[PATCH] mark struct file_operations const 3
[linux-2.6/kvm.git] / drivers / ieee1394 / ohci1394.c
blob5729e412cc4aaeeb76621a0eb1848e5280eef4ab
1 /*
2 * ohci1394.c - driver for OHCI 1394 boards
3 * Copyright (C)1999,2000 Sebastien Rougeaux <sebastien.rougeaux@anu.edu.au>
4 * Gord Peters <GordPeters@smarttech.com>
5 * 2001 Ben Collins <bcollins@debian.org>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software Foundation,
19 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23 * Things known to be working:
24 * . Async Request Transmit
25 * . Async Response Receive
26 * . Async Request Receive
27 * . Async Response Transmit
28 * . Iso Receive
29 * . DMA mmap for iso receive
30 * . Config ROM generation
32 * Things implemented, but still in test phase:
33 * . Iso Transmit
34 * . Async Stream Packets Transmit (Receive done via Iso interface)
36 * Things not implemented:
37 * . DMA error recovery
39 * Known bugs:
40 * . devctl BUS_RESET arg confusion (reset type or root holdoff?)
41 * added LONG_RESET_ROOT and SHORT_RESET_ROOT for root holdoff --kk
45 * Acknowledgments:
47 * Adam J Richter <adam@yggdrasil.com>
48 * . Use of pci_class to find device
50 * Emilie Chung <emilie.chung@axis.com>
51 * . Tip on Async Request Filter
53 * Pascal Drolet <pascal.drolet@informission.ca>
54 * . Various tips for optimization and functionnalities
56 * Robert Ficklin <rficklin@westengineering.com>
57 * . Loop in irq_handler
59 * James Goodwin <jamesg@Filanet.com>
60 * . Various tips on initialization, self-id reception, etc.
62 * Albrecht Dress <ad@mpifr-bonn.mpg.de>
63 * . Apple PowerBook detection
65 * Daniel Kobras <daniel.kobras@student.uni-tuebingen.de>
66 * . Reset the board properly before leaving + misc cleanups
68 * Leon van Stuivenberg <leonvs@iae.nl>
69 * . Bug fixes
71 * Ben Collins <bcollins@debian.org>
72 * . Working big-endian support
73 * . Updated to 2.4.x module scheme (PCI aswell)
74 * . Config ROM generation
76 * Manfred Weihs <weihs@ict.tuwien.ac.at>
77 * . Reworked code for initiating bus resets
78 * (long, short, with or without hold-off)
80 * Nandu Santhi <contactnandu@users.sourceforge.net>
81 * . Added support for nVidia nForce2 onboard Firewire chipset
85 #include <linux/kernel.h>
86 #include <linux/list.h>
87 #include <linux/slab.h>
88 #include <linux/interrupt.h>
89 #include <linux/wait.h>
90 #include <linux/errno.h>
91 #include <linux/module.h>
92 #include <linux/moduleparam.h>
93 #include <linux/pci.h>
94 #include <linux/fs.h>
95 #include <linux/poll.h>
96 #include <asm/byteorder.h>
97 #include <asm/atomic.h>
98 #include <asm/uaccess.h>
99 #include <linux/delay.h>
100 #include <linux/spinlock.h>
102 #include <asm/pgtable.h>
103 #include <asm/page.h>
104 #include <asm/irq.h>
105 #include <linux/sched.h>
106 #include <linux/types.h>
107 #include <linux/vmalloc.h>
108 #include <linux/init.h>
110 #ifdef CONFIG_PPC_PMAC
111 #include <asm/machdep.h>
112 #include <asm/pmac_feature.h>
113 #include <asm/prom.h>
114 #include <asm/pci-bridge.h>
115 #endif
117 #include "csr1212.h"
118 #include "ieee1394.h"
119 #include "ieee1394_types.h"
120 #include "hosts.h"
121 #include "dma.h"
122 #include "iso.h"
123 #include "ieee1394_core.h"
124 #include "highlevel.h"
125 #include "ohci1394.h"
127 #ifdef CONFIG_IEEE1394_VERBOSEDEBUG
128 #define OHCI1394_DEBUG
129 #endif
131 #ifdef DBGMSG
132 #undef DBGMSG
133 #endif
135 #ifdef OHCI1394_DEBUG
136 #define DBGMSG(fmt, args...) \
137 printk(KERN_INFO "%s: fw-host%d: " fmt "\n" , OHCI1394_DRIVER_NAME, ohci->host->id , ## args)
138 #else
139 #define DBGMSG(fmt, args...) do {} while (0)
140 #endif
142 #ifdef CONFIG_IEEE1394_OHCI_DMA_DEBUG
143 #define OHCI_DMA_ALLOC(fmt, args...) \
144 HPSB_ERR("%s(%s)alloc(%d): "fmt, OHCI1394_DRIVER_NAME, __FUNCTION__, \
145 ++global_outstanding_dmas, ## args)
146 #define OHCI_DMA_FREE(fmt, args...) \
147 HPSB_ERR("%s(%s)free(%d): "fmt, OHCI1394_DRIVER_NAME, __FUNCTION__, \
148 --global_outstanding_dmas, ## args)
149 static int global_outstanding_dmas = 0;
150 #else
151 #define OHCI_DMA_ALLOC(fmt, args...) do {} while (0)
152 #define OHCI_DMA_FREE(fmt, args...) do {} while (0)
153 #endif
155 /* print general (card independent) information */
156 #define PRINT_G(level, fmt, args...) \
157 printk(level "%s: " fmt "\n" , OHCI1394_DRIVER_NAME , ## args)
159 /* print card specific information */
160 #define PRINT(level, fmt, args...) \
161 printk(level "%s: fw-host%d: " fmt "\n" , OHCI1394_DRIVER_NAME, ohci->host->id , ## args)
163 /* Module Parameters */
164 static int phys_dma = 1;
165 module_param(phys_dma, int, 0444);
166 MODULE_PARM_DESC(phys_dma, "Enable physical dma (default = 1).");
168 static void dma_trm_tasklet(unsigned long data);
169 static void dma_trm_reset(struct dma_trm_ctx *d);
171 static int alloc_dma_rcv_ctx(struct ti_ohci *ohci, struct dma_rcv_ctx *d,
172 enum context_type type, int ctx, int num_desc,
173 int buf_size, int split_buf_size, int context_base);
174 static void stop_dma_rcv_ctx(struct dma_rcv_ctx *d);
175 static void free_dma_rcv_ctx(struct dma_rcv_ctx *d);
177 static int alloc_dma_trm_ctx(struct ti_ohci *ohci, struct dma_trm_ctx *d,
178 enum context_type type, int ctx, int num_desc,
179 int context_base);
181 static void ohci1394_pci_remove(struct pci_dev *pdev);
183 #ifndef __LITTLE_ENDIAN
184 const static size_t hdr_sizes[] = {
185 3, /* TCODE_WRITEQ */
186 4, /* TCODE_WRITEB */
187 3, /* TCODE_WRITE_RESPONSE */
188 0, /* reserved */
189 3, /* TCODE_READQ */
190 4, /* TCODE_READB */
191 3, /* TCODE_READQ_RESPONSE */
192 4, /* TCODE_READB_RESPONSE */
193 1, /* TCODE_CYCLE_START */
194 4, /* TCODE_LOCK_REQUEST */
195 2, /* TCODE_ISO_DATA */
196 4, /* TCODE_LOCK_RESPONSE */
197 /* rest is reserved or link-internal */
200 static inline void header_le32_to_cpu(quadlet_t *data, unsigned char tcode)
202 size_t size;
204 if (unlikely(tcode >= ARRAY_SIZE(hdr_sizes)))
205 return;
207 size = hdr_sizes[tcode];
208 while (size--)
209 data[size] = le32_to_cpu(data[size]);
211 #else
212 #define header_le32_to_cpu(w,x) do {} while (0)
213 #endif /* !LITTLE_ENDIAN */
215 /***********************************
216 * IEEE-1394 functionality section *
217 ***********************************/
219 static u8 get_phy_reg(struct ti_ohci *ohci, u8 addr)
221 int i;
222 unsigned long flags;
223 quadlet_t r;
225 spin_lock_irqsave (&ohci->phy_reg_lock, flags);
227 reg_write(ohci, OHCI1394_PhyControl, (addr << 8) | 0x00008000);
229 for (i = 0; i < OHCI_LOOP_COUNT; i++) {
230 if (reg_read(ohci, OHCI1394_PhyControl) & 0x80000000)
231 break;
233 mdelay(1);
236 r = reg_read(ohci, OHCI1394_PhyControl);
238 if (i >= OHCI_LOOP_COUNT)
239 PRINT (KERN_ERR, "Get PHY Reg timeout [0x%08x/0x%08x/%d]",
240 r, r & 0x80000000, i);
242 spin_unlock_irqrestore (&ohci->phy_reg_lock, flags);
244 return (r & 0x00ff0000) >> 16;
247 static void set_phy_reg(struct ti_ohci *ohci, u8 addr, u8 data)
249 int i;
250 unsigned long flags;
251 u32 r = 0;
253 spin_lock_irqsave (&ohci->phy_reg_lock, flags);
255 reg_write(ohci, OHCI1394_PhyControl, (addr << 8) | data | 0x00004000);
257 for (i = 0; i < OHCI_LOOP_COUNT; i++) {
258 r = reg_read(ohci, OHCI1394_PhyControl);
259 if (!(r & 0x00004000))
260 break;
262 mdelay(1);
265 if (i == OHCI_LOOP_COUNT)
266 PRINT (KERN_ERR, "Set PHY Reg timeout [0x%08x/0x%08x/%d]",
267 r, r & 0x00004000, i);
269 spin_unlock_irqrestore (&ohci->phy_reg_lock, flags);
271 return;
274 /* Or's our value into the current value */
275 static void set_phy_reg_mask(struct ti_ohci *ohci, u8 addr, u8 data)
277 u8 old;
279 old = get_phy_reg (ohci, addr);
280 old |= data;
281 set_phy_reg (ohci, addr, old);
283 return;
286 static void handle_selfid(struct ti_ohci *ohci, struct hpsb_host *host,
287 int phyid, int isroot)
289 quadlet_t *q = ohci->selfid_buf_cpu;
290 quadlet_t self_id_count=reg_read(ohci, OHCI1394_SelfIDCount);
291 size_t size;
292 quadlet_t q0, q1;
294 /* Check status of self-id reception */
296 if (ohci->selfid_swap)
297 q0 = le32_to_cpu(q[0]);
298 else
299 q0 = q[0];
301 if ((self_id_count & 0x80000000) ||
302 ((self_id_count & 0x00FF0000) != (q0 & 0x00FF0000))) {
303 PRINT(KERN_ERR,
304 "Error in reception of SelfID packets [0x%08x/0x%08x] (count: %d)",
305 self_id_count, q0, ohci->self_id_errors);
307 /* Tip by James Goodwin <jamesg@Filanet.com>:
308 * We had an error, generate another bus reset in response. */
309 if (ohci->self_id_errors<OHCI1394_MAX_SELF_ID_ERRORS) {
310 set_phy_reg_mask (ohci, 1, 0x40);
311 ohci->self_id_errors++;
312 } else {
313 PRINT(KERN_ERR,
314 "Too many errors on SelfID error reception, giving up!");
316 return;
319 /* SelfID Ok, reset error counter. */
320 ohci->self_id_errors = 0;
322 size = ((self_id_count & 0x00001FFC) >> 2) - 1;
323 q++;
325 while (size > 0) {
326 if (ohci->selfid_swap) {
327 q0 = le32_to_cpu(q[0]);
328 q1 = le32_to_cpu(q[1]);
329 } else {
330 q0 = q[0];
331 q1 = q[1];
334 if (q0 == ~q1) {
335 DBGMSG ("SelfID packet 0x%x received", q0);
336 hpsb_selfid_received(host, cpu_to_be32(q0));
337 if (((q0 & 0x3f000000) >> 24) == phyid)
338 DBGMSG ("SelfID for this node is 0x%08x", q0);
339 } else {
340 PRINT(KERN_ERR,
341 "SelfID is inconsistent [0x%08x/0x%08x]", q0, q1);
343 q += 2;
344 size -= 2;
347 DBGMSG("SelfID complete");
349 return;
352 static void ohci_soft_reset(struct ti_ohci *ohci) {
353 int i;
355 reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
357 for (i = 0; i < OHCI_LOOP_COUNT; i++) {
358 if (!(reg_read(ohci, OHCI1394_HCControlSet) & OHCI1394_HCControl_softReset))
359 break;
360 mdelay(1);
362 DBGMSG ("Soft reset finished");
366 /* Generate the dma receive prgs and start the context */
367 static void initialize_dma_rcv_ctx(struct dma_rcv_ctx *d, int generate_irq)
369 struct ti_ohci *ohci = (struct ti_ohci*)(d->ohci);
370 int i;
372 ohci1394_stop_context(ohci, d->ctrlClear, NULL);
374 for (i=0; i<d->num_desc; i++) {
375 u32 c;
377 c = DMA_CTL_INPUT_MORE | DMA_CTL_UPDATE | DMA_CTL_BRANCH;
378 if (generate_irq)
379 c |= DMA_CTL_IRQ;
381 d->prg_cpu[i]->control = cpu_to_le32(c | d->buf_size);
383 /* End of descriptor list? */
384 if (i + 1 < d->num_desc) {
385 d->prg_cpu[i]->branchAddress =
386 cpu_to_le32((d->prg_bus[i+1] & 0xfffffff0) | 0x1);
387 } else {
388 d->prg_cpu[i]->branchAddress =
389 cpu_to_le32((d->prg_bus[0] & 0xfffffff0));
392 d->prg_cpu[i]->address = cpu_to_le32(d->buf_bus[i]);
393 d->prg_cpu[i]->status = cpu_to_le32(d->buf_size);
396 d->buf_ind = 0;
397 d->buf_offset = 0;
399 if (d->type == DMA_CTX_ISO) {
400 /* Clear contextControl */
401 reg_write(ohci, d->ctrlClear, 0xffffffff);
403 /* Set bufferFill, isochHeader, multichannel for IR context */
404 reg_write(ohci, d->ctrlSet, 0xd0000000);
406 /* Set the context match register to match on all tags */
407 reg_write(ohci, d->ctxtMatch, 0xf0000000);
409 /* Clear the multi channel mask high and low registers */
410 reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear, 0xffffffff);
411 reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear, 0xffffffff);
413 /* Set up isoRecvIntMask to generate interrupts */
414 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << d->ctx);
417 /* Tell the controller where the first AR program is */
418 reg_write(ohci, d->cmdPtr, d->prg_bus[0] | 0x1);
420 /* Run context */
421 reg_write(ohci, d->ctrlSet, 0x00008000);
423 DBGMSG("Receive DMA ctx=%d initialized", d->ctx);
426 /* Initialize the dma transmit context */
427 static void initialize_dma_trm_ctx(struct dma_trm_ctx *d)
429 struct ti_ohci *ohci = (struct ti_ohci*)(d->ohci);
431 /* Stop the context */
432 ohci1394_stop_context(ohci, d->ctrlClear, NULL);
434 d->prg_ind = 0;
435 d->sent_ind = 0;
436 d->free_prgs = d->num_desc;
437 d->branchAddrPtr = NULL;
438 INIT_LIST_HEAD(&d->fifo_list);
439 INIT_LIST_HEAD(&d->pending_list);
441 if (d->type == DMA_CTX_ISO) {
442 /* enable interrupts */
443 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << d->ctx);
446 DBGMSG("Transmit DMA ctx=%d initialized", d->ctx);
449 /* Count the number of available iso contexts */
450 static int get_nb_iso_ctx(struct ti_ohci *ohci, int reg)
452 int i,ctx=0;
453 u32 tmp;
455 reg_write(ohci, reg, 0xffffffff);
456 tmp = reg_read(ohci, reg);
458 DBGMSG("Iso contexts reg: %08x implemented: %08x", reg, tmp);
460 /* Count the number of contexts */
461 for (i=0; i<32; i++) {
462 if (tmp & 1) ctx++;
463 tmp >>= 1;
465 return ctx;
468 /* Global initialization */
469 static void ohci_initialize(struct ti_ohci *ohci)
471 quadlet_t buf;
472 int num_ports, i;
474 spin_lock_init(&ohci->phy_reg_lock);
476 /* Put some defaults to these undefined bus options */
477 buf = reg_read(ohci, OHCI1394_BusOptions);
478 buf |= 0x60000000; /* Enable CMC and ISC */
479 if (hpsb_disable_irm)
480 buf &= ~0x80000000;
481 else
482 buf |= 0x80000000; /* Enable IRMC */
483 buf &= ~0x00ff0000; /* XXX: Set cyc_clk_acc to zero for now */
484 buf &= ~0x18000000; /* Disable PMC and BMC */
485 reg_write(ohci, OHCI1394_BusOptions, buf);
487 /* Set the bus number */
488 reg_write(ohci, OHCI1394_NodeID, 0x0000ffc0);
490 /* Enable posted writes */
491 reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_postedWriteEnable);
493 /* Clear link control register */
494 reg_write(ohci, OHCI1394_LinkControlClear, 0xffffffff);
496 /* Enable cycle timer and cycle master and set the IRM
497 * contender bit in our self ID packets if appropriate. */
498 reg_write(ohci, OHCI1394_LinkControlSet,
499 OHCI1394_LinkControl_CycleTimerEnable |
500 OHCI1394_LinkControl_CycleMaster);
501 i = get_phy_reg(ohci, 4) | PHY_04_LCTRL;
502 if (hpsb_disable_irm)
503 i &= ~PHY_04_CONTENDER;
504 else
505 i |= PHY_04_CONTENDER;
506 set_phy_reg(ohci, 4, i);
508 /* Set up self-id dma buffer */
509 reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->selfid_buf_bus);
511 /* enable self-id and phys */
512 reg_write(ohci, OHCI1394_LinkControlSet, OHCI1394_LinkControl_RcvSelfID |
513 OHCI1394_LinkControl_RcvPhyPkt);
515 /* Set the Config ROM mapping register */
516 reg_write(ohci, OHCI1394_ConfigROMmap, ohci->csr_config_rom_bus);
518 /* Now get our max packet size */
519 ohci->max_packet_size =
520 1<<(((reg_read(ohci, OHCI1394_BusOptions)>>12)&0xf)+1);
522 /* Don't accept phy packets into AR request context */
523 reg_write(ohci, OHCI1394_LinkControlClear, 0x00000400);
525 /* Clear the interrupt mask */
526 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 0xffffffff);
527 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 0xffffffff);
529 /* Clear the interrupt mask */
530 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 0xffffffff);
531 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 0xffffffff);
533 /* Initialize AR dma */
534 initialize_dma_rcv_ctx(&ohci->ar_req_context, 0);
535 initialize_dma_rcv_ctx(&ohci->ar_resp_context, 0);
537 /* Initialize AT dma */
538 initialize_dma_trm_ctx(&ohci->at_req_context);
539 initialize_dma_trm_ctx(&ohci->at_resp_context);
541 /* Initialize IR Legacy DMA channel mask */
542 ohci->ir_legacy_channels = 0;
544 /* Accept AR requests from all nodes */
545 reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
547 /* Set the address range of the physical response unit.
548 * Most controllers do not implement it as a writable register though.
549 * They will keep a hardwired offset of 0x00010000 and show 0x0 as
550 * register content.
551 * To actually enable physical responses is the job of our interrupt
552 * handler which programs the physical request filter. */
553 reg_write(ohci, OHCI1394_PhyUpperBound,
554 OHCI1394_PHYS_UPPER_BOUND_PROGRAMMED >> 16);
556 DBGMSG("physUpperBoundOffset=%08x",
557 reg_read(ohci, OHCI1394_PhyUpperBound));
559 /* Specify AT retries */
560 reg_write(ohci, OHCI1394_ATRetries,
561 OHCI1394_MAX_AT_REQ_RETRIES |
562 (OHCI1394_MAX_AT_RESP_RETRIES<<4) |
563 (OHCI1394_MAX_PHYS_RESP_RETRIES<<8));
565 /* We don't want hardware swapping */
566 reg_write(ohci, OHCI1394_HCControlClear, OHCI1394_HCControl_noByteSwap);
568 /* Enable interrupts */
569 reg_write(ohci, OHCI1394_IntMaskSet,
570 OHCI1394_unrecoverableError |
571 OHCI1394_masterIntEnable |
572 OHCI1394_busReset |
573 OHCI1394_selfIDComplete |
574 OHCI1394_RSPkt |
575 OHCI1394_RQPkt |
576 OHCI1394_respTxComplete |
577 OHCI1394_reqTxComplete |
578 OHCI1394_isochRx |
579 OHCI1394_isochTx |
580 OHCI1394_postedWriteErr |
581 OHCI1394_cycleTooLong |
582 OHCI1394_cycleInconsistent);
584 /* Enable link */
585 reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_linkEnable);
587 buf = reg_read(ohci, OHCI1394_Version);
588 PRINT(KERN_INFO, "OHCI-1394 %d.%d (PCI): IRQ=[%d] "
589 "MMIO=[%llx-%llx] Max Packet=[%d] IR/IT contexts=[%d/%d]",
590 ((((buf) >> 16) & 0xf) + (((buf) >> 20) & 0xf) * 10),
591 ((((buf) >> 4) & 0xf) + ((buf) & 0xf) * 10), ohci->dev->irq,
592 (unsigned long long)pci_resource_start(ohci->dev, 0),
593 (unsigned long long)pci_resource_start(ohci->dev, 0) + OHCI1394_REGISTER_SIZE - 1,
594 ohci->max_packet_size,
595 ohci->nb_iso_rcv_ctx, ohci->nb_iso_xmit_ctx);
597 /* Check all of our ports to make sure that if anything is
598 * connected, we enable that port. */
599 num_ports = get_phy_reg(ohci, 2) & 0xf;
600 for (i = 0; i < num_ports; i++) {
601 unsigned int status;
603 set_phy_reg(ohci, 7, i);
604 status = get_phy_reg(ohci, 8);
606 if (status & 0x20)
607 set_phy_reg(ohci, 8, status & ~1);
610 /* Serial EEPROM Sanity check. */
611 if ((ohci->max_packet_size < 512) ||
612 (ohci->max_packet_size > 4096)) {
613 /* Serial EEPROM contents are suspect, set a sane max packet
614 * size and print the raw contents for bug reports if verbose
615 * debug is enabled. */
616 #ifdef CONFIG_IEEE1394_VERBOSEDEBUG
617 int i;
618 #endif
620 PRINT(KERN_DEBUG, "Serial EEPROM has suspicious values, "
621 "attempting to setting max_packet_size to 512 bytes");
622 reg_write(ohci, OHCI1394_BusOptions,
623 (reg_read(ohci, OHCI1394_BusOptions) & 0xf007) | 0x8002);
624 ohci->max_packet_size = 512;
625 #ifdef CONFIG_IEEE1394_VERBOSEDEBUG
626 PRINT(KERN_DEBUG, " EEPROM Present: %d",
627 (reg_read(ohci, OHCI1394_Version) >> 24) & 0x1);
628 reg_write(ohci, OHCI1394_GUID_ROM, 0x80000000);
630 for (i = 0;
631 ((i < 1000) &&
632 (reg_read(ohci, OHCI1394_GUID_ROM) & 0x80000000)); i++)
633 udelay(10);
635 for (i = 0; i < 0x20; i++) {
636 reg_write(ohci, OHCI1394_GUID_ROM, 0x02000000);
637 PRINT(KERN_DEBUG, " EEPROM %02x: %02x", i,
638 (reg_read(ohci, OHCI1394_GUID_ROM) >> 16) & 0xff);
640 #endif
645 * Insert a packet in the DMA fifo and generate the DMA prg
646 * FIXME: rewrite the program in order to accept packets crossing
647 * page boundaries.
648 * check also that a single dma descriptor doesn't cross a
649 * page boundary.
651 static void insert_packet(struct ti_ohci *ohci,
652 struct dma_trm_ctx *d, struct hpsb_packet *packet)
654 u32 cycleTimer;
655 int idx = d->prg_ind;
657 DBGMSG("Inserting packet for node " NODE_BUS_FMT
658 ", tlabel=%d, tcode=0x%x, speed=%d",
659 NODE_BUS_ARGS(ohci->host, packet->node_id), packet->tlabel,
660 packet->tcode, packet->speed_code);
662 d->prg_cpu[idx]->begin.address = 0;
663 d->prg_cpu[idx]->begin.branchAddress = 0;
665 if (d->type == DMA_CTX_ASYNC_RESP) {
667 * For response packets, we need to put a timeout value in
668 * the 16 lower bits of the status... let's try 1 sec timeout
670 cycleTimer = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
671 d->prg_cpu[idx]->begin.status = cpu_to_le32(
672 (((((cycleTimer>>25)&0x7)+1)&0x7)<<13) |
673 ((cycleTimer&0x01fff000)>>12));
675 DBGMSG("cycleTimer: %08x timeStamp: %08x",
676 cycleTimer, d->prg_cpu[idx]->begin.status);
677 } else
678 d->prg_cpu[idx]->begin.status = 0;
680 if ( (packet->type == hpsb_async) || (packet->type == hpsb_raw) ) {
682 if (packet->type == hpsb_raw) {
683 d->prg_cpu[idx]->data[0] = cpu_to_le32(OHCI1394_TCODE_PHY<<4);
684 d->prg_cpu[idx]->data[1] = cpu_to_le32(packet->header[0]);
685 d->prg_cpu[idx]->data[2] = cpu_to_le32(packet->header[1]);
686 } else {
687 d->prg_cpu[idx]->data[0] = packet->speed_code<<16 |
688 (packet->header[0] & 0xFFFF);
690 if (packet->tcode == TCODE_ISO_DATA) {
691 /* Sending an async stream packet */
692 d->prg_cpu[idx]->data[1] = packet->header[0] & 0xFFFF0000;
693 } else {
694 /* Sending a normal async request or response */
695 d->prg_cpu[idx]->data[1] =
696 (packet->header[1] & 0xFFFF) |
697 (packet->header[0] & 0xFFFF0000);
698 d->prg_cpu[idx]->data[2] = packet->header[2];
699 d->prg_cpu[idx]->data[3] = packet->header[3];
701 header_le32_to_cpu(d->prg_cpu[idx]->data, packet->tcode);
704 if (packet->data_size) { /* block transmit */
705 if (packet->tcode == TCODE_STREAM_DATA){
706 d->prg_cpu[idx]->begin.control =
707 cpu_to_le32(DMA_CTL_OUTPUT_MORE |
708 DMA_CTL_IMMEDIATE | 0x8);
709 } else {
710 d->prg_cpu[idx]->begin.control =
711 cpu_to_le32(DMA_CTL_OUTPUT_MORE |
712 DMA_CTL_IMMEDIATE | 0x10);
714 d->prg_cpu[idx]->end.control =
715 cpu_to_le32(DMA_CTL_OUTPUT_LAST |
716 DMA_CTL_IRQ |
717 DMA_CTL_BRANCH |
718 packet->data_size);
720 * Check that the packet data buffer
721 * does not cross a page boundary.
723 * XXX Fix this some day. eth1394 seems to trigger
724 * it, but ignoring it doesn't seem to cause a
725 * problem.
727 #if 0
728 if (cross_bound((unsigned long)packet->data,
729 packet->data_size)>0) {
730 /* FIXME: do something about it */
731 PRINT(KERN_ERR,
732 "%s: packet data addr: %p size %Zd bytes "
733 "cross page boundary", __FUNCTION__,
734 packet->data, packet->data_size);
736 #endif
737 d->prg_cpu[idx]->end.address = cpu_to_le32(
738 pci_map_single(ohci->dev, packet->data,
739 packet->data_size,
740 PCI_DMA_TODEVICE));
741 OHCI_DMA_ALLOC("single, block transmit packet");
743 d->prg_cpu[idx]->end.branchAddress = 0;
744 d->prg_cpu[idx]->end.status = 0;
745 if (d->branchAddrPtr)
746 *(d->branchAddrPtr) =
747 cpu_to_le32(d->prg_bus[idx] | 0x3);
748 d->branchAddrPtr =
749 &(d->prg_cpu[idx]->end.branchAddress);
750 } else { /* quadlet transmit */
751 if (packet->type == hpsb_raw)
752 d->prg_cpu[idx]->begin.control =
753 cpu_to_le32(DMA_CTL_OUTPUT_LAST |
754 DMA_CTL_IMMEDIATE |
755 DMA_CTL_IRQ |
756 DMA_CTL_BRANCH |
757 (packet->header_size + 4));
758 else
759 d->prg_cpu[idx]->begin.control =
760 cpu_to_le32(DMA_CTL_OUTPUT_LAST |
761 DMA_CTL_IMMEDIATE |
762 DMA_CTL_IRQ |
763 DMA_CTL_BRANCH |
764 packet->header_size);
766 if (d->branchAddrPtr)
767 *(d->branchAddrPtr) =
768 cpu_to_le32(d->prg_bus[idx] | 0x2);
769 d->branchAddrPtr =
770 &(d->prg_cpu[idx]->begin.branchAddress);
773 } else { /* iso packet */
774 d->prg_cpu[idx]->data[0] = packet->speed_code<<16 |
775 (packet->header[0] & 0xFFFF);
776 d->prg_cpu[idx]->data[1] = packet->header[0] & 0xFFFF0000;
777 header_le32_to_cpu(d->prg_cpu[idx]->data, packet->tcode);
779 d->prg_cpu[idx]->begin.control =
780 cpu_to_le32(DMA_CTL_OUTPUT_MORE |
781 DMA_CTL_IMMEDIATE | 0x8);
782 d->prg_cpu[idx]->end.control =
783 cpu_to_le32(DMA_CTL_OUTPUT_LAST |
784 DMA_CTL_UPDATE |
785 DMA_CTL_IRQ |
786 DMA_CTL_BRANCH |
787 packet->data_size);
788 d->prg_cpu[idx]->end.address = cpu_to_le32(
789 pci_map_single(ohci->dev, packet->data,
790 packet->data_size, PCI_DMA_TODEVICE));
791 OHCI_DMA_ALLOC("single, iso transmit packet");
793 d->prg_cpu[idx]->end.branchAddress = 0;
794 d->prg_cpu[idx]->end.status = 0;
795 DBGMSG("Iso xmit context info: header[%08x %08x]\n"
796 " begin=%08x %08x %08x %08x\n"
797 " %08x %08x %08x %08x\n"
798 " end =%08x %08x %08x %08x",
799 d->prg_cpu[idx]->data[0], d->prg_cpu[idx]->data[1],
800 d->prg_cpu[idx]->begin.control,
801 d->prg_cpu[idx]->begin.address,
802 d->prg_cpu[idx]->begin.branchAddress,
803 d->prg_cpu[idx]->begin.status,
804 d->prg_cpu[idx]->data[0],
805 d->prg_cpu[idx]->data[1],
806 d->prg_cpu[idx]->data[2],
807 d->prg_cpu[idx]->data[3],
808 d->prg_cpu[idx]->end.control,
809 d->prg_cpu[idx]->end.address,
810 d->prg_cpu[idx]->end.branchAddress,
811 d->prg_cpu[idx]->end.status);
812 if (d->branchAddrPtr)
813 *(d->branchAddrPtr) = cpu_to_le32(d->prg_bus[idx] | 0x3);
814 d->branchAddrPtr = &(d->prg_cpu[idx]->end.branchAddress);
816 d->free_prgs--;
818 /* queue the packet in the appropriate context queue */
819 list_add_tail(&packet->driver_list, &d->fifo_list);
820 d->prg_ind = (d->prg_ind + 1) % d->num_desc;
824 * This function fills the FIFO with the (eventual) pending packets
825 * and runs or wakes up the DMA prg if necessary.
827 * The function MUST be called with the d->lock held.
829 static void dma_trm_flush(struct ti_ohci *ohci, struct dma_trm_ctx *d)
831 struct hpsb_packet *packet, *ptmp;
832 int idx = d->prg_ind;
833 int z = 0;
835 /* insert the packets into the dma fifo */
836 list_for_each_entry_safe(packet, ptmp, &d->pending_list, driver_list) {
837 if (!d->free_prgs)
838 break;
840 /* For the first packet only */
841 if (!z)
842 z = (packet->data_size) ? 3 : 2;
844 /* Insert the packet */
845 list_del_init(&packet->driver_list);
846 insert_packet(ohci, d, packet);
849 /* Nothing must have been done, either no free_prgs or no packets */
850 if (z == 0)
851 return;
853 /* Is the context running ? (should be unless it is
854 the first packet to be sent in this context) */
855 if (!(reg_read(ohci, d->ctrlSet) & 0x8000)) {
856 u32 nodeId = reg_read(ohci, OHCI1394_NodeID);
858 DBGMSG("Starting transmit DMA ctx=%d",d->ctx);
859 reg_write(ohci, d->cmdPtr, d->prg_bus[idx] | z);
861 /* Check that the node id is valid, and not 63 */
862 if (!(nodeId & 0x80000000) || (nodeId & 0x3f) == 63)
863 PRINT(KERN_ERR, "Running dma failed because Node ID is not valid");
864 else
865 reg_write(ohci, d->ctrlSet, 0x8000);
866 } else {
867 /* Wake up the dma context if necessary */
868 if (!(reg_read(ohci, d->ctrlSet) & 0x400))
869 DBGMSG("Waking transmit DMA ctx=%d",d->ctx);
871 /* do this always, to avoid race condition */
872 reg_write(ohci, d->ctrlSet, 0x1000);
875 return;
878 /* Transmission of an async or iso packet */
879 static int ohci_transmit(struct hpsb_host *host, struct hpsb_packet *packet)
881 struct ti_ohci *ohci = host->hostdata;
882 struct dma_trm_ctx *d;
883 unsigned long flags;
885 if (packet->data_size > ohci->max_packet_size) {
886 PRINT(KERN_ERR,
887 "Transmit packet size %Zd is too big",
888 packet->data_size);
889 return -EOVERFLOW;
892 /* Decide whether we have an iso, a request, or a response packet */
893 if (packet->type == hpsb_raw)
894 d = &ohci->at_req_context;
895 else if ((packet->tcode == TCODE_ISO_DATA) && (packet->type == hpsb_iso)) {
896 /* The legacy IT DMA context is initialized on first
897 * use. However, the alloc cannot be run from
898 * interrupt context, so we bail out if that is the
899 * case. I don't see anyone sending ISO packets from
900 * interrupt context anyway... */
902 if (ohci->it_legacy_context.ohci == NULL) {
903 if (in_interrupt()) {
904 PRINT(KERN_ERR,
905 "legacy IT context cannot be initialized during interrupt");
906 return -EINVAL;
909 if (alloc_dma_trm_ctx(ohci, &ohci->it_legacy_context,
910 DMA_CTX_ISO, 0, IT_NUM_DESC,
911 OHCI1394_IsoXmitContextBase) < 0) {
912 PRINT(KERN_ERR,
913 "error initializing legacy IT context");
914 return -ENOMEM;
917 initialize_dma_trm_ctx(&ohci->it_legacy_context);
920 d = &ohci->it_legacy_context;
921 } else if ((packet->tcode & 0x02) && (packet->tcode != TCODE_ISO_DATA))
922 d = &ohci->at_resp_context;
923 else
924 d = &ohci->at_req_context;
926 spin_lock_irqsave(&d->lock,flags);
928 list_add_tail(&packet->driver_list, &d->pending_list);
930 dma_trm_flush(ohci, d);
932 spin_unlock_irqrestore(&d->lock,flags);
934 return 0;
937 static int ohci_devctl(struct hpsb_host *host, enum devctl_cmd cmd, int arg)
939 struct ti_ohci *ohci = host->hostdata;
940 int retval = 0;
941 unsigned long flags;
942 int phy_reg;
944 switch (cmd) {
945 case RESET_BUS:
946 switch (arg) {
947 case SHORT_RESET:
948 phy_reg = get_phy_reg(ohci, 5);
949 phy_reg |= 0x40;
950 set_phy_reg(ohci, 5, phy_reg); /* set ISBR */
951 break;
952 case LONG_RESET:
953 phy_reg = get_phy_reg(ohci, 1);
954 phy_reg |= 0x40;
955 set_phy_reg(ohci, 1, phy_reg); /* set IBR */
956 break;
957 case SHORT_RESET_NO_FORCE_ROOT:
958 phy_reg = get_phy_reg(ohci, 1);
959 if (phy_reg & 0x80) {
960 phy_reg &= ~0x80;
961 set_phy_reg(ohci, 1, phy_reg); /* clear RHB */
964 phy_reg = get_phy_reg(ohci, 5);
965 phy_reg |= 0x40;
966 set_phy_reg(ohci, 5, phy_reg); /* set ISBR */
967 break;
968 case LONG_RESET_NO_FORCE_ROOT:
969 phy_reg = get_phy_reg(ohci, 1);
970 phy_reg &= ~0x80;
971 phy_reg |= 0x40;
972 set_phy_reg(ohci, 1, phy_reg); /* clear RHB, set IBR */
973 break;
974 case SHORT_RESET_FORCE_ROOT:
975 phy_reg = get_phy_reg(ohci, 1);
976 if (!(phy_reg & 0x80)) {
977 phy_reg |= 0x80;
978 set_phy_reg(ohci, 1, phy_reg); /* set RHB */
981 phy_reg = get_phy_reg(ohci, 5);
982 phy_reg |= 0x40;
983 set_phy_reg(ohci, 5, phy_reg); /* set ISBR */
984 break;
985 case LONG_RESET_FORCE_ROOT:
986 phy_reg = get_phy_reg(ohci, 1);
987 phy_reg |= 0xc0;
988 set_phy_reg(ohci, 1, phy_reg); /* set RHB and IBR */
989 break;
990 default:
991 retval = -1;
993 break;
995 case GET_CYCLE_COUNTER:
996 retval = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
997 break;
999 case SET_CYCLE_COUNTER:
1000 reg_write(ohci, OHCI1394_IsochronousCycleTimer, arg);
1001 break;
1003 case SET_BUS_ID:
1004 PRINT(KERN_ERR, "devctl command SET_BUS_ID err");
1005 break;
1007 case ACT_CYCLE_MASTER:
1008 if (arg) {
1009 /* check if we are root and other nodes are present */
1010 u32 nodeId = reg_read(ohci, OHCI1394_NodeID);
1011 if ((nodeId & (1<<30)) && (nodeId & 0x3f)) {
1013 * enable cycleTimer, cycleMaster
1015 DBGMSG("Cycle master enabled");
1016 reg_write(ohci, OHCI1394_LinkControlSet,
1017 OHCI1394_LinkControl_CycleTimerEnable |
1018 OHCI1394_LinkControl_CycleMaster);
1020 } else {
1021 /* disable cycleTimer, cycleMaster, cycleSource */
1022 reg_write(ohci, OHCI1394_LinkControlClear,
1023 OHCI1394_LinkControl_CycleTimerEnable |
1024 OHCI1394_LinkControl_CycleMaster |
1025 OHCI1394_LinkControl_CycleSource);
1027 break;
1029 case CANCEL_REQUESTS:
1030 DBGMSG("Cancel request received");
1031 dma_trm_reset(&ohci->at_req_context);
1032 dma_trm_reset(&ohci->at_resp_context);
1033 break;
1035 case ISO_LISTEN_CHANNEL:
1037 u64 mask;
1038 struct dma_rcv_ctx *d = &ohci->ir_legacy_context;
1039 int ir_legacy_active;
1041 if (arg<0 || arg>63) {
1042 PRINT(KERN_ERR,
1043 "%s: IS0 listen channel %d is out of range",
1044 __FUNCTION__, arg);
1045 return -EFAULT;
1048 mask = (u64)0x1<<arg;
1050 spin_lock_irqsave(&ohci->IR_channel_lock, flags);
1052 if (ohci->ISO_channel_usage & mask) {
1053 PRINT(KERN_ERR,
1054 "%s: IS0 listen channel %d is already used",
1055 __FUNCTION__, arg);
1056 spin_unlock_irqrestore(&ohci->IR_channel_lock, flags);
1057 return -EFAULT;
1060 ir_legacy_active = ohci->ir_legacy_channels;
1062 ohci->ISO_channel_usage |= mask;
1063 ohci->ir_legacy_channels |= mask;
1065 spin_unlock_irqrestore(&ohci->IR_channel_lock, flags);
1067 if (!ir_legacy_active) {
1068 if (ohci1394_register_iso_tasklet(ohci,
1069 &ohci->ir_legacy_tasklet) < 0) {
1070 PRINT(KERN_ERR, "No IR DMA context available");
1071 return -EBUSY;
1074 /* the IR context can be assigned to any DMA context
1075 * by ohci1394_register_iso_tasklet */
1076 d->ctx = ohci->ir_legacy_tasklet.context;
1077 d->ctrlSet = OHCI1394_IsoRcvContextControlSet +
1078 32*d->ctx;
1079 d->ctrlClear = OHCI1394_IsoRcvContextControlClear +
1080 32*d->ctx;
1081 d->cmdPtr = OHCI1394_IsoRcvCommandPtr + 32*d->ctx;
1082 d->ctxtMatch = OHCI1394_IsoRcvContextMatch + 32*d->ctx;
1084 initialize_dma_rcv_ctx(&ohci->ir_legacy_context, 1);
1086 if (printk_ratelimit())
1087 DBGMSG("IR legacy activated");
1090 spin_lock_irqsave(&ohci->IR_channel_lock, flags);
1092 if (arg>31)
1093 reg_write(ohci, OHCI1394_IRMultiChanMaskHiSet,
1094 1<<(arg-32));
1095 else
1096 reg_write(ohci, OHCI1394_IRMultiChanMaskLoSet,
1097 1<<arg);
1099 spin_unlock_irqrestore(&ohci->IR_channel_lock, flags);
1100 DBGMSG("Listening enabled on channel %d", arg);
1101 break;
1103 case ISO_UNLISTEN_CHANNEL:
1105 u64 mask;
1107 if (arg<0 || arg>63) {
1108 PRINT(KERN_ERR,
1109 "%s: IS0 unlisten channel %d is out of range",
1110 __FUNCTION__, arg);
1111 return -EFAULT;
1114 mask = (u64)0x1<<arg;
1116 spin_lock_irqsave(&ohci->IR_channel_lock, flags);
1118 if (!(ohci->ISO_channel_usage & mask)) {
1119 PRINT(KERN_ERR,
1120 "%s: IS0 unlisten channel %d is not used",
1121 __FUNCTION__, arg);
1122 spin_unlock_irqrestore(&ohci->IR_channel_lock, flags);
1123 return -EFAULT;
1126 ohci->ISO_channel_usage &= ~mask;
1127 ohci->ir_legacy_channels &= ~mask;
1129 if (arg>31)
1130 reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear,
1131 1<<(arg-32));
1132 else
1133 reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear,
1134 1<<arg);
1136 spin_unlock_irqrestore(&ohci->IR_channel_lock, flags);
1137 DBGMSG("Listening disabled on channel %d", arg);
1139 if (ohci->ir_legacy_channels == 0) {
1140 stop_dma_rcv_ctx(&ohci->ir_legacy_context);
1141 DBGMSG("ISO legacy receive context stopped");
1144 break;
1146 default:
1147 PRINT_G(KERN_ERR, "ohci_devctl cmd %d not implemented yet",
1148 cmd);
1149 break;
1151 return retval;
1154 /***********************************
1155 * rawiso ISO reception *
1156 ***********************************/
1159 We use either buffer-fill or packet-per-buffer DMA mode. The DMA
1160 buffer is split into "blocks" (regions described by one DMA
1161 descriptor). Each block must be one page or less in size, and
1162 must not cross a page boundary.
1164 There is one little wrinkle with buffer-fill mode: a packet that
1165 starts in the final block may wrap around into the first block. But
1166 the user API expects all packets to be contiguous. Our solution is
1167 to keep the very last page of the DMA buffer in reserve - if a
1168 packet spans the gap, we copy its tail into this page.
1171 struct ohci_iso_recv {
1172 struct ti_ohci *ohci;
1174 struct ohci1394_iso_tasklet task;
1175 int task_active;
1177 enum { BUFFER_FILL_MODE = 0,
1178 PACKET_PER_BUFFER_MODE = 1 } dma_mode;
1180 /* memory and PCI mapping for the DMA descriptors */
1181 struct dma_prog_region prog;
1182 struct dma_cmd *block; /* = (struct dma_cmd*) prog.virt */
1184 /* how many DMA blocks fit in the buffer */
1185 unsigned int nblocks;
1187 /* stride of DMA blocks */
1188 unsigned int buf_stride;
1190 /* number of blocks to batch between interrupts */
1191 int block_irq_interval;
1193 /* block that DMA will finish next */
1194 int block_dma;
1196 /* (buffer-fill only) block that the reader will release next */
1197 int block_reader;
1199 /* (buffer-fill only) bytes of buffer the reader has released,
1200 less than one block */
1201 int released_bytes;
1203 /* (buffer-fill only) buffer offset at which the next packet will appear */
1204 int dma_offset;
1206 /* OHCI DMA context control registers */
1207 u32 ContextControlSet;
1208 u32 ContextControlClear;
1209 u32 CommandPtr;
1210 u32 ContextMatch;
1213 static void ohci_iso_recv_task(unsigned long data);
1214 static void ohci_iso_recv_stop(struct hpsb_iso *iso);
1215 static void ohci_iso_recv_shutdown(struct hpsb_iso *iso);
1216 static int ohci_iso_recv_start(struct hpsb_iso *iso, int cycle, int tag_mask, int sync);
1217 static void ohci_iso_recv_program(struct hpsb_iso *iso);
1219 static int ohci_iso_recv_init(struct hpsb_iso *iso)
1221 struct ti_ohci *ohci = iso->host->hostdata;
1222 struct ohci_iso_recv *recv;
1223 int ctx;
1224 int ret = -ENOMEM;
1226 recv = kmalloc(sizeof(*recv), GFP_KERNEL);
1227 if (!recv)
1228 return -ENOMEM;
1230 iso->hostdata = recv;
1231 recv->ohci = ohci;
1232 recv->task_active = 0;
1233 dma_prog_region_init(&recv->prog);
1234 recv->block = NULL;
1236 /* use buffer-fill mode, unless irq_interval is 1
1237 (note: multichannel requires buffer-fill) */
1239 if (((iso->irq_interval == 1 && iso->dma_mode == HPSB_ISO_DMA_OLD_ABI) ||
1240 iso->dma_mode == HPSB_ISO_DMA_PACKET_PER_BUFFER) && iso->channel != -1) {
1241 recv->dma_mode = PACKET_PER_BUFFER_MODE;
1242 } else {
1243 recv->dma_mode = BUFFER_FILL_MODE;
1246 /* set nblocks, buf_stride, block_irq_interval */
1248 if (recv->dma_mode == BUFFER_FILL_MODE) {
1249 recv->buf_stride = PAGE_SIZE;
1251 /* one block per page of data in the DMA buffer, minus the final guard page */
1252 recv->nblocks = iso->buf_size/PAGE_SIZE - 1;
1253 if (recv->nblocks < 3) {
1254 DBGMSG("ohci_iso_recv_init: DMA buffer too small");
1255 goto err;
1258 /* iso->irq_interval is in packets - translate that to blocks */
1259 if (iso->irq_interval == 1)
1260 recv->block_irq_interval = 1;
1261 else
1262 recv->block_irq_interval = iso->irq_interval *
1263 ((recv->nblocks+1)/iso->buf_packets);
1264 if (recv->block_irq_interval*4 > recv->nblocks)
1265 recv->block_irq_interval = recv->nblocks/4;
1266 if (recv->block_irq_interval < 1)
1267 recv->block_irq_interval = 1;
1269 } else {
1270 int max_packet_size;
1272 recv->nblocks = iso->buf_packets;
1273 recv->block_irq_interval = iso->irq_interval;
1274 if (recv->block_irq_interval * 4 > iso->buf_packets)
1275 recv->block_irq_interval = iso->buf_packets / 4;
1276 if (recv->block_irq_interval < 1)
1277 recv->block_irq_interval = 1;
1279 /* choose a buffer stride */
1280 /* must be a power of 2, and <= PAGE_SIZE */
1282 max_packet_size = iso->buf_size / iso->buf_packets;
1284 for (recv->buf_stride = 8; recv->buf_stride < max_packet_size;
1285 recv->buf_stride *= 2);
1287 if (recv->buf_stride*iso->buf_packets > iso->buf_size ||
1288 recv->buf_stride > PAGE_SIZE) {
1289 /* this shouldn't happen, but anyway... */
1290 DBGMSG("ohci_iso_recv_init: problem choosing a buffer stride");
1291 goto err;
1295 recv->block_reader = 0;
1296 recv->released_bytes = 0;
1297 recv->block_dma = 0;
1298 recv->dma_offset = 0;
1300 /* size of DMA program = one descriptor per block */
1301 if (dma_prog_region_alloc(&recv->prog,
1302 sizeof(struct dma_cmd) * recv->nblocks,
1303 recv->ohci->dev))
1304 goto err;
1306 recv->block = (struct dma_cmd*) recv->prog.kvirt;
1308 ohci1394_init_iso_tasklet(&recv->task,
1309 iso->channel == -1 ? OHCI_ISO_MULTICHANNEL_RECEIVE :
1310 OHCI_ISO_RECEIVE,
1311 ohci_iso_recv_task, (unsigned long) iso);
1313 if (ohci1394_register_iso_tasklet(recv->ohci, &recv->task) < 0) {
1314 ret = -EBUSY;
1315 goto err;
1318 recv->task_active = 1;
1320 /* recv context registers are spaced 32 bytes apart */
1321 ctx = recv->task.context;
1322 recv->ContextControlSet = OHCI1394_IsoRcvContextControlSet + 32 * ctx;
1323 recv->ContextControlClear = OHCI1394_IsoRcvContextControlClear + 32 * ctx;
1324 recv->CommandPtr = OHCI1394_IsoRcvCommandPtr + 32 * ctx;
1325 recv->ContextMatch = OHCI1394_IsoRcvContextMatch + 32 * ctx;
1327 if (iso->channel == -1) {
1328 /* clear multi-channel selection mask */
1329 reg_write(recv->ohci, OHCI1394_IRMultiChanMaskHiClear, 0xFFFFFFFF);
1330 reg_write(recv->ohci, OHCI1394_IRMultiChanMaskLoClear, 0xFFFFFFFF);
1333 /* write the DMA program */
1334 ohci_iso_recv_program(iso);
1336 DBGMSG("ohci_iso_recv_init: %s mode, DMA buffer is %lu pages"
1337 " (%u bytes), using %u blocks, buf_stride %u, block_irq_interval %d",
1338 recv->dma_mode == BUFFER_FILL_MODE ?
1339 "buffer-fill" : "packet-per-buffer",
1340 iso->buf_size/PAGE_SIZE, iso->buf_size,
1341 recv->nblocks, recv->buf_stride, recv->block_irq_interval);
1343 return 0;
1345 err:
1346 ohci_iso_recv_shutdown(iso);
1347 return ret;
1350 static void ohci_iso_recv_stop(struct hpsb_iso *iso)
1352 struct ohci_iso_recv *recv = iso->hostdata;
1354 /* disable interrupts */
1355 reg_write(recv->ohci, OHCI1394_IsoRecvIntMaskClear, 1 << recv->task.context);
1357 /* halt DMA */
1358 ohci1394_stop_context(recv->ohci, recv->ContextControlClear, NULL);
1361 static void ohci_iso_recv_shutdown(struct hpsb_iso *iso)
1363 struct ohci_iso_recv *recv = iso->hostdata;
1365 if (recv->task_active) {
1366 ohci_iso_recv_stop(iso);
1367 ohci1394_unregister_iso_tasklet(recv->ohci, &recv->task);
1368 recv->task_active = 0;
1371 dma_prog_region_free(&recv->prog);
1372 kfree(recv);
1373 iso->hostdata = NULL;
1376 /* set up a "gapped" ring buffer DMA program */
1377 static void ohci_iso_recv_program(struct hpsb_iso *iso)
1379 struct ohci_iso_recv *recv = iso->hostdata;
1380 int blk;
1382 /* address of 'branch' field in previous DMA descriptor */
1383 u32 *prev_branch = NULL;
1385 for (blk = 0; blk < recv->nblocks; blk++) {
1386 u32 control;
1388 /* the DMA descriptor */
1389 struct dma_cmd *cmd = &recv->block[blk];
1391 /* offset of the DMA descriptor relative to the DMA prog buffer */
1392 unsigned long prog_offset = blk * sizeof(struct dma_cmd);
1394 /* offset of this packet's data within the DMA buffer */
1395 unsigned long buf_offset = blk * recv->buf_stride;
1397 if (recv->dma_mode == BUFFER_FILL_MODE) {
1398 control = 2 << 28; /* INPUT_MORE */
1399 } else {
1400 control = 3 << 28; /* INPUT_LAST */
1403 control |= 8 << 24; /* s = 1, update xferStatus and resCount */
1405 /* interrupt on last block, and at intervals */
1406 if (blk == recv->nblocks-1 || (blk % recv->block_irq_interval) == 0) {
1407 control |= 3 << 20; /* want interrupt */
1410 control |= 3 << 18; /* enable branch to address */
1411 control |= recv->buf_stride;
1413 cmd->control = cpu_to_le32(control);
1414 cmd->address = cpu_to_le32(dma_region_offset_to_bus(&iso->data_buf, buf_offset));
1415 cmd->branchAddress = 0; /* filled in on next loop */
1416 cmd->status = cpu_to_le32(recv->buf_stride);
1418 /* link the previous descriptor to this one */
1419 if (prev_branch) {
1420 *prev_branch = cpu_to_le32(dma_prog_region_offset_to_bus(&recv->prog, prog_offset) | 1);
1423 prev_branch = &cmd->branchAddress;
1426 /* the final descriptor's branch address and Z should be left at 0 */
1429 /* listen or unlisten to a specific channel (multi-channel mode only) */
1430 static void ohci_iso_recv_change_channel(struct hpsb_iso *iso, unsigned char channel, int listen)
1432 struct ohci_iso_recv *recv = iso->hostdata;
1433 int reg, i;
1435 if (channel < 32) {
1436 reg = listen ? OHCI1394_IRMultiChanMaskLoSet : OHCI1394_IRMultiChanMaskLoClear;
1437 i = channel;
1438 } else {
1439 reg = listen ? OHCI1394_IRMultiChanMaskHiSet : OHCI1394_IRMultiChanMaskHiClear;
1440 i = channel - 32;
1443 reg_write(recv->ohci, reg, (1 << i));
1445 /* issue a dummy read to force all PCI writes to be posted immediately */
1446 mb();
1447 reg_read(recv->ohci, OHCI1394_IsochronousCycleTimer);
1450 static void ohci_iso_recv_set_channel_mask(struct hpsb_iso *iso, u64 mask)
1452 struct ohci_iso_recv *recv = iso->hostdata;
1453 int i;
1455 for (i = 0; i < 64; i++) {
1456 if (mask & (1ULL << i)) {
1457 if (i < 32)
1458 reg_write(recv->ohci, OHCI1394_IRMultiChanMaskLoSet, (1 << i));
1459 else
1460 reg_write(recv->ohci, OHCI1394_IRMultiChanMaskHiSet, (1 << (i-32)));
1461 } else {
1462 if (i < 32)
1463 reg_write(recv->ohci, OHCI1394_IRMultiChanMaskLoClear, (1 << i));
1464 else
1465 reg_write(recv->ohci, OHCI1394_IRMultiChanMaskHiClear, (1 << (i-32)));
1469 /* issue a dummy read to force all PCI writes to be posted immediately */
1470 mb();
1471 reg_read(recv->ohci, OHCI1394_IsochronousCycleTimer);
1474 static int ohci_iso_recv_start(struct hpsb_iso *iso, int cycle, int tag_mask, int sync)
1476 struct ohci_iso_recv *recv = iso->hostdata;
1477 struct ti_ohci *ohci = recv->ohci;
1478 u32 command, contextMatch;
1480 reg_write(recv->ohci, recv->ContextControlClear, 0xFFFFFFFF);
1481 wmb();
1483 /* always keep ISO headers */
1484 command = (1 << 30);
1486 if (recv->dma_mode == BUFFER_FILL_MODE)
1487 command |= (1 << 31);
1489 reg_write(recv->ohci, recv->ContextControlSet, command);
1491 /* match on specified tags */
1492 contextMatch = tag_mask << 28;
1494 if (iso->channel == -1) {
1495 /* enable multichannel reception */
1496 reg_write(recv->ohci, recv->ContextControlSet, (1 << 28));
1497 } else {
1498 /* listen on channel */
1499 contextMatch |= iso->channel;
1502 if (cycle != -1) {
1503 u32 seconds;
1505 /* enable cycleMatch */
1506 reg_write(recv->ohci, recv->ContextControlSet, (1 << 29));
1508 /* set starting cycle */
1509 cycle &= 0x1FFF;
1511 /* 'cycle' is only mod 8000, but we also need two 'seconds' bits -
1512 just snarf them from the current time */
1513 seconds = reg_read(recv->ohci, OHCI1394_IsochronousCycleTimer) >> 25;
1515 /* advance one second to give some extra time for DMA to start */
1516 seconds += 1;
1518 cycle |= (seconds & 3) << 13;
1520 contextMatch |= cycle << 12;
1523 if (sync != -1) {
1524 /* set sync flag on first DMA descriptor */
1525 struct dma_cmd *cmd = &recv->block[recv->block_dma];
1526 cmd->control |= cpu_to_le32(DMA_CTL_WAIT);
1528 /* match sync field */
1529 contextMatch |= (sync&0xf)<<8;
1532 reg_write(recv->ohci, recv->ContextMatch, contextMatch);
1534 /* address of first descriptor block */
1535 command = dma_prog_region_offset_to_bus(&recv->prog,
1536 recv->block_dma * sizeof(struct dma_cmd));
1537 command |= 1; /* Z=1 */
1539 reg_write(recv->ohci, recv->CommandPtr, command);
1541 /* enable interrupts */
1542 reg_write(recv->ohci, OHCI1394_IsoRecvIntMaskSet, 1 << recv->task.context);
1544 wmb();
1546 /* run */
1547 reg_write(recv->ohci, recv->ContextControlSet, 0x8000);
1549 /* issue a dummy read of the cycle timer register to force
1550 all PCI writes to be posted immediately */
1551 mb();
1552 reg_read(recv->ohci, OHCI1394_IsochronousCycleTimer);
1554 /* check RUN */
1555 if (!(reg_read(recv->ohci, recv->ContextControlSet) & 0x8000)) {
1556 PRINT(KERN_ERR,
1557 "Error starting IR DMA (ContextControl 0x%08x)\n",
1558 reg_read(recv->ohci, recv->ContextControlSet));
1559 return -1;
1562 return 0;
1565 static void ohci_iso_recv_release_block(struct ohci_iso_recv *recv, int block)
1567 /* re-use the DMA descriptor for the block */
1568 /* by linking the previous descriptor to it */
1570 int next_i = block;
1571 int prev_i = (next_i == 0) ? (recv->nblocks - 1) : (next_i - 1);
1573 struct dma_cmd *next = &recv->block[next_i];
1574 struct dma_cmd *prev = &recv->block[prev_i];
1576 /* ignore out-of-range requests */
1577 if ((block < 0) || (block > recv->nblocks))
1578 return;
1580 /* 'next' becomes the new end of the DMA chain,
1581 so disable branch and enable interrupt */
1582 next->branchAddress = 0;
1583 next->control |= cpu_to_le32(3 << 20);
1584 next->status = cpu_to_le32(recv->buf_stride);
1586 /* link prev to next */
1587 prev->branchAddress = cpu_to_le32(dma_prog_region_offset_to_bus(&recv->prog,
1588 sizeof(struct dma_cmd) * next_i)
1589 | 1); /* Z=1 */
1591 /* disable interrupt on previous DMA descriptor, except at intervals */
1592 if ((prev_i % recv->block_irq_interval) == 0) {
1593 prev->control |= cpu_to_le32(3 << 20); /* enable interrupt */
1594 } else {
1595 prev->control &= cpu_to_le32(~(3<<20)); /* disable interrupt */
1597 wmb();
1599 /* wake up DMA in case it fell asleep */
1600 reg_write(recv->ohci, recv->ContextControlSet, (1 << 12));
1603 static void ohci_iso_recv_bufferfill_release(struct ohci_iso_recv *recv,
1604 struct hpsb_iso_packet_info *info)
1606 /* release the memory where the packet was */
1607 recv->released_bytes += info->total_len;
1609 /* have we released enough memory for one block? */
1610 while (recv->released_bytes > recv->buf_stride) {
1611 ohci_iso_recv_release_block(recv, recv->block_reader);
1612 recv->block_reader = (recv->block_reader + 1) % recv->nblocks;
1613 recv->released_bytes -= recv->buf_stride;
1617 static inline void ohci_iso_recv_release(struct hpsb_iso *iso, struct hpsb_iso_packet_info *info)
1619 struct ohci_iso_recv *recv = iso->hostdata;
1620 if (recv->dma_mode == BUFFER_FILL_MODE) {
1621 ohci_iso_recv_bufferfill_release(recv, info);
1622 } else {
1623 ohci_iso_recv_release_block(recv, info - iso->infos);
1627 /* parse all packets from blocks that have been fully received */
1628 static void ohci_iso_recv_bufferfill_parse(struct hpsb_iso *iso, struct ohci_iso_recv *recv)
1630 int wake = 0;
1631 int runaway = 0;
1632 struct ti_ohci *ohci = recv->ohci;
1634 while (1) {
1635 /* we expect the next parsable packet to begin at recv->dma_offset */
1636 /* note: packet layout is as shown in section 10.6.1.1 of the OHCI spec */
1638 unsigned int offset;
1639 unsigned short len, cycle, total_len;
1640 unsigned char channel, tag, sy;
1642 unsigned char *p = iso->data_buf.kvirt;
1644 unsigned int this_block = recv->dma_offset/recv->buf_stride;
1646 /* don't loop indefinitely */
1647 if (runaway++ > 100000) {
1648 atomic_inc(&iso->overflows);
1649 PRINT(KERN_ERR,
1650 "IR DMA error - Runaway during buffer parsing!\n");
1651 break;
1654 /* stop parsing once we arrive at block_dma (i.e. don't get ahead of DMA) */
1655 if (this_block == recv->block_dma)
1656 break;
1658 wake = 1;
1660 /* parse data length, tag, channel, and sy */
1662 /* note: we keep our own local copies of 'len' and 'offset'
1663 so the user can't mess with them by poking in the mmap area */
1665 len = p[recv->dma_offset+2] | (p[recv->dma_offset+3] << 8);
1667 if (len > 4096) {
1668 PRINT(KERN_ERR,
1669 "IR DMA error - bogus 'len' value %u\n", len);
1672 channel = p[recv->dma_offset+1] & 0x3F;
1673 tag = p[recv->dma_offset+1] >> 6;
1674 sy = p[recv->dma_offset+0] & 0xF;
1676 /* advance to data payload */
1677 recv->dma_offset += 4;
1679 /* check for wrap-around */
1680 if (recv->dma_offset >= recv->buf_stride*recv->nblocks) {
1681 recv->dma_offset -= recv->buf_stride*recv->nblocks;
1684 /* dma_offset now points to the first byte of the data payload */
1685 offset = recv->dma_offset;
1687 /* advance to xferStatus/timeStamp */
1688 recv->dma_offset += len;
1690 total_len = len + 8; /* 8 bytes header+trailer in OHCI packet */
1691 /* payload is padded to 4 bytes */
1692 if (len % 4) {
1693 recv->dma_offset += 4 - (len%4);
1694 total_len += 4 - (len%4);
1697 /* check for wrap-around */
1698 if (recv->dma_offset >= recv->buf_stride*recv->nblocks) {
1699 /* uh oh, the packet data wraps from the last
1700 to the first DMA block - make the packet
1701 contiguous by copying its "tail" into the
1702 guard page */
1704 int guard_off = recv->buf_stride*recv->nblocks;
1705 int tail_len = len - (guard_off - offset);
1707 if (tail_len > 0 && tail_len < recv->buf_stride) {
1708 memcpy(iso->data_buf.kvirt + guard_off,
1709 iso->data_buf.kvirt,
1710 tail_len);
1713 recv->dma_offset -= recv->buf_stride*recv->nblocks;
1716 /* parse timestamp */
1717 cycle = p[recv->dma_offset+0] | (p[recv->dma_offset+1]<<8);
1718 cycle &= 0x1FFF;
1720 /* advance to next packet */
1721 recv->dma_offset += 4;
1723 /* check for wrap-around */
1724 if (recv->dma_offset >= recv->buf_stride*recv->nblocks) {
1725 recv->dma_offset -= recv->buf_stride*recv->nblocks;
1728 hpsb_iso_packet_received(iso, offset, len, total_len, cycle, channel, tag, sy);
1731 if (wake)
1732 hpsb_iso_wake(iso);
1735 static void ohci_iso_recv_bufferfill_task(struct hpsb_iso *iso, struct ohci_iso_recv *recv)
1737 int loop;
1738 struct ti_ohci *ohci = recv->ohci;
1740 /* loop over all blocks */
1741 for (loop = 0; loop < recv->nblocks; loop++) {
1743 /* check block_dma to see if it's done */
1744 struct dma_cmd *im = &recv->block[recv->block_dma];
1746 /* check the DMA descriptor for new writes to xferStatus */
1747 u16 xferstatus = le32_to_cpu(im->status) >> 16;
1749 /* rescount is the number of bytes *remaining to be written* in the block */
1750 u16 rescount = le32_to_cpu(im->status) & 0xFFFF;
1752 unsigned char event = xferstatus & 0x1F;
1754 if (!event) {
1755 /* nothing has happened to this block yet */
1756 break;
1759 if (event != 0x11) {
1760 atomic_inc(&iso->overflows);
1761 PRINT(KERN_ERR,
1762 "IR DMA error - OHCI error code 0x%02x\n", event);
1765 if (rescount != 0) {
1766 /* the card is still writing to this block;
1767 we can't touch it until it's done */
1768 break;
1771 /* OK, the block is finished... */
1773 /* sync our view of the block */
1774 dma_region_sync_for_cpu(&iso->data_buf, recv->block_dma*recv->buf_stride, recv->buf_stride);
1776 /* reset the DMA descriptor */
1777 im->status = recv->buf_stride;
1779 /* advance block_dma */
1780 recv->block_dma = (recv->block_dma + 1) % recv->nblocks;
1782 if ((recv->block_dma+1) % recv->nblocks == recv->block_reader) {
1783 atomic_inc(&iso->overflows);
1784 DBGMSG("ISO reception overflow - "
1785 "ran out of DMA blocks");
1789 /* parse any packets that have arrived */
1790 ohci_iso_recv_bufferfill_parse(iso, recv);
1793 static void ohci_iso_recv_packetperbuf_task(struct hpsb_iso *iso, struct ohci_iso_recv *recv)
1795 int count;
1796 int wake = 0;
1797 struct ti_ohci *ohci = recv->ohci;
1799 /* loop over the entire buffer */
1800 for (count = 0; count < recv->nblocks; count++) {
1801 u32 packet_len = 0;
1803 /* pointer to the DMA descriptor */
1804 struct dma_cmd *il = ((struct dma_cmd*) recv->prog.kvirt) + iso->pkt_dma;
1806 /* check the DMA descriptor for new writes to xferStatus */
1807 u16 xferstatus = le32_to_cpu(il->status) >> 16;
1808 u16 rescount = le32_to_cpu(il->status) & 0xFFFF;
1810 unsigned char event = xferstatus & 0x1F;
1812 if (!event) {
1813 /* this packet hasn't come in yet; we are done for now */
1814 goto out;
1817 if (event == 0x11) {
1818 /* packet received successfully! */
1820 /* rescount is the number of bytes *remaining* in the packet buffer,
1821 after the packet was written */
1822 packet_len = recv->buf_stride - rescount;
1824 } else if (event == 0x02) {
1825 PRINT(KERN_ERR, "IR DMA error - packet too long for buffer\n");
1826 } else if (event) {
1827 PRINT(KERN_ERR, "IR DMA error - OHCI error code 0x%02x\n", event);
1830 /* sync our view of the buffer */
1831 dma_region_sync_for_cpu(&iso->data_buf, iso->pkt_dma * recv->buf_stride, recv->buf_stride);
1833 /* record the per-packet info */
1835 /* iso header is 8 bytes ahead of the data payload */
1836 unsigned char *hdr;
1838 unsigned int offset;
1839 unsigned short cycle;
1840 unsigned char channel, tag, sy;
1842 offset = iso->pkt_dma * recv->buf_stride;
1843 hdr = iso->data_buf.kvirt + offset;
1845 /* skip iso header */
1846 offset += 8;
1847 packet_len -= 8;
1849 cycle = (hdr[0] | (hdr[1] << 8)) & 0x1FFF;
1850 channel = hdr[5] & 0x3F;
1851 tag = hdr[5] >> 6;
1852 sy = hdr[4] & 0xF;
1854 hpsb_iso_packet_received(iso, offset, packet_len,
1855 recv->buf_stride, cycle, channel, tag, sy);
1858 /* reset the DMA descriptor */
1859 il->status = recv->buf_stride;
1861 wake = 1;
1862 recv->block_dma = iso->pkt_dma;
1865 out:
1866 if (wake)
1867 hpsb_iso_wake(iso);
1870 static void ohci_iso_recv_task(unsigned long data)
1872 struct hpsb_iso *iso = (struct hpsb_iso*) data;
1873 struct ohci_iso_recv *recv = iso->hostdata;
1875 if (recv->dma_mode == BUFFER_FILL_MODE)
1876 ohci_iso_recv_bufferfill_task(iso, recv);
1877 else
1878 ohci_iso_recv_packetperbuf_task(iso, recv);
1881 /***********************************
1882 * rawiso ISO transmission *
1883 ***********************************/
1885 struct ohci_iso_xmit {
1886 struct ti_ohci *ohci;
1887 struct dma_prog_region prog;
1888 struct ohci1394_iso_tasklet task;
1889 int task_active;
1891 u32 ContextControlSet;
1892 u32 ContextControlClear;
1893 u32 CommandPtr;
1896 /* transmission DMA program:
1897 one OUTPUT_MORE_IMMEDIATE for the IT header
1898 one OUTPUT_LAST for the buffer data */
1900 struct iso_xmit_cmd {
1901 struct dma_cmd output_more_immediate;
1902 u8 iso_hdr[8];
1903 u32 unused[2];
1904 struct dma_cmd output_last;
1907 static int ohci_iso_xmit_init(struct hpsb_iso *iso);
1908 static int ohci_iso_xmit_start(struct hpsb_iso *iso, int cycle);
1909 static void ohci_iso_xmit_shutdown(struct hpsb_iso *iso);
1910 static void ohci_iso_xmit_task(unsigned long data);
1912 static int ohci_iso_xmit_init(struct hpsb_iso *iso)
1914 struct ohci_iso_xmit *xmit;
1915 unsigned int prog_size;
1916 int ctx;
1917 int ret = -ENOMEM;
1919 xmit = kmalloc(sizeof(*xmit), GFP_KERNEL);
1920 if (!xmit)
1921 return -ENOMEM;
1923 iso->hostdata = xmit;
1924 xmit->ohci = iso->host->hostdata;
1925 xmit->task_active = 0;
1927 dma_prog_region_init(&xmit->prog);
1929 prog_size = sizeof(struct iso_xmit_cmd) * iso->buf_packets;
1931 if (dma_prog_region_alloc(&xmit->prog, prog_size, xmit->ohci->dev))
1932 goto err;
1934 ohci1394_init_iso_tasklet(&xmit->task, OHCI_ISO_TRANSMIT,
1935 ohci_iso_xmit_task, (unsigned long) iso);
1937 if (ohci1394_register_iso_tasklet(xmit->ohci, &xmit->task) < 0) {
1938 ret = -EBUSY;
1939 goto err;
1942 xmit->task_active = 1;
1944 /* xmit context registers are spaced 16 bytes apart */
1945 ctx = xmit->task.context;
1946 xmit->ContextControlSet = OHCI1394_IsoXmitContextControlSet + 16 * ctx;
1947 xmit->ContextControlClear = OHCI1394_IsoXmitContextControlClear + 16 * ctx;
1948 xmit->CommandPtr = OHCI1394_IsoXmitCommandPtr + 16 * ctx;
1950 return 0;
1952 err:
1953 ohci_iso_xmit_shutdown(iso);
1954 return ret;
1957 static void ohci_iso_xmit_stop(struct hpsb_iso *iso)
1959 struct ohci_iso_xmit *xmit = iso->hostdata;
1960 struct ti_ohci *ohci = xmit->ohci;
1962 /* disable interrupts */
1963 reg_write(xmit->ohci, OHCI1394_IsoXmitIntMaskClear, 1 << xmit->task.context);
1965 /* halt DMA */
1966 if (ohci1394_stop_context(xmit->ohci, xmit->ContextControlClear, NULL)) {
1967 /* XXX the DMA context will lock up if you try to send too much data! */
1968 PRINT(KERN_ERR,
1969 "you probably exceeded the OHCI card's bandwidth limit - "
1970 "reload the module and reduce xmit bandwidth");
1974 static void ohci_iso_xmit_shutdown(struct hpsb_iso *iso)
1976 struct ohci_iso_xmit *xmit = iso->hostdata;
1978 if (xmit->task_active) {
1979 ohci_iso_xmit_stop(iso);
1980 ohci1394_unregister_iso_tasklet(xmit->ohci, &xmit->task);
1981 xmit->task_active = 0;
1984 dma_prog_region_free(&xmit->prog);
1985 kfree(xmit);
1986 iso->hostdata = NULL;
1989 static void ohci_iso_xmit_task(unsigned long data)
1991 struct hpsb_iso *iso = (struct hpsb_iso*) data;
1992 struct ohci_iso_xmit *xmit = iso->hostdata;
1993 struct ti_ohci *ohci = xmit->ohci;
1994 int wake = 0;
1995 int count;
1997 /* check the whole buffer if necessary, starting at pkt_dma */
1998 for (count = 0; count < iso->buf_packets; count++) {
1999 int cycle;
2001 /* DMA descriptor */
2002 struct iso_xmit_cmd *cmd = dma_region_i(&xmit->prog, struct iso_xmit_cmd, iso->pkt_dma);
2004 /* check for new writes to xferStatus */
2005 u16 xferstatus = le32_to_cpu(cmd->output_last.status) >> 16;
2006 u8 event = xferstatus & 0x1F;
2008 if (!event) {
2009 /* packet hasn't been sent yet; we are done for now */
2010 break;
2013 if (event != 0x11)
2014 PRINT(KERN_ERR,
2015 "IT DMA error - OHCI error code 0x%02x\n", event);
2017 /* at least one packet went out, so wake up the writer */
2018 wake = 1;
2020 /* parse cycle */
2021 cycle = le32_to_cpu(cmd->output_last.status) & 0x1FFF;
2023 /* tell the subsystem the packet has gone out */
2024 hpsb_iso_packet_sent(iso, cycle, event != 0x11);
2026 /* reset the DMA descriptor for next time */
2027 cmd->output_last.status = 0;
2030 if (wake)
2031 hpsb_iso_wake(iso);
2034 static int ohci_iso_xmit_queue(struct hpsb_iso *iso, struct hpsb_iso_packet_info *info)
2036 struct ohci_iso_xmit *xmit = iso->hostdata;
2037 struct ti_ohci *ohci = xmit->ohci;
2039 int next_i, prev_i;
2040 struct iso_xmit_cmd *next, *prev;
2042 unsigned int offset;
2043 unsigned short len;
2044 unsigned char tag, sy;
2046 /* check that the packet doesn't cross a page boundary
2047 (we could allow this if we added OUTPUT_MORE descriptor support) */
2048 if (cross_bound(info->offset, info->len)) {
2049 PRINT(KERN_ERR,
2050 "rawiso xmit: packet %u crosses a page boundary",
2051 iso->first_packet);
2052 return -EINVAL;
2055 offset = info->offset;
2056 len = info->len;
2057 tag = info->tag;
2058 sy = info->sy;
2060 /* sync up the card's view of the buffer */
2061 dma_region_sync_for_device(&iso->data_buf, offset, len);
2063 /* append first_packet to the DMA chain */
2064 /* by linking the previous descriptor to it */
2065 /* (next will become the new end of the DMA chain) */
2067 next_i = iso->first_packet;
2068 prev_i = (next_i == 0) ? (iso->buf_packets - 1) : (next_i - 1);
2070 next = dma_region_i(&xmit->prog, struct iso_xmit_cmd, next_i);
2071 prev = dma_region_i(&xmit->prog, struct iso_xmit_cmd, prev_i);
2073 /* set up the OUTPUT_MORE_IMMEDIATE descriptor */
2074 memset(next, 0, sizeof(struct iso_xmit_cmd));
2075 next->output_more_immediate.control = cpu_to_le32(0x02000008);
2077 /* ISO packet header is embedded in the OUTPUT_MORE_IMMEDIATE */
2079 /* tcode = 0xA, and sy */
2080 next->iso_hdr[0] = 0xA0 | (sy & 0xF);
2082 /* tag and channel number */
2083 next->iso_hdr[1] = (tag << 6) | (iso->channel & 0x3F);
2085 /* transmission speed */
2086 next->iso_hdr[2] = iso->speed & 0x7;
2088 /* payload size */
2089 next->iso_hdr[6] = len & 0xFF;
2090 next->iso_hdr[7] = len >> 8;
2092 /* set up the OUTPUT_LAST */
2093 next->output_last.control = cpu_to_le32(1 << 28);
2094 next->output_last.control |= cpu_to_le32(1 << 27); /* update timeStamp */
2095 next->output_last.control |= cpu_to_le32(3 << 20); /* want interrupt */
2096 next->output_last.control |= cpu_to_le32(3 << 18); /* enable branch */
2097 next->output_last.control |= cpu_to_le32(len);
2099 /* payload bus address */
2100 next->output_last.address = cpu_to_le32(dma_region_offset_to_bus(&iso->data_buf, offset));
2102 /* leave branchAddress at zero for now */
2104 /* re-write the previous DMA descriptor to chain to this one */
2106 /* set prev branch address to point to next (Z=3) */
2107 prev->output_last.branchAddress = cpu_to_le32(
2108 dma_prog_region_offset_to_bus(&xmit->prog, sizeof(struct iso_xmit_cmd) * next_i) | 3);
2110 /* disable interrupt, unless required by the IRQ interval */
2111 if (prev_i % iso->irq_interval) {
2112 prev->output_last.control &= cpu_to_le32(~(3 << 20)); /* no interrupt */
2113 } else {
2114 prev->output_last.control |= cpu_to_le32(3 << 20); /* enable interrupt */
2117 wmb();
2119 /* wake DMA in case it is sleeping */
2120 reg_write(xmit->ohci, xmit->ContextControlSet, 1 << 12);
2122 /* issue a dummy read of the cycle timer to force all PCI
2123 writes to be posted immediately */
2124 mb();
2125 reg_read(xmit->ohci, OHCI1394_IsochronousCycleTimer);
2127 return 0;
2130 static int ohci_iso_xmit_start(struct hpsb_iso *iso, int cycle)
2132 struct ohci_iso_xmit *xmit = iso->hostdata;
2133 struct ti_ohci *ohci = xmit->ohci;
2135 /* clear out the control register */
2136 reg_write(xmit->ohci, xmit->ContextControlClear, 0xFFFFFFFF);
2137 wmb();
2139 /* address and length of first descriptor block (Z=3) */
2140 reg_write(xmit->ohci, xmit->CommandPtr,
2141 dma_prog_region_offset_to_bus(&xmit->prog, iso->pkt_dma * sizeof(struct iso_xmit_cmd)) | 3);
2143 /* cycle match */
2144 if (cycle != -1) {
2145 u32 start = cycle & 0x1FFF;
2147 /* 'cycle' is only mod 8000, but we also need two 'seconds' bits -
2148 just snarf them from the current time */
2149 u32 seconds = reg_read(xmit->ohci, OHCI1394_IsochronousCycleTimer) >> 25;
2151 /* advance one second to give some extra time for DMA to start */
2152 seconds += 1;
2154 start |= (seconds & 3) << 13;
2156 reg_write(xmit->ohci, xmit->ContextControlSet, 0x80000000 | (start << 16));
2159 /* enable interrupts */
2160 reg_write(xmit->ohci, OHCI1394_IsoXmitIntMaskSet, 1 << xmit->task.context);
2162 /* run */
2163 reg_write(xmit->ohci, xmit->ContextControlSet, 0x8000);
2164 mb();
2166 /* wait 100 usec to give the card time to go active */
2167 udelay(100);
2169 /* check the RUN bit */
2170 if (!(reg_read(xmit->ohci, xmit->ContextControlSet) & 0x8000)) {
2171 PRINT(KERN_ERR, "Error starting IT DMA (ContextControl 0x%08x)\n",
2172 reg_read(xmit->ohci, xmit->ContextControlSet));
2173 return -1;
2176 return 0;
2179 static int ohci_isoctl(struct hpsb_iso *iso, enum isoctl_cmd cmd, unsigned long arg)
2182 switch(cmd) {
2183 case XMIT_INIT:
2184 return ohci_iso_xmit_init(iso);
2185 case XMIT_START:
2186 return ohci_iso_xmit_start(iso, arg);
2187 case XMIT_STOP:
2188 ohci_iso_xmit_stop(iso);
2189 return 0;
2190 case XMIT_QUEUE:
2191 return ohci_iso_xmit_queue(iso, (struct hpsb_iso_packet_info*) arg);
2192 case XMIT_SHUTDOWN:
2193 ohci_iso_xmit_shutdown(iso);
2194 return 0;
2196 case RECV_INIT:
2197 return ohci_iso_recv_init(iso);
2198 case RECV_START: {
2199 int *args = (int*) arg;
2200 return ohci_iso_recv_start(iso, args[0], args[1], args[2]);
2202 case RECV_STOP:
2203 ohci_iso_recv_stop(iso);
2204 return 0;
2205 case RECV_RELEASE:
2206 ohci_iso_recv_release(iso, (struct hpsb_iso_packet_info*) arg);
2207 return 0;
2208 case RECV_FLUSH:
2209 ohci_iso_recv_task((unsigned long) iso);
2210 return 0;
2211 case RECV_SHUTDOWN:
2212 ohci_iso_recv_shutdown(iso);
2213 return 0;
2214 case RECV_LISTEN_CHANNEL:
2215 ohci_iso_recv_change_channel(iso, arg, 1);
2216 return 0;
2217 case RECV_UNLISTEN_CHANNEL:
2218 ohci_iso_recv_change_channel(iso, arg, 0);
2219 return 0;
2220 case RECV_SET_CHANNEL_MASK:
2221 ohci_iso_recv_set_channel_mask(iso, *((u64*) arg));
2222 return 0;
2224 default:
2225 PRINT_G(KERN_ERR, "ohci_isoctl cmd %d not implemented yet",
2226 cmd);
2227 break;
2229 return -EINVAL;
2232 /***************************************
2233 * IEEE-1394 functionality section END *
2234 ***************************************/
2237 /********************************************************
2238 * Global stuff (interrupt handler, init/shutdown code) *
2239 ********************************************************/
2241 static void dma_trm_reset(struct dma_trm_ctx *d)
2243 unsigned long flags;
2244 LIST_HEAD(packet_list);
2245 struct ti_ohci *ohci = d->ohci;
2246 struct hpsb_packet *packet, *ptmp;
2248 ohci1394_stop_context(ohci, d->ctrlClear, NULL);
2250 /* Lock the context, reset it and release it. Move the packets
2251 * that were pending in the context to packet_list and free
2252 * them after releasing the lock. */
2254 spin_lock_irqsave(&d->lock, flags);
2256 list_splice(&d->fifo_list, &packet_list);
2257 list_splice(&d->pending_list, &packet_list);
2258 INIT_LIST_HEAD(&d->fifo_list);
2259 INIT_LIST_HEAD(&d->pending_list);
2261 d->branchAddrPtr = NULL;
2262 d->sent_ind = d->prg_ind;
2263 d->free_prgs = d->num_desc;
2265 spin_unlock_irqrestore(&d->lock, flags);
2267 if (list_empty(&packet_list))
2268 return;
2270 PRINT(KERN_INFO, "AT dma reset ctx=%d, aborting transmission", d->ctx);
2272 /* Now process subsystem callbacks for the packets from this
2273 * context. */
2274 list_for_each_entry_safe(packet, ptmp, &packet_list, driver_list) {
2275 list_del_init(&packet->driver_list);
2276 hpsb_packet_sent(ohci->host, packet, ACKX_ABORTED);
2280 static void ohci_schedule_iso_tasklets(struct ti_ohci *ohci,
2281 quadlet_t rx_event,
2282 quadlet_t tx_event)
2284 struct ohci1394_iso_tasklet *t;
2285 unsigned long mask;
2286 unsigned long flags;
2288 spin_lock_irqsave(&ohci->iso_tasklet_list_lock, flags);
2290 list_for_each_entry(t, &ohci->iso_tasklet_list, link) {
2291 mask = 1 << t->context;
2293 if (t->type == OHCI_ISO_TRANSMIT && tx_event & mask)
2294 tasklet_schedule(&t->tasklet);
2295 else if (rx_event & mask)
2296 tasklet_schedule(&t->tasklet);
2299 spin_unlock_irqrestore(&ohci->iso_tasklet_list_lock, flags);
2302 static irqreturn_t ohci_irq_handler(int irq, void *dev_id)
2304 quadlet_t event, node_id;
2305 struct ti_ohci *ohci = (struct ti_ohci *)dev_id;
2306 struct hpsb_host *host = ohci->host;
2307 int phyid = -1, isroot = 0;
2308 unsigned long flags;
2310 /* Read and clear the interrupt event register. Don't clear
2311 * the busReset event, though. This is done when we get the
2312 * selfIDComplete interrupt. */
2313 spin_lock_irqsave(&ohci->event_lock, flags);
2314 event = reg_read(ohci, OHCI1394_IntEventClear);
2315 reg_write(ohci, OHCI1394_IntEventClear, event & ~OHCI1394_busReset);
2316 spin_unlock_irqrestore(&ohci->event_lock, flags);
2318 if (!event)
2319 return IRQ_NONE;
2321 /* If event is ~(u32)0 cardbus card was ejected. In this case
2322 * we just return, and clean up in the ohci1394_pci_remove
2323 * function. */
2324 if (event == ~(u32) 0) {
2325 DBGMSG("Device removed.");
2326 return IRQ_NONE;
2329 DBGMSG("IntEvent: %08x", event);
2331 if (event & OHCI1394_unrecoverableError) {
2332 int ctx;
2333 PRINT(KERN_ERR, "Unrecoverable error!");
2335 if (reg_read(ohci, OHCI1394_AsReqTrContextControlSet) & 0x800)
2336 PRINT(KERN_ERR, "Async Req Tx Context died: "
2337 "ctrl[%08x] cmdptr[%08x]",
2338 reg_read(ohci, OHCI1394_AsReqTrContextControlSet),
2339 reg_read(ohci, OHCI1394_AsReqTrCommandPtr));
2341 if (reg_read(ohci, OHCI1394_AsRspTrContextControlSet) & 0x800)
2342 PRINT(KERN_ERR, "Async Rsp Tx Context died: "
2343 "ctrl[%08x] cmdptr[%08x]",
2344 reg_read(ohci, OHCI1394_AsRspTrContextControlSet),
2345 reg_read(ohci, OHCI1394_AsRspTrCommandPtr));
2347 if (reg_read(ohci, OHCI1394_AsReqRcvContextControlSet) & 0x800)
2348 PRINT(KERN_ERR, "Async Req Rcv Context died: "
2349 "ctrl[%08x] cmdptr[%08x]",
2350 reg_read(ohci, OHCI1394_AsReqRcvContextControlSet),
2351 reg_read(ohci, OHCI1394_AsReqRcvCommandPtr));
2353 if (reg_read(ohci, OHCI1394_AsRspRcvContextControlSet) & 0x800)
2354 PRINT(KERN_ERR, "Async Rsp Rcv Context died: "
2355 "ctrl[%08x] cmdptr[%08x]",
2356 reg_read(ohci, OHCI1394_AsRspRcvContextControlSet),
2357 reg_read(ohci, OHCI1394_AsRspRcvCommandPtr));
2359 for (ctx = 0; ctx < ohci->nb_iso_xmit_ctx; ctx++) {
2360 if (reg_read(ohci, OHCI1394_IsoXmitContextControlSet + (16 * ctx)) & 0x800)
2361 PRINT(KERN_ERR, "Iso Xmit %d Context died: "
2362 "ctrl[%08x] cmdptr[%08x]", ctx,
2363 reg_read(ohci, OHCI1394_IsoXmitContextControlSet + (16 * ctx)),
2364 reg_read(ohci, OHCI1394_IsoXmitCommandPtr + (16 * ctx)));
2367 for (ctx = 0; ctx < ohci->nb_iso_rcv_ctx; ctx++) {
2368 if (reg_read(ohci, OHCI1394_IsoRcvContextControlSet + (32 * ctx)) & 0x800)
2369 PRINT(KERN_ERR, "Iso Recv %d Context died: "
2370 "ctrl[%08x] cmdptr[%08x] match[%08x]", ctx,
2371 reg_read(ohci, OHCI1394_IsoRcvContextControlSet + (32 * ctx)),
2372 reg_read(ohci, OHCI1394_IsoRcvCommandPtr + (32 * ctx)),
2373 reg_read(ohci, OHCI1394_IsoRcvContextMatch + (32 * ctx)));
2376 event &= ~OHCI1394_unrecoverableError;
2378 if (event & OHCI1394_postedWriteErr) {
2379 PRINT(KERN_ERR, "physical posted write error");
2380 /* no recovery strategy yet, had to involve protocol drivers */
2382 if (event & OHCI1394_cycleTooLong) {
2383 if(printk_ratelimit())
2384 PRINT(KERN_WARNING, "isochronous cycle too long");
2385 else
2386 DBGMSG("OHCI1394_cycleTooLong");
2387 reg_write(ohci, OHCI1394_LinkControlSet,
2388 OHCI1394_LinkControl_CycleMaster);
2389 event &= ~OHCI1394_cycleTooLong;
2391 if (event & OHCI1394_cycleInconsistent) {
2392 /* We subscribe to the cycleInconsistent event only to
2393 * clear the corresponding event bit... otherwise,
2394 * isochronous cycleMatch DMA won't work. */
2395 DBGMSG("OHCI1394_cycleInconsistent");
2396 event &= ~OHCI1394_cycleInconsistent;
2398 if (event & OHCI1394_busReset) {
2399 /* The busReset event bit can't be cleared during the
2400 * selfID phase, so we disable busReset interrupts, to
2401 * avoid burying the cpu in interrupt requests. */
2402 spin_lock_irqsave(&ohci->event_lock, flags);
2403 reg_write(ohci, OHCI1394_IntMaskClear, OHCI1394_busReset);
2405 if (ohci->check_busreset) {
2406 int loop_count = 0;
2408 udelay(10);
2410 while (reg_read(ohci, OHCI1394_IntEventSet) & OHCI1394_busReset) {
2411 reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
2413 spin_unlock_irqrestore(&ohci->event_lock, flags);
2414 udelay(10);
2415 spin_lock_irqsave(&ohci->event_lock, flags);
2417 /* The loop counter check is to prevent the driver
2418 * from remaining in this state forever. For the
2419 * initial bus reset, the loop continues for ever
2420 * and the system hangs, until some device is plugged-in
2421 * or out manually into a port! The forced reset seems
2422 * to solve this problem. This mainly effects nForce2. */
2423 if (loop_count > 10000) {
2424 ohci_devctl(host, RESET_BUS, LONG_RESET);
2425 DBGMSG("Detected bus-reset loop. Forced a bus reset!");
2426 loop_count = 0;
2429 loop_count++;
2432 spin_unlock_irqrestore(&ohci->event_lock, flags);
2433 if (!host->in_bus_reset) {
2434 DBGMSG("irq_handler: Bus reset requested");
2436 /* Subsystem call */
2437 hpsb_bus_reset(ohci->host);
2439 event &= ~OHCI1394_busReset;
2441 if (event & OHCI1394_reqTxComplete) {
2442 struct dma_trm_ctx *d = &ohci->at_req_context;
2443 DBGMSG("Got reqTxComplete interrupt "
2444 "status=0x%08X", reg_read(ohci, d->ctrlSet));
2445 if (reg_read(ohci, d->ctrlSet) & 0x800)
2446 ohci1394_stop_context(ohci, d->ctrlClear,
2447 "reqTxComplete");
2448 else
2449 dma_trm_tasklet((unsigned long)d);
2450 //tasklet_schedule(&d->task);
2451 event &= ~OHCI1394_reqTxComplete;
2453 if (event & OHCI1394_respTxComplete) {
2454 struct dma_trm_ctx *d = &ohci->at_resp_context;
2455 DBGMSG("Got respTxComplete interrupt "
2456 "status=0x%08X", reg_read(ohci, d->ctrlSet));
2457 if (reg_read(ohci, d->ctrlSet) & 0x800)
2458 ohci1394_stop_context(ohci, d->ctrlClear,
2459 "respTxComplete");
2460 else
2461 tasklet_schedule(&d->task);
2462 event &= ~OHCI1394_respTxComplete;
2464 if (event & OHCI1394_RQPkt) {
2465 struct dma_rcv_ctx *d = &ohci->ar_req_context;
2466 DBGMSG("Got RQPkt interrupt status=0x%08X",
2467 reg_read(ohci, d->ctrlSet));
2468 if (reg_read(ohci, d->ctrlSet) & 0x800)
2469 ohci1394_stop_context(ohci, d->ctrlClear, "RQPkt");
2470 else
2471 tasklet_schedule(&d->task);
2472 event &= ~OHCI1394_RQPkt;
2474 if (event & OHCI1394_RSPkt) {
2475 struct dma_rcv_ctx *d = &ohci->ar_resp_context;
2476 DBGMSG("Got RSPkt interrupt status=0x%08X",
2477 reg_read(ohci, d->ctrlSet));
2478 if (reg_read(ohci, d->ctrlSet) & 0x800)
2479 ohci1394_stop_context(ohci, d->ctrlClear, "RSPkt");
2480 else
2481 tasklet_schedule(&d->task);
2482 event &= ~OHCI1394_RSPkt;
2484 if (event & OHCI1394_isochRx) {
2485 quadlet_t rx_event;
2487 rx_event = reg_read(ohci, OHCI1394_IsoRecvIntEventSet);
2488 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, rx_event);
2489 ohci_schedule_iso_tasklets(ohci, rx_event, 0);
2490 event &= ~OHCI1394_isochRx;
2492 if (event & OHCI1394_isochTx) {
2493 quadlet_t tx_event;
2495 tx_event = reg_read(ohci, OHCI1394_IsoXmitIntEventSet);
2496 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, tx_event);
2497 ohci_schedule_iso_tasklets(ohci, 0, tx_event);
2498 event &= ~OHCI1394_isochTx;
2500 if (event & OHCI1394_selfIDComplete) {
2501 if (host->in_bus_reset) {
2502 node_id = reg_read(ohci, OHCI1394_NodeID);
2504 if (!(node_id & 0x80000000)) {
2505 PRINT(KERN_ERR,
2506 "SelfID received, but NodeID invalid "
2507 "(probably new bus reset occurred): %08X",
2508 node_id);
2509 goto selfid_not_valid;
2512 phyid = node_id & 0x0000003f;
2513 isroot = (node_id & 0x40000000) != 0;
2515 DBGMSG("SelfID interrupt received "
2516 "(phyid %d, %s)", phyid,
2517 (isroot ? "root" : "not root"));
2519 handle_selfid(ohci, host, phyid, isroot);
2521 /* Clear the bus reset event and re-enable the
2522 * busReset interrupt. */
2523 spin_lock_irqsave(&ohci->event_lock, flags);
2524 reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
2525 reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_busReset);
2526 spin_unlock_irqrestore(&ohci->event_lock, flags);
2528 /* Turn on phys dma reception.
2530 * TODO: Enable some sort of filtering management.
2532 if (phys_dma) {
2533 reg_write(ohci, OHCI1394_PhyReqFilterHiSet,
2534 0xffffffff);
2535 reg_write(ohci, OHCI1394_PhyReqFilterLoSet,
2536 0xffffffff);
2539 DBGMSG("PhyReqFilter=%08x%08x",
2540 reg_read(ohci, OHCI1394_PhyReqFilterHiSet),
2541 reg_read(ohci, OHCI1394_PhyReqFilterLoSet));
2543 hpsb_selfid_complete(host, phyid, isroot);
2544 } else
2545 PRINT(KERN_ERR,
2546 "SelfID received outside of bus reset sequence");
2548 selfid_not_valid:
2549 event &= ~OHCI1394_selfIDComplete;
2552 /* Make sure we handle everything, just in case we accidentally
2553 * enabled an interrupt that we didn't write a handler for. */
2554 if (event)
2555 PRINT(KERN_ERR, "Unhandled interrupt(s) 0x%08x",
2556 event);
2558 return IRQ_HANDLED;
2561 /* Put the buffer back into the dma context */
2562 static void insert_dma_buffer(struct dma_rcv_ctx *d, int idx)
2564 struct ti_ohci *ohci = (struct ti_ohci*)(d->ohci);
2565 DBGMSG("Inserting dma buf ctx=%d idx=%d", d->ctx, idx);
2567 d->prg_cpu[idx]->status = cpu_to_le32(d->buf_size);
2568 d->prg_cpu[idx]->branchAddress &= le32_to_cpu(0xfffffff0);
2569 idx = (idx + d->num_desc - 1 ) % d->num_desc;
2570 d->prg_cpu[idx]->branchAddress |= le32_to_cpu(0x00000001);
2572 /* To avoid a race, ensure 1394 interface hardware sees the inserted
2573 * context program descriptors before it sees the wakeup bit set. */
2574 wmb();
2576 /* wake up the dma context if necessary */
2577 if (!(reg_read(ohci, d->ctrlSet) & 0x400)) {
2578 PRINT(KERN_INFO,
2579 "Waking dma ctx=%d ... processing is probably too slow",
2580 d->ctx);
2583 /* do this always, to avoid race condition */
2584 reg_write(ohci, d->ctrlSet, 0x1000);
2587 #define cond_le32_to_cpu(data, noswap) \
2588 (noswap ? data : le32_to_cpu(data))
2590 static const int TCODE_SIZE[16] = {20, 0, 16, -1, 16, 20, 20, 0,
2591 -1, 0, -1, 0, -1, -1, 16, -1};
2594 * Determine the length of a packet in the buffer
2595 * Optimization suggested by Pascal Drolet <pascal.drolet@informission.ca>
2597 static inline int packet_length(struct dma_rcv_ctx *d, int idx,
2598 quadlet_t *buf_ptr, int offset,
2599 unsigned char tcode, int noswap)
2601 int length = -1;
2603 if (d->type == DMA_CTX_ASYNC_REQ || d->type == DMA_CTX_ASYNC_RESP) {
2604 length = TCODE_SIZE[tcode];
2605 if (length == 0) {
2606 if (offset + 12 >= d->buf_size) {
2607 length = (cond_le32_to_cpu(d->buf_cpu[(idx + 1) % d->num_desc]
2608 [3 - ((d->buf_size - offset) >> 2)], noswap) >> 16);
2609 } else {
2610 length = (cond_le32_to_cpu(buf_ptr[3], noswap) >> 16);
2612 length += 20;
2614 } else if (d->type == DMA_CTX_ISO) {
2615 /* Assumption: buffer fill mode with header/trailer */
2616 length = (cond_le32_to_cpu(buf_ptr[0], noswap) >> 16) + 8;
2619 if (length > 0 && length % 4)
2620 length += 4 - (length % 4);
2622 return length;
2625 /* Tasklet that processes dma receive buffers */
2626 static void dma_rcv_tasklet (unsigned long data)
2628 struct dma_rcv_ctx *d = (struct dma_rcv_ctx*)data;
2629 struct ti_ohci *ohci = (struct ti_ohci*)(d->ohci);
2630 unsigned int split_left, idx, offset, rescount;
2631 unsigned char tcode;
2632 int length, bytes_left, ack;
2633 unsigned long flags;
2634 quadlet_t *buf_ptr;
2635 char *split_ptr;
2636 char msg[256];
2638 spin_lock_irqsave(&d->lock, flags);
2640 idx = d->buf_ind;
2641 offset = d->buf_offset;
2642 buf_ptr = d->buf_cpu[idx] + offset/4;
2644 rescount = le32_to_cpu(d->prg_cpu[idx]->status) & 0xffff;
2645 bytes_left = d->buf_size - rescount - offset;
2647 while (bytes_left > 0) {
2648 tcode = (cond_le32_to_cpu(buf_ptr[0], ohci->no_swap_incoming) >> 4) & 0xf;
2650 /* packet_length() will return < 4 for an error */
2651 length = packet_length(d, idx, buf_ptr, offset, tcode, ohci->no_swap_incoming);
2653 if (length < 4) { /* something is wrong */
2654 sprintf(msg,"Unexpected tcode 0x%x(0x%08x) in AR ctx=%d, length=%d",
2655 tcode, cond_le32_to_cpu(buf_ptr[0], ohci->no_swap_incoming),
2656 d->ctx, length);
2657 ohci1394_stop_context(ohci, d->ctrlClear, msg);
2658 spin_unlock_irqrestore(&d->lock, flags);
2659 return;
2662 /* The first case is where we have a packet that crosses
2663 * over more than one descriptor. The next case is where
2664 * it's all in the first descriptor. */
2665 if ((offset + length) > d->buf_size) {
2666 DBGMSG("Split packet rcv'd");
2667 if (length > d->split_buf_size) {
2668 ohci1394_stop_context(ohci, d->ctrlClear,
2669 "Split packet size exceeded");
2670 d->buf_ind = idx;
2671 d->buf_offset = offset;
2672 spin_unlock_irqrestore(&d->lock, flags);
2673 return;
2676 if (le32_to_cpu(d->prg_cpu[(idx+1)%d->num_desc]->status)
2677 == d->buf_size) {
2678 /* Other part of packet not written yet.
2679 * this should never happen I think
2680 * anyway we'll get it on the next call. */
2681 PRINT(KERN_INFO,
2682 "Got only half a packet!");
2683 d->buf_ind = idx;
2684 d->buf_offset = offset;
2685 spin_unlock_irqrestore(&d->lock, flags);
2686 return;
2689 split_left = length;
2690 split_ptr = (char *)d->spb;
2691 memcpy(split_ptr,buf_ptr,d->buf_size-offset);
2692 split_left -= d->buf_size-offset;
2693 split_ptr += d->buf_size-offset;
2694 insert_dma_buffer(d, idx);
2695 idx = (idx+1) % d->num_desc;
2696 buf_ptr = d->buf_cpu[idx];
2697 offset=0;
2699 while (split_left >= d->buf_size) {
2700 memcpy(split_ptr,buf_ptr,d->buf_size);
2701 split_ptr += d->buf_size;
2702 split_left -= d->buf_size;
2703 insert_dma_buffer(d, idx);
2704 idx = (idx+1) % d->num_desc;
2705 buf_ptr = d->buf_cpu[idx];
2708 if (split_left > 0) {
2709 memcpy(split_ptr, buf_ptr, split_left);
2710 offset = split_left;
2711 buf_ptr += offset/4;
2713 } else {
2714 DBGMSG("Single packet rcv'd");
2715 memcpy(d->spb, buf_ptr, length);
2716 offset += length;
2717 buf_ptr += length/4;
2718 if (offset==d->buf_size) {
2719 insert_dma_buffer(d, idx);
2720 idx = (idx+1) % d->num_desc;
2721 buf_ptr = d->buf_cpu[idx];
2722 offset=0;
2726 /* We get one phy packet to the async descriptor for each
2727 * bus reset. We always ignore it. */
2728 if (tcode != OHCI1394_TCODE_PHY) {
2729 if (!ohci->no_swap_incoming)
2730 header_le32_to_cpu(d->spb, tcode);
2731 DBGMSG("Packet received from node"
2732 " %d ack=0x%02X spd=%d tcode=0x%X"
2733 " length=%d ctx=%d tlabel=%d",
2734 (d->spb[1]>>16)&0x3f,
2735 (cond_le32_to_cpu(d->spb[length/4-1], ohci->no_swap_incoming)>>16)&0x1f,
2736 (cond_le32_to_cpu(d->spb[length/4-1], ohci->no_swap_incoming)>>21)&0x3,
2737 tcode, length, d->ctx,
2738 (d->spb[0]>>10)&0x3f);
2740 ack = (((cond_le32_to_cpu(d->spb[length/4-1], ohci->no_swap_incoming)>>16)&0x1f)
2741 == 0x11) ? 1 : 0;
2743 hpsb_packet_received(ohci->host, d->spb,
2744 length-4, ack);
2746 #ifdef OHCI1394_DEBUG
2747 else
2748 PRINT (KERN_DEBUG, "Got phy packet ctx=%d ... discarded",
2749 d->ctx);
2750 #endif
2752 rescount = le32_to_cpu(d->prg_cpu[idx]->status) & 0xffff;
2754 bytes_left = d->buf_size - rescount - offset;
2758 d->buf_ind = idx;
2759 d->buf_offset = offset;
2761 spin_unlock_irqrestore(&d->lock, flags);
2764 /* Bottom half that processes sent packets */
2765 static void dma_trm_tasklet (unsigned long data)
2767 struct dma_trm_ctx *d = (struct dma_trm_ctx*)data;
2768 struct ti_ohci *ohci = (struct ti_ohci*)(d->ohci);
2769 struct hpsb_packet *packet, *ptmp;
2770 unsigned long flags;
2771 u32 status, ack;
2772 size_t datasize;
2774 spin_lock_irqsave(&d->lock, flags);
2776 list_for_each_entry_safe(packet, ptmp, &d->fifo_list, driver_list) {
2777 datasize = packet->data_size;
2778 if (datasize && packet->type != hpsb_raw)
2779 status = le32_to_cpu(
2780 d->prg_cpu[d->sent_ind]->end.status) >> 16;
2781 else
2782 status = le32_to_cpu(
2783 d->prg_cpu[d->sent_ind]->begin.status) >> 16;
2785 if (status == 0)
2786 /* this packet hasn't been sent yet*/
2787 break;
2789 #ifdef OHCI1394_DEBUG
2790 if (datasize)
2791 if (((le32_to_cpu(d->prg_cpu[d->sent_ind]->data[0])>>4)&0xf) == 0xa)
2792 DBGMSG("Stream packet sent to channel %d tcode=0x%X "
2793 "ack=0x%X spd=%d dataLength=%d ctx=%d",
2794 (le32_to_cpu(d->prg_cpu[d->sent_ind]->data[0])>>8)&0x3f,
2795 (le32_to_cpu(d->prg_cpu[d->sent_ind]->data[0])>>4)&0xf,
2796 status&0x1f, (status>>5)&0x3,
2797 le32_to_cpu(d->prg_cpu[d->sent_ind]->data[1])>>16,
2798 d->ctx);
2799 else
2800 DBGMSG("Packet sent to node %d tcode=0x%X tLabel="
2801 "%d ack=0x%X spd=%d dataLength=%d ctx=%d",
2802 (le32_to_cpu(d->prg_cpu[d->sent_ind]->data[1])>>16)&0x3f,
2803 (le32_to_cpu(d->prg_cpu[d->sent_ind]->data[0])>>4)&0xf,
2804 (le32_to_cpu(d->prg_cpu[d->sent_ind]->data[0])>>10)&0x3f,
2805 status&0x1f, (status>>5)&0x3,
2806 le32_to_cpu(d->prg_cpu[d->sent_ind]->data[3])>>16,
2807 d->ctx);
2808 else
2809 DBGMSG("Packet sent to node %d tcode=0x%X tLabel="
2810 "%d ack=0x%X spd=%d data=0x%08X ctx=%d",
2811 (le32_to_cpu(d->prg_cpu[d->sent_ind]->data[1])
2812 >>16)&0x3f,
2813 (le32_to_cpu(d->prg_cpu[d->sent_ind]->data[0])
2814 >>4)&0xf,
2815 (le32_to_cpu(d->prg_cpu[d->sent_ind]->data[0])
2816 >>10)&0x3f,
2817 status&0x1f, (status>>5)&0x3,
2818 le32_to_cpu(d->prg_cpu[d->sent_ind]->data[3]),
2819 d->ctx);
2820 #endif
2822 if (status & 0x10) {
2823 ack = status & 0xf;
2824 } else {
2825 switch (status & 0x1f) {
2826 case EVT_NO_STATUS: /* that should never happen */
2827 case EVT_RESERVED_A: /* that should never happen */
2828 case EVT_LONG_PACKET: /* that should never happen */
2829 PRINT(KERN_WARNING, "Received OHCI evt_* error 0x%x", status & 0x1f);
2830 ack = ACKX_SEND_ERROR;
2831 break;
2832 case EVT_MISSING_ACK:
2833 ack = ACKX_TIMEOUT;
2834 break;
2835 case EVT_UNDERRUN:
2836 ack = ACKX_SEND_ERROR;
2837 break;
2838 case EVT_OVERRUN: /* that should never happen */
2839 PRINT(KERN_WARNING, "Received OHCI evt_* error 0x%x", status & 0x1f);
2840 ack = ACKX_SEND_ERROR;
2841 break;
2842 case EVT_DESCRIPTOR_READ:
2843 case EVT_DATA_READ:
2844 case EVT_DATA_WRITE:
2845 ack = ACKX_SEND_ERROR;
2846 break;
2847 case EVT_BUS_RESET: /* that should never happen */
2848 PRINT(KERN_WARNING, "Received OHCI evt_* error 0x%x", status & 0x1f);
2849 ack = ACKX_SEND_ERROR;
2850 break;
2851 case EVT_TIMEOUT:
2852 ack = ACKX_TIMEOUT;
2853 break;
2854 case EVT_TCODE_ERR:
2855 ack = ACKX_SEND_ERROR;
2856 break;
2857 case EVT_RESERVED_B: /* that should never happen */
2858 case EVT_RESERVED_C: /* that should never happen */
2859 PRINT(KERN_WARNING, "Received OHCI evt_* error 0x%x", status & 0x1f);
2860 ack = ACKX_SEND_ERROR;
2861 break;
2862 case EVT_UNKNOWN:
2863 case EVT_FLUSHED:
2864 ack = ACKX_SEND_ERROR;
2865 break;
2866 default:
2867 PRINT(KERN_ERR, "Unhandled OHCI evt_* error 0x%x", status & 0x1f);
2868 ack = ACKX_SEND_ERROR;
2869 BUG();
2873 list_del_init(&packet->driver_list);
2874 hpsb_packet_sent(ohci->host, packet, ack);
2876 if (datasize) {
2877 pci_unmap_single(ohci->dev,
2878 cpu_to_le32(d->prg_cpu[d->sent_ind]->end.address),
2879 datasize, PCI_DMA_TODEVICE);
2880 OHCI_DMA_FREE("single Xmit data packet");
2883 d->sent_ind = (d->sent_ind+1)%d->num_desc;
2884 d->free_prgs++;
2887 dma_trm_flush(ohci, d);
2889 spin_unlock_irqrestore(&d->lock, flags);
2892 static void stop_dma_rcv_ctx(struct dma_rcv_ctx *d)
2894 if (d->ctrlClear) {
2895 ohci1394_stop_context(d->ohci, d->ctrlClear, NULL);
2897 if (d->type == DMA_CTX_ISO) {
2898 /* disable interrupts */
2899 reg_write(d->ohci, OHCI1394_IsoRecvIntMaskClear, 1 << d->ctx);
2900 ohci1394_unregister_iso_tasklet(d->ohci, &d->ohci->ir_legacy_tasklet);
2901 } else {
2902 tasklet_kill(&d->task);
2908 static void free_dma_rcv_ctx(struct dma_rcv_ctx *d)
2910 int i;
2911 struct ti_ohci *ohci = d->ohci;
2913 if (ohci == NULL)
2914 return;
2916 DBGMSG("Freeing dma_rcv_ctx %d", d->ctx);
2918 if (d->buf_cpu) {
2919 for (i=0; i<d->num_desc; i++)
2920 if (d->buf_cpu[i] && d->buf_bus[i]) {
2921 pci_free_consistent(
2922 ohci->dev, d->buf_size,
2923 d->buf_cpu[i], d->buf_bus[i]);
2924 OHCI_DMA_FREE("consistent dma_rcv buf[%d]", i);
2926 kfree(d->buf_cpu);
2927 kfree(d->buf_bus);
2929 if (d->prg_cpu) {
2930 for (i=0; i<d->num_desc; i++)
2931 if (d->prg_cpu[i] && d->prg_bus[i]) {
2932 pci_pool_free(d->prg_pool, d->prg_cpu[i], d->prg_bus[i]);
2933 OHCI_DMA_FREE("consistent dma_rcv prg[%d]", i);
2935 pci_pool_destroy(d->prg_pool);
2936 OHCI_DMA_FREE("dma_rcv prg pool");
2937 kfree(d->prg_cpu);
2938 kfree(d->prg_bus);
2940 kfree(d->spb);
2942 /* Mark this context as freed. */
2943 d->ohci = NULL;
2946 static int
2947 alloc_dma_rcv_ctx(struct ti_ohci *ohci, struct dma_rcv_ctx *d,
2948 enum context_type type, int ctx, int num_desc,
2949 int buf_size, int split_buf_size, int context_base)
2951 int i, len;
2952 static int num_allocs;
2953 static char pool_name[20];
2955 d->ohci = ohci;
2956 d->type = type;
2957 d->ctx = ctx;
2959 d->num_desc = num_desc;
2960 d->buf_size = buf_size;
2961 d->split_buf_size = split_buf_size;
2963 d->ctrlSet = 0;
2964 d->ctrlClear = 0;
2965 d->cmdPtr = 0;
2967 d->buf_cpu = kzalloc(d->num_desc * sizeof(*d->buf_cpu), GFP_ATOMIC);
2968 d->buf_bus = kzalloc(d->num_desc * sizeof(*d->buf_bus), GFP_ATOMIC);
2970 if (d->buf_cpu == NULL || d->buf_bus == NULL) {
2971 PRINT(KERN_ERR, "Failed to allocate dma buffer");
2972 free_dma_rcv_ctx(d);
2973 return -ENOMEM;
2976 d->prg_cpu = kzalloc(d->num_desc * sizeof(*d->prg_cpu), GFP_ATOMIC);
2977 d->prg_bus = kzalloc(d->num_desc * sizeof(*d->prg_bus), GFP_ATOMIC);
2979 if (d->prg_cpu == NULL || d->prg_bus == NULL) {
2980 PRINT(KERN_ERR, "Failed to allocate dma prg");
2981 free_dma_rcv_ctx(d);
2982 return -ENOMEM;
2985 d->spb = kmalloc(d->split_buf_size, GFP_ATOMIC);
2987 if (d->spb == NULL) {
2988 PRINT(KERN_ERR, "Failed to allocate split buffer");
2989 free_dma_rcv_ctx(d);
2990 return -ENOMEM;
2993 len = sprintf(pool_name, "ohci1394_rcv_prg");
2994 sprintf(pool_name+len, "%d", num_allocs);
2995 d->prg_pool = pci_pool_create(pool_name, ohci->dev,
2996 sizeof(struct dma_cmd), 4, 0);
2997 if(d->prg_pool == NULL)
2999 PRINT(KERN_ERR, "pci_pool_create failed for %s", pool_name);
3000 free_dma_rcv_ctx(d);
3001 return -ENOMEM;
3003 num_allocs++;
3005 OHCI_DMA_ALLOC("dma_rcv prg pool");
3007 for (i=0; i<d->num_desc; i++) {
3008 d->buf_cpu[i] = pci_alloc_consistent(ohci->dev,
3009 d->buf_size,
3010 d->buf_bus+i);
3011 OHCI_DMA_ALLOC("consistent dma_rcv buf[%d]", i);
3013 if (d->buf_cpu[i] != NULL) {
3014 memset(d->buf_cpu[i], 0, d->buf_size);
3015 } else {
3016 PRINT(KERN_ERR,
3017 "Failed to allocate dma buffer");
3018 free_dma_rcv_ctx(d);
3019 return -ENOMEM;
3022 d->prg_cpu[i] = pci_pool_alloc(d->prg_pool, GFP_KERNEL, d->prg_bus+i);
3023 OHCI_DMA_ALLOC("pool dma_rcv prg[%d]", i);
3025 if (d->prg_cpu[i] != NULL) {
3026 memset(d->prg_cpu[i], 0, sizeof(struct dma_cmd));
3027 } else {
3028 PRINT(KERN_ERR,
3029 "Failed to allocate dma prg");
3030 free_dma_rcv_ctx(d);
3031 return -ENOMEM;
3035 spin_lock_init(&d->lock);
3037 if (type == DMA_CTX_ISO) {
3038 ohci1394_init_iso_tasklet(&ohci->ir_legacy_tasklet,
3039 OHCI_ISO_MULTICHANNEL_RECEIVE,
3040 dma_rcv_tasklet, (unsigned long) d);
3041 } else {
3042 d->ctrlSet = context_base + OHCI1394_ContextControlSet;
3043 d->ctrlClear = context_base + OHCI1394_ContextControlClear;
3044 d->cmdPtr = context_base + OHCI1394_ContextCommandPtr;
3046 tasklet_init (&d->task, dma_rcv_tasklet, (unsigned long) d);
3049 return 0;
3052 static void free_dma_trm_ctx(struct dma_trm_ctx *d)
3054 int i;
3055 struct ti_ohci *ohci = d->ohci;
3057 if (ohci == NULL)
3058 return;
3060 DBGMSG("Freeing dma_trm_ctx %d", d->ctx);
3062 if (d->prg_cpu) {
3063 for (i=0; i<d->num_desc; i++)
3064 if (d->prg_cpu[i] && d->prg_bus[i]) {
3065 pci_pool_free(d->prg_pool, d->prg_cpu[i], d->prg_bus[i]);
3066 OHCI_DMA_FREE("pool dma_trm prg[%d]", i);
3068 pci_pool_destroy(d->prg_pool);
3069 OHCI_DMA_FREE("dma_trm prg pool");
3070 kfree(d->prg_cpu);
3071 kfree(d->prg_bus);
3074 /* Mark this context as freed. */
3075 d->ohci = NULL;
3078 static int
3079 alloc_dma_trm_ctx(struct ti_ohci *ohci, struct dma_trm_ctx *d,
3080 enum context_type type, int ctx, int num_desc,
3081 int context_base)
3083 int i, len;
3084 static char pool_name[20];
3085 static int num_allocs=0;
3087 d->ohci = ohci;
3088 d->type = type;
3089 d->ctx = ctx;
3090 d->num_desc = num_desc;
3091 d->ctrlSet = 0;
3092 d->ctrlClear = 0;
3093 d->cmdPtr = 0;
3095 d->prg_cpu = kzalloc(d->num_desc * sizeof(*d->prg_cpu), GFP_KERNEL);
3096 d->prg_bus = kzalloc(d->num_desc * sizeof(*d->prg_bus), GFP_KERNEL);
3098 if (d->prg_cpu == NULL || d->prg_bus == NULL) {
3099 PRINT(KERN_ERR, "Failed to allocate at dma prg");
3100 free_dma_trm_ctx(d);
3101 return -ENOMEM;
3104 len = sprintf(pool_name, "ohci1394_trm_prg");
3105 sprintf(pool_name+len, "%d", num_allocs);
3106 d->prg_pool = pci_pool_create(pool_name, ohci->dev,
3107 sizeof(struct at_dma_prg), 4, 0);
3108 if (d->prg_pool == NULL) {
3109 PRINT(KERN_ERR, "pci_pool_create failed for %s", pool_name);
3110 free_dma_trm_ctx(d);
3111 return -ENOMEM;
3113 num_allocs++;
3115 OHCI_DMA_ALLOC("dma_rcv prg pool");
3117 for (i = 0; i < d->num_desc; i++) {
3118 d->prg_cpu[i] = pci_pool_alloc(d->prg_pool, GFP_KERNEL, d->prg_bus+i);
3119 OHCI_DMA_ALLOC("pool dma_trm prg[%d]", i);
3121 if (d->prg_cpu[i] != NULL) {
3122 memset(d->prg_cpu[i], 0, sizeof(struct at_dma_prg));
3123 } else {
3124 PRINT(KERN_ERR,
3125 "Failed to allocate at dma prg");
3126 free_dma_trm_ctx(d);
3127 return -ENOMEM;
3131 spin_lock_init(&d->lock);
3133 /* initialize tasklet */
3134 if (type == DMA_CTX_ISO) {
3135 ohci1394_init_iso_tasklet(&ohci->it_legacy_tasklet, OHCI_ISO_TRANSMIT,
3136 dma_trm_tasklet, (unsigned long) d);
3137 if (ohci1394_register_iso_tasklet(ohci,
3138 &ohci->it_legacy_tasklet) < 0) {
3139 PRINT(KERN_ERR, "No IT DMA context available");
3140 free_dma_trm_ctx(d);
3141 return -EBUSY;
3144 /* IT can be assigned to any context by register_iso_tasklet */
3145 d->ctx = ohci->it_legacy_tasklet.context;
3146 d->ctrlSet = OHCI1394_IsoXmitContextControlSet + 16 * d->ctx;
3147 d->ctrlClear = OHCI1394_IsoXmitContextControlClear + 16 * d->ctx;
3148 d->cmdPtr = OHCI1394_IsoXmitCommandPtr + 16 * d->ctx;
3149 } else {
3150 d->ctrlSet = context_base + OHCI1394_ContextControlSet;
3151 d->ctrlClear = context_base + OHCI1394_ContextControlClear;
3152 d->cmdPtr = context_base + OHCI1394_ContextCommandPtr;
3153 tasklet_init (&d->task, dma_trm_tasklet, (unsigned long)d);
3156 return 0;
3159 static void ohci_set_hw_config_rom(struct hpsb_host *host, quadlet_t *config_rom)
3161 struct ti_ohci *ohci = host->hostdata;
3163 reg_write(ohci, OHCI1394_ConfigROMhdr, be32_to_cpu(config_rom[0]));
3164 reg_write(ohci, OHCI1394_BusOptions, be32_to_cpu(config_rom[2]));
3166 memcpy(ohci->csr_config_rom_cpu, config_rom, OHCI_CONFIG_ROM_LEN);
3170 static quadlet_t ohci_hw_csr_reg(struct hpsb_host *host, int reg,
3171 quadlet_t data, quadlet_t compare)
3173 struct ti_ohci *ohci = host->hostdata;
3174 int i;
3176 reg_write(ohci, OHCI1394_CSRData, data);
3177 reg_write(ohci, OHCI1394_CSRCompareData, compare);
3178 reg_write(ohci, OHCI1394_CSRControl, reg & 0x3);
3180 for (i = 0; i < OHCI_LOOP_COUNT; i++) {
3181 if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000)
3182 break;
3184 mdelay(1);
3187 return reg_read(ohci, OHCI1394_CSRData);
3190 static struct hpsb_host_driver ohci1394_driver = {
3191 .owner = THIS_MODULE,
3192 .name = OHCI1394_DRIVER_NAME,
3193 .set_hw_config_rom = ohci_set_hw_config_rom,
3194 .transmit_packet = ohci_transmit,
3195 .devctl = ohci_devctl,
3196 .isoctl = ohci_isoctl,
3197 .hw_csr_reg = ohci_hw_csr_reg,
3200 /***********************************
3201 * PCI Driver Interface functions *
3202 ***********************************/
3204 #define FAIL(err, fmt, args...) \
3205 do { \
3206 PRINT_G(KERN_ERR, fmt , ## args); \
3207 ohci1394_pci_remove(dev); \
3208 return err; \
3209 } while (0)
3211 static int __devinit ohci1394_pci_probe(struct pci_dev *dev,
3212 const struct pci_device_id *ent)
3214 struct hpsb_host *host;
3215 struct ti_ohci *ohci; /* shortcut to currently handled device */
3216 resource_size_t ohci_base;
3218 #ifdef CONFIG_PPC_PMAC
3219 /* Necessary on some machines if ohci1394 was loaded/ unloaded before */
3220 if (machine_is(powermac)) {
3221 struct device_node *ofn = pci_device_to_OF_node(dev);
3223 if (ofn) {
3224 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
3225 pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
3228 #endif /* CONFIG_PPC_PMAC */
3230 if (pci_enable_device(dev))
3231 FAIL(-ENXIO, "Failed to enable OHCI hardware");
3232 pci_set_master(dev);
3234 host = hpsb_alloc_host(&ohci1394_driver, sizeof(struct ti_ohci), &dev->dev);
3235 if (!host) FAIL(-ENOMEM, "Failed to allocate host structure");
3237 ohci = host->hostdata;
3238 ohci->dev = dev;
3239 ohci->host = host;
3240 ohci->init_state = OHCI_INIT_ALLOC_HOST;
3241 host->pdev = dev;
3242 pci_set_drvdata(dev, ohci);
3244 /* We don't want hardware swapping */
3245 pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
3247 /* Some oddball Apple controllers do not order the selfid
3248 * properly, so we make up for it here. */
3249 #ifndef __LITTLE_ENDIAN
3250 /* XXX: Need a better way to check this. I'm wondering if we can
3251 * read the values of the OHCI1394_PCI_HCI_Control and the
3252 * noByteSwapData registers to see if they were not cleared to
3253 * zero. Should this work? Obviously it's not defined what these
3254 * registers will read when they aren't supported. Bleh! */
3255 if (dev->vendor == PCI_VENDOR_ID_APPLE &&
3256 dev->device == PCI_DEVICE_ID_APPLE_UNI_N_FW) {
3257 ohci->no_swap_incoming = 1;
3258 ohci->selfid_swap = 0;
3259 } else
3260 ohci->selfid_swap = 1;
3261 #endif
3264 #ifndef PCI_DEVICE_ID_NVIDIA_NFORCE2_FW
3265 #define PCI_DEVICE_ID_NVIDIA_NFORCE2_FW 0x006e
3266 #endif
3268 /* These chipsets require a bit of extra care when checking after
3269 * a busreset. */
3270 if ((dev->vendor == PCI_VENDOR_ID_APPLE &&
3271 dev->device == PCI_DEVICE_ID_APPLE_UNI_N_FW) ||
3272 (dev->vendor == PCI_VENDOR_ID_NVIDIA &&
3273 dev->device == PCI_DEVICE_ID_NVIDIA_NFORCE2_FW))
3274 ohci->check_busreset = 1;
3276 /* We hardwire the MMIO length, since some CardBus adaptors
3277 * fail to report the right length. Anyway, the ohci spec
3278 * clearly says it's 2kb, so this shouldn't be a problem. */
3279 ohci_base = pci_resource_start(dev, 0);
3280 if (pci_resource_len(dev, 0) < OHCI1394_REGISTER_SIZE)
3281 PRINT(KERN_WARNING, "PCI resource length of 0x%llx too small!",
3282 (unsigned long long)pci_resource_len(dev, 0));
3284 if (!request_mem_region(ohci_base, OHCI1394_REGISTER_SIZE,
3285 OHCI1394_DRIVER_NAME))
3286 FAIL(-ENOMEM, "MMIO resource (0x%llx - 0x%llx) unavailable",
3287 (unsigned long long)ohci_base,
3288 (unsigned long long)ohci_base + OHCI1394_REGISTER_SIZE);
3289 ohci->init_state = OHCI_INIT_HAVE_MEM_REGION;
3291 ohci->registers = ioremap(ohci_base, OHCI1394_REGISTER_SIZE);
3292 if (ohci->registers == NULL)
3293 FAIL(-ENXIO, "Failed to remap registers - card not accessible");
3294 ohci->init_state = OHCI_INIT_HAVE_IOMAPPING;
3295 DBGMSG("Remapped memory spaces reg 0x%p", ohci->registers);
3297 /* csr_config rom allocation */
3298 ohci->csr_config_rom_cpu =
3299 pci_alloc_consistent(ohci->dev, OHCI_CONFIG_ROM_LEN,
3300 &ohci->csr_config_rom_bus);
3301 OHCI_DMA_ALLOC("consistent csr_config_rom");
3302 if (ohci->csr_config_rom_cpu == NULL)
3303 FAIL(-ENOMEM, "Failed to allocate buffer config rom");
3304 ohci->init_state = OHCI_INIT_HAVE_CONFIG_ROM_BUFFER;
3306 /* self-id dma buffer allocation */
3307 ohci->selfid_buf_cpu =
3308 pci_alloc_consistent(ohci->dev, OHCI1394_SI_DMA_BUF_SIZE,
3309 &ohci->selfid_buf_bus);
3310 OHCI_DMA_ALLOC("consistent selfid_buf");
3312 if (ohci->selfid_buf_cpu == NULL)
3313 FAIL(-ENOMEM, "Failed to allocate DMA buffer for self-id packets");
3314 ohci->init_state = OHCI_INIT_HAVE_SELFID_BUFFER;
3316 if ((unsigned long)ohci->selfid_buf_cpu & 0x1fff)
3317 PRINT(KERN_INFO, "SelfID buffer %p is not aligned on "
3318 "8Kb boundary... may cause problems on some CXD3222 chip",
3319 ohci->selfid_buf_cpu);
3321 /* No self-id errors at startup */
3322 ohci->self_id_errors = 0;
3324 ohci->init_state = OHCI_INIT_HAVE_TXRX_BUFFERS__MAYBE;
3325 /* AR DMA request context allocation */
3326 if (alloc_dma_rcv_ctx(ohci, &ohci->ar_req_context,
3327 DMA_CTX_ASYNC_REQ, 0, AR_REQ_NUM_DESC,
3328 AR_REQ_BUF_SIZE, AR_REQ_SPLIT_BUF_SIZE,
3329 OHCI1394_AsReqRcvContextBase) < 0)
3330 FAIL(-ENOMEM, "Failed to allocate AR Req context");
3332 /* AR DMA response context allocation */
3333 if (alloc_dma_rcv_ctx(ohci, &ohci->ar_resp_context,
3334 DMA_CTX_ASYNC_RESP, 0, AR_RESP_NUM_DESC,
3335 AR_RESP_BUF_SIZE, AR_RESP_SPLIT_BUF_SIZE,
3336 OHCI1394_AsRspRcvContextBase) < 0)
3337 FAIL(-ENOMEM, "Failed to allocate AR Resp context");
3339 /* AT DMA request context */
3340 if (alloc_dma_trm_ctx(ohci, &ohci->at_req_context,
3341 DMA_CTX_ASYNC_REQ, 0, AT_REQ_NUM_DESC,
3342 OHCI1394_AsReqTrContextBase) < 0)
3343 FAIL(-ENOMEM, "Failed to allocate AT Req context");
3345 /* AT DMA response context */
3346 if (alloc_dma_trm_ctx(ohci, &ohci->at_resp_context,
3347 DMA_CTX_ASYNC_RESP, 1, AT_RESP_NUM_DESC,
3348 OHCI1394_AsRspTrContextBase) < 0)
3349 FAIL(-ENOMEM, "Failed to allocate AT Resp context");
3351 /* Start off with a soft reset, to clear everything to a sane
3352 * state. */
3353 ohci_soft_reset(ohci);
3355 /* Now enable LPS, which we need in order to start accessing
3356 * most of the registers. In fact, on some cards (ALI M5251),
3357 * accessing registers in the SClk domain without LPS enabled
3358 * will lock up the machine. Wait 50msec to make sure we have
3359 * full link enabled. */
3360 reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_LPS);
3362 /* Disable and clear interrupts */
3363 reg_write(ohci, OHCI1394_IntEventClear, 0xffffffff);
3364 reg_write(ohci, OHCI1394_IntMaskClear, 0xffffffff);
3366 mdelay(50);
3368 /* Determine the number of available IR and IT contexts. */
3369 ohci->nb_iso_rcv_ctx =
3370 get_nb_iso_ctx(ohci, OHCI1394_IsoRecvIntMaskSet);
3371 ohci->nb_iso_xmit_ctx =
3372 get_nb_iso_ctx(ohci, OHCI1394_IsoXmitIntMaskSet);
3374 /* Set the usage bits for non-existent contexts so they can't
3375 * be allocated */
3376 ohci->ir_ctx_usage = ~0 << ohci->nb_iso_rcv_ctx;
3377 ohci->it_ctx_usage = ~0 << ohci->nb_iso_xmit_ctx;
3379 INIT_LIST_HEAD(&ohci->iso_tasklet_list);
3380 spin_lock_init(&ohci->iso_tasklet_list_lock);
3381 ohci->ISO_channel_usage = 0;
3382 spin_lock_init(&ohci->IR_channel_lock);
3384 /* Allocate the IR DMA context right here so we don't have
3385 * to do it in interrupt path - note that this doesn't
3386 * waste much memory and avoids the jugglery required to
3387 * allocate it in IRQ path. */
3388 if (alloc_dma_rcv_ctx(ohci, &ohci->ir_legacy_context,
3389 DMA_CTX_ISO, 0, IR_NUM_DESC,
3390 IR_BUF_SIZE, IR_SPLIT_BUF_SIZE,
3391 OHCI1394_IsoRcvContextBase) < 0) {
3392 FAIL(-ENOMEM, "Cannot allocate IR Legacy DMA context");
3395 /* We hopefully don't have to pre-allocate IT DMA like we did
3396 * for IR DMA above. Allocate it on-demand and mark inactive. */
3397 ohci->it_legacy_context.ohci = NULL;
3398 spin_lock_init(&ohci->event_lock);
3401 * interrupts are disabled, all right, but... due to IRQF_SHARED we
3402 * might get called anyway. We'll see no event, of course, but
3403 * we need to get to that "no event", so enough should be initialized
3404 * by that point.
3406 if (request_irq(dev->irq, ohci_irq_handler, IRQF_SHARED,
3407 OHCI1394_DRIVER_NAME, ohci))
3408 FAIL(-ENOMEM, "Failed to allocate shared interrupt %d", dev->irq);
3410 ohci->init_state = OHCI_INIT_HAVE_IRQ;
3411 ohci_initialize(ohci);
3413 /* Set certain csr values */
3414 host->csr.guid_hi = reg_read(ohci, OHCI1394_GUIDHi);
3415 host->csr.guid_lo = reg_read(ohci, OHCI1394_GUIDLo);
3416 host->csr.cyc_clk_acc = 100; /* how do we determine clk accuracy? */
3417 host->csr.max_rec = (reg_read(ohci, OHCI1394_BusOptions) >> 12) & 0xf;
3418 host->csr.lnk_spd = reg_read(ohci, OHCI1394_BusOptions) & 0x7;
3420 if (phys_dma) {
3421 host->low_addr_space =
3422 (u64) reg_read(ohci, OHCI1394_PhyUpperBound) << 16;
3423 if (!host->low_addr_space)
3424 host->low_addr_space = OHCI1394_PHYS_UPPER_BOUND_FIXED;
3426 host->middle_addr_space = OHCI1394_MIDDLE_ADDRESS_SPACE;
3428 /* Tell the highlevel this host is ready */
3429 if (hpsb_add_host(host))
3430 FAIL(-ENOMEM, "Failed to register host with highlevel");
3432 ohci->init_state = OHCI_INIT_DONE;
3434 return 0;
3435 #undef FAIL
3438 static void ohci1394_pci_remove(struct pci_dev *pdev)
3440 struct ti_ohci *ohci;
3441 struct device *dev;
3443 ohci = pci_get_drvdata(pdev);
3444 if (!ohci)
3445 return;
3447 dev = get_device(&ohci->host->device);
3449 switch (ohci->init_state) {
3450 case OHCI_INIT_DONE:
3451 hpsb_remove_host(ohci->host);
3453 /* Clear out BUS Options */
3454 reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
3455 reg_write(ohci, OHCI1394_BusOptions,
3456 (reg_read(ohci, OHCI1394_BusOptions) & 0x0000f007) |
3457 0x00ff0000);
3458 memset(ohci->csr_config_rom_cpu, 0, OHCI_CONFIG_ROM_LEN);
3460 case OHCI_INIT_HAVE_IRQ:
3461 /* Clear interrupt registers */
3462 reg_write(ohci, OHCI1394_IntMaskClear, 0xffffffff);
3463 reg_write(ohci, OHCI1394_IntEventClear, 0xffffffff);
3464 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 0xffffffff);
3465 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 0xffffffff);
3466 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 0xffffffff);
3467 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 0xffffffff);
3469 /* Disable IRM Contender */
3470 set_phy_reg(ohci, 4, ~0xc0 & get_phy_reg(ohci, 4));
3472 /* Clear link control register */
3473 reg_write(ohci, OHCI1394_LinkControlClear, 0xffffffff);
3475 /* Let all other nodes know to ignore us */
3476 ohci_devctl(ohci->host, RESET_BUS, LONG_RESET_NO_FORCE_ROOT);
3478 /* Soft reset before we start - this disables
3479 * interrupts and clears linkEnable and LPS. */
3480 ohci_soft_reset(ohci);
3481 free_irq(ohci->dev->irq, ohci);
3483 case OHCI_INIT_HAVE_TXRX_BUFFERS__MAYBE:
3484 /* The ohci_soft_reset() stops all DMA contexts, so we
3485 * dont need to do this. */
3486 free_dma_rcv_ctx(&ohci->ar_req_context);
3487 free_dma_rcv_ctx(&ohci->ar_resp_context);
3488 free_dma_trm_ctx(&ohci->at_req_context);
3489 free_dma_trm_ctx(&ohci->at_resp_context);
3490 free_dma_rcv_ctx(&ohci->ir_legacy_context);
3491 free_dma_trm_ctx(&ohci->it_legacy_context);
3493 case OHCI_INIT_HAVE_SELFID_BUFFER:
3494 pci_free_consistent(ohci->dev, OHCI1394_SI_DMA_BUF_SIZE,
3495 ohci->selfid_buf_cpu,
3496 ohci->selfid_buf_bus);
3497 OHCI_DMA_FREE("consistent selfid_buf");
3499 case OHCI_INIT_HAVE_CONFIG_ROM_BUFFER:
3500 pci_free_consistent(ohci->dev, OHCI_CONFIG_ROM_LEN,
3501 ohci->csr_config_rom_cpu,
3502 ohci->csr_config_rom_bus);
3503 OHCI_DMA_FREE("consistent csr_config_rom");
3505 case OHCI_INIT_HAVE_IOMAPPING:
3506 iounmap(ohci->registers);
3508 case OHCI_INIT_HAVE_MEM_REGION:
3509 release_mem_region(pci_resource_start(ohci->dev, 0),
3510 OHCI1394_REGISTER_SIZE);
3512 #ifdef CONFIG_PPC_PMAC
3513 /* On UniNorth, power down the cable and turn off the chip clock
3514 * to save power on laptops */
3515 if (machine_is(powermac)) {
3516 struct device_node* ofn = pci_device_to_OF_node(ohci->dev);
3518 if (ofn) {
3519 pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
3520 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
3523 #endif /* CONFIG_PPC_PMAC */
3525 case OHCI_INIT_ALLOC_HOST:
3526 pci_set_drvdata(ohci->dev, NULL);
3529 if (dev)
3530 put_device(dev);
3533 #ifdef CONFIG_PM
3534 static int ohci1394_pci_suspend(struct pci_dev *pdev, pm_message_t state)
3536 int err;
3537 struct ti_ohci *ohci = pci_get_drvdata(pdev);
3539 if (!ohci) {
3540 printk(KERN_ERR "%s: tried to suspend nonexisting host\n",
3541 OHCI1394_DRIVER_NAME);
3542 return -ENXIO;
3544 DBGMSG("suspend called");
3546 /* Clear the async DMA contexts and stop using the controller */
3547 hpsb_bus_reset(ohci->host);
3549 /* See ohci1394_pci_remove() for comments on this sequence */
3550 reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
3551 reg_write(ohci, OHCI1394_BusOptions,
3552 (reg_read(ohci, OHCI1394_BusOptions) & 0x0000f007) |
3553 0x00ff0000);
3554 reg_write(ohci, OHCI1394_IntMaskClear, 0xffffffff);
3555 reg_write(ohci, OHCI1394_IntEventClear, 0xffffffff);
3556 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 0xffffffff);
3557 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 0xffffffff);
3558 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 0xffffffff);
3559 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 0xffffffff);
3560 set_phy_reg(ohci, 4, ~0xc0 & get_phy_reg(ohci, 4));
3561 reg_write(ohci, OHCI1394_LinkControlClear, 0xffffffff);
3562 ohci_devctl(ohci->host, RESET_BUS, LONG_RESET_NO_FORCE_ROOT);
3563 ohci_soft_reset(ohci);
3565 err = pci_save_state(pdev);
3566 if (err) {
3567 PRINT(KERN_ERR, "pci_save_state failed with %d", err);
3568 return err;
3570 err = pci_set_power_state(pdev, pci_choose_state(pdev, state));
3571 if (err)
3572 DBGMSG("pci_set_power_state failed with %d", err);
3574 /* PowerMac suspend code comes last */
3575 #ifdef CONFIG_PPC_PMAC
3576 if (machine_is(powermac)) {
3577 struct device_node *ofn = pci_device_to_OF_node(pdev);
3579 if (ofn)
3580 pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
3582 #endif /* CONFIG_PPC_PMAC */
3584 return 0;
3587 static int ohci1394_pci_resume(struct pci_dev *pdev)
3589 int err;
3590 struct ti_ohci *ohci = pci_get_drvdata(pdev);
3592 if (!ohci) {
3593 printk(KERN_ERR "%s: tried to resume nonexisting host\n",
3594 OHCI1394_DRIVER_NAME);
3595 return -ENXIO;
3597 DBGMSG("resume called");
3599 /* PowerMac resume code comes first */
3600 #ifdef CONFIG_PPC_PMAC
3601 if (machine_is(powermac)) {
3602 struct device_node *ofn = pci_device_to_OF_node(pdev);
3604 if (ofn)
3605 pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
3607 #endif /* CONFIG_PPC_PMAC */
3609 pci_set_power_state(pdev, PCI_D0);
3610 pci_restore_state(pdev);
3611 err = pci_enable_device(pdev);
3612 if (err) {
3613 PRINT(KERN_ERR, "pci_enable_device failed with %d", err);
3614 return err;
3617 /* See ohci1394_pci_probe() for comments on this sequence */
3618 ohci_soft_reset(ohci);
3619 reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_LPS);
3620 reg_write(ohci, OHCI1394_IntEventClear, 0xffffffff);
3621 reg_write(ohci, OHCI1394_IntMaskClear, 0xffffffff);
3622 mdelay(50);
3623 ohci_initialize(ohci);
3625 hpsb_resume_host(ohci->host);
3626 return 0;
3628 #endif /* CONFIG_PM */
3630 static struct pci_device_id ohci1394_pci_tbl[] = {
3632 .class = PCI_CLASS_SERIAL_FIREWIRE_OHCI,
3633 .class_mask = PCI_ANY_ID,
3634 .vendor = PCI_ANY_ID,
3635 .device = PCI_ANY_ID,
3636 .subvendor = PCI_ANY_ID,
3637 .subdevice = PCI_ANY_ID,
3639 { 0, },
3642 MODULE_DEVICE_TABLE(pci, ohci1394_pci_tbl);
3644 static struct pci_driver ohci1394_pci_driver = {
3645 .name = OHCI1394_DRIVER_NAME,
3646 .id_table = ohci1394_pci_tbl,
3647 .probe = ohci1394_pci_probe,
3648 .remove = ohci1394_pci_remove,
3649 #ifdef CONFIG_PM
3650 .resume = ohci1394_pci_resume,
3651 .suspend = ohci1394_pci_suspend,
3652 #endif
3655 /***********************************
3656 * OHCI1394 Video Interface *
3657 ***********************************/
3659 /* essentially the only purpose of this code is to allow another
3660 module to hook into ohci's interrupt handler */
3662 int ohci1394_stop_context(struct ti_ohci *ohci, int reg, char *msg)
3664 int i=0;
3666 /* stop the channel program if it's still running */
3667 reg_write(ohci, reg, 0x8000);
3669 /* Wait until it effectively stops */
3670 while (reg_read(ohci, reg) & 0x400) {
3671 i++;
3672 if (i>5000) {
3673 PRINT(KERN_ERR,
3674 "Runaway loop while stopping context: %s...", msg ? msg : "");
3675 return 1;
3678 mb();
3679 udelay(10);
3681 if (msg) PRINT(KERN_ERR, "%s: dma prg stopped", msg);
3682 return 0;
3685 void ohci1394_init_iso_tasklet(struct ohci1394_iso_tasklet *tasklet, int type,
3686 void (*func)(unsigned long), unsigned long data)
3688 tasklet_init(&tasklet->tasklet, func, data);
3689 tasklet->type = type;
3690 /* We init the tasklet->link field, so we can list_del() it
3691 * without worrying whether it was added to the list or not. */
3692 INIT_LIST_HEAD(&tasklet->link);
3695 int ohci1394_register_iso_tasklet(struct ti_ohci *ohci,
3696 struct ohci1394_iso_tasklet *tasklet)
3698 unsigned long flags, *usage;
3699 int n, i, r = -EBUSY;
3701 if (tasklet->type == OHCI_ISO_TRANSMIT) {
3702 n = ohci->nb_iso_xmit_ctx;
3703 usage = &ohci->it_ctx_usage;
3705 else {
3706 n = ohci->nb_iso_rcv_ctx;
3707 usage = &ohci->ir_ctx_usage;
3709 /* only one receive context can be multichannel (OHCI sec 10.4.1) */
3710 if (tasklet->type == OHCI_ISO_MULTICHANNEL_RECEIVE) {
3711 if (test_and_set_bit(0, &ohci->ir_multichannel_used)) {
3712 return r;
3717 spin_lock_irqsave(&ohci->iso_tasklet_list_lock, flags);
3719 for (i = 0; i < n; i++)
3720 if (!test_and_set_bit(i, usage)) {
3721 tasklet->context = i;
3722 list_add_tail(&tasklet->link, &ohci->iso_tasklet_list);
3723 r = 0;
3724 break;
3727 spin_unlock_irqrestore(&ohci->iso_tasklet_list_lock, flags);
3729 return r;
3732 void ohci1394_unregister_iso_tasklet(struct ti_ohci *ohci,
3733 struct ohci1394_iso_tasklet *tasklet)
3735 unsigned long flags;
3737 tasklet_kill(&tasklet->tasklet);
3739 spin_lock_irqsave(&ohci->iso_tasklet_list_lock, flags);
3741 if (tasklet->type == OHCI_ISO_TRANSMIT)
3742 clear_bit(tasklet->context, &ohci->it_ctx_usage);
3743 else {
3744 clear_bit(tasklet->context, &ohci->ir_ctx_usage);
3746 if (tasklet->type == OHCI_ISO_MULTICHANNEL_RECEIVE) {
3747 clear_bit(0, &ohci->ir_multichannel_used);
3751 list_del(&tasklet->link);
3753 spin_unlock_irqrestore(&ohci->iso_tasklet_list_lock, flags);
3756 EXPORT_SYMBOL(ohci1394_stop_context);
3757 EXPORT_SYMBOL(ohci1394_init_iso_tasklet);
3758 EXPORT_SYMBOL(ohci1394_register_iso_tasklet);
3759 EXPORT_SYMBOL(ohci1394_unregister_iso_tasklet);
3761 /***********************************
3762 * General module initialization *
3763 ***********************************/
3765 MODULE_AUTHOR("Sebastien Rougeaux <sebastien.rougeaux@anu.edu.au>");
3766 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE-1394 controllers");
3767 MODULE_LICENSE("GPL");
3769 static void __exit ohci1394_cleanup (void)
3771 pci_unregister_driver(&ohci1394_pci_driver);
3774 static int __init ohci1394_init(void)
3776 return pci_register_driver(&ohci1394_pci_driver);
3779 /* Register before most other device drivers.
3780 * Useful for remote debugging via physical DMA, e.g. using firescope. */
3781 fs_initcall(ohci1394_init);
3782 module_exit(ohci1394_cleanup);