);
2890 INIT_LIST_HEAD(&zone->inactive_list);
2891 zone->nr_scan_active = 0;
2892 zone->nr_scan_inactive = 0;
2893 zap_zone_vm_stats(zone);
2894 atomic_set(&zone->reclaim_in_progress, 0);
2895 if (!size)
2896 continue;
2898 ret = init_currently_empty_zone(zone, zone_start_pfn,
2899 size, MEMMAP_EARLY);
2900 BUG_ON(ret);
2901 zone_start_pfn += size;
2905 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
2907 /* Skip empty nodes */
2908 if (!pgdat->node_spanned_pages)
2909 return;
2911 #ifdef CONFIG_FLAT_NODE_MEM_MAP
2912 /* ia64 gets its own node_mem_map, before this, without bootmem */
2913 if (!pgdat->node_mem_map) {
2914 unsigned long size, start, end;
2915 struct page *map;
2918 * The zone's endpoints aren't required to be MAX_ORDER
2919 * aligned but the node_mem_map endpoints must be in order
2920 * for the buddy allocator to function correctly.
2922 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
2923 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
2924 end = ALIGN(end, MAX_ORDER_NR_PAGES);
2925 size = (end - start) * sizeof(struct page);
2926 map = alloc_remap(pgdat->node_id, size);
2927 if (!map)
2928 map = alloc_bootmem_node(pgdat, size);
2929 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
2931 #ifndef CONFIG_NEED_MULTIPLE_NODES
2933 * With no DISCONTIG, the global mem_map is just set as node 0's
2935 if (pgdat == NODE_DATA(0)) {
2936 mem_map = NODE_DATA(0)->node_mem_map;
2937 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2938 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
2939 mem_map -= pgdat->node_start_pfn;
2940 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
2942 #endif
2943 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
2946 void __meminit free_area_init_node(int nid, struct pglist_data *pgdat,
2947 unsigned long *zones_size, unsigned long node_start_pfn,
2948 unsigned long *zholes_size)
2950 pgdat->node_id = nid;
2951 pgdat->node_start_pfn = node_start_pfn;
2952 calculate_node_totalpages(pgdat, zones_size, zholes_size);
2954 alloc_node_mem_map(pgdat);
2956 free_area_init_core(pgdat, zones_size, zholes_size);
2959 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2961 #if MAX_NUMNODES > 1
2963 * Figure out the number of possible node ids.
2965 static void __init setup_nr_node_ids(void)
2967 unsigned int node;
2968 unsigned int highest = 0;
2970 for_each_node_mask(node, node_possible_map)
2971 highest = node;
2972 nr_node_ids = highest + 1;
2974 #else
2975 static inline void setup_nr_node_ids(void)
2978 #endif
2981 * add_active_range - Register a range of PFNs backed by physical memory
2982 * @nid: The node ID the range resides on
2983 * @start_pfn: The start PFN of the available physical memory
2984 * @end_pfn: The end PFN of the available physical memory
2986 * These ranges are stored in an early_node_map[] and later used by
2987 * free_area_init_nodes() to calculate zone sizes and holes. If the
2988 * range spans a memory hole, it is up to the architecture to ensure
2989 * the memory is not freed by the bootmem allocator. If possible
2990 * the range being registered will be merged with existing ranges.
2992 void __init add_active_range(unsigned int nid, unsigned long start_pfn,
2993 unsigned long end_pfn)
2995 int i;
2997 printk(KERN_DEBUG "Entering add_active_range(%d, %lu, %lu) "
2998 "%d entries of %d used\n",
2999 nid, start_pfn, end_pfn,
3000 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
3002 /* Merge with existing active regions if possible */
3003 for (i = 0; i < nr_nodemap_entries; i++) {
3004 if (early_node_map[i].nid != nid)
3005 continue;
3007 /* Skip if an existing region covers this new one */
3008 if (start_pfn >= early_node_map[i].start_pfn &&
3009 end_pfn <= early_node_map[i].end_pfn)
3010 return;
3012 /* Merge forward if suitable */
3013 if (start_pfn <= early_node_map[i].end_pfn &&
3014 end_pfn > early_node_map[i].end_pfn) {
3015 early_node_map[i].end_pfn = end_pfn;
3016 return;
3019 /* Merge backward if suitable */
3020 if (start_pfn < early_node_map[i].end_pfn &&
3021 end_pfn >= early_node_map[i].start_pfn) {
3022 early_node_map[i].start_pfn = start_pfn;
3023 return;
3027 /* Check that early_node_map is large enough */
3028 if (i >= MAX_ACTIVE_REGIONS) {
3029 printk(KERN_CRIT "More than %d memory regions, truncating\n",
3030 MAX_ACTIVE_REGIONS);
3031 return;
3034 early_node_map[i].nid = nid;
3035 early_node_map[i].start_pfn = start_pfn;
3036 early_node_map[i].end_pfn = end_pfn;
3037 nr_nodemap_entries = i + 1;
3041 * shrink_active_range - Shrink an existing registered range of PFNs
3042 * @nid: The node id the range is on that should be shrunk
3043 * @old_end_pfn: The old end PFN of the range
3044 * @new_end_pfn: The new PFN of the range
3046 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
3047 * The map is kept at the end physical page range that has already been
3048 * registered with add_active_range(). This function allows an arch to shrink
3049 * an existing registered range.
3051 void __init shrink_active_range(unsigned int nid, unsigned long old_end_pfn,
3052 unsigned long new_end_pfn)
3054 int i;
3056 /* Find the old active region end and shrink */
3057 for_each_active_range_index_in_nid(i, nid)
3058 if (early_node_map[i].end_pfn == old_end_pfn) {
3059 early_node_map[i].end_pfn = new_end_pfn;
3060 break;
3065 * remove_all_active_ranges - Remove all currently registered regions
3067 * During discovery, it may be found that a table like SRAT is invalid
3068 * and an alternative discovery method must be used. This function removes
3069 * all currently registered regions.
3071 void __init remove_all_active_ranges(void)
3073 memset(early_node_map, 0, sizeof(early_node_map));
3074 nr_nodemap_entries = 0;
3075 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
3076 memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn));
3077 memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn));
3078 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
3081 /* Compare two active node_active_regions */
3082 static int __init cmp_node_active_region(const void *a, const void *b)
3084 struct node_active_region *arange = (struct node_active_region *)a;
3085 struct node_active_region *brange = (struct node_active_region *)b;
3087 /* Done this way to avoid overflows */
3088 if (arange->start_pfn > brange->start_pfn)
3089 return 1;
3090 if (arange->start_pfn < brange->start_pfn)
3091 return -1;
3093 return 0;
3096 /* sort the node_map by start_pfn */
3097 static void __init sort_node_map(void)
3099 sort(early_node_map, (size_t)nr_nodemap_entries,
3100 sizeof(struct node_active_region),
3101 cmp_node_active_region, NULL);
3104 /* Find the lowest pfn for a node */
3105 unsigned long __init find_min_pfn_for_node(unsigned long nid)
3107 int i;
3108 unsigned long min_pfn = ULONG_MAX;
3110 /* Assuming a sorted map, the first range found has the starting pfn */
3111 for_each_active_range_index_in_nid(i, nid)
3112 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
3114 if (min_pfn == ULONG_MAX) {
3115 printk(KERN_WARNING
3116 "Could not find start_pfn for node %lu\n", nid);
3117 return 0;
3120 return min_pfn;
3124 * find_min_pfn_with_active_regions - Find the minimum PFN registered
3126 * It returns the minimum PFN based on information provided via
3127 * add_active_range().
3129 unsigned long __init find_min_pfn_with_active_regions(void)
3131 return find_min_pfn_for_node(MAX_NUMNODES);
3135 * find_max_pfn_with_active_regions - Find the maximum PFN registered
3137 * It returns the maximum PFN based on information provided via
3138 * add_active_range().
3140 unsigned long __init find_max_pfn_with_active_regions(void)
3142 int i;
3143 unsigned long max_pfn = 0;
3145 for (i = 0; i < nr_nodemap_entries; i++)
3146 max_pfn = max(max_pfn, early_node_map[i].end_pfn);
3148 return max_pfn;
3152 * free_area_init_nodes - Initialise all pg_data_t and zone data
3153 * @max_zone_pfn: an array of max PFNs for each zone
3155 * This will call free_area_init_node() for each active node in the system.
3156 * Using the page ranges provided by add_active_range(), the size of each
3157 * zone in each node and their holes is calculated. If the maximum PFN
3158 * between two adjacent zones match, it is assumed that the zone is empty.
3159 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
3160 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
3161 * starts where the previous one ended. For example, ZONE_DMA32 starts
3162 * at arch_max_dma_pfn.
3164 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
3166 unsigned long nid;
3167 enum zone_type i;
3169 /* Sort early_node_map as initialisation assumes it is sorted */
3170 sort_node_map();
3172 /* Record where the zone boundaries are */
3173 memset(arch_zone_lowest_possible_pfn, 0,
3174 sizeof(arch_zone_lowest_possible_pfn));
3175 memset(arch_zone_highest_possible_pfn, 0,
3176 sizeof(arch_zone_highest_possible_pfn));
3177 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
3178 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
3179 for (i = 1; i < MAX_NR_ZONES; i++) {
3180 arch_zone_lowest_possible_pfn[i] =
3181 arch_zone_highest_possible_pfn[i-1];
3182 arch_zone_highest_possible_pfn[i] =
3183 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
3186 /* Print out the zone ranges */
3187 printk("Zone PFN ranges:\n");
3188 for (i = 0; i < MAX_NR_ZONES; i++)
3189 printk(" %-8s %8lu -> %8lu\n",
3190 zone_names[i],
3191 arch_zone_lowest_possible_pfn[i],
3192 arch_zone_highest_possible_pfn[i]);
3194 /* Print out the early_node_map[] */
3195 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
3196 for (i = 0; i < nr_nodemap_entries; i++)
3197 printk(" %3d: %8lu -> %8lu\n", early_node_map[i].nid,
3198 early_node_map[i].start_pfn,
3199 early_node_map[i].end_pfn);
3201 /* Initialise every node */
3202 setup_nr_node_ids();
3203 for_each_online_node(nid) {
3204 pg_data_t *pgdat = NODE_DATA(nid);
3205 free_area_init_node(nid, pgdat, NULL,
3206 find_min_pfn_for_node(nid), NULL);
3209 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3212 * set_dma_reserve - set the specified number of pages reserved in the first zone
3213 * @new_dma_reserve: The number of pages to mark reserved
3215 * The per-cpu batchsize and zone watermarks are determined by present_pages.
3216 * In the DMA zone, a significant percentage may be consumed by kernel image
3217 * and other unfreeable allocations which can skew the watermarks badly. This
3218 * function may optionally be used to account for unfreeable pages in the
3219 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
3220 * smaller per-cpu batchsize.
3222 void __init set_dma_reserve(unsigned long new_dma_reserve)
3224 dma_reserve = new_dma_reserve;
3227 #ifndef CONFIG_NEED_MULTIPLE_NODES
3228 static bootmem_data_t contig_bootmem_data;
3229 struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
3231 EXPORT_SYMBOL(contig_page_data);
3232 #endif
3234 void __init free_area_init(unsigned long *zones_size)
3236 free_area_init_node(0, NODE_DATA(0), zones_size,
3237 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
3240 static int page_alloc_cpu_notify(struct notifier_block *self,
3241 unsigned long action, void *hcpu)
3243 int cpu = (unsigned long)hcpu;
3245 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
3246 local_irq_disable();
3247 __drain_pages(cpu);
3248 vm_events_fold_cpu(cpu);
3249 local_irq_enable();
3250 refresh_cpu_vm_stats(cpu);
3252 return NOTIFY_OK;
3255 void __init page_alloc_init(void)
3257 hotcpu_notifier(page_alloc_cpu_notify, 0);
3261 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
3262 * or min_free_kbytes changes.
3264 static void calculate_totalreserve_pages(void)
3266 struct pglist_data *pgdat;
3267 unsigned long reserve_pages = 0;
3268 enum zone_type i, j;
3270 for_each_online_pgdat(pgdat) {
3271 for (i = 0; i < MAX_NR_ZONES; i++) {
3272 struct zone *zone = pgdat->node_zones + i;
3273 unsigned long max = 0;
3275 /* Find valid and maximum lowmem_reserve in the zone */
3276 for (j = i; j < MAX_NR_ZONES; j++) {
3277 if (zone->lowmem_reserve[j] > max)
3278 max = zone->lowmem_reserve[j];
3281 /* we treat pages_high as reserved pages. */
3282 max += zone->pages_high;
3284 if (max > zone->present_pages)
3285 max = zone->present_pages;
3286 reserve_pages += max;
3289 totalreserve_pages = reserve_pages;
3293 * setup_per_zone_lowmem_reserve - called whenever
3294 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
3295 * has a correct pages reserved value, so an adequate number of
3296 * pages are left in the zone after a successful __alloc_pages().
3298 static void setup_per_zone_lowmem_reserve(void)
3300 struct pglist_data *pgdat;
3301 enum zone_type j, idx;
3303 for_each_online_pgdat(pgdat) {
3304 for (j = 0; j < MAX_NR_ZONES; j++) {
3305 struct zone *zone = pgdat->node_zones + j;
3306 unsigned long present_pages = zone->present_pages;
3308 zone->lowmem_reserve[j] = 0;
3310 idx = j;
3311 while (idx) {
3312 struct zone *lower_zone;
3314 idx--;
3316 if (sysctl_lowmem_reserve_ratio[idx] < 1)
3317 sysctl_lowmem_reserve_ratio[idx] = 1;
3319 lower_zone = pgdat->node_zones + idx;
3320 lower_zone->lowmem_reserve[j] = present_pages /
3321 sysctl_lowmem_reserve_ratio[idx];
3322 present_pages += lower_zone->present_pages;
3327 /* update totalreserve_pages */
3328 calculate_totalreserve_pages();
3332 * setup_per_zone_pages_min - called when min_free_kbytes changes.
3334 * Ensures that the pages_{min,low,high} values for each zone are set correctly
3335 * with respect to min_free_kbytes.
3337 void setup_per_zone_pages_min(void)
3339 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
3340 unsigned long lowmem_pages = 0;
3341 struct zone *zone;
3342 unsigned long flags;
3344 /* Calculate total number of !ZONE_HIGHMEM pages */
3345 for_each_zone(zone) {
3346 if (!is_highmem(zone))
3347 lowmem_pages += zone->present_pages;
3350 for_each_zone(zone) {
3351 u64 tmp;
3353 spin_lock_irqsave(&zone->lru_lock, flags);
3354 tmp = (u64)pages_min * zone->present_pages;
3355 do_div(tmp, lowmem_pages);
3356 if (is_highmem(zone)) {
3358 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
3359 * need highmem pages, so cap pages_min to a small
3360 * value here.
3362 * The (pages_high-pages_low) and (pages_low-pages_min)
3363 * deltas controls asynch page reclaim, and so should
3364 * not be capped for highmem.
3366 int min_pages;
3368 min_pages = zone->present_pages / 1024;
3369 if (min_pages < SWAP_CLUSTER_MAX)
3370 min_pages = SWAP_CLUSTER_MAX;
3371 if (min_pages > 128)
3372 min_pages = 128;
3373 zone->pages_min = min_pages;
3374 } else {
3376 * If it's a lowmem zone, reserve a number of pages
3377 * proportionate to the zone's size.
3379 zone->pages_min = tmp;
3382 zone->pages_low = zone->pages_min + (tmp >> 2);
3383 zone->pages_high = zone->pages_min + (tmp >> 1);
3384 spin_unlock_irqrestore(&zone->lru_lock, flags);
3387 /* update totalreserve_pages */
3388 calculate_totalreserve_pages();
3392 * Initialise min_free_kbytes.
3394 * For small machines we want it small (128k min). For large machines
3395 * we want it large (64MB max). But it is not linear, because network
3396 * bandwidth does not increase linearly with machine size. We use
3398 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
3399 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
3401 * which yields
3403 * 16MB: 512k
3404 * 32MB: 724k
3405 * 64MB: 1024k
3406 * 128MB: 1448k
3407 * 256MB: 2048k
3408 * 512MB: 2896k
3409 * 1024MB: 4096k
3410 * 2048MB: 5792k
3411 * 4096MB: 8192k
3412 * 8192MB: 11584k
3413 * 16384MB: 16384k
3415 static int __init init_per_zone_pages_min(void)
3417 unsigned long lowmem_kbytes;
3419 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
3421 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
3422 if (min_free_kbytes < 128)
3423 min_free_kbytes = 128;
3424 if (min_free_kbytes > 65536)
3425 min_free_kbytes = 65536;
3426 setup_per_zone_pages_min();
3427 setup_per_zone_lowmem_reserve();
3428 return 0;
3430 module_init(init_per_zone_pages_min)
3433 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
3434 * that we can call two helper functions whenever min_free_kbytes
3435 * changes.
3437 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
3438 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3440 proc_dointvec(table, write, file, buffer, length, ppos);
3441 if (write)
3442 setup_per_zone_pages_min();
3443 return 0;
3446 #ifdef CONFIG_NUMA
3447 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
3448 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3450 struct zone *zone;
3451 int rc;
3453 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3454 if (rc)
3455 return rc;
3457 for_each_zone(zone)
3458 zone->min_unmapped_pages = (zone->present_pages *
3459 sysctl_min_unmapped_ratio) / 100;
3460 return 0;
3463 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
3464 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3466 struct zone *zone;
3467 int rc;
3469 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3470 if (rc)
3471 return rc;
3473 for_each_zone(zone)
3474 zone->min_slab_pages = (zone->present_pages *
3475 sysctl_min_slab_ratio) / 100;
3476 return 0;
3478 #endif
3481 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
3482 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
3483 * whenever sysctl_lowmem_reserve_ratio changes.
3485 * The reserve ratio obviously has absolutely no relation with the
3486 * pages_min watermarks. The lowmem reserve ratio can only make sense
3487 * if in function of the boot time zone sizes.
3489 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
3490 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3492 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3493 setup_per_zone_lowmem_reserve();
3494 return 0;
3498 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
3499 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
3500 * can have before it gets flushed back to buddy allocator.
3503 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
3504 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3506 struct zone *zone;
3507 unsigned int cpu;
3508 int ret;
3510 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3511 if (!write || (ret == -EINVAL))
3512 return ret;
3513 for_each_zone(zone) {
3514 for_each_online_cpu(cpu) {
3515 unsigned long high;
3516 high = zone->present_pages / percpu_pagelist_fraction;
3517 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
3520 return 0;
3523 int hashdist = HASHDIST_DEFAULT;
3525 #ifdef CONFIG_NUMA
3526 static int __init set_hashdist(char *str)
3528 if (!str)
3529 return 0;
3530 hashdist = simple_strtoul(str, &str, 0);
3531 return 1;
3533 __setup("hashdist=", set_hashdist);
3534 #endif
3537 * allocate a large system hash table from bootmem
3538 * - it is assumed that the hash table must contain an exact power-of-2
3539 * quantity of entries
3540 * - limit is the number of hash buckets, not the total allocation size
3542 void *__init alloc_large_system_hash(const char *tablename,
3543 unsigned long bucketsize,
3544 unsigned long numentries,
3545 int scale,
3546 int flags,
3547 unsigned int *_hash_shift,
3548 unsigned int *_hash_mask,
3549 unsigned long limit)
3551 unsigned long long max = limit;
3552 unsigned long log2qty, size;
3553 void *table = NULL;
3555 /* allow the kernel cmdline to have a say */
3556 if (!numentries) {
3557 /* round applicable memory size up to nearest megabyte */
3558 numentries = nr_kernel_pages;
3559 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
3560 numentries >>= 20 - PAGE_SHIFT;
3561 numentries <<= 20 - PAGE_SHIFT;
3563 /* limit to 1 bucket per 2^scale bytes of low memory */
3564 if (scale > PAGE_SHIFT)
3565 numentries >>= (scale - PAGE_SHIFT);
3566 else
3567 numentries <<= (PAGE_SHIFT - scale);
3569 /* Make sure we've got at least a 0-order allocation.. */
3570 if (unlikely((numentries * bucketsize) < PAGE_SIZE))
3571 numentries = PAGE_SIZE / bucketsize;
3573 numentries = roundup_pow_of_two(numentries);
3575 /* limit allocation size to 1/16 total memory by default */
3576 if (max == 0) {
3577 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
3578 do_div(max, bucketsize);
3581 if (numentries > max)
3582 numentries = max;
3584 log2qty = ilog2(numentries);
3586 do {
3587 size = bucketsize << log2qty;
3588 if (flags & HASH_EARLY)
3589 table = alloc_bootmem(size);
3590 else if (hashdist)
3591 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
3592 else {
3593 unsigned long order;
3594 for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
3596 table = (void*) __get_free_pages(GFP_ATOMIC, order);
3598 * If bucketsize is not a power-of-two, we may free
3599 * some pages at the end of hash table.
3601 if (table) {
3602 unsigned long alloc_end = (unsigned long)table +
3603 (PAGE_SIZE << order);
3604 unsigned long used = (unsigned long)table +
3605 PAGE_ALIGN(size);
3606 split_page(virt_to_page(table), order);
3607 while (used < alloc_end) {
3608 free_page(used);
3609 used += PAGE_SIZE;
3613 } while (!table && size > PAGE_SIZE && --log2qty);
3615 if (!table)
3616 panic("Failed to allocate %s hash table\n", tablename);
3618 printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
3619 tablename,
3620 (1U << log2qty),
3621 ilog2(size) - PAGE_SHIFT,
3622 size);
3624 if (_hash_shift)
3625 *_hash_shift = log2qty;
3626 if (_hash_mask)
3627 *_hash_mask = (1 << log2qty) - 1;
3629 return table;
3632 #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
3633 struct page *pfn_to_page(unsigned long pfn)
3635 return __pfn_to_page(pfn);
3637 unsigned long page_to_pfn(struct page *page)
3639 return __page_to_pfn(page);
3641 EXPORT_SYMBOL(pfn_to_page);
3642 EXPORT_SYMBOL(page_to_pfn);
3643 #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */