hecubafb: use fb_sys_read()
[linux-2.6/kvm.git] / kernel / exit.c
blobf5a7abb621f3738ce4199ad1405143405d1dbfd5
1 /*
2 * linux/kernel/exit.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/mnt_namespace.h>
16 #include <linux/key.h>
17 #include <linux/security.h>
18 #include <linux/cpu.h>
19 #include <linux/acct.h>
20 #include <linux/tsacct_kern.h>
21 #include <linux/file.h>
22 #include <linux/binfmts.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pid_namespace.h>
25 #include <linux/ptrace.h>
26 #include <linux/profile.h>
27 #include <linux/mount.h>
28 #include <linux/proc_fs.h>
29 #include <linux/mempolicy.h>
30 #include <linux/taskstats_kern.h>
31 #include <linux/delayacct.h>
32 #include <linux/cpuset.h>
33 #include <linux/syscalls.h>
34 #include <linux/signal.h>
35 #include <linux/posix-timers.h>
36 #include <linux/cn_proc.h>
37 #include <linux/mutex.h>
38 #include <linux/futex.h>
39 #include <linux/compat.h>
40 #include <linux/pipe_fs_i.h>
41 #include <linux/audit.h> /* for audit_free() */
42 #include <linux/resource.h>
43 #include <linux/blkdev.h>
45 #include <asm/uaccess.h>
46 #include <asm/unistd.h>
47 #include <asm/pgtable.h>
48 #include <asm/mmu_context.h>
50 extern void sem_exit (void);
52 static void exit_mm(struct task_struct * tsk);
54 static void __unhash_process(struct task_struct *p)
56 nr_threads--;
57 detach_pid(p, PIDTYPE_PID);
58 if (thread_group_leader(p)) {
59 detach_pid(p, PIDTYPE_PGID);
60 detach_pid(p, PIDTYPE_SID);
62 list_del_rcu(&p->tasks);
63 __get_cpu_var(process_counts)--;
65 list_del_rcu(&p->thread_group);
66 remove_parent(p);
70 * This function expects the tasklist_lock write-locked.
72 static void __exit_signal(struct task_struct *tsk)
74 struct signal_struct *sig = tsk->signal;
75 struct sighand_struct *sighand;
77 BUG_ON(!sig);
78 BUG_ON(!atomic_read(&sig->count));
80 rcu_read_lock();
81 sighand = rcu_dereference(tsk->sighand);
82 spin_lock(&sighand->siglock);
84 posix_cpu_timers_exit(tsk);
85 if (atomic_dec_and_test(&sig->count))
86 posix_cpu_timers_exit_group(tsk);
87 else {
89 * If there is any task waiting for the group exit
90 * then notify it:
92 if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count) {
93 wake_up_process(sig->group_exit_task);
94 sig->group_exit_task = NULL;
96 if (tsk == sig->curr_target)
97 sig->curr_target = next_thread(tsk);
99 * Accumulate here the counters for all threads but the
100 * group leader as they die, so they can be added into
101 * the process-wide totals when those are taken.
102 * The group leader stays around as a zombie as long
103 * as there are other threads. When it gets reaped,
104 * the exit.c code will add its counts into these totals.
105 * We won't ever get here for the group leader, since it
106 * will have been the last reference on the signal_struct.
108 sig->utime = cputime_add(sig->utime, tsk->utime);
109 sig->stime = cputime_add(sig->stime, tsk->stime);
110 sig->min_flt += tsk->min_flt;
111 sig->maj_flt += tsk->maj_flt;
112 sig->nvcsw += tsk->nvcsw;
113 sig->nivcsw += tsk->nivcsw;
114 sig->sched_time += tsk->sched_time;
115 sig = NULL; /* Marker for below. */
118 __unhash_process(tsk);
120 tsk->signal = NULL;
121 tsk->sighand = NULL;
122 spin_unlock(&sighand->siglock);
123 rcu_read_unlock();
125 __cleanup_sighand(sighand);
126 clear_tsk_thread_flag(tsk,TIF_SIGPENDING);
127 flush_sigqueue(&tsk->pending);
128 if (sig) {
129 flush_sigqueue(&sig->shared_pending);
130 taskstats_tgid_free(sig);
131 __cleanup_signal(sig);
135 static void delayed_put_task_struct(struct rcu_head *rhp)
137 put_task_struct(container_of(rhp, struct task_struct, rcu));
140 void release_task(struct task_struct * p)
142 struct task_struct *leader;
143 int zap_leader;
144 repeat:
145 atomic_dec(&p->user->processes);
146 write_lock_irq(&tasklist_lock);
147 ptrace_unlink(p);
148 BUG_ON(!list_empty(&p->ptrace_list) || !list_empty(&p->ptrace_children));
149 __exit_signal(p);
152 * If we are the last non-leader member of the thread
153 * group, and the leader is zombie, then notify the
154 * group leader's parent process. (if it wants notification.)
156 zap_leader = 0;
157 leader = p->group_leader;
158 if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) {
159 BUG_ON(leader->exit_signal == -1);
160 do_notify_parent(leader, leader->exit_signal);
162 * If we were the last child thread and the leader has
163 * exited already, and the leader's parent ignores SIGCHLD,
164 * then we are the one who should release the leader.
166 * do_notify_parent() will have marked it self-reaping in
167 * that case.
169 zap_leader = (leader->exit_signal == -1);
172 sched_exit(p);
173 write_unlock_irq(&tasklist_lock);
174 proc_flush_task(p);
175 release_thread(p);
176 call_rcu(&p->rcu, delayed_put_task_struct);
178 p = leader;
179 if (unlikely(zap_leader))
180 goto repeat;
184 * This checks not only the pgrp, but falls back on the pid if no
185 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
186 * without this...
188 * The caller must hold rcu lock or the tasklist lock.
190 struct pid *session_of_pgrp(struct pid *pgrp)
192 struct task_struct *p;
193 struct pid *sid = NULL;
195 p = pid_task(pgrp, PIDTYPE_PGID);
196 if (p == NULL)
197 p = pid_task(pgrp, PIDTYPE_PID);
198 if (p != NULL)
199 sid = task_session(p);
201 return sid;
205 * Determine if a process group is "orphaned", according to the POSIX
206 * definition in 2.2.2.52. Orphaned process groups are not to be affected
207 * by terminal-generated stop signals. Newly orphaned process groups are
208 * to receive a SIGHUP and a SIGCONT.
210 * "I ask you, have you ever known what it is to be an orphan?"
212 static int will_become_orphaned_pgrp(struct pid *pgrp, struct task_struct *ignored_task)
214 struct task_struct *p;
215 int ret = 1;
217 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
218 if (p == ignored_task
219 || p->exit_state
220 || is_init(p->real_parent))
221 continue;
222 if (task_pgrp(p->real_parent) != pgrp &&
223 task_session(p->real_parent) == task_session(p)) {
224 ret = 0;
225 break;
227 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
228 return ret; /* (sighing) "Often!" */
231 int is_current_pgrp_orphaned(void)
233 int retval;
235 read_lock(&tasklist_lock);
236 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
237 read_unlock(&tasklist_lock);
239 return retval;
242 static int has_stopped_jobs(struct pid *pgrp)
244 int retval = 0;
245 struct task_struct *p;
247 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
248 if (p->state != TASK_STOPPED)
249 continue;
250 retval = 1;
251 break;
252 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
253 return retval;
257 * reparent_to_init - Reparent the calling kernel thread to the init task of the pid space that the thread belongs to.
259 * If a kernel thread is launched as a result of a system call, or if
260 * it ever exits, it should generally reparent itself to init so that
261 * it is correctly cleaned up on exit.
263 * The various task state such as scheduling policy and priority may have
264 * been inherited from a user process, so we reset them to sane values here.
266 * NOTE that reparent_to_init() gives the caller full capabilities.
268 static void reparent_to_init(void)
270 write_lock_irq(&tasklist_lock);
272 ptrace_unlink(current);
273 /* Reparent to init */
274 remove_parent(current);
275 current->parent = child_reaper(current);
276 current->real_parent = child_reaper(current);
277 add_parent(current);
279 /* Set the exit signal to SIGCHLD so we signal init on exit */
280 current->exit_signal = SIGCHLD;
282 if (!has_rt_policy(current) && (task_nice(current) < 0))
283 set_user_nice(current, 0);
284 /* cpus_allowed? */
285 /* rt_priority? */
286 /* signals? */
287 security_task_reparent_to_init(current);
288 memcpy(current->signal->rlim, init_task.signal->rlim,
289 sizeof(current->signal->rlim));
290 atomic_inc(&(INIT_USER->__count));
291 write_unlock_irq(&tasklist_lock);
292 switch_uid(INIT_USER);
295 void __set_special_pids(pid_t session, pid_t pgrp)
297 struct task_struct *curr = current->group_leader;
299 if (process_session(curr) != session) {
300 detach_pid(curr, PIDTYPE_SID);
301 set_signal_session(curr->signal, session);
302 attach_pid(curr, PIDTYPE_SID, session);
304 if (process_group(curr) != pgrp) {
305 detach_pid(curr, PIDTYPE_PGID);
306 curr->signal->pgrp = pgrp;
307 attach_pid(curr, PIDTYPE_PGID, pgrp);
311 static void set_special_pids(pid_t session, pid_t pgrp)
313 write_lock_irq(&tasklist_lock);
314 __set_special_pids(session, pgrp);
315 write_unlock_irq(&tasklist_lock);
319 * Let kernel threads use this to say that they
320 * allow a certain signal (since daemonize() will
321 * have disabled all of them by default).
323 int allow_signal(int sig)
325 if (!valid_signal(sig) || sig < 1)
326 return -EINVAL;
328 spin_lock_irq(&current->sighand->siglock);
329 sigdelset(&current->blocked, sig);
330 if (!current->mm) {
331 /* Kernel threads handle their own signals.
332 Let the signal code know it'll be handled, so
333 that they don't get converted to SIGKILL or
334 just silently dropped */
335 current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2;
337 recalc_sigpending();
338 spin_unlock_irq(&current->sighand->siglock);
339 return 0;
342 EXPORT_SYMBOL(allow_signal);
344 int disallow_signal(int sig)
346 if (!valid_signal(sig) || sig < 1)
347 return -EINVAL;
349 spin_lock_irq(&current->sighand->siglock);
350 sigaddset(&current->blocked, sig);
351 recalc_sigpending();
352 spin_unlock_irq(&current->sighand->siglock);
353 return 0;
356 EXPORT_SYMBOL(disallow_signal);
359 * Put all the gunge required to become a kernel thread without
360 * attached user resources in one place where it belongs.
363 void daemonize(const char *name, ...)
365 va_list args;
366 struct fs_struct *fs;
367 sigset_t blocked;
369 va_start(args, name);
370 vsnprintf(current->comm, sizeof(current->comm), name, args);
371 va_end(args);
374 * If we were started as result of loading a module, close all of the
375 * user space pages. We don't need them, and if we didn't close them
376 * they would be locked into memory.
378 exit_mm(current);
380 set_special_pids(1, 1);
381 proc_clear_tty(current);
383 /* Block and flush all signals */
384 sigfillset(&blocked);
385 sigprocmask(SIG_BLOCK, &blocked, NULL);
386 flush_signals(current);
388 /* Become as one with the init task */
390 exit_fs(current); /* current->fs->count--; */
391 fs = init_task.fs;
392 current->fs = fs;
393 atomic_inc(&fs->count);
395 exit_task_namespaces(current);
396 current->nsproxy = init_task.nsproxy;
397 get_task_namespaces(current);
399 exit_files(current);
400 current->files = init_task.files;
401 atomic_inc(&current->files->count);
403 reparent_to_init();
406 EXPORT_SYMBOL(daemonize);
408 static void close_files(struct files_struct * files)
410 int i, j;
411 struct fdtable *fdt;
413 j = 0;
416 * It is safe to dereference the fd table without RCU or
417 * ->file_lock because this is the last reference to the
418 * files structure.
420 fdt = files_fdtable(files);
421 for (;;) {
422 unsigned long set;
423 i = j * __NFDBITS;
424 if (i >= fdt->max_fds)
425 break;
426 set = fdt->open_fds->fds_bits[j++];
427 while (set) {
428 if (set & 1) {
429 struct file * file = xchg(&fdt->fd[i], NULL);
430 if (file) {
431 filp_close(file, files);
432 cond_resched();
435 i++;
436 set >>= 1;
441 struct files_struct *get_files_struct(struct task_struct *task)
443 struct files_struct *files;
445 task_lock(task);
446 files = task->files;
447 if (files)
448 atomic_inc(&files->count);
449 task_unlock(task);
451 return files;
454 void fastcall put_files_struct(struct files_struct *files)
456 struct fdtable *fdt;
458 if (atomic_dec_and_test(&files->count)) {
459 close_files(files);
461 * Free the fd and fdset arrays if we expanded them.
462 * If the fdtable was embedded, pass files for freeing
463 * at the end of the RCU grace period. Otherwise,
464 * you can free files immediately.
466 fdt = files_fdtable(files);
467 if (fdt != &files->fdtab)
468 kmem_cache_free(files_cachep, files);
469 free_fdtable(fdt);
473 EXPORT_SYMBOL(put_files_struct);
475 void reset_files_struct(struct task_struct *tsk, struct files_struct *files)
477 struct files_struct *old;
479 old = tsk->files;
480 task_lock(tsk);
481 tsk->files = files;
482 task_unlock(tsk);
483 put_files_struct(old);
485 EXPORT_SYMBOL(reset_files_struct);
487 static inline void __exit_files(struct task_struct *tsk)
489 struct files_struct * files = tsk->files;
491 if (files) {
492 task_lock(tsk);
493 tsk->files = NULL;
494 task_unlock(tsk);
495 put_files_struct(files);
499 void exit_files(struct task_struct *tsk)
501 __exit_files(tsk);
504 static inline void __put_fs_struct(struct fs_struct *fs)
506 /* No need to hold fs->lock if we are killing it */
507 if (atomic_dec_and_test(&fs->count)) {
508 dput(fs->root);
509 mntput(fs->rootmnt);
510 dput(fs->pwd);
511 mntput(fs->pwdmnt);
512 if (fs->altroot) {
513 dput(fs->altroot);
514 mntput(fs->altrootmnt);
516 kmem_cache_free(fs_cachep, fs);
520 void put_fs_struct(struct fs_struct *fs)
522 __put_fs_struct(fs);
525 static inline void __exit_fs(struct task_struct *tsk)
527 struct fs_struct * fs = tsk->fs;
529 if (fs) {
530 task_lock(tsk);
531 tsk->fs = NULL;
532 task_unlock(tsk);
533 __put_fs_struct(fs);
537 void exit_fs(struct task_struct *tsk)
539 __exit_fs(tsk);
542 EXPORT_SYMBOL_GPL(exit_fs);
545 * Turn us into a lazy TLB process if we
546 * aren't already..
548 static void exit_mm(struct task_struct * tsk)
550 struct mm_struct *mm = tsk->mm;
552 mm_release(tsk, mm);
553 if (!mm)
554 return;
556 * Serialize with any possible pending coredump.
557 * We must hold mmap_sem around checking core_waiters
558 * and clearing tsk->mm. The core-inducing thread
559 * will increment core_waiters for each thread in the
560 * group with ->mm != NULL.
562 down_read(&mm->mmap_sem);
563 if (mm->core_waiters) {
564 up_read(&mm->mmap_sem);
565 down_write(&mm->mmap_sem);
566 if (!--mm->core_waiters)
567 complete(mm->core_startup_done);
568 up_write(&mm->mmap_sem);
570 wait_for_completion(&mm->core_done);
571 down_read(&mm->mmap_sem);
573 atomic_inc(&mm->mm_count);
574 BUG_ON(mm != tsk->active_mm);
575 /* more a memory barrier than a real lock */
576 task_lock(tsk);
577 tsk->mm = NULL;
578 up_read(&mm->mmap_sem);
579 enter_lazy_tlb(mm, current);
580 task_unlock(tsk);
581 mmput(mm);
584 static inline void
585 choose_new_parent(struct task_struct *p, struct task_struct *reaper)
588 * Make sure we're not reparenting to ourselves and that
589 * the parent is not a zombie.
591 BUG_ON(p == reaper || reaper->exit_state);
592 p->real_parent = reaper;
595 static void
596 reparent_thread(struct task_struct *p, struct task_struct *father, int traced)
598 if (p->pdeath_signal)
599 /* We already hold the tasklist_lock here. */
600 group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p);
602 /* Move the child from its dying parent to the new one. */
603 if (unlikely(traced)) {
604 /* Preserve ptrace links if someone else is tracing this child. */
605 list_del_init(&p->ptrace_list);
606 if (p->parent != p->real_parent)
607 list_add(&p->ptrace_list, &p->real_parent->ptrace_children);
608 } else {
609 /* If this child is being traced, then we're the one tracing it
610 * anyway, so let go of it.
612 p->ptrace = 0;
613 remove_parent(p);
614 p->parent = p->real_parent;
615 add_parent(p);
617 if (p->state == TASK_TRACED) {
619 * If it was at a trace stop, turn it into
620 * a normal stop since it's no longer being
621 * traced.
623 ptrace_untrace(p);
627 /* If this is a threaded reparent there is no need to
628 * notify anyone anything has happened.
630 if (p->real_parent->group_leader == father->group_leader)
631 return;
633 /* We don't want people slaying init. */
634 if (p->exit_signal != -1)
635 p->exit_signal = SIGCHLD;
637 /* If we'd notified the old parent about this child's death,
638 * also notify the new parent.
640 if (!traced && p->exit_state == EXIT_ZOMBIE &&
641 p->exit_signal != -1 && thread_group_empty(p))
642 do_notify_parent(p, p->exit_signal);
645 * process group orphan check
646 * Case ii: Our child is in a different pgrp
647 * than we are, and it was the only connection
648 * outside, so the child pgrp is now orphaned.
650 if ((task_pgrp(p) != task_pgrp(father)) &&
651 (task_session(p) == task_session(father))) {
652 struct pid *pgrp = task_pgrp(p);
654 if (will_become_orphaned_pgrp(pgrp, NULL) &&
655 has_stopped_jobs(pgrp)) {
656 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
657 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
663 * When we die, we re-parent all our children.
664 * Try to give them to another thread in our thread
665 * group, and if no such member exists, give it to
666 * the child reaper process (ie "init") in our pid
667 * space.
669 static void
670 forget_original_parent(struct task_struct *father, struct list_head *to_release)
672 struct task_struct *p, *reaper = father;
673 struct list_head *_p, *_n;
675 do {
676 reaper = next_thread(reaper);
677 if (reaper == father) {
678 reaper = child_reaper(father);
679 break;
681 } while (reaper->exit_state);
684 * There are only two places where our children can be:
686 * - in our child list
687 * - in our ptraced child list
689 * Search them and reparent children.
691 list_for_each_safe(_p, _n, &father->children) {
692 int ptrace;
693 p = list_entry(_p, struct task_struct, sibling);
695 ptrace = p->ptrace;
697 /* if father isn't the real parent, then ptrace must be enabled */
698 BUG_ON(father != p->real_parent && !ptrace);
700 if (father == p->real_parent) {
701 /* reparent with a reaper, real father it's us */
702 choose_new_parent(p, reaper);
703 reparent_thread(p, father, 0);
704 } else {
705 /* reparent ptraced task to its real parent */
706 __ptrace_unlink (p);
707 if (p->exit_state == EXIT_ZOMBIE && p->exit_signal != -1 &&
708 thread_group_empty(p))
709 do_notify_parent(p, p->exit_signal);
713 * if the ptraced child is a zombie with exit_signal == -1
714 * we must collect it before we exit, or it will remain
715 * zombie forever since we prevented it from self-reap itself
716 * while it was being traced by us, to be able to see it in wait4.
718 if (unlikely(ptrace && p->exit_state == EXIT_ZOMBIE && p->exit_signal == -1))
719 list_add(&p->ptrace_list, to_release);
721 list_for_each_safe(_p, _n, &father->ptrace_children) {
722 p = list_entry(_p, struct task_struct, ptrace_list);
723 choose_new_parent(p, reaper);
724 reparent_thread(p, father, 1);
729 * Send signals to all our closest relatives so that they know
730 * to properly mourn us..
732 static void exit_notify(struct task_struct *tsk)
734 int state;
735 struct task_struct *t;
736 struct list_head ptrace_dead, *_p, *_n;
737 struct pid *pgrp;
739 if (signal_pending(tsk) && !(tsk->signal->flags & SIGNAL_GROUP_EXIT)
740 && !thread_group_empty(tsk)) {
742 * This occurs when there was a race between our exit
743 * syscall and a group signal choosing us as the one to
744 * wake up. It could be that we are the only thread
745 * alerted to check for pending signals, but another thread
746 * should be woken now to take the signal since we will not.
747 * Now we'll wake all the threads in the group just to make
748 * sure someone gets all the pending signals.
750 read_lock(&tasklist_lock);
751 spin_lock_irq(&tsk->sighand->siglock);
752 for (t = next_thread(tsk); t != tsk; t = next_thread(t))
753 if (!signal_pending(t) && !(t->flags & PF_EXITING)) {
754 recalc_sigpending_tsk(t);
755 if (signal_pending(t))
756 signal_wake_up(t, 0);
758 spin_unlock_irq(&tsk->sighand->siglock);
759 read_unlock(&tasklist_lock);
762 write_lock_irq(&tasklist_lock);
765 * This does two things:
767 * A. Make init inherit all the child processes
768 * B. Check to see if any process groups have become orphaned
769 * as a result of our exiting, and if they have any stopped
770 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
773 INIT_LIST_HEAD(&ptrace_dead);
774 forget_original_parent(tsk, &ptrace_dead);
775 BUG_ON(!list_empty(&tsk->children));
776 BUG_ON(!list_empty(&tsk->ptrace_children));
779 * Check to see if any process groups have become orphaned
780 * as a result of our exiting, and if they have any stopped
781 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
783 * Case i: Our father is in a different pgrp than we are
784 * and we were the only connection outside, so our pgrp
785 * is about to become orphaned.
788 t = tsk->real_parent;
790 pgrp = task_pgrp(tsk);
791 if ((task_pgrp(t) != pgrp) &&
792 (task_session(t) == task_session(tsk)) &&
793 will_become_orphaned_pgrp(pgrp, tsk) &&
794 has_stopped_jobs(pgrp)) {
795 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
796 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
799 /* Let father know we died
801 * Thread signals are configurable, but you aren't going to use
802 * that to send signals to arbitary processes.
803 * That stops right now.
805 * If the parent exec id doesn't match the exec id we saved
806 * when we started then we know the parent has changed security
807 * domain.
809 * If our self_exec id doesn't match our parent_exec_id then
810 * we have changed execution domain as these two values started
811 * the same after a fork.
815 if (tsk->exit_signal != SIGCHLD && tsk->exit_signal != -1 &&
816 ( tsk->parent_exec_id != t->self_exec_id ||
817 tsk->self_exec_id != tsk->parent_exec_id)
818 && !capable(CAP_KILL))
819 tsk->exit_signal = SIGCHLD;
822 /* If something other than our normal parent is ptracing us, then
823 * send it a SIGCHLD instead of honoring exit_signal. exit_signal
824 * only has special meaning to our real parent.
826 if (tsk->exit_signal != -1 && thread_group_empty(tsk)) {
827 int signal = tsk->parent == tsk->real_parent ? tsk->exit_signal : SIGCHLD;
828 do_notify_parent(tsk, signal);
829 } else if (tsk->ptrace) {
830 do_notify_parent(tsk, SIGCHLD);
833 state = EXIT_ZOMBIE;
834 if (tsk->exit_signal == -1 &&
835 (likely(tsk->ptrace == 0) ||
836 unlikely(tsk->parent->signal->flags & SIGNAL_GROUP_EXIT)))
837 state = EXIT_DEAD;
838 tsk->exit_state = state;
840 write_unlock_irq(&tasklist_lock);
842 list_for_each_safe(_p, _n, &ptrace_dead) {
843 list_del_init(_p);
844 t = list_entry(_p, struct task_struct, ptrace_list);
845 release_task(t);
848 /* If the process is dead, release it - nobody will wait for it */
849 if (state == EXIT_DEAD)
850 release_task(tsk);
853 fastcall NORET_TYPE void do_exit(long code)
855 struct task_struct *tsk = current;
856 int group_dead;
858 profile_task_exit(tsk);
860 WARN_ON(atomic_read(&tsk->fs_excl));
862 if (unlikely(in_interrupt()))
863 panic("Aiee, killing interrupt handler!");
864 if (unlikely(!tsk->pid))
865 panic("Attempted to kill the idle task!");
866 if (unlikely(tsk == child_reaper(tsk))) {
867 if (tsk->nsproxy->pid_ns != &init_pid_ns)
868 tsk->nsproxy->pid_ns->child_reaper = init_pid_ns.child_reaper;
869 else
870 panic("Attempted to kill init!");
874 if (unlikely(current->ptrace & PT_TRACE_EXIT)) {
875 current->ptrace_message = code;
876 ptrace_notify((PTRACE_EVENT_EXIT << 8) | SIGTRAP);
880 * We're taking recursive faults here in do_exit. Safest is to just
881 * leave this task alone and wait for reboot.
883 if (unlikely(tsk->flags & PF_EXITING)) {
884 printk(KERN_ALERT
885 "Fixing recursive fault but reboot is needed!\n");
886 if (tsk->io_context)
887 exit_io_context();
888 set_current_state(TASK_UNINTERRUPTIBLE);
889 schedule();
892 tsk->flags |= PF_EXITING;
894 if (unlikely(in_atomic()))
895 printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
896 current->comm, current->pid,
897 preempt_count());
899 acct_update_integrals(tsk);
900 if (tsk->mm) {
901 update_hiwater_rss(tsk->mm);
902 update_hiwater_vm(tsk->mm);
904 group_dead = atomic_dec_and_test(&tsk->signal->live);
905 if (group_dead) {
906 hrtimer_cancel(&tsk->signal->real_timer);
907 exit_itimers(tsk->signal);
909 acct_collect(code, group_dead);
910 if (unlikely(tsk->robust_list))
911 exit_robust_list(tsk);
912 #if defined(CONFIG_FUTEX) && defined(CONFIG_COMPAT)
913 if (unlikely(tsk->compat_robust_list))
914 compat_exit_robust_list(tsk);
915 #endif
916 if (unlikely(tsk->audit_context))
917 audit_free(tsk);
919 taskstats_exit(tsk, group_dead);
921 exit_mm(tsk);
923 if (group_dead)
924 acct_process();
925 exit_sem(tsk);
926 __exit_files(tsk);
927 __exit_fs(tsk);
928 exit_thread();
929 cpuset_exit(tsk);
930 exit_keys(tsk);
932 if (group_dead && tsk->signal->leader)
933 disassociate_ctty(1);
935 module_put(task_thread_info(tsk)->exec_domain->module);
936 if (tsk->binfmt)
937 module_put(tsk->binfmt->module);
939 tsk->exit_code = code;
940 proc_exit_connector(tsk);
941 exit_task_namespaces(tsk);
942 exit_notify(tsk);
943 #ifdef CONFIG_NUMA
944 mpol_free(tsk->mempolicy);
945 tsk->mempolicy = NULL;
946 #endif
948 * This must happen late, after the PID is not
949 * hashed anymore:
951 if (unlikely(!list_empty(&tsk->pi_state_list)))
952 exit_pi_state_list(tsk);
953 if (unlikely(current->pi_state_cache))
954 kfree(current->pi_state_cache);
956 * Make sure we are holding no locks:
958 debug_check_no_locks_held(tsk);
960 if (tsk->io_context)
961 exit_io_context();
963 if (tsk->splice_pipe)
964 __free_pipe_info(tsk->splice_pipe);
966 preempt_disable();
967 /* causes final put_task_struct in finish_task_switch(). */
968 tsk->state = TASK_DEAD;
970 schedule();
971 BUG();
972 /* Avoid "noreturn function does return". */
973 for (;;)
974 cpu_relax(); /* For when BUG is null */
977 EXPORT_SYMBOL_GPL(do_exit);
979 NORET_TYPE void complete_and_exit(struct completion *comp, long code)
981 if (comp)
982 complete(comp);
984 do_exit(code);
987 EXPORT_SYMBOL(complete_and_exit);
989 asmlinkage long sys_exit(int error_code)
991 do_exit((error_code&0xff)<<8);
995 * Take down every thread in the group. This is called by fatal signals
996 * as well as by sys_exit_group (below).
998 NORET_TYPE void
999 do_group_exit(int exit_code)
1001 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
1003 if (current->signal->flags & SIGNAL_GROUP_EXIT)
1004 exit_code = current->signal->group_exit_code;
1005 else if (!thread_group_empty(current)) {
1006 struct signal_struct *const sig = current->signal;
1007 struct sighand_struct *const sighand = current->sighand;
1008 spin_lock_irq(&sighand->siglock);
1009 if (sig->flags & SIGNAL_GROUP_EXIT)
1010 /* Another thread got here before we took the lock. */
1011 exit_code = sig->group_exit_code;
1012 else {
1013 sig->group_exit_code = exit_code;
1014 zap_other_threads(current);
1016 spin_unlock_irq(&sighand->siglock);
1019 do_exit(exit_code);
1020 /* NOTREACHED */
1024 * this kills every thread in the thread group. Note that any externally
1025 * wait4()-ing process will get the correct exit code - even if this
1026 * thread is not the thread group leader.
1028 asmlinkage void sys_exit_group(int error_code)
1030 do_group_exit((error_code & 0xff) << 8);
1033 static int eligible_child(pid_t pid, int options, struct task_struct *p)
1035 int err;
1037 if (pid > 0) {
1038 if (p->pid != pid)
1039 return 0;
1040 } else if (!pid) {
1041 if (process_group(p) != process_group(current))
1042 return 0;
1043 } else if (pid != -1) {
1044 if (process_group(p) != -pid)
1045 return 0;
1049 * Do not consider detached threads that are
1050 * not ptraced:
1052 if (p->exit_signal == -1 && !p->ptrace)
1053 return 0;
1055 /* Wait for all children (clone and not) if __WALL is set;
1056 * otherwise, wait for clone children *only* if __WCLONE is
1057 * set; otherwise, wait for non-clone children *only*. (Note:
1058 * A "clone" child here is one that reports to its parent
1059 * using a signal other than SIGCHLD.) */
1060 if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0))
1061 && !(options & __WALL))
1062 return 0;
1064 * Do not consider thread group leaders that are
1065 * in a non-empty thread group:
1067 if (delay_group_leader(p))
1068 return 2;
1070 err = security_task_wait(p);
1071 if (err)
1072 return err;
1074 return 1;
1077 static int wait_noreap_copyout(struct task_struct *p, pid_t pid, uid_t uid,
1078 int why, int status,
1079 struct siginfo __user *infop,
1080 struct rusage __user *rusagep)
1082 int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0;
1084 put_task_struct(p);
1085 if (!retval)
1086 retval = put_user(SIGCHLD, &infop->si_signo);
1087 if (!retval)
1088 retval = put_user(0, &infop->si_errno);
1089 if (!retval)
1090 retval = put_user((short)why, &infop->si_code);
1091 if (!retval)
1092 retval = put_user(pid, &infop->si_pid);
1093 if (!retval)
1094 retval = put_user(uid, &infop->si_uid);
1095 if (!retval)
1096 retval = put_user(status, &infop->si_status);
1097 if (!retval)
1098 retval = pid;
1099 return retval;
1103 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1104 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1105 * the lock and this task is uninteresting. If we return nonzero, we have
1106 * released the lock and the system call should return.
1108 static int wait_task_zombie(struct task_struct *p, int noreap,
1109 struct siginfo __user *infop,
1110 int __user *stat_addr, struct rusage __user *ru)
1112 unsigned long state;
1113 int retval;
1114 int status;
1116 if (unlikely(noreap)) {
1117 pid_t pid = p->pid;
1118 uid_t uid = p->uid;
1119 int exit_code = p->exit_code;
1120 int why, status;
1122 if (unlikely(p->exit_state != EXIT_ZOMBIE))
1123 return 0;
1124 if (unlikely(p->exit_signal == -1 && p->ptrace == 0))
1125 return 0;
1126 get_task_struct(p);
1127 read_unlock(&tasklist_lock);
1128 if ((exit_code & 0x7f) == 0) {
1129 why = CLD_EXITED;
1130 status = exit_code >> 8;
1131 } else {
1132 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1133 status = exit_code & 0x7f;
1135 return wait_noreap_copyout(p, pid, uid, why,
1136 status, infop, ru);
1140 * Try to move the task's state to DEAD
1141 * only one thread is allowed to do this:
1143 state = xchg(&p->exit_state, EXIT_DEAD);
1144 if (state != EXIT_ZOMBIE) {
1145 BUG_ON(state != EXIT_DEAD);
1146 return 0;
1148 if (unlikely(p->exit_signal == -1 && p->ptrace == 0)) {
1150 * This can only happen in a race with a ptraced thread
1151 * dying on another processor.
1153 return 0;
1156 if (likely(p->real_parent == p->parent) && likely(p->signal)) {
1157 struct signal_struct *psig;
1158 struct signal_struct *sig;
1161 * The resource counters for the group leader are in its
1162 * own task_struct. Those for dead threads in the group
1163 * are in its signal_struct, as are those for the child
1164 * processes it has previously reaped. All these
1165 * accumulate in the parent's signal_struct c* fields.
1167 * We don't bother to take a lock here to protect these
1168 * p->signal fields, because they are only touched by
1169 * __exit_signal, which runs with tasklist_lock
1170 * write-locked anyway, and so is excluded here. We do
1171 * need to protect the access to p->parent->signal fields,
1172 * as other threads in the parent group can be right
1173 * here reaping other children at the same time.
1175 spin_lock_irq(&p->parent->sighand->siglock);
1176 psig = p->parent->signal;
1177 sig = p->signal;
1178 psig->cutime =
1179 cputime_add(psig->cutime,
1180 cputime_add(p->utime,
1181 cputime_add(sig->utime,
1182 sig->cutime)));
1183 psig->cstime =
1184 cputime_add(psig->cstime,
1185 cputime_add(p->stime,
1186 cputime_add(sig->stime,
1187 sig->cstime)));
1188 psig->cmin_flt +=
1189 p->min_flt + sig->min_flt + sig->cmin_flt;
1190 psig->cmaj_flt +=
1191 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1192 psig->cnvcsw +=
1193 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1194 psig->cnivcsw +=
1195 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1196 spin_unlock_irq(&p->parent->sighand->siglock);
1200 * Now we are sure this task is interesting, and no other
1201 * thread can reap it because we set its state to EXIT_DEAD.
1203 read_unlock(&tasklist_lock);
1205 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1206 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1207 ? p->signal->group_exit_code : p->exit_code;
1208 if (!retval && stat_addr)
1209 retval = put_user(status, stat_addr);
1210 if (!retval && infop)
1211 retval = put_user(SIGCHLD, &infop->si_signo);
1212 if (!retval && infop)
1213 retval = put_user(0, &infop->si_errno);
1214 if (!retval && infop) {
1215 int why;
1217 if ((status & 0x7f) == 0) {
1218 why = CLD_EXITED;
1219 status >>= 8;
1220 } else {
1221 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1222 status &= 0x7f;
1224 retval = put_user((short)why, &infop->si_code);
1225 if (!retval)
1226 retval = put_user(status, &infop->si_status);
1228 if (!retval && infop)
1229 retval = put_user(p->pid, &infop->si_pid);
1230 if (!retval && infop)
1231 retval = put_user(p->uid, &infop->si_uid);
1232 if (retval) {
1233 // TODO: is this safe?
1234 p->exit_state = EXIT_ZOMBIE;
1235 return retval;
1237 retval = p->pid;
1238 if (p->real_parent != p->parent) {
1239 write_lock_irq(&tasklist_lock);
1240 /* Double-check with lock held. */
1241 if (p->real_parent != p->parent) {
1242 __ptrace_unlink(p);
1243 // TODO: is this safe?
1244 p->exit_state = EXIT_ZOMBIE;
1246 * If this is not a detached task, notify the parent.
1247 * If it's still not detached after that, don't release
1248 * it now.
1250 if (p->exit_signal != -1) {
1251 do_notify_parent(p, p->exit_signal);
1252 if (p->exit_signal != -1)
1253 p = NULL;
1256 write_unlock_irq(&tasklist_lock);
1258 if (p != NULL)
1259 release_task(p);
1260 BUG_ON(!retval);
1261 return retval;
1265 * Handle sys_wait4 work for one task in state TASK_STOPPED. We hold
1266 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1267 * the lock and this task is uninteresting. If we return nonzero, we have
1268 * released the lock and the system call should return.
1270 static int wait_task_stopped(struct task_struct *p, int delayed_group_leader,
1271 int noreap, struct siginfo __user *infop,
1272 int __user *stat_addr, struct rusage __user *ru)
1274 int retval, exit_code;
1276 if (!p->exit_code)
1277 return 0;
1278 if (delayed_group_leader && !(p->ptrace & PT_PTRACED) &&
1279 p->signal && p->signal->group_stop_count > 0)
1281 * A group stop is in progress and this is the group leader.
1282 * We won't report until all threads have stopped.
1284 return 0;
1287 * Now we are pretty sure this task is interesting.
1288 * Make sure it doesn't get reaped out from under us while we
1289 * give up the lock and then examine it below. We don't want to
1290 * keep holding onto the tasklist_lock while we call getrusage and
1291 * possibly take page faults for user memory.
1293 get_task_struct(p);
1294 read_unlock(&tasklist_lock);
1296 if (unlikely(noreap)) {
1297 pid_t pid = p->pid;
1298 uid_t uid = p->uid;
1299 int why = (p->ptrace & PT_PTRACED) ? CLD_TRAPPED : CLD_STOPPED;
1301 exit_code = p->exit_code;
1302 if (unlikely(!exit_code) ||
1303 unlikely(p->state & TASK_TRACED))
1304 goto bail_ref;
1305 return wait_noreap_copyout(p, pid, uid,
1306 why, (exit_code << 8) | 0x7f,
1307 infop, ru);
1310 write_lock_irq(&tasklist_lock);
1313 * This uses xchg to be atomic with the thread resuming and setting
1314 * it. It must also be done with the write lock held to prevent a
1315 * race with the EXIT_ZOMBIE case.
1317 exit_code = xchg(&p->exit_code, 0);
1318 if (unlikely(p->exit_state)) {
1320 * The task resumed and then died. Let the next iteration
1321 * catch it in EXIT_ZOMBIE. Note that exit_code might
1322 * already be zero here if it resumed and did _exit(0).
1323 * The task itself is dead and won't touch exit_code again;
1324 * other processors in this function are locked out.
1326 p->exit_code = exit_code;
1327 exit_code = 0;
1329 if (unlikely(exit_code == 0)) {
1331 * Another thread in this function got to it first, or it
1332 * resumed, or it resumed and then died.
1334 write_unlock_irq(&tasklist_lock);
1335 bail_ref:
1336 put_task_struct(p);
1338 * We are returning to the wait loop without having successfully
1339 * removed the process and having released the lock. We cannot
1340 * continue, since the "p" task pointer is potentially stale.
1342 * Return -EAGAIN, and do_wait() will restart the loop from the
1343 * beginning. Do _not_ re-acquire the lock.
1345 return -EAGAIN;
1348 /* move to end of parent's list to avoid starvation */
1349 remove_parent(p);
1350 add_parent(p);
1352 write_unlock_irq(&tasklist_lock);
1354 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1355 if (!retval && stat_addr)
1356 retval = put_user((exit_code << 8) | 0x7f, stat_addr);
1357 if (!retval && infop)
1358 retval = put_user(SIGCHLD, &infop->si_signo);
1359 if (!retval && infop)
1360 retval = put_user(0, &infop->si_errno);
1361 if (!retval && infop)
1362 retval = put_user((short)((p->ptrace & PT_PTRACED)
1363 ? CLD_TRAPPED : CLD_STOPPED),
1364 &infop->si_code);
1365 if (!retval && infop)
1366 retval = put_user(exit_code, &infop->si_status);
1367 if (!retval && infop)
1368 retval = put_user(p->pid, &infop->si_pid);
1369 if (!retval && infop)
1370 retval = put_user(p->uid, &infop->si_uid);
1371 if (!retval)
1372 retval = p->pid;
1373 put_task_struct(p);
1375 BUG_ON(!retval);
1376 return retval;
1380 * Handle do_wait work for one task in a live, non-stopped state.
1381 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1382 * the lock and this task is uninteresting. If we return nonzero, we have
1383 * released the lock and the system call should return.
1385 static int wait_task_continued(struct task_struct *p, int noreap,
1386 struct siginfo __user *infop,
1387 int __user *stat_addr, struct rusage __user *ru)
1389 int retval;
1390 pid_t pid;
1391 uid_t uid;
1393 if (unlikely(!p->signal))
1394 return 0;
1396 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1397 return 0;
1399 spin_lock_irq(&p->sighand->siglock);
1400 /* Re-check with the lock held. */
1401 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1402 spin_unlock_irq(&p->sighand->siglock);
1403 return 0;
1405 if (!noreap)
1406 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1407 spin_unlock_irq(&p->sighand->siglock);
1409 pid = p->pid;
1410 uid = p->uid;
1411 get_task_struct(p);
1412 read_unlock(&tasklist_lock);
1414 if (!infop) {
1415 retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0;
1416 put_task_struct(p);
1417 if (!retval && stat_addr)
1418 retval = put_user(0xffff, stat_addr);
1419 if (!retval)
1420 retval = p->pid;
1421 } else {
1422 retval = wait_noreap_copyout(p, pid, uid,
1423 CLD_CONTINUED, SIGCONT,
1424 infop, ru);
1425 BUG_ON(retval == 0);
1428 return retval;
1432 static inline int my_ptrace_child(struct task_struct *p)
1434 if (!(p->ptrace & PT_PTRACED))
1435 return 0;
1436 if (!(p->ptrace & PT_ATTACHED))
1437 return 1;
1439 * This child was PTRACE_ATTACH'd. We should be seeing it only if
1440 * we are the attacher. If we are the real parent, this is a race
1441 * inside ptrace_attach. It is waiting for the tasklist_lock,
1442 * which we have to switch the parent links, but has already set
1443 * the flags in p->ptrace.
1445 return (p->parent != p->real_parent);
1448 static long do_wait(pid_t pid, int options, struct siginfo __user *infop,
1449 int __user *stat_addr, struct rusage __user *ru)
1451 DECLARE_WAITQUEUE(wait, current);
1452 struct task_struct *tsk;
1453 int flag, retval;
1454 int allowed, denied;
1456 add_wait_queue(&current->signal->wait_chldexit,&wait);
1457 repeat:
1459 * We will set this flag if we see any child that might later
1460 * match our criteria, even if we are not able to reap it yet.
1462 flag = 0;
1463 allowed = denied = 0;
1464 current->state = TASK_INTERRUPTIBLE;
1465 read_lock(&tasklist_lock);
1466 tsk = current;
1467 do {
1468 struct task_struct *p;
1469 struct list_head *_p;
1470 int ret;
1472 list_for_each(_p,&tsk->children) {
1473 p = list_entry(_p, struct task_struct, sibling);
1475 ret = eligible_child(pid, options, p);
1476 if (!ret)
1477 continue;
1479 if (unlikely(ret < 0)) {
1480 denied = ret;
1481 continue;
1483 allowed = 1;
1485 switch (p->state) {
1486 case TASK_TRACED:
1488 * When we hit the race with PTRACE_ATTACH,
1489 * we will not report this child. But the
1490 * race means it has not yet been moved to
1491 * our ptrace_children list, so we need to
1492 * set the flag here to avoid a spurious ECHILD
1493 * when the race happens with the only child.
1495 flag = 1;
1496 if (!my_ptrace_child(p))
1497 continue;
1498 /*FALLTHROUGH*/
1499 case TASK_STOPPED:
1501 * It's stopped now, so it might later
1502 * continue, exit, or stop again.
1504 flag = 1;
1505 if (!(options & WUNTRACED) &&
1506 !my_ptrace_child(p))
1507 continue;
1508 retval = wait_task_stopped(p, ret == 2,
1509 (options & WNOWAIT),
1510 infop,
1511 stat_addr, ru);
1512 if (retval == -EAGAIN)
1513 goto repeat;
1514 if (retval != 0) /* He released the lock. */
1515 goto end;
1516 break;
1517 default:
1518 // case EXIT_DEAD:
1519 if (p->exit_state == EXIT_DEAD)
1520 continue;
1521 // case EXIT_ZOMBIE:
1522 if (p->exit_state == EXIT_ZOMBIE) {
1524 * Eligible but we cannot release
1525 * it yet:
1527 if (ret == 2)
1528 goto check_continued;
1529 if (!likely(options & WEXITED))
1530 continue;
1531 retval = wait_task_zombie(
1532 p, (options & WNOWAIT),
1533 infop, stat_addr, ru);
1534 /* He released the lock. */
1535 if (retval != 0)
1536 goto end;
1537 break;
1539 check_continued:
1541 * It's running now, so it might later
1542 * exit, stop, or stop and then continue.
1544 flag = 1;
1545 if (!unlikely(options & WCONTINUED))
1546 continue;
1547 retval = wait_task_continued(
1548 p, (options & WNOWAIT),
1549 infop, stat_addr, ru);
1550 if (retval != 0) /* He released the lock. */
1551 goto end;
1552 break;
1555 if (!flag) {
1556 list_for_each(_p, &tsk->ptrace_children) {
1557 p = list_entry(_p, struct task_struct,
1558 ptrace_list);
1559 if (!eligible_child(pid, options, p))
1560 continue;
1561 flag = 1;
1562 break;
1565 if (options & __WNOTHREAD)
1566 break;
1567 tsk = next_thread(tsk);
1568 BUG_ON(tsk->signal != current->signal);
1569 } while (tsk != current);
1571 read_unlock(&tasklist_lock);
1572 if (flag) {
1573 retval = 0;
1574 if (options & WNOHANG)
1575 goto end;
1576 retval = -ERESTARTSYS;
1577 if (signal_pending(current))
1578 goto end;
1579 schedule();
1580 goto repeat;
1582 retval = -ECHILD;
1583 if (unlikely(denied) && !allowed)
1584 retval = denied;
1585 end:
1586 current->state = TASK_RUNNING;
1587 remove_wait_queue(&current->signal->wait_chldexit,&wait);
1588 if (infop) {
1589 if (retval > 0)
1590 retval = 0;
1591 else {
1593 * For a WNOHANG return, clear out all the fields
1594 * we would set so the user can easily tell the
1595 * difference.
1597 if (!retval)
1598 retval = put_user(0, &infop->si_signo);
1599 if (!retval)
1600 retval = put_user(0, &infop->si_errno);
1601 if (!retval)
1602 retval = put_user(0, &infop->si_code);
1603 if (!retval)
1604 retval = put_user(0, &infop->si_pid);
1605 if (!retval)
1606 retval = put_user(0, &infop->si_uid);
1607 if (!retval)
1608 retval = put_user(0, &infop->si_status);
1611 return retval;
1614 asmlinkage long sys_waitid(int which, pid_t pid,
1615 struct siginfo __user *infop, int options,
1616 struct rusage __user *ru)
1618 long ret;
1620 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED))
1621 return -EINVAL;
1622 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1623 return -EINVAL;
1625 switch (which) {
1626 case P_ALL:
1627 pid = -1;
1628 break;
1629 case P_PID:
1630 if (pid <= 0)
1631 return -EINVAL;
1632 break;
1633 case P_PGID:
1634 if (pid <= 0)
1635 return -EINVAL;
1636 pid = -pid;
1637 break;
1638 default:
1639 return -EINVAL;
1642 ret = do_wait(pid, options, infop, NULL, ru);
1644 /* avoid REGPARM breakage on x86: */
1645 prevent_tail_call(ret);
1646 return ret;
1649 asmlinkage long sys_wait4(pid_t pid, int __user *stat_addr,
1650 int options, struct rusage __user *ru)
1652 long ret;
1654 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1655 __WNOTHREAD|__WCLONE|__WALL))
1656 return -EINVAL;
1657 ret = do_wait(pid, options | WEXITED, NULL, stat_addr, ru);
1659 /* avoid REGPARM breakage on x86: */
1660 prevent_tail_call(ret);
1661 return ret;
1664 #ifdef __ARCH_WANT_SYS_WAITPID
1667 * sys_waitpid() remains for compatibility. waitpid() should be
1668 * implemented by calling sys_wait4() from libc.a.
1670 asmlinkage long sys_waitpid(pid_t pid, int __user *stat_addr, int options)
1672 return sys_wait4(pid, stat_addr, options, NULL);
1675 #endif