de4x5: Use skb_queue_head instead of by-hand implementation.
[linux-2.6/kvm.git] / include / linux / skbuff.h
blob4a144e8d0538bd036324a36741ed9c6d0852f2e5
1 /*
2 * Definitions for the 'struct sk_buff' memory handlers.
4 * Authors:
5 * Alan Cox, <gw4pts@gw4pts.ampr.org>
6 * Florian La Roche, <rzsfl@rz.uni-sb.de>
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
14 #ifndef _LINUX_SKBUFF_H
15 #define _LINUX_SKBUFF_H
17 #include <linux/kernel.h>
18 #include <linux/compiler.h>
19 #include <linux/time.h>
20 #include <linux/cache.h>
22 #include <asm/atomic.h>
23 #include <asm/types.h>
24 #include <linux/spinlock.h>
25 #include <linux/net.h>
26 #include <linux/textsearch.h>
27 #include <net/checksum.h>
28 #include <linux/rcupdate.h>
29 #include <linux/dmaengine.h>
30 #include <linux/hrtimer.h>
32 #define HAVE_ALLOC_SKB /* For the drivers to know */
33 #define HAVE_ALIGNABLE_SKB /* Ditto 8) */
35 /* Don't change this without changing skb_csum_unnecessary! */
36 #define CHECKSUM_NONE 0
37 #define CHECKSUM_UNNECESSARY 1
38 #define CHECKSUM_COMPLETE 2
39 #define CHECKSUM_PARTIAL 3
41 #define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \
42 ~(SMP_CACHE_BYTES - 1))
43 #define SKB_WITH_OVERHEAD(X) \
44 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
45 #define SKB_MAX_ORDER(X, ORDER) \
46 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
47 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
48 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
50 /* A. Checksumming of received packets by device.
52 * NONE: device failed to checksum this packet.
53 * skb->csum is undefined.
55 * UNNECESSARY: device parsed packet and wouldbe verified checksum.
56 * skb->csum is undefined.
57 * It is bad option, but, unfortunately, many of vendors do this.
58 * Apparently with secret goal to sell you new device, when you
59 * will add new protocol to your host. F.e. IPv6. 8)
61 * COMPLETE: the most generic way. Device supplied checksum of _all_
62 * the packet as seen by netif_rx in skb->csum.
63 * NOTE: Even if device supports only some protocols, but
64 * is able to produce some skb->csum, it MUST use COMPLETE,
65 * not UNNECESSARY.
67 * PARTIAL: identical to the case for output below. This may occur
68 * on a packet received directly from another Linux OS, e.g.,
69 * a virtualised Linux kernel on the same host. The packet can
70 * be treated in the same way as UNNECESSARY except that on
71 * output (i.e., forwarding) the checksum must be filled in
72 * by the OS or the hardware.
74 * B. Checksumming on output.
76 * NONE: skb is checksummed by protocol or csum is not required.
78 * PARTIAL: device is required to csum packet as seen by hard_start_xmit
79 * from skb->csum_start to the end and to record the checksum
80 * at skb->csum_start + skb->csum_offset.
82 * Device must show its capabilities in dev->features, set
83 * at device setup time.
84 * NETIF_F_HW_CSUM - it is clever device, it is able to checksum
85 * everything.
86 * NETIF_F_NO_CSUM - loopback or reliable single hop media.
87 * NETIF_F_IP_CSUM - device is dumb. It is able to csum only
88 * TCP/UDP over IPv4. Sigh. Vendors like this
89 * way by an unknown reason. Though, see comment above
90 * about CHECKSUM_UNNECESSARY. 8)
91 * NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead.
93 * Any questions? No questions, good. --ANK
96 struct net_device;
97 struct scatterlist;
98 struct pipe_inode_info;
100 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
101 struct nf_conntrack {
102 atomic_t use;
104 #endif
106 #ifdef CONFIG_BRIDGE_NETFILTER
107 struct nf_bridge_info {
108 atomic_t use;
109 struct net_device *physindev;
110 struct net_device *physoutdev;
111 unsigned int mask;
112 unsigned long data[32 / sizeof(unsigned long)];
114 #endif
116 struct sk_buff_head {
117 /* These two members must be first. */
118 struct sk_buff *next;
119 struct sk_buff *prev;
121 __u32 qlen;
122 spinlock_t lock;
125 struct sk_buff;
127 /* To allow 64K frame to be packed as single skb without frag_list */
128 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2)
130 typedef struct skb_frag_struct skb_frag_t;
132 struct skb_frag_struct {
133 struct page *page;
134 __u32 page_offset;
135 __u32 size;
138 /* This data is invariant across clones and lives at
139 * the end of the header data, ie. at skb->end.
141 struct skb_shared_info {
142 atomic_t dataref;
143 unsigned short nr_frags;
144 unsigned short gso_size;
145 /* Warning: this field is not always filled in (UFO)! */
146 unsigned short gso_segs;
147 unsigned short gso_type;
148 __be32 ip6_frag_id;
149 #ifdef CONFIG_HAS_DMA
150 unsigned int num_dma_maps;
151 #endif
152 struct sk_buff *frag_list;
153 skb_frag_t frags[MAX_SKB_FRAGS];
154 #ifdef CONFIG_HAS_DMA
155 dma_addr_t dma_maps[MAX_SKB_FRAGS + 1];
156 #endif
159 /* We divide dataref into two halves. The higher 16 bits hold references
160 * to the payload part of skb->data. The lower 16 bits hold references to
161 * the entire skb->data. A clone of a headerless skb holds the length of
162 * the header in skb->hdr_len.
164 * All users must obey the rule that the skb->data reference count must be
165 * greater than or equal to the payload reference count.
167 * Holding a reference to the payload part means that the user does not
168 * care about modifications to the header part of skb->data.
170 #define SKB_DATAREF_SHIFT 16
171 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
174 enum {
175 SKB_FCLONE_UNAVAILABLE,
176 SKB_FCLONE_ORIG,
177 SKB_FCLONE_CLONE,
180 enum {
181 SKB_GSO_TCPV4 = 1 << 0,
182 SKB_GSO_UDP = 1 << 1,
184 /* This indicates the skb is from an untrusted source. */
185 SKB_GSO_DODGY = 1 << 2,
187 /* This indicates the tcp segment has CWR set. */
188 SKB_GSO_TCP_ECN = 1 << 3,
190 SKB_GSO_TCPV6 = 1 << 4,
193 #if BITS_PER_LONG > 32
194 #define NET_SKBUFF_DATA_USES_OFFSET 1
195 #endif
197 #ifdef NET_SKBUFF_DATA_USES_OFFSET
198 typedef unsigned int sk_buff_data_t;
199 #else
200 typedef unsigned char *sk_buff_data_t;
201 #endif
203 /**
204 * struct sk_buff - socket buffer
205 * @next: Next buffer in list
206 * @prev: Previous buffer in list
207 * @sk: Socket we are owned by
208 * @tstamp: Time we arrived
209 * @dev: Device we arrived on/are leaving by
210 * @transport_header: Transport layer header
211 * @network_header: Network layer header
212 * @mac_header: Link layer header
213 * @dst: destination entry
214 * @sp: the security path, used for xfrm
215 * @cb: Control buffer. Free for use by every layer. Put private vars here
216 * @len: Length of actual data
217 * @data_len: Data length
218 * @mac_len: Length of link layer header
219 * @hdr_len: writable header length of cloned skb
220 * @csum: Checksum (must include start/offset pair)
221 * @csum_start: Offset from skb->head where checksumming should start
222 * @csum_offset: Offset from csum_start where checksum should be stored
223 * @local_df: allow local fragmentation
224 * @cloned: Head may be cloned (check refcnt to be sure)
225 * @nohdr: Payload reference only, must not modify header
226 * @pkt_type: Packet class
227 * @fclone: skbuff clone status
228 * @ip_summed: Driver fed us an IP checksum
229 * @priority: Packet queueing priority
230 * @users: User count - see {datagram,tcp}.c
231 * @protocol: Packet protocol from driver
232 * @truesize: Buffer size
233 * @head: Head of buffer
234 * @data: Data head pointer
235 * @tail: Tail pointer
236 * @end: End pointer
237 * @destructor: Destruct function
238 * @mark: Generic packet mark
239 * @nfct: Associated connection, if any
240 * @ipvs_property: skbuff is owned by ipvs
241 * @peeked: this packet has been seen already, so stats have been
242 * done for it, don't do them again
243 * @nf_trace: netfilter packet trace flag
244 * @nfctinfo: Relationship of this skb to the connection
245 * @nfct_reasm: netfilter conntrack re-assembly pointer
246 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
247 * @iif: ifindex of device we arrived on
248 * @queue_mapping: Queue mapping for multiqueue devices
249 * @tc_index: Traffic control index
250 * @tc_verd: traffic control verdict
251 * @ndisc_nodetype: router type (from link layer)
252 * @do_not_encrypt: set to prevent encryption of this frame
253 * @dma_cookie: a cookie to one of several possible DMA operations
254 * done by skb DMA functions
255 * @secmark: security marking
256 * @vlan_tci: vlan tag control information
259 struct sk_buff {
260 /* These two members must be first. */
261 struct sk_buff *next;
262 struct sk_buff *prev;
264 struct sock *sk;
265 ktime_t tstamp;
266 struct net_device *dev;
268 union {
269 struct dst_entry *dst;
270 struct rtable *rtable;
272 struct sec_path *sp;
275 * This is the control buffer. It is free to use for every
276 * layer. Please put your private variables there. If you
277 * want to keep them across layers you have to do a skb_clone()
278 * first. This is owned by whoever has the skb queued ATM.
280 char cb[48];
282 unsigned int len,
283 data_len;
284 __u16 mac_len,
285 hdr_len;
286 union {
287 __wsum csum;
288 struct {
289 __u16 csum_start;
290 __u16 csum_offset;
293 __u32 priority;
294 __u8 local_df:1,
295 cloned:1,
296 ip_summed:2,
297 nohdr:1,
298 nfctinfo:3;
299 __u8 pkt_type:3,
300 fclone:2,
301 ipvs_property:1,
302 peeked:1,
303 nf_trace:1;
304 __be16 protocol;
306 void (*destructor)(struct sk_buff *skb);
307 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
308 struct nf_conntrack *nfct;
309 struct sk_buff *nfct_reasm;
310 #endif
311 #ifdef CONFIG_BRIDGE_NETFILTER
312 struct nf_bridge_info *nf_bridge;
313 #endif
315 int iif;
316 __u16 queue_mapping;
317 #ifdef CONFIG_NET_SCHED
318 __u16 tc_index; /* traffic control index */
319 #ifdef CONFIG_NET_CLS_ACT
320 __u16 tc_verd; /* traffic control verdict */
321 #endif
322 #endif
323 #ifdef CONFIG_IPV6_NDISC_NODETYPE
324 __u8 ndisc_nodetype:2;
325 #endif
326 #if defined(CONFIG_MAC80211) || defined(CONFIG_MAC80211_MODULE)
327 __u8 do_not_encrypt:1;
328 #endif
329 /* 0/13/14 bit hole */
331 #ifdef CONFIG_NET_DMA
332 dma_cookie_t dma_cookie;
333 #endif
334 #ifdef CONFIG_NETWORK_SECMARK
335 __u32 secmark;
336 #endif
338 __u32 mark;
340 __u16 vlan_tci;
342 sk_buff_data_t transport_header;
343 sk_buff_data_t network_header;
344 sk_buff_data_t mac_header;
345 /* These elements must be at the end, see alloc_skb() for details. */
346 sk_buff_data_t tail;
347 sk_buff_data_t end;
348 unsigned char *head,
349 *data;
350 unsigned int truesize;
351 atomic_t users;
354 #ifdef __KERNEL__
356 * Handling routines are only of interest to the kernel
358 #include <linux/slab.h>
360 #include <asm/system.h>
362 #ifdef CONFIG_HAS_DMA
363 #include <linux/dma-mapping.h>
364 extern int skb_dma_map(struct device *dev, struct sk_buff *skb,
365 enum dma_data_direction dir);
366 extern void skb_dma_unmap(struct device *dev, struct sk_buff *skb,
367 enum dma_data_direction dir);
368 #endif
370 extern void kfree_skb(struct sk_buff *skb);
371 extern void __kfree_skb(struct sk_buff *skb);
372 extern struct sk_buff *__alloc_skb(unsigned int size,
373 gfp_t priority, int fclone, int node);
374 static inline struct sk_buff *alloc_skb(unsigned int size,
375 gfp_t priority)
377 return __alloc_skb(size, priority, 0, -1);
380 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
381 gfp_t priority)
383 return __alloc_skb(size, priority, 1, -1);
386 extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
387 extern struct sk_buff *skb_clone(struct sk_buff *skb,
388 gfp_t priority);
389 extern struct sk_buff *skb_copy(const struct sk_buff *skb,
390 gfp_t priority);
391 extern struct sk_buff *pskb_copy(struct sk_buff *skb,
392 gfp_t gfp_mask);
393 extern int pskb_expand_head(struct sk_buff *skb,
394 int nhead, int ntail,
395 gfp_t gfp_mask);
396 extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
397 unsigned int headroom);
398 extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
399 int newheadroom, int newtailroom,
400 gfp_t priority);
401 extern int skb_to_sgvec(struct sk_buff *skb,
402 struct scatterlist *sg, int offset,
403 int len);
404 extern int skb_cow_data(struct sk_buff *skb, int tailbits,
405 struct sk_buff **trailer);
406 extern int skb_pad(struct sk_buff *skb, int pad);
407 #define dev_kfree_skb(a) kfree_skb(a)
408 extern void skb_over_panic(struct sk_buff *skb, int len,
409 void *here);
410 extern void skb_under_panic(struct sk_buff *skb, int len,
411 void *here);
412 extern void skb_truesize_bug(struct sk_buff *skb);
414 static inline void skb_truesize_check(struct sk_buff *skb)
416 int len = sizeof(struct sk_buff) + skb->len;
418 if (unlikely((int)skb->truesize < len))
419 skb_truesize_bug(skb);
422 extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
423 int getfrag(void *from, char *to, int offset,
424 int len,int odd, struct sk_buff *skb),
425 void *from, int length);
427 struct skb_seq_state
429 __u32 lower_offset;
430 __u32 upper_offset;
431 __u32 frag_idx;
432 __u32 stepped_offset;
433 struct sk_buff *root_skb;
434 struct sk_buff *cur_skb;
435 __u8 *frag_data;
438 extern void skb_prepare_seq_read(struct sk_buff *skb,
439 unsigned int from, unsigned int to,
440 struct skb_seq_state *st);
441 extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
442 struct skb_seq_state *st);
443 extern void skb_abort_seq_read(struct skb_seq_state *st);
445 extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
446 unsigned int to, struct ts_config *config,
447 struct ts_state *state);
449 #ifdef NET_SKBUFF_DATA_USES_OFFSET
450 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
452 return skb->head + skb->end;
454 #else
455 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
457 return skb->end;
459 #endif
461 /* Internal */
462 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
465 * skb_queue_empty - check if a queue is empty
466 * @list: queue head
468 * Returns true if the queue is empty, false otherwise.
470 static inline int skb_queue_empty(const struct sk_buff_head *list)
472 return list->next == (struct sk_buff *)list;
476 * skb_get - reference buffer
477 * @skb: buffer to reference
479 * Makes another reference to a socket buffer and returns a pointer
480 * to the buffer.
482 static inline struct sk_buff *skb_get(struct sk_buff *skb)
484 atomic_inc(&skb->users);
485 return skb;
489 * If users == 1, we are the only owner and are can avoid redundant
490 * atomic change.
494 * skb_cloned - is the buffer a clone
495 * @skb: buffer to check
497 * Returns true if the buffer was generated with skb_clone() and is
498 * one of multiple shared copies of the buffer. Cloned buffers are
499 * shared data so must not be written to under normal circumstances.
501 static inline int skb_cloned(const struct sk_buff *skb)
503 return skb->cloned &&
504 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
508 * skb_header_cloned - is the header a clone
509 * @skb: buffer to check
511 * Returns true if modifying the header part of the buffer requires
512 * the data to be copied.
514 static inline int skb_header_cloned(const struct sk_buff *skb)
516 int dataref;
518 if (!skb->cloned)
519 return 0;
521 dataref = atomic_read(&skb_shinfo(skb)->dataref);
522 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
523 return dataref != 1;
527 * skb_header_release - release reference to header
528 * @skb: buffer to operate on
530 * Drop a reference to the header part of the buffer. This is done
531 * by acquiring a payload reference. You must not read from the header
532 * part of skb->data after this.
534 static inline void skb_header_release(struct sk_buff *skb)
536 BUG_ON(skb->nohdr);
537 skb->nohdr = 1;
538 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
542 * skb_shared - is the buffer shared
543 * @skb: buffer to check
545 * Returns true if more than one person has a reference to this
546 * buffer.
548 static inline int skb_shared(const struct sk_buff *skb)
550 return atomic_read(&skb->users) != 1;
554 * skb_share_check - check if buffer is shared and if so clone it
555 * @skb: buffer to check
556 * @pri: priority for memory allocation
558 * If the buffer is shared the buffer is cloned and the old copy
559 * drops a reference. A new clone with a single reference is returned.
560 * If the buffer is not shared the original buffer is returned. When
561 * being called from interrupt status or with spinlocks held pri must
562 * be GFP_ATOMIC.
564 * NULL is returned on a memory allocation failure.
566 static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
567 gfp_t pri)
569 might_sleep_if(pri & __GFP_WAIT);
570 if (skb_shared(skb)) {
571 struct sk_buff *nskb = skb_clone(skb, pri);
572 kfree_skb(skb);
573 skb = nskb;
575 return skb;
579 * Copy shared buffers into a new sk_buff. We effectively do COW on
580 * packets to handle cases where we have a local reader and forward
581 * and a couple of other messy ones. The normal one is tcpdumping
582 * a packet thats being forwarded.
586 * skb_unshare - make a copy of a shared buffer
587 * @skb: buffer to check
588 * @pri: priority for memory allocation
590 * If the socket buffer is a clone then this function creates a new
591 * copy of the data, drops a reference count on the old copy and returns
592 * the new copy with the reference count at 1. If the buffer is not a clone
593 * the original buffer is returned. When called with a spinlock held or
594 * from interrupt state @pri must be %GFP_ATOMIC
596 * %NULL is returned on a memory allocation failure.
598 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
599 gfp_t pri)
601 might_sleep_if(pri & __GFP_WAIT);
602 if (skb_cloned(skb)) {
603 struct sk_buff *nskb = skb_copy(skb, pri);
604 kfree_skb(skb); /* Free our shared copy */
605 skb = nskb;
607 return skb;
611 * skb_peek
612 * @list_: list to peek at
614 * Peek an &sk_buff. Unlike most other operations you _MUST_
615 * be careful with this one. A peek leaves the buffer on the
616 * list and someone else may run off with it. You must hold
617 * the appropriate locks or have a private queue to do this.
619 * Returns %NULL for an empty list or a pointer to the head element.
620 * The reference count is not incremented and the reference is therefore
621 * volatile. Use with caution.
623 static inline struct sk_buff *skb_peek(struct sk_buff_head *list_)
625 struct sk_buff *list = ((struct sk_buff *)list_)->next;
626 if (list == (struct sk_buff *)list_)
627 list = NULL;
628 return list;
632 * skb_peek_tail
633 * @list_: list to peek at
635 * Peek an &sk_buff. Unlike most other operations you _MUST_
636 * be careful with this one. A peek leaves the buffer on the
637 * list and someone else may run off with it. You must hold
638 * the appropriate locks or have a private queue to do this.
640 * Returns %NULL for an empty list or a pointer to the tail element.
641 * The reference count is not incremented and the reference is therefore
642 * volatile. Use with caution.
644 static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_)
646 struct sk_buff *list = ((struct sk_buff *)list_)->prev;
647 if (list == (struct sk_buff *)list_)
648 list = NULL;
649 return list;
653 * skb_queue_len - get queue length
654 * @list_: list to measure
656 * Return the length of an &sk_buff queue.
658 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
660 return list_->qlen;
664 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
665 * @list: queue to initialize
667 * This initializes only the list and queue length aspects of
668 * an sk_buff_head object. This allows to initialize the list
669 * aspects of an sk_buff_head without reinitializing things like
670 * the spinlock. It can also be used for on-stack sk_buff_head
671 * objects where the spinlock is known to not be used.
673 static inline void __skb_queue_head_init(struct sk_buff_head *list)
675 list->prev = list->next = (struct sk_buff *)list;
676 list->qlen = 0;
680 * This function creates a split out lock class for each invocation;
681 * this is needed for now since a whole lot of users of the skb-queue
682 * infrastructure in drivers have different locking usage (in hardirq)
683 * than the networking core (in softirq only). In the long run either the
684 * network layer or drivers should need annotation to consolidate the
685 * main types of usage into 3 classes.
687 static inline void skb_queue_head_init(struct sk_buff_head *list)
689 spin_lock_init(&list->lock);
690 __skb_queue_head_init(list);
693 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
694 struct lock_class_key *class)
696 skb_queue_head_init(list);
697 lockdep_set_class(&list->lock, class);
701 * Insert an sk_buff on a list.
703 * The "__skb_xxxx()" functions are the non-atomic ones that
704 * can only be called with interrupts disabled.
706 extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
707 static inline void __skb_insert(struct sk_buff *newsk,
708 struct sk_buff *prev, struct sk_buff *next,
709 struct sk_buff_head *list)
711 newsk->next = next;
712 newsk->prev = prev;
713 next->prev = prev->next = newsk;
714 list->qlen++;
717 static inline void __skb_queue_splice(const struct sk_buff_head *list,
718 struct sk_buff *prev,
719 struct sk_buff *next)
721 struct sk_buff *first = list->next;
722 struct sk_buff *last = list->prev;
724 first->prev = prev;
725 prev->next = first;
727 last->next = next;
728 next->prev = last;
732 * skb_queue_splice - join two skb lists, this is designed for stacks
733 * @list: the new list to add
734 * @head: the place to add it in the first list
736 static inline void skb_queue_splice(const struct sk_buff_head *list,
737 struct sk_buff_head *head)
739 if (!skb_queue_empty(list)) {
740 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
741 head->qlen += list->qlen;
746 * skb_queue_splice - join two skb lists and reinitialise the emptied list
747 * @list: the new list to add
748 * @head: the place to add it in the first list
750 * The list at @list is reinitialised
752 static inline void skb_queue_splice_init(struct sk_buff_head *list,
753 struct sk_buff_head *head)
755 if (!skb_queue_empty(list)) {
756 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
757 head->qlen += list->qlen;
758 __skb_queue_head_init(list);
763 * skb_queue_splice_tail - join two skb lists, each list being a queue
764 * @list: the new list to add
765 * @head: the place to add it in the first list
767 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
768 struct sk_buff_head *head)
770 if (!skb_queue_empty(list)) {
771 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
772 head->qlen += list->qlen;
777 * skb_queue_splice_tail - join two skb lists and reinitialise the emptied list
778 * @list: the new list to add
779 * @head: the place to add it in the first list
781 * Each of the lists is a queue.
782 * The list at @list is reinitialised
784 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
785 struct sk_buff_head *head)
787 if (!skb_queue_empty(list)) {
788 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
789 head->qlen += list->qlen;
790 __skb_queue_head_init(list);
795 * __skb_queue_after - queue a buffer at the list head
796 * @list: list to use
797 * @prev: place after this buffer
798 * @newsk: buffer to queue
800 * Queue a buffer int the middle of a list. This function takes no locks
801 * and you must therefore hold required locks before calling it.
803 * A buffer cannot be placed on two lists at the same time.
805 static inline void __skb_queue_after(struct sk_buff_head *list,
806 struct sk_buff *prev,
807 struct sk_buff *newsk)
809 __skb_insert(newsk, prev, prev->next, list);
812 extern void skb_append(struct sk_buff *old, struct sk_buff *newsk,
813 struct sk_buff_head *list);
815 static inline void __skb_queue_before(struct sk_buff_head *list,
816 struct sk_buff *next,
817 struct sk_buff *newsk)
819 __skb_insert(newsk, next->prev, next, list);
823 * __skb_queue_head - queue a buffer at the list head
824 * @list: list to use
825 * @newsk: buffer to queue
827 * Queue a buffer at the start of a list. This function takes no locks
828 * and you must therefore hold required locks before calling it.
830 * A buffer cannot be placed on two lists at the same time.
832 extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
833 static inline void __skb_queue_head(struct sk_buff_head *list,
834 struct sk_buff *newsk)
836 __skb_queue_after(list, (struct sk_buff *)list, newsk);
840 * __skb_queue_tail - queue a buffer at the list tail
841 * @list: list to use
842 * @newsk: buffer to queue
844 * Queue a buffer at the end of a list. This function takes no locks
845 * and you must therefore hold required locks before calling it.
847 * A buffer cannot be placed on two lists at the same time.
849 extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
850 static inline void __skb_queue_tail(struct sk_buff_head *list,
851 struct sk_buff *newsk)
853 __skb_queue_before(list, (struct sk_buff *)list, newsk);
857 * remove sk_buff from list. _Must_ be called atomically, and with
858 * the list known..
860 extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
861 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
863 struct sk_buff *next, *prev;
865 list->qlen--;
866 next = skb->next;
867 prev = skb->prev;
868 skb->next = skb->prev = NULL;
869 next->prev = prev;
870 prev->next = next;
874 * __skb_dequeue - remove from the head of the queue
875 * @list: list to dequeue from
877 * Remove the head of the list. This function does not take any locks
878 * so must be used with appropriate locks held only. The head item is
879 * returned or %NULL if the list is empty.
881 extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
882 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
884 struct sk_buff *skb = skb_peek(list);
885 if (skb)
886 __skb_unlink(skb, list);
887 return skb;
891 * __skb_dequeue_tail - remove from the tail of the queue
892 * @list: list to dequeue from
894 * Remove the tail of the list. This function does not take any locks
895 * so must be used with appropriate locks held only. The tail item is
896 * returned or %NULL if the list is empty.
898 extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
899 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
901 struct sk_buff *skb = skb_peek_tail(list);
902 if (skb)
903 __skb_unlink(skb, list);
904 return skb;
908 static inline int skb_is_nonlinear(const struct sk_buff *skb)
910 return skb->data_len;
913 static inline unsigned int skb_headlen(const struct sk_buff *skb)
915 return skb->len - skb->data_len;
918 static inline int skb_pagelen(const struct sk_buff *skb)
920 int i, len = 0;
922 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
923 len += skb_shinfo(skb)->frags[i].size;
924 return len + skb_headlen(skb);
927 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
928 struct page *page, int off, int size)
930 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
932 frag->page = page;
933 frag->page_offset = off;
934 frag->size = size;
935 skb_shinfo(skb)->nr_frags = i + 1;
938 #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
939 #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_shinfo(skb)->frag_list)
940 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
942 #ifdef NET_SKBUFF_DATA_USES_OFFSET
943 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
945 return skb->head + skb->tail;
948 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
950 skb->tail = skb->data - skb->head;
953 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
955 skb_reset_tail_pointer(skb);
956 skb->tail += offset;
958 #else /* NET_SKBUFF_DATA_USES_OFFSET */
959 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
961 return skb->tail;
964 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
966 skb->tail = skb->data;
969 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
971 skb->tail = skb->data + offset;
974 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
977 * Add data to an sk_buff
979 extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
980 static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
982 unsigned char *tmp = skb_tail_pointer(skb);
983 SKB_LINEAR_ASSERT(skb);
984 skb->tail += len;
985 skb->len += len;
986 return tmp;
989 extern unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
990 static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
992 skb->data -= len;
993 skb->len += len;
994 return skb->data;
997 extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
998 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
1000 skb->len -= len;
1001 BUG_ON(skb->len < skb->data_len);
1002 return skb->data += len;
1005 extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
1007 static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
1009 if (len > skb_headlen(skb) &&
1010 !__pskb_pull_tail(skb, len - skb_headlen(skb)))
1011 return NULL;
1012 skb->len -= len;
1013 return skb->data += len;
1016 static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
1018 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
1021 static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
1023 if (likely(len <= skb_headlen(skb)))
1024 return 1;
1025 if (unlikely(len > skb->len))
1026 return 0;
1027 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
1031 * skb_headroom - bytes at buffer head
1032 * @skb: buffer to check
1034 * Return the number of bytes of free space at the head of an &sk_buff.
1036 static inline unsigned int skb_headroom(const struct sk_buff *skb)
1038 return skb->data - skb->head;
1042 * skb_tailroom - bytes at buffer end
1043 * @skb: buffer to check
1045 * Return the number of bytes of free space at the tail of an sk_buff
1047 static inline int skb_tailroom(const struct sk_buff *skb)
1049 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1053 * skb_reserve - adjust headroom
1054 * @skb: buffer to alter
1055 * @len: bytes to move
1057 * Increase the headroom of an empty &sk_buff by reducing the tail
1058 * room. This is only allowed for an empty buffer.
1060 static inline void skb_reserve(struct sk_buff *skb, int len)
1062 skb->data += len;
1063 skb->tail += len;
1066 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1067 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1069 return skb->head + skb->transport_header;
1072 static inline void skb_reset_transport_header(struct sk_buff *skb)
1074 skb->transport_header = skb->data - skb->head;
1077 static inline void skb_set_transport_header(struct sk_buff *skb,
1078 const int offset)
1080 skb_reset_transport_header(skb);
1081 skb->transport_header += offset;
1084 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1086 return skb->head + skb->network_header;
1089 static inline void skb_reset_network_header(struct sk_buff *skb)
1091 skb->network_header = skb->data - skb->head;
1094 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1096 skb_reset_network_header(skb);
1097 skb->network_header += offset;
1100 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1102 return skb->head + skb->mac_header;
1105 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1107 return skb->mac_header != ~0U;
1110 static inline void skb_reset_mac_header(struct sk_buff *skb)
1112 skb->mac_header = skb->data - skb->head;
1115 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1117 skb_reset_mac_header(skb);
1118 skb->mac_header += offset;
1121 #else /* NET_SKBUFF_DATA_USES_OFFSET */
1123 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1125 return skb->transport_header;
1128 static inline void skb_reset_transport_header(struct sk_buff *skb)
1130 skb->transport_header = skb->data;
1133 static inline void skb_set_transport_header(struct sk_buff *skb,
1134 const int offset)
1136 skb->transport_header = skb->data + offset;
1139 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1141 return skb->network_header;
1144 static inline void skb_reset_network_header(struct sk_buff *skb)
1146 skb->network_header = skb->data;
1149 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1151 skb->network_header = skb->data + offset;
1154 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1156 return skb->mac_header;
1159 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1161 return skb->mac_header != NULL;
1164 static inline void skb_reset_mac_header(struct sk_buff *skb)
1166 skb->mac_header = skb->data;
1169 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1171 skb->mac_header = skb->data + offset;
1173 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
1175 static inline int skb_transport_offset(const struct sk_buff *skb)
1177 return skb_transport_header(skb) - skb->data;
1180 static inline u32 skb_network_header_len(const struct sk_buff *skb)
1182 return skb->transport_header - skb->network_header;
1185 static inline int skb_network_offset(const struct sk_buff *skb)
1187 return skb_network_header(skb) - skb->data;
1191 * CPUs often take a performance hit when accessing unaligned memory
1192 * locations. The actual performance hit varies, it can be small if the
1193 * hardware handles it or large if we have to take an exception and fix it
1194 * in software.
1196 * Since an ethernet header is 14 bytes network drivers often end up with
1197 * the IP header at an unaligned offset. The IP header can be aligned by
1198 * shifting the start of the packet by 2 bytes. Drivers should do this
1199 * with:
1201 * skb_reserve(NET_IP_ALIGN);
1203 * The downside to this alignment of the IP header is that the DMA is now
1204 * unaligned. On some architectures the cost of an unaligned DMA is high
1205 * and this cost outweighs the gains made by aligning the IP header.
1207 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
1208 * to be overridden.
1210 #ifndef NET_IP_ALIGN
1211 #define NET_IP_ALIGN 2
1212 #endif
1215 * The networking layer reserves some headroom in skb data (via
1216 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
1217 * the header has to grow. In the default case, if the header has to grow
1218 * 16 bytes or less we avoid the reallocation.
1220 * Unfortunately this headroom changes the DMA alignment of the resulting
1221 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
1222 * on some architectures. An architecture can override this value,
1223 * perhaps setting it to a cacheline in size (since that will maintain
1224 * cacheline alignment of the DMA). It must be a power of 2.
1226 * Various parts of the networking layer expect at least 16 bytes of
1227 * headroom, you should not reduce this.
1229 #ifndef NET_SKB_PAD
1230 #define NET_SKB_PAD 16
1231 #endif
1233 extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1235 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
1237 if (unlikely(skb->data_len)) {
1238 WARN_ON(1);
1239 return;
1241 skb->len = len;
1242 skb_set_tail_pointer(skb, len);
1245 extern void skb_trim(struct sk_buff *skb, unsigned int len);
1247 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
1249 if (skb->data_len)
1250 return ___pskb_trim(skb, len);
1251 __skb_trim(skb, len);
1252 return 0;
1255 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
1257 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
1261 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
1262 * @skb: buffer to alter
1263 * @len: new length
1265 * This is identical to pskb_trim except that the caller knows that
1266 * the skb is not cloned so we should never get an error due to out-
1267 * of-memory.
1269 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
1271 int err = pskb_trim(skb, len);
1272 BUG_ON(err);
1276 * skb_orphan - orphan a buffer
1277 * @skb: buffer to orphan
1279 * If a buffer currently has an owner then we call the owner's
1280 * destructor function and make the @skb unowned. The buffer continues
1281 * to exist but is no longer charged to its former owner.
1283 static inline void skb_orphan(struct sk_buff *skb)
1285 if (skb->destructor)
1286 skb->destructor(skb);
1287 skb->destructor = NULL;
1288 skb->sk = NULL;
1292 * __skb_queue_purge - empty a list
1293 * @list: list to empty
1295 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1296 * the list and one reference dropped. This function does not take the
1297 * list lock and the caller must hold the relevant locks to use it.
1299 extern void skb_queue_purge(struct sk_buff_head *list);
1300 static inline void __skb_queue_purge(struct sk_buff_head *list)
1302 struct sk_buff *skb;
1303 while ((skb = __skb_dequeue(list)) != NULL)
1304 kfree_skb(skb);
1308 * __dev_alloc_skb - allocate an skbuff for receiving
1309 * @length: length to allocate
1310 * @gfp_mask: get_free_pages mask, passed to alloc_skb
1312 * Allocate a new &sk_buff and assign it a usage count of one. The
1313 * buffer has unspecified headroom built in. Users should allocate
1314 * the headroom they think they need without accounting for the
1315 * built in space. The built in space is used for optimisations.
1317 * %NULL is returned if there is no free memory.
1319 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
1320 gfp_t gfp_mask)
1322 struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask);
1323 if (likely(skb))
1324 skb_reserve(skb, NET_SKB_PAD);
1325 return skb;
1328 extern struct sk_buff *dev_alloc_skb(unsigned int length);
1330 extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
1331 unsigned int length, gfp_t gfp_mask);
1334 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
1335 * @dev: network device to receive on
1336 * @length: length to allocate
1338 * Allocate a new &sk_buff and assign it a usage count of one. The
1339 * buffer has unspecified headroom built in. Users should allocate
1340 * the headroom they think they need without accounting for the
1341 * built in space. The built in space is used for optimisations.
1343 * %NULL is returned if there is no free memory. Although this function
1344 * allocates memory it can be called from an interrupt.
1346 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
1347 unsigned int length)
1349 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
1353 * skb_clone_writable - is the header of a clone writable
1354 * @skb: buffer to check
1355 * @len: length up to which to write
1357 * Returns true if modifying the header part of the cloned buffer
1358 * does not requires the data to be copied.
1360 static inline int skb_clone_writable(struct sk_buff *skb, unsigned int len)
1362 return !skb_header_cloned(skb) &&
1363 skb_headroom(skb) + len <= skb->hdr_len;
1366 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
1367 int cloned)
1369 int delta = 0;
1371 if (headroom < NET_SKB_PAD)
1372 headroom = NET_SKB_PAD;
1373 if (headroom > skb_headroom(skb))
1374 delta = headroom - skb_headroom(skb);
1376 if (delta || cloned)
1377 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
1378 GFP_ATOMIC);
1379 return 0;
1383 * skb_cow - copy header of skb when it is required
1384 * @skb: buffer to cow
1385 * @headroom: needed headroom
1387 * If the skb passed lacks sufficient headroom or its data part
1388 * is shared, data is reallocated. If reallocation fails, an error
1389 * is returned and original skb is not changed.
1391 * The result is skb with writable area skb->head...skb->tail
1392 * and at least @headroom of space at head.
1394 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
1396 return __skb_cow(skb, headroom, skb_cloned(skb));
1400 * skb_cow_head - skb_cow but only making the head writable
1401 * @skb: buffer to cow
1402 * @headroom: needed headroom
1404 * This function is identical to skb_cow except that we replace the
1405 * skb_cloned check by skb_header_cloned. It should be used when
1406 * you only need to push on some header and do not need to modify
1407 * the data.
1409 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
1411 return __skb_cow(skb, headroom, skb_header_cloned(skb));
1415 * skb_padto - pad an skbuff up to a minimal size
1416 * @skb: buffer to pad
1417 * @len: minimal length
1419 * Pads up a buffer to ensure the trailing bytes exist and are
1420 * blanked. If the buffer already contains sufficient data it
1421 * is untouched. Otherwise it is extended. Returns zero on
1422 * success. The skb is freed on error.
1425 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
1427 unsigned int size = skb->len;
1428 if (likely(size >= len))
1429 return 0;
1430 return skb_pad(skb, len - size);
1433 static inline int skb_add_data(struct sk_buff *skb,
1434 char __user *from, int copy)
1436 const int off = skb->len;
1438 if (skb->ip_summed == CHECKSUM_NONE) {
1439 int err = 0;
1440 __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
1441 copy, 0, &err);
1442 if (!err) {
1443 skb->csum = csum_block_add(skb->csum, csum, off);
1444 return 0;
1446 } else if (!copy_from_user(skb_put(skb, copy), from, copy))
1447 return 0;
1449 __skb_trim(skb, off);
1450 return -EFAULT;
1453 static inline int skb_can_coalesce(struct sk_buff *skb, int i,
1454 struct page *page, int off)
1456 if (i) {
1457 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1459 return page == frag->page &&
1460 off == frag->page_offset + frag->size;
1462 return 0;
1465 static inline int __skb_linearize(struct sk_buff *skb)
1467 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
1471 * skb_linearize - convert paged skb to linear one
1472 * @skb: buffer to linarize
1474 * If there is no free memory -ENOMEM is returned, otherwise zero
1475 * is returned and the old skb data released.
1477 static inline int skb_linearize(struct sk_buff *skb)
1479 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
1483 * skb_linearize_cow - make sure skb is linear and writable
1484 * @skb: buffer to process
1486 * If there is no free memory -ENOMEM is returned, otherwise zero
1487 * is returned and the old skb data released.
1489 static inline int skb_linearize_cow(struct sk_buff *skb)
1491 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
1492 __skb_linearize(skb) : 0;
1496 * skb_postpull_rcsum - update checksum for received skb after pull
1497 * @skb: buffer to update
1498 * @start: start of data before pull
1499 * @len: length of data pulled
1501 * After doing a pull on a received packet, you need to call this to
1502 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
1503 * CHECKSUM_NONE so that it can be recomputed from scratch.
1506 static inline void skb_postpull_rcsum(struct sk_buff *skb,
1507 const void *start, unsigned int len)
1509 if (skb->ip_summed == CHECKSUM_COMPLETE)
1510 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
1513 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
1516 * pskb_trim_rcsum - trim received skb and update checksum
1517 * @skb: buffer to trim
1518 * @len: new length
1520 * This is exactly the same as pskb_trim except that it ensures the
1521 * checksum of received packets are still valid after the operation.
1524 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
1526 if (likely(len >= skb->len))
1527 return 0;
1528 if (skb->ip_summed == CHECKSUM_COMPLETE)
1529 skb->ip_summed = CHECKSUM_NONE;
1530 return __pskb_trim(skb, len);
1533 #define skb_queue_walk(queue, skb) \
1534 for (skb = (queue)->next; \
1535 prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \
1536 skb = skb->next)
1538 #define skb_queue_walk_safe(queue, skb, tmp) \
1539 for (skb = (queue)->next, tmp = skb->next; \
1540 skb != (struct sk_buff *)(queue); \
1541 skb = tmp, tmp = skb->next)
1543 #define skb_queue_reverse_walk(queue, skb) \
1544 for (skb = (queue)->prev; \
1545 prefetch(skb->prev), (skb != (struct sk_buff *)(queue)); \
1546 skb = skb->prev)
1549 extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
1550 int *peeked, int *err);
1551 extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
1552 int noblock, int *err);
1553 extern unsigned int datagram_poll(struct file *file, struct socket *sock,
1554 struct poll_table_struct *wait);
1555 extern int skb_copy_datagram_iovec(const struct sk_buff *from,
1556 int offset, struct iovec *to,
1557 int size);
1558 extern int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
1559 int hlen,
1560 struct iovec *iov);
1561 extern int skb_copy_datagram_from_iovec(struct sk_buff *skb,
1562 int offset,
1563 struct iovec *from,
1564 int len);
1565 extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
1566 extern int skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
1567 unsigned int flags);
1568 extern __wsum skb_checksum(const struct sk_buff *skb, int offset,
1569 int len, __wsum csum);
1570 extern int skb_copy_bits(const struct sk_buff *skb, int offset,
1571 void *to, int len);
1572 extern int skb_store_bits(struct sk_buff *skb, int offset,
1573 const void *from, int len);
1574 extern __wsum skb_copy_and_csum_bits(const struct sk_buff *skb,
1575 int offset, u8 *to, int len,
1576 __wsum csum);
1577 extern int skb_splice_bits(struct sk_buff *skb,
1578 unsigned int offset,
1579 struct pipe_inode_info *pipe,
1580 unsigned int len,
1581 unsigned int flags);
1582 extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
1583 extern void skb_split(struct sk_buff *skb,
1584 struct sk_buff *skb1, const u32 len);
1586 extern struct sk_buff *skb_segment(struct sk_buff *skb, int features);
1588 static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
1589 int len, void *buffer)
1591 int hlen = skb_headlen(skb);
1593 if (hlen - offset >= len)
1594 return skb->data + offset;
1596 if (skb_copy_bits(skb, offset, buffer, len) < 0)
1597 return NULL;
1599 return buffer;
1602 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
1603 void *to,
1604 const unsigned int len)
1606 memcpy(to, skb->data, len);
1609 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
1610 const int offset, void *to,
1611 const unsigned int len)
1613 memcpy(to, skb->data + offset, len);
1616 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
1617 const void *from,
1618 const unsigned int len)
1620 memcpy(skb->data, from, len);
1623 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
1624 const int offset,
1625 const void *from,
1626 const unsigned int len)
1628 memcpy(skb->data + offset, from, len);
1631 extern void skb_init(void);
1634 * skb_get_timestamp - get timestamp from a skb
1635 * @skb: skb to get stamp from
1636 * @stamp: pointer to struct timeval to store stamp in
1638 * Timestamps are stored in the skb as offsets to a base timestamp.
1639 * This function converts the offset back to a struct timeval and stores
1640 * it in stamp.
1642 static inline void skb_get_timestamp(const struct sk_buff *skb, struct timeval *stamp)
1644 *stamp = ktime_to_timeval(skb->tstamp);
1647 static inline void __net_timestamp(struct sk_buff *skb)
1649 skb->tstamp = ktime_get_real();
1652 static inline ktime_t net_timedelta(ktime_t t)
1654 return ktime_sub(ktime_get_real(), t);
1657 static inline ktime_t net_invalid_timestamp(void)
1659 return ktime_set(0, 0);
1662 extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
1663 extern __sum16 __skb_checksum_complete(struct sk_buff *skb);
1665 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
1667 return skb->ip_summed & CHECKSUM_UNNECESSARY;
1671 * skb_checksum_complete - Calculate checksum of an entire packet
1672 * @skb: packet to process
1674 * This function calculates the checksum over the entire packet plus
1675 * the value of skb->csum. The latter can be used to supply the
1676 * checksum of a pseudo header as used by TCP/UDP. It returns the
1677 * checksum.
1679 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
1680 * this function can be used to verify that checksum on received
1681 * packets. In that case the function should return zero if the
1682 * checksum is correct. In particular, this function will return zero
1683 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
1684 * hardware has already verified the correctness of the checksum.
1686 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
1688 return skb_csum_unnecessary(skb) ?
1689 0 : __skb_checksum_complete(skb);
1692 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1693 extern void nf_conntrack_destroy(struct nf_conntrack *nfct);
1694 static inline void nf_conntrack_put(struct nf_conntrack *nfct)
1696 if (nfct && atomic_dec_and_test(&nfct->use))
1697 nf_conntrack_destroy(nfct);
1699 static inline void nf_conntrack_get(struct nf_conntrack *nfct)
1701 if (nfct)
1702 atomic_inc(&nfct->use);
1704 static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
1706 if (skb)
1707 atomic_inc(&skb->users);
1709 static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
1711 if (skb)
1712 kfree_skb(skb);
1714 #endif
1715 #ifdef CONFIG_BRIDGE_NETFILTER
1716 static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
1718 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
1719 kfree(nf_bridge);
1721 static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
1723 if (nf_bridge)
1724 atomic_inc(&nf_bridge->use);
1726 #endif /* CONFIG_BRIDGE_NETFILTER */
1727 static inline void nf_reset(struct sk_buff *skb)
1729 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1730 nf_conntrack_put(skb->nfct);
1731 skb->nfct = NULL;
1732 nf_conntrack_put_reasm(skb->nfct_reasm);
1733 skb->nfct_reasm = NULL;
1734 #endif
1735 #ifdef CONFIG_BRIDGE_NETFILTER
1736 nf_bridge_put(skb->nf_bridge);
1737 skb->nf_bridge = NULL;
1738 #endif
1741 /* Note: This doesn't put any conntrack and bridge info in dst. */
1742 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src)
1744 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1745 dst->nfct = src->nfct;
1746 nf_conntrack_get(src->nfct);
1747 dst->nfctinfo = src->nfctinfo;
1748 dst->nfct_reasm = src->nfct_reasm;
1749 nf_conntrack_get_reasm(src->nfct_reasm);
1750 #endif
1751 #ifdef CONFIG_BRIDGE_NETFILTER
1752 dst->nf_bridge = src->nf_bridge;
1753 nf_bridge_get(src->nf_bridge);
1754 #endif
1757 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
1759 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1760 nf_conntrack_put(dst->nfct);
1761 nf_conntrack_put_reasm(dst->nfct_reasm);
1762 #endif
1763 #ifdef CONFIG_BRIDGE_NETFILTER
1764 nf_bridge_put(dst->nf_bridge);
1765 #endif
1766 __nf_copy(dst, src);
1769 #ifdef CONFIG_NETWORK_SECMARK
1770 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
1772 to->secmark = from->secmark;
1775 static inline void skb_init_secmark(struct sk_buff *skb)
1777 skb->secmark = 0;
1779 #else
1780 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
1783 static inline void skb_init_secmark(struct sk_buff *skb)
1785 #endif
1787 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
1789 skb->queue_mapping = queue_mapping;
1792 static inline u16 skb_get_queue_mapping(struct sk_buff *skb)
1794 return skb->queue_mapping;
1797 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
1799 to->queue_mapping = from->queue_mapping;
1802 static inline int skb_is_gso(const struct sk_buff *skb)
1804 return skb_shinfo(skb)->gso_size;
1807 static inline int skb_is_gso_v6(const struct sk_buff *skb)
1809 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
1812 extern void __skb_warn_lro_forwarding(const struct sk_buff *skb);
1814 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
1816 /* LRO sets gso_size but not gso_type, whereas if GSO is really
1817 * wanted then gso_type will be set. */
1818 struct skb_shared_info *shinfo = skb_shinfo(skb);
1819 if (shinfo->gso_size != 0 && unlikely(shinfo->gso_type == 0)) {
1820 __skb_warn_lro_forwarding(skb);
1821 return true;
1823 return false;
1826 static inline void skb_forward_csum(struct sk_buff *skb)
1828 /* Unfortunately we don't support this one. Any brave souls? */
1829 if (skb->ip_summed == CHECKSUM_COMPLETE)
1830 skb->ip_summed = CHECKSUM_NONE;
1833 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
1834 #endif /* __KERNEL__ */
1835 #endif /* _LINUX_SKBUFF_H */